ADP2384ACPZN-R7 [ADI]

20 V, 4 A, Synchronous Step-Down DC-to-DC Regulator;
ADP2384ACPZN-R7
型号: ADP2384ACPZN-R7
厂家: ADI    ADI
描述:

20 V, 4 A, Synchronous Step-Down DC-to-DC Regulator

开关 输出元件
文件: 总25页 (文件大小:753K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
20 V, 4 A, Synchronous, Step-Down  
DC-to-DC Regulator  
Data Sheet  
ADP2384  
FEATURES  
TYPICAL APPLICATIONS CIRCUIT  
Input voltage: 4.5 V to 20 V  
Integrated MOSFET: 44 mΩ/11.6 mΩ  
Reference voltage: 0.6 V 1%  
ADP2384  
BST  
V
PVIN  
EN  
IN  
C
BST  
L
C
IN  
SW  
V
OUT  
Continuous output current: 4 A  
C
OUT  
PGOOD  
SYNC  
RT  
R
TOP  
Programmable switching frequency: 200 kHz to 1.4 MHz  
Synchronizes to external clock: 200 kHz to 1.4 MHz  
180° out-of-phase clock synchronization  
Precision enable and power good  
FB  
COMP  
SS  
R
T
R
C
R
VREG  
BOT  
C
C
VREG  
GND PGND  
C
C
SS  
External compensation  
Internal soft start with external adjustable option  
Startup into a precharged output  
Supported by ADIsimPower design tool  
Figure 1.  
APPLICATIONS  
Communications infrastructure  
Networking and servers  
Industrial and instrumentation  
Healthcare and medical  
Intermediate power rail conversion  
DC-to-dc point-of-load applications  
GENERAL DESCRIPTION  
The ADP2384 is a synchronous, step-down dc-to-dc regulator  
with an integrated 44 mΩ, high-side power MOSFET and  
an 11.6 mΩ, synchronous rectifier MOSFET to provide a high  
efficiency solution in a compact 4 mm × 4 mm LFCSP package.  
This device uses a peak current mode, constant frequency pulse-  
width modulation (PWM) control scheme for excellent stability  
and transient response. The switching frequency of the ADP2384  
can be programmed from 200 kHz to 1.4 MHz. To minimize  
system noise, the synchronization function allows the switching  
frequency to be synchronized to an external clock.  
Other key features include undervoltage lockout (UVLO),  
overvoltage protection (OVP), overcurrent protection (OCP),  
short-circuit protection (SCP), and thermal shutdown (TSD).  
The ADP2384 operates over the −40°C to +125°C junction  
temperature range and is available in a 24-lead, 4 mm × 4 mm  
LFCSP package.  
100  
95  
90  
85  
80  
75  
70  
65  
60  
The ADP2384 requires minimal external components and operates  
from an input voltage of 4.5 V to 20 V. The output voltage can be  
adjusted from 0.6 V to 90% of the input voltage and delivers up to  
4 A of continuous current. Each IC draws less than 120 μA current  
from the input source when it is disabled.  
This regulator targets high performance applications that require  
high efficiency and design flexibility. External compensation and an  
adjustable soft start function provide design flexibility. The power-  
good output and precision enable input provide simple and reliable  
power sequencing.  
V
V
V
= 1.2V  
= 3.3V  
= 5V  
OUT  
OUT  
OUT  
55  
50  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
OUTPUT CURRENT (A)  
Figure 2. Efficiency vs. Output Current, VIN = 12 V, fSW = 300 kHz  
Rev. A  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rightsof third parties that may result fromits use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks andregisteredtrademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 ©2012–2014 Analog Devices, Inc. All rights reserved.  
Technical Support  
www.analog.com  
 
 
 
 
ADP2384* PRODUCT PAGE QUICK LINKS  
Last Content Update: 02/23/2017  
COMPARABLE PARTS  
View a parametric search of comparable parts.  
REFERENCE MATERIALS  
Press  
Analog Devices Introduces the Most Efficient Switching  
Regulators in Their Class  
EVALUATION KITS  
ADA4961 & AD9680 Analog Signal Chain Evaluation and  
Technical Articles  
AD9528 Converter Synchronization  
MS-2437: Convert a Buck Regulator into a Smart LED  
Driver  
ADP2384/ADP2386 Evaluation Board  
Powering GSPS or RF Sampling ADCs: Switcher vs LDO  
Two Channels, 2400MHz TDD Application  
DESIGN RESOURCES  
ADP2384 Material Declaration  
PCN-PDN Information  
DOCUMENTATION  
Application Notes  
AN-1168: Designing an Inverting Power Supply Using the  
ADP2384/ADP2386 Synchronous Step-Down DC-to-DC  
Regulators  
Quality And Reliability  
Symbols and Footprints  
Data Sheet  
ADP2384: 20 V, 4 A, Synchronous, Step-Down DC-to-DC  
Regulator Data Sheet  
DISCUSSIONS  
View all ADP2384 EngineerZone Discussions.  
User Guides  
UG-466: Evaluation Board for the ADP2384/ADP2386, 20  
V, 4 A/6 A Synchronous Step-Down DC-to-DC Regulators  
SAMPLE AND BUY  
Visit the product page to see pricing options.  
TOOLS AND SIMULATIONS  
• ADIsimPower™ Voltage Regulator Design Tool  
TECHNICAL SUPPORT  
Submit a technical question or find your regional support  
number.  
ADP238x Buck Regulator Design Tool  
ADP238x Inverting Buck-Boost Regulator Design Tool  
DOCUMENT FEEDBACK  
Submit feedback for this data sheet.  
This page is dynamically generated by Analog Devices, Inc., and inserted into this data sheet. A dynamic change to the content on this page will not  
trigger a change to either the revision number or the content of the product data sheet. This dynamic page may be frequently modified.  
ADP2384  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Thermal Shutdown .................................................................... 14  
Applications Information .............................................................. 15  
Input Capacitor Selection.......................................................... 15  
Output Voltage Setting .............................................................. 15  
Voltage Conversion Limitations............................................... 15  
Inductor Selection...................................................................... 15  
Output Capacitor Selection....................................................... 16  
Programming the Input Voltage UVLO.................................. 17  
Compensation Design ............................................................... 17  
ADIsimPower Design Tool ....................................................... 18  
Design Example.............................................................................. 19  
Output Voltage Setting (Design Example).............................. 19  
Frequency Setting....................................................................... 19  
Inductor Selection (Design Example) ..................................... 19  
Output Capacitor Selection (Design Example)...................... 20  
Compensation Components..................................................... 20  
Soft Start Time Program ........................................................... 20  
Input Capacitor Selection (Design Example)......................... 20  
Recommended External Components .................................... 21  
Circuit Board Layout Recommendations ................................... 22  
Typical Applications Circuits........................................................ 23  
Outline Dimensions....................................................................... 24  
Ordering Guide .......................................................................... 24  
Applications....................................................................................... 1  
Typical Applications Circuit............................................................ 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Absolute Maximum Ratings............................................................ 5  
Thermal Resistance ...................................................................... 5  
ESD Caution.................................................................................. 5  
Pin Configuration and Function Descriptions............................. 6  
Typical Performance Characteristics ............................................. 7  
Functional Block Diagram ............................................................ 11  
Theory of Operation ...................................................................... 12  
Control Scheme .......................................................................... 12  
Precision Enable/Shutdown ...................................................... 12  
Internal Regulator (VREG)....................................................... 12  
Bootstrap Circuitry .................................................................... 12  
Oscillator ..................................................................................... 12  
Synchronization.......................................................................... 12  
Soft Start ...................................................................................... 13  
Power Good................................................................................. 13  
Peak Current-Limit and Short-Circuit Protection................. 13  
Overvoltage Protection (OVP)................................................. 14  
Undervoltage Lockout (UVLO) ............................................... 14  
REVISION HISTORY  
7/14—Rev. 0 to Rev. A  
Changes to Table 2 and Table 3....................................................... 5  
Changes to Inductor Selection Section........................................ 15  
Changes to Compensation Components Section....................... 20  
Updated Outline Dimensions....................................................... 24  
8/12—Revision 0: Initial Version  
Rev. A | Page 2 of 24  
 
