ADP2380AREZ-R7 [ADI]

20 V, 4 A Synchronous Step-Down Regulator with Low-Side Driver; 20 V ,4A同步降压型稳压器,低侧驱动器
ADP2380AREZ-R7
型号: ADP2380AREZ-R7
厂家: ADI    ADI
描述:

20 V, 4 A Synchronous Step-Down Regulator with Low-Side Driver
20 V ,4A同步降压型稳压器,低侧驱动器

驱动器 稳压器
文件: 总28页 (文件大小:931K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
20 V, 4 A Synchronous Step-Down  
Regulator with Low-Side Driver  
Data Sheet  
ADP2380  
FEATURES  
TYPICAL APPLICATIONS CIRCUIT  
V
Input voltage: 4.5 V to 20 V  
IN  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
PVIN  
PVIN  
BST  
Integrated 44 mΩ high-side MOSFET  
0.6 V 1% reference voltage over temperature  
Continuous output current: 4 A  
Programmable switching frequency: 250 kHz to 1.4 MHz  
Synchronizes to external clock: 250 kHz to 1.4 MHz  
180° out-of-phase synchronization  
Programmable UVLO  
L
C
V
BST  
OUT  
C
IN  
SW  
SW  
C
OUT  
UVLO ADP2380  
PGOOD  
FET  
LD  
C
RT  
VREG  
PGND  
GND  
VREG  
R
OSC  
11  
10  
9
SYNC  
EN/SS  
COMP  
R
R
TOP  
C
SS  
Power-good output  
FB  
External compensation  
BOT  
C
C_EA  
R
Internal soft start with external adjustable option  
Startup into a precharged output  
Supported by ADIsimPower design tool  
C_EA  
C
CP_EA  
Figure 1.  
APPLICATIONS  
Communications infrastructure  
Networking and servers  
Industrial and instrumentation  
Healthcare and medical  
Intermediate power rail conversion  
DC-to-dc point of load application  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
V
V
V
= 1.2V  
= 3.3V  
= 5V  
OUT  
OUT  
OUT  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
OUTPUT CURRENT (A)  
Figure 2. Efficiency vs. Output Current, VIN = 12 V, fSW = 250 kHz  
GENERAL DESCRIPTION  
The ADP2380 is a current mode control, synchronous, step-down,  
dc-to-dc regulator. It integrates a 44 mΩ high-side power MOSFET  
and a low-side driver to provide a high efficiency solution. The  
ADP2380 runs from an input voltage of 4.5 V to 20 V and can  
deliver 4 A of output current. The output voltage can be adjusted  
to 0.6 V to 90% of the input voltage. The switching frequency of  
the ADP2380 can be programmed from 250 kHz to 1.4 MHz or  
fixed at 290 kHz or 540 kHz. The synchronization function allows  
the switching frequency to be synchronized to an external clock  
to minimize system noise.  
External compensation and an adjustable soft start provide  
design flexibility. The power-good output provides simple and  
reliable power sequencing. Additional features include  
programmable undervoltage lockout (UVLO), overvoltage  
protection (OVP), overcurrent protection (OCP), and thermal  
shutdown (TSD).  
The ADP2380 operates over the −40°C to +125°C junction  
temperature range and is available in a 16-lead TSSOP_EP  
package.  
Rev. 0  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rightsof third parties that may result fromits use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks andregisteredtrademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Technical Support  
©2012 Analog Devices, Inc. All rights reserved.  
www.analog.com  
 
 
 
 
ADP2380  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Applications Information .............................................................. 15  
Input Capacitor Selection.......................................................... 15  
Output Voltage Setting .............................................................. 15  
Voltage Conversion Limitations............................................... 15  
Inductor Selection ...................................................................... 15  
Output Capacitor Selection....................................................... 17  
Low-Side Power Device Selection............................................ 17  
Programming Input Voltage UVLO ........................................ 18  
Compensation Design ............................................................... 18  
ADIsimPower Design Tool ....................................................... 19  
Design Example.............................................................................. 20  
Output Voltage Setting .............................................................. 20  
Frequency Setting....................................................................... 20  
Inductor Selection ...................................................................... 20  
Output Capacitor Selection....................................................... 20  
Low-Side MOSFET Selection ................................................... 21  
Compensation Components..................................................... 21  
Soft Start Time Program ........................................................... 21  
Input Capacitor Selection.......................................................... 21  
Recommended External Components ........................................ 22  
Circuit Board Layout Recommendations ................................... 24  
Typical Applications Circuits........................................................ 26  
Outline Dimensions....................................................................... 27  
Ordering Guide .......................................................................... 27  
Applications....................................................................................... 1  
Typical Applications Circuit............................................................ 1  
General Description ......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Absolute Maximum Ratings............................................................ 5  
Thermal Information................................................................... 5  
ESD Caution.................................................................................. 5  
Pin Configuration and Function Descriptions............................. 6  
Typical Performance Characteristics ............................................. 7  
Functional Block Diagram ............................................................ 12  
Theory of Operation ...................................................................... 13  
Control Scheme .......................................................................... 13  
Internal Regulator (VREG)....................................................... 13  
Bootstrap Circuitry .................................................................... 13  
Low-Side Driver.......................................................................... 13  
Oscillator ..................................................................................... 13  
Synchronization.......................................................................... 13  
Enable and Soft Start.................................................................. 13  
Power Good................................................................................. 14  
Peak Current-Limit and Short-Circuit Protection................. 14  
Overvoltage Protection (OVP)................................................. 14  
Undervoltage Lockout (UVLO) ............................................... 14  
Thermal Shutdown..................................................................... 14  
REVISION HISTORY  
12/12—Revision 0: Initial Version  
Rev. 0 | Page 2 of 28  
 
Data Sheet  
ADP2380  
SPECIFICATIONS  
VIN = 12 V, T J = −40°C to +125°C for minimum/maximum specifications, and TA = 25°C for typical specifications, unless otherwise noted.  
Table 1.  
Parameter  
Symbol  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
PVIN  
PVIN Voltage Range  
Quiescent Current  
Shutdown Current  
PVIN Undervoltage Lockout Threshold  
VPVIN  
IQ  
ISHDN  
4.5  
2.2  
85  
20  
V
No switching  
EN/SS = GND  
PVIN rising  
2.8  
125  
4.3  
3.9  
3.4  
170  
4.5  
mA  
µA  
V
PVIN falling  
3.7  
V
FB  
FB Regulation Voltage  
VFB  
IFB  
0°C < TJ < 85°C  
−40°C < TJ < +125°C  
0.594  
0.591  
0.6  
0.6  
0.01  
0.606  
0.609  
0.1  
V
V
µA  
FB Bias Current  
ERROR AMPLIFIER (EA)  
Transconductance  
EA Source Current  
EA Sink Current  
gm  
ISOURCE  
ISINK  
340  
45  
45  
470  
60  
60  
590  
75  
75  
µS  
µA  
µA  
INTERNAL REGULATOR (VREG)  
VREG Voltage  
Dropout Voltage  
VVREG  
VPVIN = 12 V, IVREG = 50 mA  
VPVIN = 12 V, IVREG = 50 mA  
7.7  
65  
8
350  
100  
8.4  
V
mV  
mA  
Regulator Current Limit  
130  
SW  
High-Side On Resistance1  
High-Side Peak Current Limit  
Negative Current-Limit Threshold Voltage2  
SW Minimum On Time  
SW Minimum Off Time  
LOW-SIDE DRIVER (LD)  
Rising Time2  
VBST − VSW = 5 V  
44  
7
20  
120  
195  
70  
9
mΩ  
A
mV  
ns  
4.8  
tMIN_ON  
tMIN_OFF  
155  
280  
ns  
tR  
tF  
CDL = 2.2 nF; see Figure 17  
CDL = 2.2 nF; see Figure 20  
20  
10  
4
ns  
ns  
Ω
Falling Time2  
Sourcing Resistor  
Sinking Resistor  
6.5  
4.5  
2
Ω
BST  
Bootstrap Voltage  
OSCILLATOR (RT PIN)  
Switching Frequency  
VBOOT  
fSW  
4.7  
5
5.6  
V
RT pin connected to GND  
RT pin open  
ROSC = 100 kΩ  
210  
410  
440  
250  
290  
540  
500  
350  
650  
560  
1400  
kHz  
kHz  
kHz  
kHz  
Switching Frequency Range  
SYNC  
fSW  
Synchronization Range  
SYNC Minimum Pulse Width  
SYNC Minimum Off Time  
SYNC Input High Voltage  
SYNC Input Low Voltage  
EN/SS  
Enable Threshold  
Internal Soft Start  
SS Pin Pull-Up Current  
250  
100  
100  
1.3  
1400  
kHz  
ns  
ns  
V
0.4  
0.5  
3.6  
V
V
1600  
3.2  
Clock cycles  
µA  
ISS_UP  
2.4  
Rev. 0 | Page 3 of 28  
 
