ADMV4420ACPZ [ADI]

K Band Downconverter with Integrated Fractional-N PLL and VCO;
ADMV4420ACPZ
型号: ADMV4420ACPZ
厂家: ADI    ADI
描述:

K Band Downconverter with Integrated Fractional-N PLL and VCO

文件: 总61页 (文件大小:1041K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
K Band Downconverter with Integrated  
Fractional-N PLL and VCO  
ADMV4420  
Data Sheet  
FEATURES  
GENERAL DESCRIPTION  
RF front end with integrated RF balun and LNA  
The ADMV4420 is a highly integrated, double balanced, active  
Double balanced, active mixer with high dynamic range IF  
amplifier  
mixer with an integrated fractional-N synthesizer, ideally suited  
for next generation K band satellite communications.  
Fractional-N synthesizer with low phase noise, multicore VCO  
5 V supply operation with integrated LDO regulators  
Output P1dB: 7 dBm  
Output IP3: 16 dBm  
Conversion gain: 36 dB  
The RF front end consists of an integrated RF balun and low  
noise amplifier (LNA) for an optimal, 7 dB, single-sideband  
noise figure while minimizing external components. Additionally,  
the high dynamic range IF output amplifier provides a nominal  
conversion gain of 36 dB.  
Noise figure: 7 dB  
An integrated low phase noise, fractional-N, phase-locked loop  
(PLL) with a multicore voltage controlled oscillator (VCO) and  
internal 2× multiplier generate the necessary on-chip LO signal  
for the double balanced mixer, eliminating the need for external  
frequency synthesis. The multicore VCO uses an internal  
autocalibration routine that allows the PLL to select the  
necessary settings and lock in approximately 400 µs.  
RF input frequency range: 16.95 GHz to 22.05 GHz  
Internal LO frequency range: 16.35 GHz to 21.15 GHz  
IF frequency range: 900 MHz to 2500 MHz  
Single-ended 50 Ω input impedance and 75 Ω IF output  
impedance  
Programmable via 4-wire SPI  
32-lead, 5 mm × 5 mm LFCSP  
The reference input to the PLL employs a differentially excited  
50 MHz crystal oscillator. Alternatively, the reference input can  
be driven by an external, singled-ended, 50 MHz source. The  
phase frequency detector (PFD) comparison frequency of the  
PLL operates up to 50 MHz.  
APPLICATIONS  
Satellite communication  
Point to point microwave communication  
The ADMV4420 is fabricated on a silicon germanium (SiGe),  
bipolar complementary metal-oxide semiconductor (BiCMOS)  
process, and is available in a 32-lead, RoHS compliant, 5 mm ×  
5 mm LFCSP package with an exposed pad. The device is  
specified over the −40°C to +85°C temperature range on a 5 V  
power supply.  
Rev. A  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rightsof third parties that may result fromits use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks andregisteredtrademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 ©2018–2019 Analog Devices, Inc. All rights reserved.  
Technical Support  
www.analog.com  
 
 
 