Data Sheet  
ADP2384  
SPECIFICATIONS  
VPVIN = 12 V, T J = −40°C to +125°C for minimum/maximum specifications, and TA = 25°C for typical specifications, unless otherwise noted.  
Table 1.  
Parameter  
Symbol  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
PVIN  
PVIN Voltage Range  
Quiescent Current  
Shutdown Current  
PVIN Undervoltage Lockout Threshold  
VPVIN  
IQ  
ISHDN  
UVLO  
4.5  
2.1  
45  
20  
V
No switching  
EN = GND  
PVIN rising  
PVIN falling  
2.9  
80  
4.3  
3.8  
3.6  
120  
4.5  
mA  
µA  
V
3.5  
V
FB  
FB Regulation Voltage  
VFB  
IFB  
0°C < TJ < 85°C  
−40°C < TJ < 125°C  
0.594  
0.591  
0.6  
0.6  
0.01  
0.606  
0.609  
0.1  
V
V
µA  
FB Bias Current  
ERROR AMPLIFIER (EA)  
Transconductance  
EA Source Current  
EA Sink Current  
gm  
ISOURCE  
ISINK  
340  
40  
40  
470  
60  
60  
600  
80  
80  
µS  
µA  
µA  
INTERNAL REGULATOR (VREG)  
VREG Voltage  
Dropout Voltage  
VVREG  
VPVIN = 12 V, IVREG = 50 mA  
VPVIN = 12 V, IVREG = 50 mA  
7.6  
65  
8
340  
100  
8.4  
V
mV  
mA  
Regulator Current Limit  
135  
SW  
High-Side On Resistance1  
Low-Side On Resistance1  
High-Side Peak Current Limit  
VBST − VSW = 5 V  
VVREG = 8 V  
44  
11.6  
70  
20  
mΩ  
mΩ  
4.8  
4.5  
6.1  
20  
7.4  
A
mV  
Low-Side Negative Current-Limit  
Threshold Voltage2  
SW Minimum On Time  
SW Minimum Off Time  
BST  
Bootstrap Voltage  
OSCILLATOR (RT PIN)  
Switching Frequency  
Switching Frequency Range  
SYNC  
tMIN_ON  
tMIN_OFF  
125  
200  
168  
260  
ns  
ns  
VBOOT  
5
5.5  
V
fSW  
fSW  
RT = 100 kΩ  
530  
200  
600  
670  
1400  
kHz  
kHz  
Synchronization Range  
SYNC Minimum Pulse Width  
SYNC Minimum Off Time  
SYNC Input High Voltage  
SYNC Input Low Voltage  
SS  
200  
100  
100  
1.3  
1400  
kHz  
ns  
ns  
V
0.4  
3.9  
V
Internal Soft Start  
SS Pin Pull-Up Current  
1600  
3.2  
Clock cycles  
µA  
ISS_UP  
2.5  
Rev. A | Page 3 of 24  
 
 
ADP2384  
Data Sheet  
Parameter  
Symbol  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
PGOOD  
Power-Good Range  
FB Rising Threshold  
FB Rising Hysteresis  
FB Falling Threshold  
FB Falling Hysteresis  
Power-Good Deglitch Time  
PGOOD from low to high  
PGOOD from high to low  
PGOOD from low to high  
PGOOD from high to low  
PGOOD from low to high  
PGOOD from high to low  
VPGOOD = 5 V  
95  
5
%
%
%
%
105  
11.7  
1024  
16  
0.01  
125  
Clock cycle  
Clock cycle  
µA  
Power-Good Leakage Current  
Power-Good Output Low Voltage  
EN  
0.1  
200  
IPGOOD = 1 mA  
mV  
EN Rising Threshold  
EN Falling Threshold  
EN Source Current  
1.17  
1.07  
5
1.28  
V
V
µA  
µA  
0.97  
EN voltage below falling threshold  
EN voltage above rising threshold  
1
THERMAL SHUTDOWN  
Thermal Shutdown Threshold  
Thermal Shutdown Hysteresis  
150  
25  
°C  
°C  
1 Pin-to-pin measurement.  
2 Guaranteed by design.  
Rev. A | Page 4 of 24  
 
 
 
Data Sheet  
ADP2384  
ABSOLUTE MAXIMUM RATINGS  
Table 2.  
THERMAL RESISTANCE  
θJA is specified for the worst-case conditions, that is, a device  
soldered in a 4-layer, JEDEC standard circuit board for surface-  
mount packages.  
Parameter  
Rating  
PVIN, SW, EN, PGOOD  
SW 10 ns Transient  
SW 100 ns Transient  
BST  
FB, SS, CO M P, SYNC, RT  
VREG  
−0.3 V to +22 V  
−2.5 V to +22 V  
−1 V to +22 V  
Table 3. Thermal Resistance  
VSW + 6 V  
Package Type  
θJA  
θJC  
Unit  
−0.3 V to +6 V  
−0.3 V to +12 V  
−0.3 V to +0.3 V  
−40°C to +125°C  
−65°C to +150°C  
JEDEC J-STD-020  
24-Lead LFCSP_WQ  
42.6  
6.8 (EP, SW)  
2.3 (EP, GND)  
°C/W  
PGND to GND  
Operating Junction Temperature Range  
Storage Temperature Range  
Soldering Conditions  
ESD CAUTION  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Rev. A | Page 5 of 24  
 
 
 
ADP2384  
Data Sheet  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
1
2
3
18  
17  
16  
15  
14  
13  
COMP  
FB  
PVIN  
PVIN  
PVIN  
BST  
SW  
25  
GND  
VREG  
GND 4  
26  
SW  
5
6
SW  
SW  
PG  
ND  
ADP2384  
TOP VIEW  
NOTES  
1. THE EXPOSED GND PAD MUST BE SOLDERED  
TO A LARGE, EXTERNAL, COPPER GND PLANE  
TO REDUCE THERMAL RESISTANCE.  
2. THE EXPOSED SW PAD MUST BE CONNECTED  
TO THE SW PINS OF THE ADP2384 BY USING  
SHORT, WIDE TRACES, OR ELSE SOLDERED  
TO A LARGE, EXTERNAL, COPPER SW PLANE  
TO REDUCE THERMAL RESISTANCE.  
Figure 3. Pin Configuration  
Table 4. Pin Function Descriptions  
Pin No.  
Mnemonic Description  
1
2
3
COMP  
FB  
VREG  
Error Amplifier Output. Connect an RC network from COMP to GND.  
Feedback Voltage Sense Input. Connect to a resistor divider from the output voltage, VOUT  
Output of the Internal 8 V Regulator. The control circuits are powered from this voltage. Place a 1 µF, X7R  
or X5R ceramic capacitor between this pin and GND.  
.
4
GND  
SW  
Analog Ground. Return of internal control circuit.  
Switch Node Output. Connect to the output inductor.  
5, 6, 7, 14  
8, 9, 10, 11, 12, 13 PGND  
Power Ground. Return of low-side power MOSFET.  
15  
BST  
PVIN  
EN  
Supply Rail for the High-Side Gate Drive. Place a 0.1 µF, X7R or X5R capacitor between SW and BST.  
Power Input. Connect to the input power source and connect a bypass capacitor between this pin and PGND.  
Precision Enable Pin. An external resistor divider can be used to set the turn-on threshold. To enable the  
part automatically, connect the EN pin to the PVIN pin.  
16,17,18,19  
20  
21  
22  
PGOOD  
RT  
Power-Good Output (Open Drain). A pull-up resistor of 10 kΩ to 100 kΩ is recommended.  
Frequency Setting. Connect a resistor between RT and GND to program the switching frequency from 200 kHz  
to 1.4 MHz.  
23  
24  
SYNC  
SS  
Synchronization Input. Connect this pin to an external clock to synchronize the switching frequency from  
200 kHz and 1.4 MHz. See the Oscillator section and Synchronization section for more information.  
Soft Start Control. Connect a capacitor from SS to GND to program the soft start time. If this pin is open,  
the regulator uses the internal soft start time.  
25  
26  
E P, G N D  
E P, S W  
The exposed GND pad must be soldered to a large, external, copper GND plane to reduce thermal resistance.  
The exposed SW pad must be connected to the SW pins of the ADP2384, using short, wide traces, or else  
soldered to a large, external, copper SW plane to reduce thermal resistance.  
Rev. A | Page 6 of 24  
 