 
ADP2380  
Data Sheet  
Parameter  
Symbol  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
POWER GOOD (PGOOD)  
PGOOD Range  
FB rising threshold  
FB falling threshold  
PGOOD from low to high  
PGOOD from high to low  
VPGOOD = 5 V  
95  
90  
1024  
16  
0.01  
125  
%
%
PGOOD Deglitch Time  
Clock cycles  
Clock cycles  
µA  
PGOOD Leakage Current  
PGOOD Output Low Voltage  
UVLO  
0.1  
185  
IPGOOD = 1 mA  
mV  
Rising Threshold  
Falling Threshold  
1.2  
1.1  
1.24  
V
V
1.06  
THERMAL  
Thermal Shutdown Threshold  
Thermal Shutdown Hysteresis  
150  
25  
°C  
°C  
1 Pin-to-pin measurement.  
2 Guaranteed by design.  
Rev. 0 | Page 4 of 28  
 
 
 
 
Data Sheet  
ADP2380  
ABSOLUTE MAXIMUM RATINGS  
Absolute maximum ratings apply individually only, not in  
combination. Unless otherwise specified, all other voltages are  
referenced to GND.  
Table 2.  
Parameter  
Rating  
PVIN, PGOOD  
SW  
−0.3 V to +22 V  
−1 V to +22 V  
THERMAL INFORMATION  
BST  
VSW + 6 V  
Table 3. Thermal Resistance  
Package Type  
UVLO, FB, EN/SS, COMP, SYNC, RT  
VREG, LD  
PGND to GND  
Operating Junction Temperature Range  
Storage Temperature Range  
Soldering Conditions  
−0.3 V to +6 V  
−0.3 V to +12 V  
−0.3 V to +0.3 V  
−40°C to +125°C  
−65°C to +150°C  
JEDEC J-STD-020  
θJA  
39.48  
Unit  
16-lead TSSOP_EP  
°C/W  
θJA is specified for the worst-case conditions, that is, a device  
soldered in circuit board (4-layer, JEDEC standard board) for  
surface-mount packages.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
ESD CAUTION  
Rev. 0 | Page 5 of 28  
 
 
 
ADP2380  
Data Sheet  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
PVIN  
PVIN  
BST  
SW  
UVLO  
PGOOD  
RT  
SW  
ADP2380  
TOP VIEW  
(Not to Scale)  
LD  
VREG  
PGND  
GND  
FB  
SYNC  
EN/SS  
COMP  
NOTES  
1. THE EXPOSED PAD SHOULD BE SOLDERED  
TO A LARGE EXTERNAL COPPER GROUND PLANE  
UNDERNEATH THE IC FOR THERMAL DISSIPATION.  
Figure 3. Pin Configuration (Top View)  
Table 4. Pin Function Descriptions  
Pin No.  
Mnemonic  
Description  
1, 2  
PVIN  
Power Input. Connect PVIN to the input power source and connect a bypass capacitor between this pin  
and PGND.  
3
4
UVLO  
PGOOD  
Undervoltage Lockout Pin. An external resistor divider can be used to set the turn-on threshold.  
Power-Good Output (Open Drain). It is recommended that a pull-up resistor of 10 kΩ to 100 kΩ be  
connected to PGOOD.  
5
RT  
Frequency Setting. Connect a resistor between RT and GND to program the switching frequency  
between 250 kHz and 1.4 MHz. If the RT pin is connected to GND, the switching frequency is set to 290 kHz.  
If the RT pin is open, the switching frequency is set to 540 kHz.  
6
7
SYNC  
EN/SS  
Synchronization Input. Connect this pin to an external clock to synchronize the switching frequency  
between 250 kHz and 1.4 MHz (see the Oscillator section and the Synchronization section for details).  
Enable (EN). When this pin voltage falls below 0.5 V, the regulator is disabled.  
Soft Start (SS). This pin can also be used to set the soft start time. Connect a capacitor from SS to GND to  
program the slow soft start time. If this pin is open, the regulator is enabled and uses the internal soft start.  
8
9
COMP  
FB  
GND  
PGND  
VREG  
LD  
SW  
BST  
EPAD  
Error Amplifier Output. Connect an RC network from COMP to FB.  
Feedback Voltage Sense Input. Connect this pin to a resistor divider from VOUT  
Analog Ground. Connect this pin to the ground plane.  
Power Ground. Connect this pin to the source of the synchronous N-channel MOSFET.  
Internal 8 V Regulator Output. Place a 1 µF ceramic capacitor between this pin and GND.  
Low-Side Gate Driver Output. Connect this pin to the gate of the synchronous N-MOSFET.  
Switch Node Output. Connect this pin to the output inductor.  
.
10  
11  
12  
13  
14, 15  
16  
17  
Supply Rail for the High-Side Gate Drive. Place a 0.1 µF ceramic capacitor between SW and BST.  
Exposed Pad. The exposed pad should be soldered to a large external copper ground plane underneath  
the IC for thermal dissipation.  
Rev. 0 | Page 6 of 28  
 
Data Sheet  
ADP2380  
TYPICAL PERFORMANCE CHARACTERISTICS  
TA = 25oC, VIN = 12 V, VOUT = 3.3 V, L = 4.7 µH, COUT = 2 × 100 µF, fSW = 500 kHz, unless otherwise noted.  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
V
V
V
V
V
= 1.2V  
= 1.8V  
= 2.5V  
= 3.3V  
= 5V  
OUT  
OUT  
OUT  
OUT  
OUT  
V
V
V
V
V
= 1.2V  
= 1.8V  
= 2.5V  
= 3.3V  
= 5V  
OUT  
OUT  
OUT  
OUT  
OUT  
INDUCTOR: FDVE1040-3R3M  
MOSFET: FDS6298  
INDUCTOR: FDVE1040-6R8M  
MOSFET: FDS6298  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
OUTPUT CURRENT (A)  
OUTPUT CURRENT (A)  
Figure 4. Efficiency at VIN = 12 V, fSW = 500 kHz  
Figure 7. Efficiency at VIN = 12 V, fSW = 250 kHz  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
V
V
V
V
V
V
= 1.0V  
= 1.2V  
= 1.5V  
= 1.8V  
= 2.5V  
= 3.3V  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
V
V
V
V
= 1.8V  
= 2.5V  
= 3.3V  
= 5V  
OUT  
OUT  
OUT  
OUT  
INDUCTOR: FDVE1040-4R7M  
MOSFET: FDS6298  
INDUCTOR: FDVE1040-1R5M  
MOSFET: FDS6298  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
OUTPUT CURRENT (A)  
OUTPUT CURRENT (A)  
Figure 5. Efficiency at VIN = 18 V, fSW = 500 kHz  
Figure 8. Efficiency at VIN = 5 V, fSW = 500 kHz  
160  
150  
140  
130  
120  
110  
100  
90  
3.2  
3.0  
2.8  
2.6  
2.4  
2.2  
2.0  
1.8  
T
T
T
= –40°C  
= +25°C  
= +125°C  
T
T
T
= –40°C  
= +25°C  
= +125°C  
J
J
J
J
J
J
4
6
8
10  
12  
14  
16  
18  
20  
4
6
8
10  
12  
14  
16  
18  
20  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
Figure 6. Shutdown Current vs. VIN  
Figure 9. Quiescent Current vs. VIN  
Rev. 0 | Page 7 of 28  
 
ADP2380  
Data Sheet  
4.5  
1.30  
1.25  
1.20  
1.15  
1.10  
1.05  
1.00  
RISING  
FALLING  
RISING  
FALLING  
4.4  
4.3  
4.2  
4.1  
4.0  
3.9  
3.8  
3.7  
3.6  
–40  
–20  
0
20  
40  
60  
80  
100 120  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
120  
120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 10. PVIN UVLO Threshold vs. Temperature  
Figure 13. UVLO Pin Threshold vs. Temperature  
3.3  
3.2  
3.1  
3.0  
2.9  
2.8  
606  
604  
602  
600  
598  
596  
594  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
–40  
–20  
0
20  
40  
60  
80  
100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 11. SS Pin Pull-Up Current vs. Temperature  
Figure 14. FB Voltage vs. Temperature  
530  
520  
510  
500  
490  
480  
470  
8.4  
8.3  
8.2  
8.1  
8.0  
7.9  
7.8  
7.7  
7.6  
R
= 100kΩ  
OSC  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
–40  
–20  
0
20  
40  
60  
80  
100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 15. VREG Voltage vs. Temperature  
Figure 12. Frequency vs. Temperature  
Rev. 0 | Page 8 of 28  
Data Sheet  
ADP2380  
8.0  
7.5  
7.0  
6.5  
6.0  
5.5  
5.0  
70  
60  
50  
40  
30  
20  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 16. MOSFET RDSON vs. Temperature  
Figure 19. Current-Limit Threshold vs. Temperature  
SW  
SW  
1
1
2
LD  
LD  
2
CH1 5.00V CH2 5.00V  
M20.0ns  
50.00%  
A
CH2  
5.50V  
CH1 5.00V CH2 5.00V  
M20.0ns  
40.00%  
A
CH2  
3.70V  
T
T
Figure 17. Low-Side Driver Rising Edge Waveform, CDL = 2.2 nF  
Figure 20. Low-Side Driver Falling Edge Waveform, CDL = 2.2 nF  
V
(AC)  
OUT  
EN/SS  
3
1
I
L
V
OUT  
1
SW  
I
OUT  
4
2
4
2
PGOOD  
B
B
B
CH1 10mV  
CH2 10V  
CH4 2A Ω  
M2.00µs  
50.20%  
A
CH2  
8.00V  
CH1 2.00V  
CH3 5.00V  
CH2 5.00V  
B
CH4 2.00A Ω  
M2.00ms  
60.40%  
A
CH2  
4.40V  
W
W
W
B
T
T
W
W
Figure 18. Working Mode Waveform  
Figure 21. Soft Start with Full Load  
Rev. 0 | Page 9 of 28  
 