ADMV4420  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
IF Output—External Inductor/Biasing ................................... 40  
SPI Configuration ...................................................................... 40  
VCO Autocalibration and Automatic Level Control............. 40  
Programming Sequence ............................................................ 40  
Control Registers............................................................................ 41  
Register Details ............................................................................... 42  
Address 0x000, Reset: 0x00, Name: ADI_SPI_CONFIG_1.. 42  
Address 0x001, Reset: 0x00, Name: ADI_SPI_CONFIG_2.. 43  
Address 0x003, Reset: 0x01, Name: CHIPTYPE.................... 44  
Address 0x004, Reset: 0x03, Name: PRODUCT_ID_L ........ 44  
Address 0x005, Reset: 0x00, Name: PRODUCT_ID_H ....... 44  
Address 0x00A, Reset: 0x00, Name: SCRATCHPAD............ 44  
Address 0x00B, Reset: 0x00, Name: SPI_REV........................ 44  
Address 0x103, Reset: 0x6F, Name: ENABLES....................... 45  
Address 0x108, Reset: 0x05, Name: SDO_LEVEL................. 45  
Address 0x200, Reset: 0xA7, Name: INT_L ........................... 46  
Address 0x201, Reset: 0x00, Name: INT_H ........................... 46  
Address 0x202, Reset: 0x02, Name: FRAC_L......................... 46  
Address 0x203, Reset: 0x00, Name: FRAC_M ....................... 46  
Address 0x204, Reset: 0x00, Name: FRAC_H........................ 46  
Address 0x208, Reset: 0x04, Name: MOD_L ......................... 47  
Address 0x209, Reset: 0x00, Name: MOD_M........................ 47  
Address 0x20A, Reset: 0x00, Name: MOD_H........................ 47  
Address 0x20C, Reset: 0x01, Name: R_DIV_L ...................... 48  
Address 0x20D, Reset: 0x00, Name: R_DIV_H ..................... 48  
Address 0x20E, Reset: 0x00, Name: REFERENCE................ 48  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Revision History ............................................................................... 3  
Functional Block Diagram .............................................................. 4  
Specifications..................................................................................... 5  
Absolute Maximum Ratings............................................................ 7  
Thermal Resistance ...................................................................... 7  
ESD Caution.................................................................................. 7  
Pin Configuration and Function Descriptions............................. 8  
Interface Schematics..................................................................... 9  
Typical Performance Characteristics ........................................... 10  
IF = 900 MHz, Low-Side Injection LO Performance ............ 10  
IF = 900 MHz, High-Side Injection LO Performance........... 12  
IF = 1700 MHz, Low-Side Injection LO Performance .......... 14  
IF = 1700 MHz, High-Side Injection LO Performance......... 16  
IF = 2500 MHz, Low-Side Injection LO Performance .......... 18  
IF = 2500 MHz, High-Side Injection LO Performance......... 20  
LO = 16.75 GHz, Low-Side Injection Performance............... 22  
LO = 16.75 GHz, High-Side Injection Performance ............. 24  
LO = 18.95 GHz, Low-Side Injection Performance............... 26  
LO = 18.95 GHz, High-Side Injection Performance ............. 28  
LO = 21.15 GHz, Low-Side Injection Performance............... 30  
LO = 21.15 GHz, High-Side Injection Performance ............. 32  
Phase Noise Performance.......................................................... 34  
Return Loss and Isolation.......................................................... 35  
Spurious and Harmonics Performance ................................... 36  
Theory of Operation ...................................................................... 37  
Reference Input Stage................................................................. 37  
Reference Doubler, R Counter, and RDIV2............................ 37  
N Counter.................................................................................... 38  
INT, FRAC, MOD, and Reference Path Relationship............ 38  
Integer-N Mode .......................................................................... 38  
Phase Frequency Detector and Charge Pump........................ 38  
Loop Filter ................................................................................... 39  
CP Current Setup ....................................................................... 39  
Bleed Current (CP_BLEED) Setup .......................................... 39  
MUXOUT.................................................................................... 39  
Digital Lock Detect .................................................................... 40  
Enables ......................................................................................... 40  
Address 0x211, Reset: 0x00, Name:  
VCO_DATA_READBACK1..................................................... 49  
Address 0x212, Reset: 0x00, Name:  
VCO_DATA_READBACK2..................................................... 49  
Address 0x213, Reset: 0x01, Name: PLL_MUX_SEL............ 50  
Address 0x214, Reset: 0x98, Name: LOCK_DETECT.......... 50  
Address 0x215, Reset: 0x00, Name: VCO_BAND_SELECT 51  
Address 0x216, Reset: 0x00, Name: VCO_ALC_TIMEOUT51  
Address 0x217, Reset: 0x01, Name: VCO_MANUAL........... 51  
Address 0x219, Reset: 0x13, Name: ALC ................................ 51  
Address 0x21C, Reset: 0x90, Name: VCO_TIMEOUT1 ...... 52  
Address 0x21D, Reset: 0x01, Name: VCO_TIMEOUT2 ...... 52  
Address 0x21E, Reset: 0x4B, Name: VCO_BAND_DIV ...... 52  
Address 0x21F, Reset: 0x18, Name: VCO_READBACK_SEL  
....................................................................................................... 52  
Rev. A | Page 2 of 61  
Data Sheet  
ADMV4420  
Address 0x226, Reset: 0x02, Name: AUTOCAL.....................53  
Address 0x22C, Reset: 0x07, Name: CP_STATE ....................54  
Address 0x22D, Reset: 0x01, Name: CP_BLEED_EN............54  
Address 0x22E, Reset: 0x03, Name: CP_CURRENT .............54  
Address 0x22F, Reset: 0x0C, Name: CP_BLEED....................54  
Applications Information...............................................................55  
Evaluation Board.........................................................................55  
Outline Dimensions........................................................................60  
Ordering Guide ...........................................................................60  
REVISION HISTORY  
4/2019—Rev. 0 to Rev. A  
Change to Features Section..............................................................1  
Changes to Local Oscillator (LO) Internal Frequency Range  
Parameter, VCO Frequency Range Parameter, and Conversion  
Gain Parameter, Table 1....................................................................5  
Changes to IF = 900 MHz, Low-Side Injection LO Performance  
Section ..............................................................................................10  
Changes to IF = 1700 MHz, Low-Side Injection LO  
Performance Section.......................................................................14  
Changes to IF = 2500 MHz, Low-Side Injection LO  
Performance Section.......................................................................18  
10/2018—Revision 0: Initial Version  
Rev. A | Page 3 of 61  
 