Data Sheet  
ADP2384  
TYPICAL PERFORMANCE CHARACTERISTICS  
TA = 25°C, VIN = 12 V, VOUT = 3.3 V, L = 3.3 µH, COUT = 47 µF × 2, fSW = 600 kHz, unless otherwise noted.  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
V
V
V
V
V
= 1.2V  
= 1.8V  
= 2.5V  
= 3.3V  
= 5V  
V
V
V
V
V
= 1.2V  
= 1.8V  
= 2.5V  
= 3.3V  
= 5V  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
INDUCTOR: FDVE1040-6R8M  
INDUCTOR: FDVE1040-3R3M  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
OUTPUT CURRENT (A)  
OUTPUT CURRENT (A)  
Figure 4. Efficiency at VIN = 12 V, fSW = 600 kHz  
Figure 7. Efficiency at VIN = 12 V, fSW = 300 kHz  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
V
V
V
V
V
V
= 1.0V  
= 1.2V  
= 1.5V  
= 1.8V  
= 2.5V  
= 3.3V  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
V
V
V
V
= 1.8V  
OUT  
OUT  
OUT  
OUT  
= 2.5V  
= 3.3V  
= 5V  
INDUCTOR: FDVE1040-3R3M  
INDUCTOR: FDVE1040-1R5M  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
OUTPUT CURRENT (A)  
OUTPUT CURRENT (A)  
Figure 8. Efficiency at VIN = 5 V, fSW = 600 kHz  
Figure 5. Efficiency at VIN = 18 V, fSW = 600 kHz  
100  
90  
80  
70  
60  
50  
3.2  
3.0  
2.8  
2.6  
2.4  
2.2  
2.0  
1.8  
T
T
T
= –40°C  
= +25°C  
= +125°C  
T
T
T
= –40°C  
= +25°C  
= +125°C  
J
J
J
J
J
J
4
6
8
10  
12  
14  
16  
18  
20  
4
6
8
10  
12  
14  
16  
18  
20  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
Figure 6. Shutdown Current vs. VIN  
Figure 9. Quiescent Current vs. VIN  
Rev. A | Page 7 of 24  
 
ADP2384  
Data Sheet  
4.5  
1.25  
1.20  
4.4  
RISING  
RISING  
4.3  
4.2  
4.1  
4.0  
3.9  
3.8  
1.15  
1.10  
1.05  
FALLING  
FALLING  
1.00  
0.95  
3.7  
3.6  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 10. UVLO Threshold vs. Temperature  
Figure 13. EN Threshold vs. Temperature  
3.30  
606  
604  
3.25  
3.20  
3.15  
3.10  
3.05  
3.00  
2.95  
2.90  
602  
600  
598  
596  
594  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 11. SS Pin Pull-Up Current vs. Temperature  
Figure 14. FB Voltage vs. Temperature  
8.4  
8.3  
8.2  
8.1  
8.0  
7.9  
7.8  
630  
620  
610  
600  
590  
580  
570  
R
= 100kΩ  
T
7.7  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 15. VREG Voltage vs. Temperature  
Figure 12. Frequency vs. Temperature  
Rev. A | Page 8 of 24  
Data Sheet  
ADP2384  
65  
7.0  
6.5  
55  
HIGH-SIDE R  
DSON  
45  
35  
25  
15  
5
6.0  
5.5  
5.0  
4.5  
4.0  
LOW-SIDE R  
DSON  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 16. MOSFET RDSON vs. Temperature  
Figure 19. Current-Limit Threshold vs. Temperature  
V
(AC)  
OUT  
EN  
1
3
I
L
V
OUT  
1
2
PGOOD  
SW  
4
2
I
OUT  
4
B
B
CH1 2.00V  
CH3 10.0V  
CH2 5.00V  
CH4 5.00A Ω  
M2.00ms  
27.00%  
A CH3  
8.60V  
CH1 10mV  
CH2 10.0V  
CH4 2.00A Ω  
M2.00µs  
50.00%  
A CH2  
5.00V  
W
W
T
T
Figure 17. Working Mode Waveform  
Figure 20. Soft Start with Full Load  
SYNC  
SW  
EN  
3
2
V
OUT  
1
2
PGOOD  
4
I
L
4
B
M1.00µs  
50.00%  
A CH2  
3.40V  
CH1 2.00V  
CH3 10.0V  
CH2 5.00V  
CH4 2.00A Ω  
M2.00ms  
50.20%  
A CH2  
3.90V  
W
CH2 5.00V  
CH4 10.0V  
T
T
Figure 18. Voltage Precharged Output  
Figure 21. External Synchronization  
Rev. A | Page 9 of 24  
 
ADP2384  
Data Sheet  
V
(AC)  
V
V
(AC)  
OUT  
OUT  
1
1
IN  
SW  
3
2
I
OUT  
4
B
B
CH2 10.0V B  
M1.00ms  
30.00%  
A CH3  
12.0V  
CH1 100mV  
M200µs  
70.40%  
A CH4  
2.52A  
W
CH1 20.0mV  
W
W
B
CH4 2.00A Ω  
T
CH3 5.00V  
T
W
Figure 22. Load Transient Response, 1 A to 4 A  
Figure 25. Line Transient Response, VIN from 8 V to 14 V, IOUT = 4 A  
V
OUT  
V
OUT  
1
2
4
1
2
4
SW  
SW  
I
L
I
L
CH1 2.00V B  
CH2 10.0V  
CH4 5.00A Ω  
M4.00ms  
30.40%  
A CH1  
1.48V  
W
B
M4.00ms  
78.80%  
A CH1  
1.72V  
CH1 2.00V  
CH2 10.0V  
CH4 5.00A Ω  
W
T
T
Figure 23. Output Short Entry  
Figure 26. Output Short Recovery  
5
4
3
5
4
3
2
2
V
V
V
V
V
V
= 1V  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
V
V
V
V
V
= 1.2V  
= 1.8V  
= 2.5V  
= 3.3V  
= 5V  
OUT  
OUT  
OUT  
OUT  
OUT  
= 1.2V  
= 1.8V  
= 2.5V  
= 3.3V  
= 5V  
1
1
0
45  
0
45  
55  
65  
75  
85  
95  
105  
55  
65  
75  
85  
95  
105  
AMBIENT TEMPERATURE (°C)  
AMBIENT TEMPERATURE (°C)  
Figure 27. Output Current vs. Ambient Temperature at VIN = 12 V,  
SW = 300 kHz  
Figure 24. Output Current vs. Ambient Temperature at VIN = 12 V,  
SW = 600 kHz  
f
f
Rev. A | Page 10 of 24  
Data Sheet  
ADP2384  
FUNCTIONAL BLOCK DIAGRAM  
VREG  
CLK  
BIAS AND DRIVER  
REGULATOR  
RT  
PVIN  
OSC  
SLOPE RAMP  
SYNC  
UVLO  
EN  
EN_BUF  
BOOST  
REGULATOR  
1.17V  
1µA  
4µA  
A
CS  
+
HICCUP  
MODE  
OCP  
V
SLOPE RAMP  
I_MAX  
Σ
BST  
SW  
COMP  
0.6V  
+
NFET  
NFET  
+
CMP  
I
DRIVER  
SS  
SS  
FB  
+
AMP  
CONTROL  
LOGIC  
AND MOSFET  
DRIVER WITH  
ANTICROSS  
VREG  
OVP  
PROTECTION  
DRIVER  
CLK  
PGND  
0.7V  
NEG CURRENT  
CMP  
+
+
V
I_NEG  
0.54V  
+
PGOOD  
GND  
DEGLITCH  
Figure 28. Functional Block Diagram  
Rev. A | Page 11 of 24  
 