 
ADP2380  
Data Sheet  
SYNC  
EN/SS  
3
3
V
OUT  
1
2
SW  
PGOOD  
2
I
L
4
B
B
B
CH1 2.00V  
CH3 5.00V  
CH2 5.00V  
M2.00ms  
60.40%  
A
CH2  
4.40V  
2.96A  
1.32V  
CH3 5.00V  
CH2 10.0V M1.00µs  
50.40%  
A
CH2  
7.40V  
W
W
W
B
CH4 2.00A Ω  
T
T
W
Figure 22. Precharged Output  
Figure 25. External Synchronization  
V
(AC)  
OUT  
V
(AC)  
OUT  
1
1
V
IN  
SW  
I
3
2
OUT  
4
B
W
B
B
CH1 20mV  
CH3 5V Ω  
CH2 10V  
M1ms  
30%  
A
CH3  
13.8V  
CH1 100mV  
M200µs  
70.40%  
A
CH4  
W
W
B
T
B
CH4 2.00A Ω  
T
W
W
Figure 23. Load Transient Response, 1 A to 4 A  
Figure 26. Line Transient Response, VIN from 10 V to 16 V, IOUT = 4 A  
V
V
OUT  
OUT  
1
2
4
1
SW  
SW  
2
I
I
L
L
4
B
B
CH1 2.00V  
CH2 10.0V  
CH4 5.00A Ω  
M4.00ms  
20.40%  
A CH1  
CH1 2.00V  
CH2 10.0V  
CH4 5.00A Ω  
M4.00ms  
70.20%  
A
CH1  
1.96V  
W
W
B
B
W
T
W
T
Figure 24. Output Short Entry  
Figure 27. Output Short Recovery  
Rev. 0 | Page 10 of 28  
Data Sheet  
ADP2380  
5
4
3
2
5
4
3
2
1
V
V
V
V
V
V
= 1V  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
= 1.2V  
= 1.8V  
= 2.5V  
= 3.3V  
= 5V  
V
V
= 1.2V  
= 1.8V  
= 2.5V  
= 3.3V  
= 5V  
OUT  
OUT  
1
V
OUT  
V
OUT  
V
OUT  
0
45  
0
45  
55  
65  
75  
85  
95  
105  
55  
65  
75  
85  
95  
105  
AMBIENT TEMPERATURE (°C)  
AMBIENT TEMPERATURE (°C)  
Figure 28. Load Current vs. Ambient Temperature, VIN = 12 V,  
SW = 500 kHz  
Figure 29. Load Current vs. Ambient Temperature, VIN = 12 V,  
SW = 250 kHz  
f
f
Rev. 0 | Page 11 of 28  
ADP2380  
Data Sheet  
FUNCTIONAL BLOCK DIAGRAM  
VREG  
ADP2380  
CLK  
RT  
BIAS AND DRIVER  
REGULATOR  
PVIN  
OSCILLATOR  
SYNC  
SLOPE RAMP  
UVLO  
PVIN  
320kΩ  
BOOST  
REGULATOR  
UVLO  
+
125kΩ  
1.2V  
+
A
CS  
+
OCP  
HICCUP  
MODE  
I
MAX  
SLOPE RAMP  
Σ
COMP  
BST  
SW  
0.6V  
+
I
SS  
+
CMP  
NFET  
EN/SS  
FB  
+
DRIVER  
AMP  
CONTROL  
LOGIC  
AND MOSFET  
DRIVER WITH  
ANTICROSS  
OVP  
0.7V  
VREG  
PROTECTION  
+
CLK  
DRIVER  
LD  
0.54V  
PGND  
+
PGOOD  
GND  
NEGATIVE  
CURRENT-LIMIT  
CMP  
DEGLITCH  
+
Figure 30. Functional Block Diagram  
Rev. 0 | Page 12 of 28  
 
Data Sheet  
ADP2380  
THEORY OF OPERATION  
The ADP2380 is a synchronous, step-down, dc-to-dc regulator.  
It uses current mode architecture with an integrated high-side  
power switch and a low-side driver. It targets high performance  
applications that require high efficiency and design flexibility.  
A 100 kΩ resistor sets the frequency to 500 kHz, and a 215 kΩ  
resistor sets the frequency to 250 kHz. Figure 31 shows the typical  
relationship between fSW and ROSC  
.
1400  
The ADP2380 can operate with an input voltage from 4.5 V to  
20 V and regulate the output voltage down to 0.6 V. Additional  
features for design flexibility include programmable switching  
frequency, soft start, external compensation, and power-good pin.  
1200  
1000  
800  
600  
400  
200  
0
CONTROL SCHEME  
The ADP2380 uses fixed frequency, peak current mode PWM  
control architecture. At the start of each oscillator cycle, the  
high-side N-MOSFET is turned on, putting a positive voltage  
across the inductor. Current in the inductor increases until  
the current sense signal crosses the peak inductor current thresh-  
old that turns off the high-side N-MOSFET and turns on the  
low-side N-MOSFET. This puts a negative voltage across the  
inductor, causing the inductor current to decrease. The low-  
side N-MOSFET stays on for the rest of the cycle.  
20  
60  
100  
140  
180  
(kΩ)  
220  
260  
300  
R
OSC  
Figure 31. Switching Frequency vs. ROSC  
SYNCHRONIZATION  
INTERNAL REGULATOR (VREG)  
To synchronize the ADP2380, connect an external clock to the  
SYNC pin. The frequency of the external clock can be in the  
range of 250 kHz to 1.4 MHz. During synchronization, the  
switching rising edge runs 180° out of phase with the external  
clock rising edge.  
The internal regulator provides a stable supply for the internal  
circuits and provides bias voltage for the low-side gate driver.  
Placing a 1 µF ceramic capacitor between VREG and GND is  
recommended. The internal regulator also includes a current-  
limit circuit to protect the circuit if the maximum external  
load is added.  
When the ADP2380 is being synchronized, connect a resistor  
from the RT pin to GND to program the internal oscillator to  
run at 90% to 110% of the external synchronization clock.  
BOOTSTRAP CIRCUITRY  
The ADP2380 has integrated the boot regulator to provide the  
gate drive voltage for the high-side N-MOSFET. It generates a  
5 V bootstrap voltage between BST and SW by differential  
sensing.  
ENABLE AND SOFT START  
When the voltage of the EN/SS pin exceeds 0.5 V, the ADP2380  
starts operation.  
The ADP2380 has an internal digital soft start. The internal soft  
start time can be calculated by using the following equation:  
It is recommended to place a 0.1 µF, X7R or X5R ceramic  
capacitor between the BST pin and the SW pin.  
1600  
LOW-SIDE DRIVER  
tSS _ INT  
=
(ms)  
f
SW [kHz]  
The LD pin provides the gate driver for the low-side N-channel  
MOSFET. Internal circuitry monitors the external MOSFET to  
ensure break-before-make switching to prevent cross conduction.  
A slow soft start time can be programmed by the EN/SS pin.  
Place a capacitor between the EN/SS pin and GND. An internal  
current charges this capacitor to establish the soft start ramp.  
The soft start time can be calculated by using the following  
equation:  
OSCILLATOR  
The ADP2380 switching frequency is controlled by the RT pin.  
If the RT pin is connected to GND, the switching frequency is  
set to 290 kHz. If the RT pin is open, the switching frequency is  
set to 540 kHz. A resistor connected from RT to GND can  
program the switching frequency according to the following  
equation:  
0.6V×CSS  
ISS _UP  
tSS _ EXT  
=
where:  
SS is the soft start capacitance.  
SS_UP is the soft start pull-up current (3.2 µA).  
C
I
57,600  
OSC[kΩ]+15  
f
SW[kHz]=  
R
The internal error amplifier includes three positive inputs: the  
internal reference voltage, the internal digital soft start voltage,  
and the EN/SS voltage. The error amplifier regulates the FB  
voltage to the lowest of the three voltages.  
Rev. 0 | Page 13 of 28  
 
 
 
 
 
 
 
 
 