ADMV4420  
Data Sheet  
FUNCTIONAL BLOCK DIAGRAM  
PLL LOOP FILTER  
27 26 25  
32  
31  
30  
29  
28  
GND  
1
SPI/  
LOGIC  
ADMV4420  
24 SDO  
23 GND  
GND  
GND  
RFIN  
GND  
GND  
2
3
4
5
6
16.75GHz TO 21.15GHz  
×2  
CPOUT  
CALIBRATION  
SWITCH  
22  
21 VPOS3_CP  
20 ENBL1  
19 ENBL0  
18 GND  
VCO  
VCO  
INTEGER  
REGISTER  
FRACTION  
REGISTER  
MODULUS  
THIRD-ORDER  
FRACTIONAL  
INTERPOLATOR  
N COUNTER  
8.375GHz TO 10.575GHz  
CHARGE  
PUMP  
PHASE  
FREQUENCY  
DETECTOR  
17 GND  
BLEED  
CURRENT  
DECL1_VCO1  
DECL2_VCO2  
7
8
3.3V  
VCO  
LDO  
÷1 OR ÷2  
÷1  
×1 OR ×2  
3.3V  
PLL  
LDO  
1.8V  
SDM  
LDO  
REFERENCE REFERENCE REFERENCE  
DIVIDE-BY-2 DIVIDER DOUBLER  
9
10  
11  
12  
13  
14  
15  
16  
Figure 1.  
Rev. A | Page 4 of 61  
 
Data Sheet  
ADMV4420  
SPECIFICATIONS  
The measurements are performed at TA = 25°C with 0 dBm external reference at 50 MHz when VVPOS1_VCO = VVPOS2_PLL = VVPOS3_CP  
=
V
VPOS4_IF = 5 V, RF input power = −40 dBm, and PLL loop filter bandwidth = 60 kHz with 45° of phase margin, unless otherwise noted.  
Table 1.  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
RF INPUT  
Frequency Range  
Input Return Loss  
Input Impedance  
16.95  
22.05  
GHz  
dB  
Ω
−8.5  
50  
Single-ended  
LOCAL OSCILLATOR (LO) INTERNAL  
FREQUENCY RANGE  
16.35  
21.15  
GHz  
VCO  
Frequency Range  
Tuning Sensitivity (kVCO  
VTUNE  
8.175  
0
10.575 GHz  
MHz/V  
)
50  
Calculated with fVCO/VTUNE  
3
V
IF OUTPUT  
IF Frequency Range  
Conversion Gain  
IF = 900 MHz  
900  
2500  
MHz  
Low-Side Injection  
LO = 16.75 GHz  
LO = 18.95 GHz  
LO = 21.15 GHz  
High-Side Injection  
LO = 17.85 GHz  
LO = 18.95 GHz  
LO = 21.15 GHz  
IF = 950 MHz  
31  
33  
35  
39  
32  
dB  
dB  
dB  
RF = 17.65 GHz  
RF = 19.85GHz  
RF = 22.05 GHz  
28.5  
32.5  
29  
33  
37  
40  
dB  
dB  
dB  
RF = 16.95 GHz  
RF = 18.05 GHz  
RF = 20.25 GHz  
Low-Side Injection  
LO = 16.35 GHz  
IF = 2500 MHz  
29  
32  
dB  
RF = 17.30 GHz  
Low-Side Injection  
LO = 16.75 GHz  
LO = 17.95 GHz  
LO = 19.55 GHz  
High-Side Injection  
LO = 19.45 GHz  
LO = 20.45 GHz  
LO = 21.15 GHz  
28.5  
36  
38  
30  
dB  
dB  
dB  
RF = 19.25 GHz  
RF = 20.45 GHz  
RF = 22.05 GHz  
27  
31  
35  
37  
7
dB  
dB  
dB  
dBm  
RF = 16.95 GHz  
RF = 17.95 GHz  
RF = 18.65 GHz  
Output 1 dB Compression Point  
(Output P1dB)  
Output Third-Order Intercept  
(Output IP3)  
Noise Figure  
Gain Flatness  
16  
7
dBm  
dB  
Single sideband with appropriate filtering  
1
2
dB  
dB  
Across any 250 MHz bandwidth for an IF of 900 MHz to  
2000 MHz  
Across any 250 MHz bandwidth for an IF of 2000 MHz to  
2500 MHz  
Output Impedance  
Output Return Loss  
75  
−6.5  
Ω
dB  
Single-ended  
Rev. A | Page 5 of 61  
 