ADP2384  
Data Sheet  
THEORY OF OPERATION  
The ADP2384 is a synchronous step-down, dc-to-dc regulator  
that uses a current mode architecture with an integrated high-  
side power switch and a low-side synchronous rectifier. The  
regulator targets high performance applications that require  
high efficiency and design flexibility.  
BOOTSTRAP CIRCUITRY  
The ADP2384 includes a regulator to provide the gate drive  
voltage for the high-side N-MOSFET. It uses differential sensing to  
generate a 5 V bootstrap voltage between the BST and SW pins.  
It is recommended that a 0.1 µF, X7R or X5R ceramic capacitor  
be placed between the BST pin and the SW pin.  
The ADP2384 operates from an input voltage that ranges from  
4.5 V to 20 V and regulates the output voltage from 0.6 V to 90%  
of the input voltage. Additional features that maximize design  
flexibility include the following: programmable switching  
frequency, programmable soft start, external compensation,  
precision enable, and a power-good output.  
OSCILLATOR  
The ADP2384 switching frequency is controlled by the RT pin.  
A resistor from RT to GND can program the switching frequency  
according to the following equation:  
CONTROL SCHEME  
69,120  
f
SW (kHz) =  
The ADP2384 uses a fixed frequency, peak current mode PWM  
control architecture. At the start of each oscillator cycle, the  
high-side N-MOSFET is turned on, putting a positive voltage  
across the inductor. When the inductor current crosses the peak  
inductor current threshold, the high-side N-MOSFET is turned  
off and the low-side N-MOSFET is turned on. This puts a negative  
voltage across the inductor, causing the inductor current to  
decrease. The low-side N-MOSFET stays on for the rest of the  
cycle (see Figure 17).  
RT (k) + 15  
A 100 kΩ resistor sets the frequency to 600 kHz, and a 42.2 kΩ  
resistor sets the frequency to 1.2 MHz. Figure 29 shows the  
typical relationship between fSW and RT.  
1400  
1200  
1000  
800  
600  
400  
200  
0
PRECISION ENABLE/SHUTDOWN  
The EN input pin has a precision analog threshold of 1.17 V  
(typical) with 100 mV of hysteresis. When the enable voltage  
exceeds 1.17 V, the regulator turns on; when it falls below 1.07 V  
(typical), the regulator turns off. To force the regulator to auto-  
matically start when input power is applied, connect EN to PVIN.  
The precision EN pin has an internal pull-down current source  
(5 µA) that provides a default turn-off when the EN pin is open.  
20  
60  
100  
140  
180  
(kΩ)  
220  
260  
300  
R
T
When the EN pin voltage exceeds 1.17 V (typical), the ADP2384  
is enabled and the internal pull-down current source at the EN  
pin decreases to 1 µA, which allows users to program the PVIN  
UVLO and hysteresis.  
Figure 29. Switching Frequency vs. RT  
SYNCHRONIZATION  
To synchronize the ADP2384, connect an external clock to the  
SYNC pin. The frequency of the external clock can be in the range  
of 200 kHz to 1.4 MHz. During synchronization, the regulator  
operates in continuous conduction mode (CCM), and the rising  
edge of the switching waveform runs 180° out of phase to the rising  
edge of the external clock.  
INTERNAL REGULATOR (VREG)  
The on-board regulator provides a stable supply for the internal  
circuits. It is recommended that a 1 µF ceramic capacitor be placed  
between the VREG pin and GND. The internal regulator includes  
a current-limit circuit to protect the output if the maximum  
external load current is exceeded.  
When the ADP2384 operates in synchronization mode,  
a resistor must be connected from the RT pin to GND to  
program the internal oscillator to run at 90% to 110% of the  
external synchronization clock.  
Rev. A | Page 12 of 24  
 
 
 
 
 
 
 
 
Data Sheet  
ADP2384  
V
RISING  
V
FALLING  
OUT  
OUT  
SOFT START  
116.7%  
The ADP2384 has integrated soft start circuitry to limit the output  
voltage rising time and reduce inrush current at startup. The  
internal soft start time is calculated using the following equation:  
105%  
100%  
95  
%
90%  
1600  
tSS_INT  
=
(ms)  
fSW (kHz)  
PGOOD  
A slower soft start time can be programmed by using the SS pin.  
When a capacitor is connected between the SS pin and GND, an  
internal current charges the capacitor to establish the soft start  
ramp. The soft start time is calculated using the following equation:  
1024 CYCLE  
DEGLITCH  
16 CYCLE  
DEGLITCH  
1024 CYCLE  
DEGLITCH  
16 CYCLE  
DEGLITCH  
Figure 30. PGOOD Rising and Falling Thresholds  
PEAK CURRENT-LIMIT AND SHORT-CIRCUIT  
PROTECTION  
0.6V ×CSS  
tSS_EXT  
=
The ADP2384 has a peak current-limit protection circuit to  
prevent current runaway. During the initial soft start, the  
ADP2384 uses frequency foldback to prevent output current  
runaway. The switching frequency is reduced according to the  
voltage on the FB pin, which allows more time for the inductor  
to discharge. The correlation between the switching frequency  
and the FB pin voltage is shown in Table 5.  
ISS _UP  
where:  
CSS is the soft start capacitance.  
SS_UP is the soft start pull-up current (3.2 µA).  
I
The internal error amplifier includes three positive inputs: the  
internal reference voltage, the internal digital soft start voltage,  
and the SS pin voltage. The error amplifier regulates the FB  
voltage to the lowest of the three voltages.  
Table 5. FB Pin Voltage and Switching Frequency  
FB Pin Voltage  
Switching Frequency  
If the output voltage is charged prior to turn-on, the ADP2384  
prevents reverse inductor current that would discharge the output  
capacitor. This function remains active until the soft start  
voltage exceeds the voltage on the FB pin.  
VFB ≥ 0.4 V  
0.4 V > VFB ≥ 0.2 V  
VFB < 0.2 V  
fSW  
fSW/2  
fSW/4  
For protection against heavy loads, the ADP2384 uses a hiccup  
mode for overcurrent protection. When the inductor peak current  
reaches the current-limit value, the high-side MOSFET turns off  
and the low-side MOSFET turns on until the next cycle. The over-  
current counter increments during this process. If the overcurrent  
counter reaches 10 or the FB pin voltage falls to 0.4 V after the  
soft start, the regulator enters hiccup mode. The high-side and  
low-side MOSFETs are both turned off. The regulator remains  
in hiccup mode for 4096 clock cycles and then attempts to restart.  
If the current-limit fault has cleared, the regulator resumes normal  
operation. Otherwise, it reenters hiccup mode.  
POWER GOOD  
The power-good pin (PGOOD) is an active high, open-drain  
output that requires an external resistor to pull it up to a voltage.  
A logic high on the PGOOD pin indicates that the voltage on  
the FB pin (and, therefore, the output voltage) is within regulation.  
The power-good circuitry monitors the output voltage on the FB  
pin and compares it to the rising and falling thresholds that are  
specified in Table 1. If the rising output voltage exceeds the target  
value, the PGOOD pin is held low. The PGOOD pin continues  
to be held low until the falling output voltage returns to the  
target value.  
The ADP2384 also provides a sink current limit to prevent the  
low-side MOSFET from sinking a lot of current from the load.  
When the voltage across the low-side MOSFET exceeds the sink  
current-limit threshold, which is typically 20 mV, the low-side  
MOSFET turns off immediately for the rest of the cycle. Both high-  
side and low-side MOSFETs turn off until the next clock cycle.  
If the output voltage falls below the target output voltage, the  
PGOOD pin is held low. The PGOOD pin continues to be held  
low until the rising output voltage returns to the target value.  
The power-good rising and falling thresholds are shown in  
Figure 30. There is a 1024-cycle waiting period before the PGOOD  
pin is pulled from low to high, and there is a 16-cycle waiting  
period before the PGOOD pin is pulled from high to low.  
In some cases, the input voltage (VPVIN) ramp rate is too slow or  
the output capacitor is too large for the output to reach regulation  
during the soft start process, which causes the regulator to enter  
the hiccup mode. To avoid such occurrences, use a resistor  
divider at the EN pin to program the input voltage UVLO,  
or use a longer soft start time.  
Rev. A | Page 13 of 24  
 
 
 
 
 
ADP2384  
Data Sheet  
OVERVOLTAGE PROTECTION (OVP)  
THERMAL SHUTDOWN  
The ADP2384 includes an overvoltage protection feature  
to protect the regulator against an output short to a higher  
voltage supply or when a strong load disconnect transient  
occurs. If the feedback voltage increases to 0.7 V, the internal  
high-side and low-side MOSFETs are turned off until the  
voltage at the FB pin decreases to 0.63 V. At that time, the  
ADP2384 resumes normal operation.  
If the ADP2384 junction temperatures rises above 150°C, the  
internal thermal shutdown circuit turns off the regulator for self-  
protection. Extreme junction temperatures can be the result of  
high current operation, poor circuit board thermal design,  
and/or high ambient temperature. A 25°C hysteresis is included  
in the thermal shutdown circuit so that, if an overtemperature  
event occurs, the ADP2384 does not return to normal operation  
until the on-chip temperature falls below 125°C. Upon recovery, a  
soft start is initiated before normal operation begins.  
UNDERVOLTAGE LOCKOUT (UVLO)  
Undervoltage lockout circuitry is integrated in the ADP2384 to  
prevent the occurrence of power-on glitches. If the VPVIN voltage  
falls below 3.8 V typical, the part shuts down and both the  
power switch and synchronous rectifier turn off. When the  
VPVIN voltage rises above 4.3 V typical, the soft start period  
is initiated and the part is enabled.  
Rev. A | Page 14 of 24  
 