ADP2380  
Data Sheet  
If the output voltage is charged prior to turn-on, the ADP2380  
prevents the low-side MOSFET from turning on, which discharges  
the output voltage until the soft start voltage exceeds the voltage  
on the FB pin.  
If the current-limit fault is cleared, the regulator resumes  
normal operation. Otherwise, it reenters hiccup mode.  
The ADP2380 also provides a sink current limit to prevent the  
low-side MOSFET from sinking a large amount of current from  
the load. When the voltage across the low-side MOSFET exceeds  
the sink current-limit threshold, which is typically 20 m V, the  
low-side MOSFET turns off immediately for the rest of this cycle.  
Both high-side and low-side MOSFETs turn off until the next  
clock cycle.  
When the regulator is disabled or a current fault happens, the  
soft start capacitor is discharged, and the internal digital soft  
start is reset to 0 V.  
POWER GOOD  
The power-good (PGOOD) pin is an active high, open-drain  
output that requires a pull-up resistor. A logic high indicates  
that the voltage at the FB pin (and, therefore, the output  
voltage) is above 95% of the reference voltage and there is a  
1024 cycle waiting period before PGOOD is pulled high. A logic  
low indicates that the voltage at the FB pin is below 90% of the  
reference voltage and there is a 16-cycle waiting period before  
PGOOD is pulled low.  
In some cases, the input voltage (PVIN) ramp rate is too slow or  
the output capacitor is too large to support the setting regulation  
voltage during the soft start, causing the regulator to enter hiccup  
mode. To avoid such cases, use a resistor divider at the UVLO  
pin to program the UVLO input voltage, or use a longer soft  
start time.  
OVERVOLTAGE PROTECTION (OVP)  
The ADP2380 provides an overvoltage protection feature to  
protect the system against an output that shorts to a higher  
voltage supply or the occurrence of a strong load transient.  
If the feedback voltage increases to 0.7 V, the internal high-side  
MOSFET and low-side driver are turned off until the voltage at FB  
decreases to 0.63 V. At that time, the ADP2380 resumes normal  
operation.  
PEAK CURRENT-LIMIT AND SHORT-CIRCUIT  
PROTECTION  
The ADP2380 has a peak current-limit protection circuit to  
prevent current runaway. During soft start, the ADP2380 uses  
frequency foldback to prevent output current runaway. The  
switching frequency is reduced according to the voltage on the  
FB pin, which allows more time for the inductor to discharge.  
The correlation between the switching frequency and FB pin  
voltage is shown in Table 5.  
UNDERVOLTAGE LOCKOUT (UVLO)  
The UVLO pin enable threshold is 1.2 V with 100 mV hysteresis.  
The ADP2380 has an internal voltage divider that consists of  
two resistors from PVIN to GND, with 320 kΩ for the high-side  
resistor and 125 kΩ for the low-side resistor. An external resistor  
divider from PVIN to GND can be used to override the internal  
resistor divider.  
Table 5. Switching Frequency and FB Pin Voltage  
FB Pin Voltage  
Switching Frequency  
VFB ≥ 0.4 V  
fSW  
0.4 V > VFB ≥ 0.2 V  
VFB < 0.2 V  
fSW/2  
fSW/4  
THERMAL SHUTDOWN  
For heavy load protection, the ADP2380 uses hiccup mode for  
overcurrent protection. When the inductor peak current reaches  
the current-limit value, the high-side MOSFET turns off and  
the low-side driver turns on until the next cycle, while the  
overcurrent counter increments. If the overcurrent counter  
reaches 10, or the FB pin voltage falls to ≤0.4 V after the soft  
start, the regulator enters hiccup mode. The high-side MOSFET  
and low-side MOSFET are both turned off. The regulator remains  
in this mode for 4096 clock cycles and then attempts to restart.  
In the event that the ADP2380 junction temperatures rise above  
150°C, the thermal shutdown circuit turns off the regulator.  
Extreme junction temperatures can be the result of high current  
operation, poor circuit board design, and/or high ambient  
temperature. A 25°C hysteresis is included so that, when thermal  
shutdown occurs, the ADP2380 does not return to operation until  
the on-chip temperature drops below 125°C. Upon recovery, soft  
start is initiated prior to normal operation.  
Rev. 0 | Page 14 of 28  
 
 
 
 
 
 
Data Sheet  
ADP2380  
APPLICATIONS INFORMATION  
The maximum output voltage for a given input voltage and  
INPUT CAPACITOR SELECTION  
switching frequency is constrained by the minimum off time  
and the maximum duty cycle. The minimum off time is typically  
200 ns, and the maximum duty cycle of the ADP2380 is  
typically 90%.  
The input decoupling capacitor is used to attenuate high  
frequency noise on the input. This capacitor should be a  
ceramic capacitor in the range of 10 µF to 47 µF. Place the  
capacitor close to the PVIN pin. The loop composed of this  
input capacitor, high-side NFET, and low-side NFET must be  
kept as small as possible.  
The maximum output voltage limited by the minimum off time  
at a given input voltage and frequency can be calculated using  
the following equation:  
The voltage rating of the input capacitor must be greater than  
the maximum input voltage. The rms current rating of the input  
capacitor should be larger than the following equation:  
V
OUT_MAX = VIN × (1 − tMIN_OFF × fSW) − (RDSON_HS RDSON_LS) ×  
OUT_MAX × (1 − tMIN_OFF × fSW) − (RDSON_LS + RL) × IOUT_MAX  
where:  
OUT_MAX is the maximum output voltage.  
MIN_OFF is the minimum off time.  
I
(2)  
IC  
= IOUT × D ×(1 D)  
_RMS  
IN  
V
t
I
OUTPUT VOLTAGE SETTING  
OUT_MAX is the maximum output current.  
The output voltage of ADP2380 can be set by an external  
resistive divider using the following equation:  
The maximum output voltage, limited by the maximum duty  
cycle at a given input voltage, can be calculated by using the  
following equation:  
RTOP  
RBOT  
VOUT = 0.6 × 1 +  
VOUT_MAX = DMAX × VIN  
(3)  
To limit output voltage accuracy degradation due to FB bias  
current (0.1 µA maximum) to less than 0.5% (maximum),  
ensure that RBOT is less than 30 kΩ.  
where DMAX is the maximum duty.  
As Equation 1 to Equation 3 show, reducing the switching  
frequency alleviates the minimum on time and minimum off  
time limitation.  
Table 6 lists the recommended resistor divider values for  
various output voltage options.  
INDUCTOR SELECTION  
Table 6. Resistor Divider for Different Output Voltages  
The inductor value is determined by the operating frequency,  
VOUT (V)  
RTOP  
,
1% (kΩ)  
RBOT, 1% (kΩ)  
input voltage, output voltage, and inductor ripple current. Using  
a small inductor leads to a faster transient response but degrades  
efficiency, due to larger inductor ripple current; whereas, using  
a large inductor value leads to smaller ripple current and better  
efficiency but results in a slower transient response.  
1.0  
10  
15  
1.2  
10  
10  
1.5  
15  
10  
1.8  
20  
10  
2.5  
3.3  
5.0  
47.5  
10  
22  
15  
2.21  
3
As a guideline, the inductor ripple current, ΔIL, is typically set  
to 1/3 of the maximum load current. The inductor can be  
calculated using the following equation:  
VOLTAGE CONVERSION LIMITATIONS  
(
VIN VOUT  
)
× D  
L =  
The minimum output voltage for a given input voltage and  
switching frequency is constrained by the minimum on time.  
The minimum on time of the ADP2380 is typically 120 ns. The  
minimum output voltage at a given input voltage and frequency  
can be calculated using the following equation:  
IL × fSW  
where:  
V
V
IN is the input voltage.  
OUT is the output voltage.  
ΔIL is the inductor current ripple.  
SW is the switching frequency.  
D is the duty cycle.  
V
OUT_MIN = VIN × tMIN_ON × fSW − (RDSON_HS RDSON_LS) ×  
OUT_MIN × tMIN_ON × fSW − (RDSON_LS + RL) × IOUT_MIN  
where:  
OUT_MIN is the minimum output voltage.  
MIN_ON is the minimum on time.  
SW is the switching frequency.  
f
I
(1)  
VOUT  
D =  
V
t
VIN  
The ADP2380 uses adaptive slope compensation in the current  
loop to prevent subharmonic oscillations when the duty cycle  
is larger than 50%. The internal slope compensation limits the  
minimum inductor value.  
f
R
R
DSON_HS is the high-side MOSFET on resistance.  
DSON_LS is the low-side MOSFET on resistance.  
IOUT_MIN is the minimum output current.  
RL is the series resistance of the output inductor.  
Rev. 0 | Page 15 of 28  
 
 
 
 
 
 
ADP2380  
Data Sheet  
For a duty cycle that is larger than 50%, the minimum inductor  
value is determined by the following equation:  
The saturation current of the inductor must be larger than  
the peak inductor current. For the ferrite core inductors with  
a quick saturation characteristic, the saturation current rating  
of the inductor must be higher than the current-limit threshold of  
the switch to prevent the inductor from becoming saturated.  
VOUT × (1 D)  
L(Minimum) =  
2 × fSW  
The inductor peak current is calculated using the following  
equation:  
The rms current of the inductor can be calculated by  
IL2  
IRMS  
= +  
IO2UT  
IL  
IPEAK = IOUT +  
12  
2
Shielded ferrite core materials are recommended for low core  
loss and low EMI. Table 7 lists some recommended inductors.  
Table 7. Recommended Inductors  
Vendor  
Part No.  
Value (µH)  
1.5  
2.2  
3.3  
4.7  
ISAT (A)  
13.7  
11.4  
9.8  
8.2  
7.1  
IRMS (A)  
14.6  
11.6  
9.0  
8.0  
7.1  
5.2  
17.5  
15  
12  
10  
9.5  
8.0  
6.8  
20  
DCR (mΩ)  
4.6  
6.8  
10.1  
13.8  
20.2  
34.1  
4.1  
Toko  
FDVE1040-1R5M  
FDVE1040-2R2M  
FDVE1040-3R3M  
FDVE1040-4R7M  
FDVE1040-6R8M  
FDVE1040-100M  
IHLP4040DZ-1R0M-01  
IHLP4040DZ-1R5M-01  
IHLP4040DZ-2R2M-01  
IHLP4040DZ-3R3M-01  
IHLP4040DZ-4R7M-01  
IHLP4040DZ-6R8M-01  
IHLP4040DZ-100M-01  
744 325 120  
6.8  
10  
6.1  
Vishay  
1.0  
1.5  
2.2  
3.3  
4.7  
6.8  
10  
36  
27.5  
25.6  
18.6  
17  
13.5  
12  
5.8  
9
14.4  
16.5  
23.3  
36.5  
1.8  
Würth Elektronik  
1.2  
25  
744 325 180  
1.8  
18  
16  
3.5  
744 325 240  
2.4  
17  
14  
4.75  
5.9  
744 325 330  
3.3  
15  
12  
744 325 420  
4.2  
14  
11  
7.1  
744 325 550  
5.5  
12  
10  
10.3  
Rev. 0 | Page 16 of 28  
 
Data Sheet  
ADP2380  
Select the largest output capacitance given by COUT_UV, COUT_OV  
and COUT_RIPPLE to meet both load transient and output ripple  
performance.  
,
OUTPUT CAPACITOR SELECTION  
The output capacitor selection affects both the output ripple  
voltage and the loop dynamics of the regulator.  
The selected output capacitor voltage rating should be greater  
than the output voltage. The rms current rating of the output  
capacitor should be larger than the result of the following equation:  
During a load step transient on the output, for example, when  
the load is suddenly increased, the output capacitor supplies the  
load until the control loop has a chance to ramp up the inductor  
current, which causes the output to undershoot. The output  
capacitance required to satisfy the voltage droop requirement  
can be calculated using the following equation:  
IL  
IC  
=
_ RMS  
OUT  
12  
LOW-SIDE POWER DEVICE SELECTION  
KUV × ∆ISTEP2 × L  
The ADP2380 has an integrated low-side MOSFET driver that  
drives the low-side NFET. The selection of the low-side NFET  
affects the dc-to-dc regulator performance.  
COUT _UV  
=
2 ×  
(
VIN VOUT × ∆VOUT _UV  
)
where:  
UV is a factor typically of 2.  
ΔISTEP is the load step.  
The selected MOSFET must meet the following requirements:  
K
Drain-source voltage (VDS) must be greater than  
1.2 × VIN.  
Drain current (ID) must be greater than 1.2 × ILIMIT_MAX  
which is the selected maximum current-limit threshold.  
The ADP2380 low-side gate drive voltage is 8 V. Ensure  
that the selected MOSFET can fully turn on at 8 V. Total  
gate charge (Qg at 8 V) must be less than 50 nC. Lower Qg  
characteristics constitute higher efficiency.  
ΔVOUT_UV is the allowable undershoot on the output voltage.  
Another case occurs when a load is suddenly removed from  
the output. The energy stored in the inductor rushes into the  
capacitor, which causes the output to overshoot. The output  
capacitance required to meet the overshoot requirement can  
be calculated using the following equation:  
,
2
KOV × ∆ISTEP × L  
COUT _ OV  
=
The low-side MOSFET carries the inductor current when  
the high-side MOSFET is turned off. For low duty cycle  
applications, the low-side MOSFET carries the output  
current during most of the period. To achieve higher  
efficiency, it is important to select a low on-resistance  
MOSFET. The power conduction loss of the low-side  
MOSFET can be calculated by using the following  
equation:  
2
(
VOUT + ∆VOUT _ OV  
)
2 VOUT  
where:  
OV is a factor, typically, of 2.  
K
ΔVOUT_OV is the allowable overshoot on the output voltage.  
The output ripple is determined by the ESR and the capaci-  
tance. Use the following equation to select a capacitor that can  
meet the output ripple requirements:  
P
FET_LOW = IOUT2 × RDSON × (1 – D)  
IL  
COUT _ RIPPLE  
=
where RDSON is the on resistance of the low-side MOSFET.  
Make sure that the MOSFET can handle the thermal  
dissipation due to the power loss.  
8 × fSW × ∆VOUT _ RIPPLE  
VOUT _RIPPLE  
RESR  
=
IL  
Some recommended MOSFETs are listed in Table 8.  
where:  
ΔVOUT_RIPPLE is the allowable output ripple voltage.  
ESR is the equivalent series resistance of the output capacitor.  
R
Table 8. Recommended MOSFETs  
Vendor  
Fairchild  
Fairchild  
Fairchild  
Vishay  
AOS  
Part No.  
FDS6298  
FDS8880  
FDMS7578  
SiA430DJ  
AON7402  
AO4884L  
VDS (V)  
30  
30  
25  
20  
ID (A)  
13  
10.7  
17  
10.8  
39  
10  
RDSON (mΩ)  
Qg (nC)  
10  
12  
8
5.3  
12  
12  
8
18.5  
15  
16  
30  
40  
7.1  
13.6  
AOS  
Rev. 0 | Page 17 of 28  
 
 
 
ADP2380  
Data Sheet  
The control to output transfer function is given by  
PROGRAMMING INPUT VOLTAGE UVLO  
The internal voltage divider from PVIN to GND sets the default  
start/stop values of the input voltage to achieve undervoltage  
lockout (UVLO) performance. The default rising/falling threshold  
of PVIN and UVLO are listed in Table 9. For a more accurate,  
externally adjustable UVLO, these default values can be replaced  
by using an external voltage divider, as shown in Figure 32.  
Lower values of the external resistors are recommended to obtain  
a high accuracy UVLO threshold because the values of the internal  
320 kΩ and 125 kΩ resistors may vary by as much as 20%.  
s
1+  
1+  
2×π × fZ  
s
VOUT (s)  
GVD (s) =  
= AVI ×R×  
VCOMP (s)  
2×π × fP  
1
fZ  
=
=
2×π × RESR ×COUT  
1
fP  
2×π × (R + RESR )×COUT  
Table 9. Default Rising/Falling Voltage Threshold  
where:  
VI = 8.7 A/V.  
R is the load resistance.  
OUT is the output capacitance.  
ESR is the equivalent series resistance of the output capacitor.  
Pin  
Rising Threshold (V)  
Falling Threshold (V)  
A
PVIN  
UVLO  
4.28  
1.2  
3.92  
1.1  
C
R
ADP2380  
V
PVIN  
The external voltage loop is compensated by a transconductance  
amplifier with a simple external RC network placed either between  
COMP and GND or between COMP and FB, as shown in  
Figure 33 and Figure 34, respectively.  
IN  
320kΩ  
R1  
R2  
UVLO  
125kΩ  
Compensation Network Between COMP and GND  
Figure 33 shows the simplified peak current mode control,  
small signal circuit with a compensation network placed  
between COMP and GND.  
Figure 32. External Programmable UVLO  
A 1 kΩ resistor is an appropriate choice for R2. Use the following  
equation to obtain the value of R1 for a chosen input voltage  
rising threshold:  
V
V
OUT  
OUT  
R
ADP2380  
TOP  
COMP  
V
COMP  
FB  
+
A
VI  
(
VIN _ RISING 1.2 V  
)
× R2  
C
OUT  
ESR  
gm  
R1 =  
1.2 V  
+
R
R
BOT  
R
C
C
CP  
where VIN_RISING is the rising threshold of VIN.  
The falling threshold of VIN can be determined by  
1.1 V × R1  
R
C
C
GND  
VIN _ FALLING  
=
+ 1.1 V  
Figure 33. Small Signal Circuit with Compensation Network Between COMP  
and GND  
R2  
where VIN_FALLING is the falling threshold of VIN.  
The RC and CC compensation components contribute a zero,  
and the optional CCP and RC contribute an optional pole.  
COMPENSATION DESIGN  
The ADP2380 uses a peak current mode control architecture  
for excellent load and line transient response. For peak current  
mode control, the power stage can be simplified as a voltage  
controlled current source, supplying current to the output  
capacitor and load resistor. It consists of one domain pole and  
one zero contributed by the output capacitor ESR.  
The closed-loop transfer function is as follows:  
RBOT  
gm  
1+ RC ×CC ×s  
RC ×CC ×CCP  
TV (s) =  
×
×
×GVD (s)  
RBOT + RTOP CC +CCP  
s× 1+  
×s  
CC +CCP  
Rev. 0 | Page 18 of 28  
 
 
 
 
 