 
 
Data Sheet  
ADP2384  
APPLICATIONS INFORMATION  
The maximum output voltage for a given input voltage and  
INPUT CAPACITOR SELECTION  
switching frequency is constrained by the minimum off time  
and the maximum duty cycle. The minimum off time is typically  
200 ns, and the maximum duty cycle of the ADP2384 is  
typically 90%.  
The input capacitor reduces the input voltage ripple caused by  
the switch current on PVIN. Place the input capacitor as close  
as possible to the PVIN pin. A ceramic capacitor in the 10 μF to  
47 μF range is recommended. The loop that is composed of this  
input capacitor, the high-side N-MOSFET, and the low-side  
N-MOSFET must be kept as small as possible.  
The maximum output voltage, limited by the minimum off time  
at a given input voltage and frequency, can be calculated using  
the following equation:  
The voltage rating of the input capacitor must be greater than  
the maximum input voltage. The rms current rating of the input  
capacitor should be larger than the value calculated from the  
following equation:  
V
OUT_MAX = VIN × (1 − tMIN_OFF × fSW) − (RDSON_HS RDSON_LS) ×  
OUT_MAX × (1 − tMIN_OFF × fSW) − (RDSON_LS + RL) × IOUT_MAX (2)  
where:  
OUT_MAX is the maximum output voltage.  
MIN_OFF is the minimum off time.  
I
V
ICIN RMS = IOUT  
×
D ×(1 D)  
_
t
I
OUT_MAX is the maximum output current.  
OUTPUT VOLTAGE SETTING  
The output voltage of the ADP2384 is set by an external  
resistive divider. The resistor values are calculated using  
The maximum output voltage, limited by the maximum duty  
cycle at a given input voltage, can be calculated by using the  
following equation:  
RTOP  
RBOT  
OUT = 0.6 × 1 +  
V
VOUT_MAX = DMAX × VIN  
(3)  
where DMAX is the maximum duty cycle.  
To limit output voltage accuracy degradation due to FB bias  
current (0.1 µA maximum) to less than 0.5% (maximum),  
ensure that RBOT < 30 kΩ.  
As shown in Equation 1 to Equation 3, reducing the switching  
frequency alleviates the minimum on time and minimum off  
time limitation.  
Table 6 lists the recommended resistor divider values for  
various output voltages.  
INDUCTOR SELECTION  
The inductor value is determined by the operating frequency,  
input voltage, output voltage, and inductor ripple current. Using  
a small inductor value leads to a faster transient response but  
degrades efficiency, due to a larger inductor ripple current;  
using a large inductor value leads to smaller ripple current  
and better efficiency but results in a slower transient response.  
Table 6. Resistor Divider Values for Various Output Voltages  
VOUT (V)  
RTOP 1% (kΩ)  
RBOT 1% (kΩ)  
1.0  
1.2  
1.5  
1.8  
2.5  
3.3  
5.0  
10  
10  
15  
20  
47.5  
10  
22  
15  
10  
10  
10  
15  
2.21  
3
As a guideline, the inductor ripple current, ΔIL, is typically set  
to one-third of the maximum load current. The inductor value  
is calculated using the following equation:  
(VIN VOUT )× D  
L =  
VOLTAGE CONVERSION LIMITATIONS  
IL × fSW  
The minimum output voltage for a given input voltage and  
switching frequency is constrained by the minimum on time.  
The minimum on time of the ADP2384 is typically 125 ns. The  
minimum output voltage for a given input voltage and switching  
frequency can be calculated using the following equation:  
where:  
VIN is the input voltage.  
V
OUT is the output voltage.  
D is the duty cycle (D = VOUT/VIN).  
ΔIL is the inductor current ripple.  
V
I
OUT_MIN = VIN × tMIN_ON × fSW − (RDSON_HS RDSON_LS) ×  
OUT_MIN × tMIN_ON × fSW − (RDSON_LS + RL) × IOUT_MIN  
where:  
OUT_MIN is the minimum output voltage.  
MIN_ON is the minimum on time.  
SW is the switching frequency.  
fSW is the switching frequency.  
(1)  
The ADP2384 uses adaptive slope compensation in the current  
loop to prevent subharmonic oscillations when the duty cycle is  
larger than 50%. The internal slope compensation limits the  
minimum inductor value.  
V
t
f
R
R
DSON_HS is the high-side MOSFET on resistance.  
DSON_LS is the low-side MOSFET on resistance.  
I
OUT_MIN is the minimum output current.  
RL is the series resistance of the output inductor.  
Rev. A | Page 15 of 24  
 
 
 
 
 
 
ADP2384  
Data Sheet  
KUV × ∆ISTEP2 × L  
For a duty cycle that is larger than 50%, the minimum inductor  
value is determined using the following equation:  
COUT_UV  
=
2 ×(VIN VOUT )× ∆VOUT _UV  
VOUT  
×
(
1D  
)
L (Minimum) =  
where:  
UV is a factor, with a typical setting of KUV = 2.  
ΔISTEP is the load step.  
2×ΔIL × fSW  
K
The peak inductor current is calculated by  
ΔVOUT_UV is the allowable undershoot on the output voltage.  
IL  
IPEAK = IOUT +  
Another example occurs when a load is suddenly removed from  
the output, and the energy stored in the inductor rushes into  
the output capacitor, causing the output to overshoot.  
2
The saturation current of the inductor must be larger than the peak  
inductor current. For ferrite core inductors with a quick saturation  
characteristic, the saturation current rating of the inductor should  
be higher than the current-limit threshold of the switch. This  
prevents the inductor from reaching saturation.  
The output capacitance that is required to meet the overshoot  
requirement can be calculated using the following equation:  
KOV × ∆ISTEP2 × L  
COUT_OV  
=
2
2
The rms current of the inductor is calculated as follows:  
(VOUT + ∆VOUT _OV ) VOUT  
2
where:  
ΔVOUT_OV is the allowable overshoot on the output voltage.  
OV is a factor, with a typical setting of KOV = 2.  
IL  
2
IRMS  
=
IOUT  
+
12  
K
Shielded ferrite core materials are recommended for low core  
loss and low EMI. Table 7 lists some recommended inductors.  
The output ripple is determined by the ESR and the value of the  
capacitance. Use the following equation to select a capacitor  
that can meet the output ripple requirements:  
OUTPUT CAPACITOR SELECTION  
The output capacitor selection affects the output ripple voltage  
load step transient and the loop stability of the regulator.  
IL  
COUT_RIPPLE  
=
8 × fSW × ∆VOUT _ RIPPLE  
For example, during a load step transient where the load is  
suddenly increased, the output capacitor supplies the load until  
the control loop can ramp up the inductor current. The delay  
caused by the control loop causes output undershoot. The  
output capacitance that is required to satisfy the voltage droop  
requirement can be calculated using the following equation:  
VOUT _ RIPPLE  
RESR  
=
IL  
where:  
ΔVOUT_RIPPLE is the allowable output ripple voltage.  
ESR is the equivalent series resistance of the output capacitor  
R
in ohms (Ω).  
Table 7. Recommended Inductors  
Vendor  
Part No.  
Value (µH)  
1.5  
2.2  
3.3  
4.7  
ISAT (A)  
13.7  
11.4  
9.8  
8.2  
7.1  
IRMS (A)  
14.6  
11.6  
9.0  
8.0  
7.1  
5.2  
17.5  
15  
12  
10  
9.5  
8.0  
6.8  
20  
DCR (mΩ)  
4.6  
6.8  
10.1  
13.8  
20.2  
34.1  
4.1  
Toko  
FDVE1040-1R5M  
FDVE1040-2R2M  
FDVE1040-3R3M  
FDVE1040-4R7M  
FDVE1040-6R8M  
FDVE1040-100M  
IHLP4040DZ-1R0M-01  
IHLP4040DZ-1R5M-01  
IHLP4040DZ-2R2M-01  
IHLP4040DZ-3R3M-01  
IHLP4040DZ-4R7M-01  
IHLP4040DZ-6R8M-01  
IHLP4040DZ-100M-01  
744325120  
6.8  
10  
6.1  
Vishay  
1.0  
1.5  
2.2  
3.3  
4.7  
6.8  
10  
36  
27.5  
25.6  
18.6  
17  
13.5  
12  
5.8  
9
14.4  
16.5  
23.3  
36.5  
1.8  
Wurth Elektronik  
1.2  
25  
744325180  
1.8  
18  
16  
3.5  
744325240  
744325330  
2.4  
3.3  
17  
15  
14  
12  
4.75  
5.9  
744325420  
4.2  
14  
11  
7.1  
744325550  
5.5  
12  
10  
10.3  
Rev. A | Page 16 of 24  
 