Data Sheet  
ADP2380  
Use the following design guidelines to select the RC, CC, and CCP  
compensation components:  
Assuming that the compensation networks of Figure 33 and  
Figure 34 have the same pole and zero,  
Determine the cross frequency, fC. Generally, fc is between  
SW/12 and fSW/6.  
RC can be calculated by  
CCP _ EA +CC _ EA  
RCCC = RC _ EACC _ EA  
f
gm  
r0 RCCCCCP = r0 RC _ EACC _ EACCP _ EA  
+
2×π ×VOUT × COUT × fC  
RC =  
VREF ×gm × A  
VI  
RC _ EACC _ EACCP _ EA (RTOP // RBOT )(1 + gm ×r0 )  
where:  
V
REF = 0.6 V.  
r0 (CCP +CC ) + RCCC =  
r0 (CCP _ EA +CC _ EA ) + RC _ EACC _ EA  
(CCP _ EA + CC _ EA )(RTOP // RBOT )(1 + gm × r0 )  
where:  
gm = 470 µS.  
+
Place the compensation zero at the domain pole, fP. CC can  
be determined by  
(R+ RESR )×COUT  
CC =  
r0 is the equivalent output impedance of the transconductance  
amplifier, 40 MΩ.  
RC  
C
CP is optional, and it can be used to cancel the zero caused  
RTOPRBOT  
by the ESR of the output capacitors.  
RTOP // RBOT  
=
RTOP + RBOT  
RESR ×COUT  
CCP  
=
Solve the preceding equations to obtain  
RC  
r RCCCCCP  
0
Compensation Network Between COMP and FB  
CC _ EA = B × gm  
(B + RCCC )(r + A)  
0
The compensation RC network can also be placed between  
COMP and FB, as shown in Figure 34.  
B + RCCC  
CC _ EA  
RC _ EA  
CCP _ EA  
where:  
=
C
CP_EA  
r RCCCCCP  
0
=
C
R
C_EA  
C_EA  
(B + RCCC )(r + A)  
0
V
V
R
OUT  
OUT  
R
R
ADP2380  
TOP  
A = (RTOP // RBOT )(1 + gm × r )  
COMP  
FB  
0
+
A
VI  
C
gm  
OUT  
r (CCP + CC )  
1 + gm (A + r )  
V
COMP  
0
B =  
+
0
BOT  
R
ESR  
ADIsimPOWER DESIGN TOOL  
GND  
The ADP2380 is supported by the ADIsimPower™ design tool  
set. ADIsimPower is a collection of tools that produce complete  
power designs that are optimized for a specific design goal. The  
tools enable the user to generate a full schematic and bill of  
materials and calculate performance in minutes. ADIsimPower  
can optimize designs for cost, area, efficiency, and parts count,  
while taking into consideration the operating conditions and  
limitations of the IC and all real external components. For  
more information about the ADIsimPower design tools, visit  
www.analog.com/ADIsimPower. The tool set is available from  
this website, and users can request an unpopulated board.  
Figure 34. Small Signal Circuit with Compensation Network Between COMP  
and FB  
When connecting the compensation network as shown in  
Figure 34, it requires the same pole and zero as in Figure 33  
to maintain the same compensation performance.  
Rev. 0 | Page 19 of 28  
 
 
ADP2380  
Data Sheet  
DESIGN EXAMPLE  
This section provides the procedures for selecting the external  
components based on the example specifications listed in Table 10.  
The schematic of this design example is shown in Figure 36.  
Calculate the rms current flowing through the inductor using  
the following equation:  
2
IL  
12  
2
IRMS  
=
IOUT  
+
Table 10. Step-Down DC-to-DC Regulator Requirements  
Parameter  
Specification  
VIN = 12.0 V 10%  
VOUT = 3.3 V  
This results in IRMS = 4.01 A.  
Input Voltage  
According to the calculated rms and peak inductor current  
values, select an inductor with a minimum rms current rating of  
4.01 A and a minimum saturation current rating of 4.51 A.  
Output Voltage  
Output Current  
Output Voltage Ripple  
Load Transient  
IOUT = 4 A  
∆VOUT_RIPPLE = 33 mV  
5%, 1 A to 4 A, 2 A/μs  
fSW = 500 kHz  
To protect the inductor from reaching its saturation limit, the  
inductor should be rated for at least a 7 A saturation current for  
reliable operation.  
Switching Frequency  
OUTPUT VOLTAGE SETTING  
Based on these requirements, select a 4.7 μH inductor, such as  
the FDVE1040-4R7M from Toko, which has a 13.8 mΩ DCR  
and an 8.2 A saturation current.  
Choose a 10 kΩ resistor as the top feedback resistor (RTOP) and  
calculate the bottom feedback resistor (RBOT).  
0.6  
OUTPUT CAPACITOR SELECTION  
RBOT = RTOP  
×
VOUT 0.6  
The output capacitor is required to meet both the output voltage  
ripple requirement and the load transient response.  
To set the output voltage to 3.3 V, the resistors values are  
TOP = 10 kΩ, RBOT = 2.21 kΩ.  
R
To meet the output voltage ripple requirement, use the following  
equation to calculate the ESR and capacitance of the output  
capacitor:  
FREQUENCY SETTING  
Connect a 100 kΩ resistor from the RT pin to GND to set the  
switching frequency at 500 kHz.  
IL  
COUT _ RIPPLE  
=
8 × fSW × ∆VOUT _ RIPPLE  
INDUCTOR SELECTION  
VOUT _ RIPPLE  
The peak-to-peak inductor ripple current, ∆IL, is set to 30% of  
the maximum output current. Use the following equation to  
estimate the inductor value:  
RESR  
=
IL  
This results in COUT_RIPPLE = 7.7 μF and RESR = 32 mΩ.  
(VIN VOUT ) × D  
L =  
To meet the 5% overshoot and undershoot transient  
requirements, use the following equations to calculate the  
capacitance:  
IL × fSW  
where:  
V
IN = 12 V.  
2
KOV × ∆ISTEP × L  
VOUT = 3.3 V.  
COUT _ OV  
=
=
2
(VOUT + ∆VOUT _ OV )2 VOUT  
D = VOUT/VIN = 0.275.  
IL = 1.2A.  
2
KUV × ∆ISTEP × L  
COUT _UV  
fSW = 500 kHz.  
2 × (VIN VOUT ) × ∆VOUT _UV  
This results in L = 3.987 μH. Choose the standard inductor  
value of 4.7 μH.  
where:  
OV = KUV = 2, the coefficients for estimation purposes.  
ISTEP = 3 A, the load transient step.  
VOUT_OV = 5%VOUT, the overshoot voltage.  
VOUT_UV = 5%VOUT, the undershoot voltage.  
K
Calculate the peak-to-peak inductor ripple current using the  
following equation:  
(
VIN VOUT × D  
)
IL  
=
L × fSW  
This results in COUT_OV = 76 μF and COUT_UV = 30 μF.  
This results in ∆IL = 1.02 A.  
According to the preceding calculation, the output capacitance  
must be larger than 76 μF, and the ESR of the output capacitor  
must be smaller than 32 mΩ. It is recommended that two pieces  
of 47 μF/X5R/6.3 V ceramic capacitors be used, such as the  
GRM32ER60J476ME20 from Murata, with an ESR of 2 mΩ.  
Calculate the peak inductor current using the following equation:  
IL  
2
IPEAK = IOUT  
+
This results in IPEAK = 4.51 A.  
Rev. 0 | Page 20 of 28  
 
 
 
 
 
 
Data Sheet  
ADP2380  
This results in the following:  
C_EA = 52.3 kΩ.  
LOW-SIDE MOSFET SELECTION  
R
A low RDSON N-channel MOSFET is chosen as a high efficiency  
solution. The breakdown voltage of the MOSFET must be  
higher than 1.2 × VIN, and the drain current must be larger than  
CC_EA = 1055 pF.  
CCP_EA = 2.45 pF.  
Choose the standard values for RC_EA = 49.9 kΩ, CC_EA = 1000 pF,  
and CCP_EA = 2.2 pF.  
1.2 × ILIMIT  
.
It is recommended to use a 30 V, N -channel MOSFET, such as  
the FDS6298 from Fairchild. The RDSON of the FDS6298 at a 4.5 V  
driver voltage is 9.4 mΩ, and the total gate charge at 5 V is 10 nC.  
Figure 35 shows the Bode plot at 4 A. The cross frequency is  
43 kHz, and the phase margin is 59°.  
60  
180  
144  
108  
72  
COMPENSATION COMPONENTS  
48  
For better load transient and stability performance, set the cross  
frequency, fC, at fSW/10. In this case, fC = 1/500 kHz = 50 kHz.  
36  
24  
r0 RCCCCCP  
CC _ EA = B × gm  
12  
36  
(B + RCCC )(r + A)  
0
0
0
B + RCCC  
CC _ EA  
RC _ EA  
=
–12  
–24  
–36  
–48  
–36  
–72  
–108  
–144  
r RCCCCCP  
0
CCP _ EA  
=
(B + RCCC )(r + A)  
0
where:  
RC =  
–60  
1k  
–180  
10k  
100k  
1M  
2 × π ×VOUT × COUT × fC  
VREF × gm × AVI  
FREQUENCY (Hz)  
=
Figure 35. Bode Plot at 4 A  
2 × π × 3.3 V × 2 × 32 μF × 50kHz  
0.6 V × 470 μS × 8.7 A/V  
SOFT START TIME PROGRAM  
= 27.1 kΩ  
= 1.96 nF  
The soft start feature allows the output voltage to ramp up in a  
controlled manner, eliminating output voltage overshoot during  
soft start and limiting the inrush current. Set the soft start time  
to 4 ms.  
(
R + RESR × COUT  
)
CC =  
=
RC  
(3.3 V/ 4 A + 0.002 ) × 2 × 32 μF  
27.1 kΩ  
tSS _ EXT × ISS _UP  
4ms × 3.2μA  
CSS  
=
=
= 21.3 nF  
0.6 V  
0.6 V  
RESR × COUT  
0.002 Ω × 2 × 32 μF  
CCP  
=
=
= 4.73 pF  
RC  
27.1 kΩ  
Choose a standard component value, CSS = 22 nF.  
INPUT CAPACITOR SELECTION  
RTOP RBOT  
10 kΩ × 2.21 kΩ  
10 kΩ + 2.21 kΩ  
A =  
(
1 + gm × r0  
)
=
×
RTOP + RBOT  
(1 + 470 µS × 40 MΩ) = 3.4 × 107  
A minimum 10 μF ceramic capacitor must be placed near the  
PVIN pin. In this application, one 10 μF, X5R, 25 V ceramic  
capacitor is recommended.  
r0 (CCP + CC )  
1 + gm (A + r0 )  
2.26 × 10−6  
40 MΩ × (4.73 pF + 1.96 nF)  
1 + 470 μS × (3.4 × 107 + 40 MΩ  
B =  
=
=
V
= 12V  
IN  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
L1  
C
0.1µF  
PVIN  
PVIN  
BST  
BST  
4.7µH  
V
= 3.3V  
OUT  
C
IN  
SW  
SW  
10µF  
25V  
C
C
OUT2  
OUT1  
47µF  
6.3V  
47µF  
6.3V  
UVLO ADP2380  
PGOOD  
M1  
FDS6298  
R
LD  
OSC  
100kΩ  
C
VREG  
1µF  
RT  
VREG  
PGND  
GND  
SYNC  
EN/SS  
COMP  
R
TOP  
10kΩ  
1%  
C
22nF  
SS  
FB  
R
BOT  
2.21kΩ  
1%  
C
C_EA  
R
C_EA  
49.9kΩ  
1000pF  
C
CP_EA  
2.2pF  
Figure 36. Design Example Schematic  
Rev. 0 | Page 21 of 28  
 