 
Data Sheet  
ADP2384  
Select the largest output capacitance given by COUT_UV, COUT_OV  
and COUT_RIPPLE to meet both load transient and output ripple  
performance.  
,
where:  
AVI = 8.7 A/V.  
R is the load resistance.  
C
OUT is the output capacitance.  
The selected output capacitor voltage rating must be greater than  
the output voltage. The rms current rating of the output capacitor  
must be larger than the value that is calculated by  
RESR is the equivalent series resistance of the output capacitor.  
The ADP2384 uses a transconductance amplifier for the error  
amplifier and to compensate the system. Figure 32 shows the  
simplified, peak current mode control, small signal circuit.  
IL  
ICOUT  
=
_RMS  
12  
V
V
OUT  
OUT  
PROGRAMMING THE INPUT VOLTAGE UVLO  
R
TOP  
The ADP2384 has a precision enable input that can be used to  
program the UVLO threshold of the input voltage (see Figure 31).  
V
C
COMP  
C
OUT  
ESR  
gm  
+
A
VI  
+
R
R
BOT  
R
C
PVIN  
CP  
R
ADP2384  
C
C
R
TOP_EN  
EN CMP  
EN  
Figure 32. Simplified Peak Current Mode Control, Small Signal Circuit  
1.17V  
4µA  
The compensation components, RC and CC, contribute a zero,  
and RC and the optional CCP contribute an optional pole.  
R
BOT_EN  
1µA  
The closed-loop transfer equation is as follows:  
RBOT  
gm  
TV (s) =  
×
×
Figure 31. Programming the Input Voltage UVLO  
Use the following equation to calculate RTOP_EN and RBOT_EN  
1.07V ×VIN _ RISING 1.17V ×VIN _ FALLING  
RBOT + RTOP CC + CCP  
:
1 + RC × CC × s  
×GVD (s)  
RTOP_EN  
=
RC × CC × CCP  
CC + CCP  
1.07 V × 5μA 1.17V ×1μA  
1.17V× RTOP _ EN  
s × 1 +  
× s  
RBOT_EN  
where:  
=
The following design guideline shows how to select the RC, CC,  
and CCP compensation components for ceramic output capacitor  
applications:  
VIN _ RISING RTOP _ EN × 5μA 1.17 V  
V
V
IN_RISING is the VIN rising threshold.  
IN_FALLING is the VIN falling threshold.  
1. Determine the cross frequency, fC. Generally, fC is between  
fSW/12 and fSW/6.  
2. Calculate RC using the following equation:  
COMPENSATION DESIGN  
For peak current mode control, the power stage can be simplified  
as a voltage controlled current source supplying current to the  
output capacitor and load resistor. It is composed of one domain  
pole and a zero that is contributed by the output capacitor ESR.  
The control-to-output transfer function is based on the following:  
2 × π ×VOUT ×COUT × fC  
RC =  
0.6V × gm × AVI  
3. Place the compensation zero at the domain pole, fP; then  
determine CC by using the following equation:  
s
(R + RESR )×COUT  
CC =  
1+  
1+  
2×π× fZ  
RC  
G
VD (s) = VOUT (s)/VCOMP (s) = AVI × R ×  
s
4. CCP is optional. It can be used to cancel the zero caused by  
the ESR of the output capacitor.  
2×π× fP  
R
ESR ×COUT  
1
CCP  
=
fZ =  
fP =  
RC  
2 × π × RESR ×COUT  
1
2 × π ×(R + RESR )×COUT  
Rev. A | Page 17 of 24  
 
 
 
 
ADP2384  
Data Sheet  
can optimize designs for cost, area, efficiency, and part count,  
while taking into consideration the operating conditions and  
limitations of the IC and all real external components. For more  
information about theADIsimPower design tools, refer to  
www.analog.com/ADIsimPower. The tool set is available from  
this website, and users can request an unpopulated board.  
ADIsimPower DESIGN TOOL  
The ADP2384 is supported by the ADIsimPower™ design tool  
set. ADIsimPower is a collection of tools that produce complete  
power designs that are optimized for a specific design goal. The  
tools enable the user to generate a full schematic and bill of  
materials and calculate performance in minutes. ADIsimPower  
Rev. A | Page 18 of 24  
 
Data Sheet  
ADP2384  
DESIGN EXAMPLE  
ADP2384  
V
= 12V  
IN  
PVIN  
EN  
BST  
SW  
C
10µF  
25V  
IN  
C
BST  
0.1µF  
L1  
3.3µH  
V
= 3.3V  
OUT  
PGOOD  
SYNC  
RT  
C
47µF  
C
OUT2  
47µF  
6.3V  
OUT1  
R
10kΩ  
TOP  
6.3V  
R
1%  
T
100kΩ  
FB  
R
BOT  
COMP  
2.21kΩ  
1%  
VREG  
SS  
C
R
VREG  
1µF  
C
31.6kΩ  
C
C
CP  
3.9pF  
C
22nF  
GND PGND  
C
SS  
1500pF  
Figure 33. Schematic for Design Example  
This section describes the procedures for selecting the external  
components, based on the example specifications that are listed  
in Table 8. See Figure 33 for the schematic of this design example.  
∆IL = 1.2 A.  
SW = 600 kHz.  
f
This calculation results in L = 3.323 μH. Choose the standard  
inductor value of 3.3 μH.  
Table 8. Step-Down DC-to-DC Regulator Requirements  
The peak-to-peak inductor ripple current can be calculated  
using the following equation:  
Parameter  
Specification  
VIN = 12.0 V 10%  
VOUT = 3.3 V  
Input Voltage  
Output Voltage  
Output Current  
Output Voltage Ripple  
Load Transient  
(VIN VOUT )× D  
ΔIL =  
IOUT = 4 A  
L × fSW  
∆VOUT_RIPPLE = 33 mV  
5%, 1 A to 4 A, 2 A/μs  
fSW = 600 kHz  
This calculation results in ∆IL = 1.21 A.  
Switching Frequency  
Use the following equation to calculate the peak inductor  
current:  
OUTPUT VOLTAGE SETTING (DESIGN EXAMPLE)  
IL  
Choose a 10 kΩ resistor as the top feedback resistor (RTOP),  
and calculate the bottom feedback resistor (RBOT) by using the  
following equation:  
I
PEAK = IOUT +  
2
This calculation results in IPEAK = 4.605 A.  
Use the following equation to calculate the rms current flowing  
through the inductor:  
0.6  
RBOT = RTOP ×  
VOUT 0.6  
2
IL  
2
To set the output voltage to 3.3 V, the resistors values are as  
follows: RTOP = 10 kΩ, and RBOT = 2.21 kΩ.  
IRMS  
=
IOUT  
+
12  
FREQUENCY SETTING  
This calculation results in IRMS = 4.015 A.  
Connect a 100 kΩ resistor from the RT pin to GND to set the  
switching frequency to 600 kHz.  
Based on the calculated current value, select an inductor with  
a minimum rms current rating of 4.02 A and a minimum  
saturation current rating of 4.61 A.  
INDUCTOR SELECTION (DESIGN EXAMPLE)  
However, to protect the inductor from reaching its saturation  
point under the current-limit condition, the inductor should be  
rated for at least a 6 A saturation current for reliable operation.  
The peak-to-peak inductor ripple current, ∆IL, is set to 30% of  
the maximum output current. Use the following equation to  
estimate the inductor value:  
Based on the requirements described previously, select a 3.3 μH  
inductor, such as the FDVE1040-3R3M from Toko, which has  
a 10.1 mΩ DCR and a 9.8 A saturation current.  
(VIN VOUT )× D  
L =  
IL × fSW  
where:  
VIN = 12 V.  
VOUT = 3.3 V.  
D = 0.275.  
Rev. A | Page 19 of 24  
 
 
 
 
 
 
ADP2384  
Data Sheet  
(0.825Ω + 0.002)× 2 × 32μF  
32.5kΩ  
OUTPUT CAPACITOR SELECTION (DESIGN  
EXAMPLE)  
CC =  
= 1629 pF  
The output capacitor is required to meet both the output voltage  
ripple and load transient response requirements.  
0.002 Ω × 2 × 32 μF  
CCP  
=
= 3.9 pF  
32.5kΩ  
To meet the output voltage ripple requirement, use the following  
equation to calculate the ESR and capacitance value of the output  
capacitor:  
Choose standard components, as follows: RC = 31.6 kΩ,  
CC = 1500 pF, and CCP = 3.9 pF.  
IL  
Figure 34 shows the bode plot at 4 A. The cross frequency is  
59 kHz, and the phase margin is 55°.  
COUT_RIPPLE  
=
8 × fS × ∆VOUT _ RIPPLE  
60  
180  
144  
108  
72  
VOUT _ RIPPLE  
48  
RESR  
=
IL  
36  
24  
This calculation results in COUT_RIPPLE = 7.6 μF, and RESR = 27 mΩ.  
12  
36  
To meet the 5% overshoot and undershoot transient  
requirements, use the following equations to calculate the  
capacitance:  
0
0
–12  
–24  
–36  
–48  
–36  
–72  
–108  
–144  
KOV × ∆ISTEP2 × L  
COUT_OV  
=
2
2
(VOUT + ∆VOUT _OV ) VOUT  
KUV × ∆ISTEP2 × L  
–60  
1k  
–180  
COUT_UV  
=
10k  
100k  
1M  
2 ×(VIN VOUT )× ∆VOUT _UV  
FREEQUENCY (Hz)  
Figure 34. Bode Plot at 4 A  
where:  
OV = KUV = 2 are the coefficients for estimation purposes.  
ISTEP = 3 A is the load transient step.  
VOUT_OV = 5%VOUT is the overshoot voltage.  
VOUT_UV = 5%VOUT is the undershoot voltage.  
K
SOFT START TIME PROGRAM  
The soft start feature allows the output voltage to ramp up in a  
controlled manner, eliminating output voltage overshoot during  
soft start and limiting the inrush current. Set the soft start time  
to 4 ms.  
This calculation results in COUT_OV = 53.2 μF, and COUT_UV = 20.7 μF.  
According to the calculation, the output capacitance must be  
greater than 53 μF, and the ESR of the output capacitor must be  
smaller than 27 mΩ. It is recommended that two pieces of  
47 μF/X5R/6.3 V ceramic capacitors be used, such as the  
GRM32ER60J476ME20 from Murata, with an ESR of 2 mΩ.  
tSS _ EXT × ISS _  
4ms × 3.2μA  
UP  
CSS =  
=
= 21.3 nF  
0.6  
0.6V  
Choose a standard component value, as follows: CSS = 22 nF.  
INPUT CAPACITOR SELECTION (DESIGN  
EXAMPLE)  
COMPENSATION COMPONENTS  
For better load transient and stability performance, set the cross  
frequency, fC, to fSW/10. In this case, fSW is running at 600 kHz;  
therefore, the fC is set to 60 kHz.  
A minimum 10 μF ceramic capacitor must be placed near the  
PVIN pin. In this application, it is recommended that one 10 μF,  
X5R, 25 V ceramic capacitor be used.  
The 47 µF ceramic output capacitor has a derated value of 32 µF.  
2×π×3.3 V×2×32 μF×60 kHz  
RC =  
= 32.5 kΩ  
0.6 V×470 μS×8.7 A/V  
Rev. A | Page 20 of 24  
 
 
 
 
 
Data Sheet  
ADP2384  
RECOMMENDED EXTERNAL COMPONENTS  
Table 9. Recommended External Components for Typical Applications with 4 A Output Current  
fSW (kHz)  
VIN (V)  
12  
12  
12  
12  
12  
12  
12  
5
5
5
5
5
VOUT (V)  
L (µH)  
2.2  
3.3  
3.3  
4.7  
4.7  
6.8  
10  
2.2  
2.2  
3.3  
3.3  
3.3  
3.3  
2.2  
2.2  
2.2  
3.3  
4.7  
1
COUT (µF)1  
680  
680  
470  
RTOP (kΩ)  
RBOT (kΩ)  
RC (kΩ)  
CC (pF)  
3300  
3300  
3300  
3300  
3300  
3300  
3300  
3300  
3300  
3300  
3300  
3300  
3300  
1500  
1500  
1500  
1500  
1500  
1500  
1500  
1500  
1500  
1500  
1500  
1000  
1000  
1000  
1000  
1000  
1000  
1000  
1000  
1000  
CCP (pF)  
150  
100  
100  
68  
300  
1
10  
10  
15  
20  
47.5  
10  
22  
10  
10  
15  
20  
47.5  
10  
15  
10  
10  
10  
15  
2.21  
3
15  
10  
10  
10  
15  
2.21  
10  
10  
15  
2.21  
3
15  
10  
10  
10  
15  
2.21  
15  
2.21  
3
15  
10  
47  
59  
47  
60.4  
22  
29.4  
34  
47  
39  
47  
24  
22  
29.4  
39  
31.6  
24  
31.6  
44.2  
26.7  
21  
26.7  
24  
1.2  
1.5  
1.8  
2.5  
3.3  
5
470  
2 × 100  
2 × 100  
100 + 47  
680  
470  
470  
3 × 100  
2 × 100  
2 × 100  
3 × 100  
2 × 100  
2 × 47  
2 × 47  
100  
3 × 100  
2 × 100  
2 × 100  
100 + 47  
100  
10  
8.2  
4.7  
150  
100  
100  
15  
10  
8.2  
10  
8.2  
4.7  
4.7  
2.2  
10  
1
1.2  
1.5  
1.8  
2.5  
3.3  
1.5  
1.8  
2.5  
3.3  
5
5
600  
12  
12  
12  
12  
12  
5
5
5
5
5
15  
20  
47.5  
10  
22  
10  
10  
15  
20  
1
1.2  
1.5  
1.8  
2.5  
3.3  
2.5  
3.3  
5
1
10  
10  
1.5  
1.5  
1.5  
1.5  
1.5  
2.2  
2.2  
1
1
1
1
1
8.2  
4.7  
4.7  
3.3  
2.2  
1
8.2  
6.8  
4.7  
4.7  
3.3  
2.2  
47.5  
10  
22  
28  
5
100  
1000  
12  
12  
12  
5
5
5
5
5
5
100  
100  
100  
3 × 100  
2 × 100  
100 + 47  
2 × 47  
100  
47.5  
10  
22  
10  
10  
15  
20  
47.5  
10  
37.4  
47  
69  
43.2  
33  
33  
30  
37.4  
47  
1
1.2  
1.5  
1.8  
2.5  
3.3  
10  
10  
15  
2.21  
1
100  
1 680 μF: 4 V, Sanyo 4TPF680M; 470 μF: 6.3 V, Sanyo 6TPF470M; 100 μF: 6.3 V, X5R, Murata GRM32ER60J107ME20; 47 μF: 6.3 V, X5R, Murata GRM32ER60J476ME20.  
Rev. A | Page 21 of 24  
 