 
 
 
 
 
ADP2380  
Data Sheet  
RECOMMENDED EXTERNAL COMPONENTS  
Table 11. Recommended External Components for Typical Applications with Compensation Network Between COMP and GND Pins,  
4 A Output Current  
fSW (kHz)  
VIN (V)  
12  
12  
12  
12  
12  
12  
12  
5
VOUT (V)  
L (µH)  
3.3  
3.3  
4.7  
4.7  
6.8  
6.8  
10  
COUT F)1  
680 + 2 × 100  
680  
RTOP (kΩ)  
RBOT (kΩ)  
RC (kΩ)  
CC (pF)  
3900  
3900  
3900  
3900  
3900  
3900  
3900  
3900  
3900  
3900  
3900  
3900  
3900  
2200  
2200  
2200  
2200  
2200  
2200  
2200  
2200  
2200  
2200  
2200  
2200  
1000  
1000  
1000  
1000  
1000  
1000  
1000  
1000  
1000  
1000  
CCP (pF)  
150  
100  
100  
100  
10  
250  
1
10  
15  
47  
1.2  
1.5  
1.8  
2.5  
3.3  
5
10  
10  
47  
680  
15  
10  
60.4  
51  
470  
20  
10  
3 × 100  
2 × 100  
100 + 47  
680 + 2 × 100  
680  
47.5  
10  
15  
28  
2.21  
3
24  
10  
22  
29.4  
47  
6.8  
150  
100  
100  
15  
1
3.3  
3.3  
3.3  
3.3  
4.7  
3.3  
2.2  
2.2  
2.2  
3.3  
4.7  
4.7  
1.5  
1.5  
2.2  
2.2  
2.2  
2.2  
1.5  
1.5  
2.2  
2.2  
1
10  
15  
5
1.2  
1.5  
1.8  
2.5  
3.3  
1.2  
1.5  
1.8  
2.5  
3.3  
5
10  
10  
47  
5
470  
15  
10  
39  
5
3 × 100  
2 × 100  
2 × 100  
470  
20  
10  
20  
5
47.5  
10  
15  
18.2  
24  
10  
5
2.21  
10  
10  
500  
12  
12  
12  
12  
12  
12  
5
10  
68  
68  
3 × 100  
2 × 100  
2 × 100  
2 × 100  
100  
15  
10  
33  
10  
20  
10  
26.7  
37.4  
47  
10  
47.5  
10  
15  
6.8  
4.7  
3.3  
68  
2.21  
3
22  
37.4  
56  
1
470  
10  
15  
5
1.2  
1.5  
1.8  
2.5  
3.3  
1.8  
2.5  
3.3  
5
3 × 100  
3 × 100  
2 × 100  
2 × 47  
100 + 47  
2 × 100  
100  
10  
10  
26.7  
33  
10  
5
15  
10  
10  
5
20  
10  
26.7  
21  
10  
5
47.5  
10  
15  
6.8  
4.7  
4.7  
3.3  
2.2  
1
5
2.21  
10  
37.4  
51  
1000  
12  
12  
12  
12  
5
20  
47.5  
10  
15  
37.4  
47  
100  
2.21  
3
100  
22  
69  
1
3 × 100  
2 × 100  
100 + 47  
2 × 47  
100  
10  
15  
43.2  
33  
8.2  
6.8  
4.7  
4.7  
3.3  
2.2  
5
1.2  
1.5  
1.8  
2.5  
3.3  
1
10  
10  
5
1
15  
10  
33  
5
1
20  
10  
30  
5
1
47.5  
10  
15  
37.4  
47  
5
1
100  
2.21  
1 680 μF: 4 V, Sanyo 4TPF680M; 470 μF: 6.3 V, Sanyo 6TPF470M; 100 μF: 6.3 V, X5R, Murata GRM32ER60J107ME20; 47 μF: 6.3 V, X5R, Murata GRM32ER60J476ME20.  
Rev. 0 | Page 22 of 28  
 
 
 
Data Sheet  
ADP2380  
Table 12. Recommended External Components for Typical Applications with Compensation Network Between COMP and FB Pins,  
4 A Output Current  
fSW (kHz)  
VIN (V)  
12  
12  
12  
12  
12  
12  
12  
5
VOUT (V)  
L (µH)  
3.3  
3.3  
4.7  
4.7  
6.8  
6.8  
10  
COUT (µF)1  
680 + 2 × 100  
680  
RTOP (kΩ)  
RBOT (kΩ)  
RC_EA (kΩ)  
191  
169  
237  
220  
187  
47  
CC_EA (pF)  
1000  
1200  
1000  
1000  
680  
CCP_EA (pF)  
47  
33  
22  
22  
1
250  
1
10  
15  
1.2  
1.5  
1.8  
2.5  
3.3  
5
10  
10  
680  
15  
10  
470  
20  
10  
3 × 100  
2 × 100  
100 + 47  
680 + 2 × 100  
680  
47.5  
10  
15  
2.21  
3
2200  
1800  
1000  
1200  
1000  
1000  
680  
4.7  
2.2  
39  
39  
22  
3.9  
2.2  
15  
22  
2.2  
2.2  
1
22  
69.8  
191  
169  
169  
88.7  
124  
47  
1
3.3  
3.3  
3.3  
3.3  
4.7  
3.3  
2.2  
2.2  
2.2  
3.3  
4.7  
4.7  
1.5  
1.5  
2.2  
2.2  
2.2  
2.2  
1.5  
1.5  
2.2  
2.2  
1
10  
15  
5
1.2  
1.5  
1.8  
2.5  
3.3  
1.2  
1.5  
1.8  
2.5  
3.3  
5
10  
10  
5
470  
15  
10  
5
3 × 100  
2 × 100  
2 × 100  
470  
20  
10  
5
47.5  
10  
15  
5
2.21  
10  
2200  
680  
500  
12  
12  
12  
12  
12  
12  
5
10  
237  
130  
110  
249  
95.3  
86.6  
220  
95.3  
130  
110  
147  
75  
3 × 100  
2 × 100  
2 × 100  
2 × 100  
100  
15  
10  
470  
20  
10  
470  
47.5  
10  
15  
330  
2.21  
3
1000  
820  
2.2  
1
22  
1
470  
10  
15  
470  
22  
3.3  
2.2  
2.2  
1
5
1.2  
1.5  
1.8  
2.5  
3.3  
1.8  
2.5  
3.3  
5
3 × 100  
3 × 100  
2 × 100  
2 × 47  
100 + 47  
2 × 100  
100  
10  
10  
680  
5
15  
10  
470  
5
20  
10  
470  
5
47.5  
10  
15  
330  
5
2.21  
10  
1000  
220  
1
1000  
12  
12  
12  
12  
5
20  
232  
232  
95.3  
169  
180  
127  
140  
137  
249  
93.1  
1
47.5  
10  
15  
150  
1
100  
2.21  
3
470  
1
100  
22  
470  
1
1
3 × 100  
2 × 100  
100 + 47  
2 × 47  
100  
10  
15  
270  
2.2  
2.2  
1
5
1.2  
1.5  
1.8  
2.5  
3.3  
1
10  
10  
330  
5
1
15  
10  
270  
5
1
20  
10  
270  
1
5
1
47.5  
10  
15  
150  
1
5
1
100  
2.21  
470  
1
1 680 μF: 4V, Sanyo 4TPF680M; 470 μF: 6.3 V, Sanyo 6TPF470M; 100 μF: 6.3 V, X5R, Murata GRM32ER60J107ME20; 47 μF: 6.3 V, X5R, Murata GRM32ER60J476ME20.  
Rev. 0 | Page 23 of 28  
 
ADP2380  
Data Sheet  
CIRCUIT BOARD LAYOUT RECOMMENDATIONS  
Good circuit board layout is essential for obtaining the best  
performance from the ADP2380. Poor printed circuit board  
(PCB) layout degrades the output regulation as well as the  
electromagnetic interface (EMI) and electromagnetic  
In addition, ensure that the high current path from the  
power ground plane through the external MOSFET,  
inductor, and output capacitor back to the power ground  
plane is as short as possible by tying the MOSFET source  
node to the PGND plane as close as possible to the input  
and output capacitors.  
compatibility (EMC) performance. Figure 38 shows a PCB  
layout example. For optimum layout, use the following guidelines:  
Make the low-side driver path from the LD pin of the  
ADP2380 to the external MOSFET gate node and back to  
the PGND pin of the ADP2380 as short as possible, and  
use a wide trace for better noise immunity.  
Connect the exposed pad of the ADP2380 to a large copper  
plane to maximize its power dissipation capability for  
better thermal dissipation.  
Place the feedback resistor divider network as close as  
possible to the FB pin to prevent noise pickup. Try to  
minimize the length of the trace that connects the top of  
the feedback resistor divider to the output while keeping  
the trace away from the high current traces and the  
switching node to avoid noise pickup. To further reduce  
noise pickup, place an analog ground plane on either side  
of the FB trace and ensure that the trace is as short as  
possible to reduce parasitic capacitance pickup.  
Use separate analog ground and power ground planes.  
Connect the ground reference of sensitive analog circuitry,  
such as output voltage divider components, to analog  
ground. In addition, connect the ground reference of  
power components, such as input and output capacitors  
and a low-side MOSFET, to power ground. Connect both  
ground planes to the exposed pad of the ADP2380.  
Place the input capacitor, inductor, low-side MOSFET, and  
output capacitor as close to the IC as possible, and use  
short traces.  
Ensure that the high current loop traces are as short and  
as wide as possible. Make the high current path from the  
input capacitor through the inductor, the output capacitor,  
and the power ground plane back to the input capacitor as  
short as possible. To accomplish this, ensure that the input  
and output capacitors share a common power ground plane.  
V
IN  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
PVIN  
PVIN  
BST  
L
C
V
BST  
OUT  
C
IN  
SW  
SW  
C
OUT  
UVLO ADP2380  
PGOOD  
FET  
LD  
C
RT  
VREG  
PGND  
GND  
VREG  
R
OSC  
SYNC  
EN/SS  
COMP  
R
R
TOP  
BOT  
C
SS  
FB  
C
C_EA  
R
C_EA  
C
CP_EA  
Figure 37. High Current Path in the PCB Circuit  
Rev. 0 | Page 24 of 28  
 
Data Sheet  
ADP2380  
POWER GROUND PLANE  
VIN  
INPUT  
BULK CAP  
OUTPUT  
CAPACITOR  
INPUT  
BYPASS  
CAP  
LOW-SIDE  
MOSFET  
PVIN  
PVIN  
UVLO  
BST  
SW  
C
BST  
INDUCTOR  
VOUT  
SW  
SW  
PULL UP  
PGOOD  
RT  
LD  
VREG  
PGND  
GND  
FB  
C
VREG  
SYNC  
EN/SS  
COMP  
C
R
C_EA  
C_EA  
R
C
TOP  
SS  
R
OSC  
R
C
BOT  
CP_EA  
ANALOG GROUND PLANE  
VIA  
BOTTOM LAYER TRACE  
COPPER PLANE  
Figure 38. Recommended PCB Layout  
Rev. 0 | Page 25 of 28  
 
ADP2380  
Data Sheet  
TYPICAL APPLICATIONS CIRCUITS  
V
= 12V  
IN  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
L1  
2.2µH  
C
0.1µF  
PVIN  
BST  
BST  
V
= 1.2V  
OUT  
C
10µF  
25V  
IN  
PVIN  
SW  
SW  
C
OUT  
470µF  
6.3V  
UVLO ADP2380  
PGOOD  
M1  
FDS6298  
R
LD  
OSC  
100kΩ  
C
VREG  
1µF  
RT  
VREG  
PGND  
GND  
SYNC  
EN/SS  
COMP  
R
TOP  
10kΩ  
1%  
C
SS  
FB  
22nF  
R
10kΩ  
1%  
BOT  
R
68kΩ  
C
C
CP  
C
C
68pF  
2.2nF  
Figure 39. Compensation Network Between COMP and GND, VIN = 12 V, VOUT = 1.2 V, IOUT = 4 A, fSW = 500 kHz  
V
= 12V  
IN  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
L1  
C
0.1µF  
PVIN  
PVIN  
BST  
BST  
2.2µH  
V
= 1.8V  
OUT  
R1  
C
IN  
SW  
SW  
7.32kΩ  
10µF  
25V  
C
C
OUT2  
OUT1  
1%  
100µF  
6.3V  
100µF  
6.3V  
UVLO ADP2380  
PGOOD  
M1  
FDS6298  
R2  
LD  
1kΩ  
R
OSC  
1%  
100kΩ  
C
VREG  
1µF  
RT  
VREG  
PGND  
GND  
SYNC  
EN/SS  
COMP  
R
TOP  
20kΩ  
1%  
C
22nF  
SS  
FB  
R
BOT  
10kΩ  
1%  
C
470pF  
C_EA  
R
C_EA  
110kΩ  
C
CP_EA  
2.2pF  
Figure 40. Programming Input Voltage UVLO Rising Threshold at 10 V, VIN = 12 V, VOUT = 1.8 V, IOUT = 4 A, fSW = 500 kHz  
V
= 12V  
IN  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
L1  
4.7µH  
PVIN  
PVIN  
BST  
C
0.1µF  
BST  
C
V
= 5V  
OUT  
IN  
OUT  
10µF  
25V  
SW  
SW  
C
UVLO ADP2380  
PGOOD  
100µF  
6.3V  
M1  
FDS6298  
R
LD  
OSC  
82kΩ  
RT  
VREG  
PGND  
GND  
C
VREG  
1µF  
SYNC  
EN/SS  
COMP  
R
TOP  
22kΩ  
1%  
FB  
R
SOT  
3kΩ  
1%  
C
820pF  
C_EA  
R
C_EA  
100kΩ  
C
CP_EA  
1pF  
Figure 41. Using Internal Soft Start, Programming Switching Frequency at 600 kHz, VIN = 12 V, VOUT = 5 V, IOUT = 4 A, fSW = 600 kHz  
Rev. 0 | Page 26 of 28  
 
Data Sheet  
ADP2380  
OUTLINE DIMENSIONS  
5.10  
5.00  
4.90  
2.31  
1.75  
16  
9
8
9
8
16  
4.50  
4.40  
4.30  
2.46  
1.75  
EXPOSED  
PAD  
1
6.40 BSC  
1
PIN 1  
FOR PROPER CONNECTION OF  
INDICATOR  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
TOP VIEW  
BOTTOM VIEW  
0.95  
0.90  
0.85  
SECTION OF THIS DATA SHEET.  
0.20  
0.09  
1.10 MAX  
0.25  
8°  
0°  
0.70  
0.60  
0.50  
SEATING  
PLANE  
0.15 MAX  
0.05 MIN  
0.30  
0.19  
0.65 BSC  
COPLANARITY  
0.076  
COMPLIANT TO JEDEC STANDARDS MO-153-ABT  
Figure 42. 16-Lead Thin Shrink Small Outline with Exposed Pad [TSSOP_EP]  
(RE-16-3)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
Temperature Range  
−40°C to +125°C  
−40°C to +125°C  
Package Description  
Package Option  
ADP2380AREZ-R7  
ADP2380AREZ  
ADP2380-EVALZ  
16-Lead TSSOP_EP, 7Tape and Reel  
16-Lead TSSOP_EP, Tube  
Evaluation Board  
RE-16-3  
RE-16-3  
1 Z = RoHS Compliant Part.  
Rev. 0 | Page 27 of 28  
 
 
 
ADP2380  
NOTES  
Data Sheet  
©2012 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D09939-0-12/12(0)  
Rev. 0 | Page 28 of 28  
 

相关型号:

ADP2381

20 V, 6 A Synchronous Step-Down
ADI

ADP2381-EVALZ

20 V, 6 A Synchronous Step-Down
ADI

ADP2381AREZ

20 V, 6 A Synchronous Step-Down
ADI

ADP2381AREZ-R7

20 V, 6 A Synchronous Step-Down
ADI

ADP2384

20 V, 4 A, Synchronous, Step-Down DC-to-DC Regulator
ADI

ADP2384ACPZN-R7

20 V, 4 A, Synchronous Step-Down DC-to-DC Regulator
ADI

ADP2386

20 V, 6 A, Synchronous Step-Down DC-to-DC Regulator
ADI

ADP2386-EVALZ

20 V, 6 A, Synchronous Step-Down DC-to-DC Regulator
ADI

ADP2386ACPZN-R7

20 V, 6 A, Synchronous Step-Down DC-to-DC Regulator
ADI

ADP2386BB-EVALZ

20 V, 6 A, Synchronous Step-Down DC-to-DC Regulator
ADI

ADP2387

20 V, 6 A, Synchronous, Step-Down DC-to-DC Regulator
ADI

ADP2387-EVALZ

20 V, 6 A, Synchronous, Step-Down DC-to-DC Regulator
ADI