 
ADP2384  
Data Sheet  
CIRCUIT BOARD LAYOUT RECOMMENDATIONS  
Good printed circuit board (PCB) layout is essential for obtaining  
the best performance from the ADP2384. Poor PCB layout can  
degrade the output regulation, as well as the electromagnetic  
interference (EMI) and electromagnetic compatibility (EMC)  
performance. Figure 36 shows an example of a good PCB layout  
for the ADP2384. For optimum layout, refer to the following  
guidelines:  
Connect the exposed GND pad of the ADP2384 to a large,  
external copper ground plane to maximize its power  
dissipation capability and minimize junction temperature.  
In addition, connect the exposed SW pad to the SW pins  
of the ADP2384 using short, wide traces; or connect the  
exposed SW pad to a large copper plane of the switching  
node for high current flow.  
Place the feedback resistor divider network as close as  
possible to the FB pin to prevent noise pickup. Minimize  
the length of the trace that connects the top of the feedback  
resistor divider to the output while keeping the trace away  
from the high current traces and the switching node to  
avoid noise pickup. To further reduce noise pickup, place  
an analog ground plane on either side of the FB trace and  
ensure that the trace is as short as possible to reduce the  
parasitic capacitance pickup.  
Use separate analog ground planes and power ground  
planes. Connect the ground reference of sensitive analog  
circuitry, such as output voltage divider components, to  
analog ground. In addition, connect the ground reference  
of power components, such as input and output capacitors,  
to power ground. Connect both ground planes to the exposed  
GND pad of the ADP2384.  
Place the input capacitor, inductor, and output capacitor as  
close as possible to the IC, and use short traces.  
Ensure that the high current loop traces are as short and as  
wide as possible. Make the high current path from the input  
capacitor through the inductor, the output capacitor, and the  
power ground plane back to the input capacitor as short as  
possible. To accomplish this, ensure that the input and output  
capacitors share a common power ground plane.  
ADP2384  
V
PVIN  
EN  
BST  
SW  
IN  
C
C
IN  
BST  
V
L
OUT  
PGOOD  
SYNC  
C
OUT  
R
TOP  
FB  
In addition, ensure that the high current path from the power  
ground plane through the inductor and output capacitor  
back to the power ground plane is as short as possible by  
tying the PGND pins of the ADP2384 to the PGND plane  
as close as possible to the input and output capacitors.  
R
RT  
COMP  
SS  
BOT  
R
C
VREG  
R
T
C
GND PGND  
VREG  
C
C
C
SS  
Figure 35. High Current Path in the PCB Circuit  
ANALOG GROUND PLANE  
R
BOT  
PVIN  
COMP  
FB  
PVIN  
PVIN  
R
TOP  
INPUT INPUT  
BYPASS BULK  
GND  
SW  
VREG  
CAP  
CAP  
PVIN  
BST  
C
VREG  
GND  
SW  
+
C
BST  
SW  
SW  
PGND  
SW  
INDUCTOR  
POWER GROUND PLANE  
OUTPUT  
CAPACITOR  
VOUT  
VIA  
BOTTOM LAYER TRACE  
COPPER PLANE  
Figure 36. Recommended PCB Layout  
Rev. A | Page 22 of 24  
 
 
Data Sheet  
ADP2384  
TYPICAL APPLICATIONS CIRCUITS  
ADP2384  
V
= 12V  
IN  
BST  
SW  
PVIN  
EN  
C
10µF  
25V  
IN  
C
BST  
0.1µF  
L1  
1.5µH  
V
= 1.2V  
OUT  
PGOOD  
SYNC  
RT  
C
100µF  
C
100µF  
C
OUT3  
100µF  
6.3V  
OUT1  
OUT2  
R
10kΩ  
TOP  
6.3V  
6.3V  
R
1%  
T
124kΩ  
FB  
R
BOT  
10kΩ  
1%  
COMP  
VREG  
SS  
C
R
VREG  
1µF  
C
27.4kΩ  
C
C
2.2nF  
CP  
10pF  
GND PGND  
C
C
SS  
22nF  
Figure 37. Typical Applications Circuit, VIN = 12 V, VOUT = 1.2 V, IOUT = 4 A, fSW = 500 kHz  
ADP2384  
V
= 12V  
IN  
BST  
SW  
PVIN  
EN  
C
10µF  
25V  
IN  
C
BST  
0.1µF  
L1  
2.2µH  
V
= 1.8V  
OUT  
PGOOD  
SYNC  
RT  
C
100µF  
C
OUT2  
100µF  
6.3V  
OUT1  
R
20kΩ  
TOP  
6.3V  
R
1%  
T
100kΩ  
FB  
R
BOT  
10kΩ  
1%  
COMP  
VREG  
SS  
C
1µF  
R
VREG  
C
31.6kΩ  
C
C
1.5nF  
CP  
8.2pF  
GND PGND  
C
Figure 38. Typical Applications Circuit Using Internal Soft Start, VIN = 12 V, VOUT = 1.8 V, IOUT = 4 A, fSW = 600 kHz  
ADP2384  
V
= 12V  
IN  
BST  
SW  
PVIN  
EN  
C
10µF  
25V  
IN  
C
BST  
0.1µF  
L1  
4.7µH  
V
= 5V  
OUT  
PGOOD  
SYNC  
RT  
C
100µF  
6.3V  
OUT  
R
22kΩ  
1%  
TOP  
R
T
124kΩ  
FB  
R
3kΩ  
1%  
BOT  
COMP  
VREG  
SS  
R
C
C
1µF  
VREG  
44.2kΩ  
C
C
1.5nF  
CP  
2.2pF  
GND PGND  
C
C
22nF  
SS  
Figure 39. Typical Applications Circuit with Programming Switching Frequency at 500 kHz, VIN = 12 V, VOUT = 5 V, IOUT = 4 A, fSW = 500 kHz  
Rev. A | Page 23 of 24  
 
ADP2384  
Data Sheet  
OUTLINE DIMENSIONS  
4.10  
4.00 SQ  
3.90  
2.80  
2.70  
2.60  
0.20  
MIN  
0.20 MIN  
PIN 1  
PIN 1  
INDICATOR  
INDICATOR  
1.50  
0.20  
MIN  
19  
24  
18  
1.40  
1
1.30  
0.45  
EXPOSED  
PAD  
0.35  
0.25  
0.50  
BSC  
EXPOSED  
PAD  
1.05  
0.95  
0.85  
6
13  
7
12  
0.50  
0.40  
0.30  
TOP VIEW  
BOTTOM VIEW  
0.20  
MIN  
0.80  
0.75  
0.70  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.05 MAX  
0.02 NOM  
COPLANARITY  
0.08  
SECTION OF THIS DATA SHEET.  
SEATING  
PLANE  
0.30  
0.25  
0.20  
0.203 REF  
COMPLIANT TO JEDEC STANDARDS MO-220-WGGD .  
Figure 40. 24-Lead Lead Frame Chip Scale Package [LFCSP_WQ]  
4 mm × 4 mm Body, Very Very Thin Quad  
(CP-24-12)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
Temperature Range Package Description  
Package Option  
ADP2384ACPZN-R7 −40°C to +125°C  
ADP2384-EVALZ  
24-Lead Lead Frame Chip Scale Package [LFCSP_WQ], 7Tape and Reel  
Evaluation Board  
CP-24-12  
1 Z = RoHS Compliant Part.  
©2012–2014 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D10725-0-7/14(A)  
Rev. A | Page 24 of 24  
 
 
 

相关型号:

ADP2386

20 V, 6 A, Synchronous Step-Down DC-to-DC Regulator
ADI

ADP2386-EVALZ

20 V, 6 A, Synchronous Step-Down DC-to-DC Regulator
ADI

ADP2386ACPZN-R7

20 V, 6 A, Synchronous Step-Down DC-to-DC Regulator
ADI

ADP2386BB-EVALZ

20 V, 6 A, Synchronous Step-Down DC-to-DC Regulator
ADI

ADP2387

20 V, 6 A, Synchronous, Step-Down DC-to-DC Regulator
ADI

ADP2387-EVALZ

20 V, 6 A, Synchronous, Step-Down DC-to-DC Regulator
ADI

ADP2387ACPZN-R7

20 V, 6 A, Synchronous, Step-Down DC-to-DC Regulator
ADI

ADP2389

18 V, 12 A Step-Down Regulator with Programmable Current Limit
ADI

ADP2389-EVALZ

18 V, 12 A Step-Down Regulator with Programmable Current Limit
ADI

ADP2389ACPZ-R7

18 V, 12 A Step-Down Regulator with Programmable Current Limit
ADI

ADP2390

集成可编程限流和PFM的18 V、12 A降压稳压器
ADI

ADP2390-EVALZ

18 V, 12 A Step-Down Regulator with Programmable Current Limit
ADI