ADMV4420  
Data Sheet  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
SUPPLY VOLTAGE  
VVPOS1_VCO, VVPOS2_PLL, VVPOS3_CP, VVPOS4_IF  
TOTAL POWER CONSUMPTION  
Active Mode  
4.75  
5.00  
5.25  
V
1900  
80  
mW  
mW  
Sleep Mode  
All blocks powered down  
EXTERNAL PLL REFERENCE  
Frequency  
50  
MHz  
Amplitude  
0.3  
2.5  
V p-p  
Single-ended input, high impedance  
Fundamental mode  
CRYSTAL REFERENCE  
Crystal Frequency  
Capacitance  
50  
10  
50  
MHz  
pF  
PHASE FREQUENCY DETECTOR (PFD)  
FREQUENCY  
MHz  
Compare frequency  
REFERENCE SPURS  
−70  
400  
dBm  
μs  
FREQUENCY SETTLING  
CLOSED-LOOP PHASE NOISE  
After frequency change programmed; within 50 kHz resolution  
LO frequency = 16.75 GHz to 21.15 GHz  
10 kHz offset  
100 kHz offset  
1 MHz offset  
10 MHz offset  
−80  
−85  
−116  
−125  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
LOGIC  
(ENBL0, ENBL1, SDO, SDI, SCLK, CS)  
Logic Low  
Logic High  
−0.3  
1.2  
0
3.3  
+0.5  
3.6  
V
V
Rev. A | Page 6 of 61  
Data Sheet  
ADMV4420  
ABSOLUTE MAXIMUM RATINGS  
THERMAL RESISTANCE  
Table 2.  
Thermal performance is directly linked to printed circuit board  
(PCB) design and operating environment. Careful attention to  
PCB thermal design is required.  
Parameter  
Rating  
Supply Voltage (VVPOS1_VCO, VVPOS2_PLL  
VVPOS3_CP, and VVPOS4_IF  
Digital Input/Output Signal (SCLK, SDI,  
SDO, CS, ENBL1, and ENBL0)  
,
5.5 V  
3.6 V  
θ
JA is the natural convection junction to ambient measured in a  
one cubic foot sealed enclosure. θJC is the junction to case  
thermal resistance.  
RFIN  
0 dBm  
300 µA  
125°C  
260°C  
−40°C to +85°C  
−65°C to +150°C  
Source and Sink Current (MUXOUT)  
Maximum Junction Temperature  
Peak Reflow Temperature  
Operating Temperature Range  
Storage Temperature Range  
Electrostatic Discharge (ESD) Sensitivity  
Human Body Model (HBM)  
Table 3. Thermal Resistance  
1
1
Package Type  
θJC  
θJA  
39.6  
Unit  
CP-32-12  
7.25  
°C/W  
1 The θJA and θJC values are determined by measuring the thermally  
designed PCB with a heat sink.  
500 V1  
2000 V2  
1500 V3  
500 V  
ESD CAUTION  
Field Induced Charged Device Model  
(FICDM)1  
1 Applies to all pins of the ADMV4420.  
2 Applies to all pins except the MUXOUT, ENBL0, ENBL1, SDO, SDI, SCLK, and  
CS  
pins.  
Applies to the MUXOUT, ENBL0, ENBL1, SDO, SDI, SCLK, and pins.  
3
CS  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
60 SECONDS  
TO  
150 SECONDS  
RAMP UP  
3°C/SEC MAX  
260°C –5°C/+0°C  
217°C  
150°C TO 200°C  
RAMP DOWN  
6°C/SEC MAX  
TIME (Seconds)  
60 SECONDS  
20 SECONDS  
TO 40 SECONDS  
TO 180 SECONDS  
480 SECONDS MAX  
Figure 2. Pb-Free Reflow Solder Profile  
Rev. A | Page 7 of 61  
 
 
 
 
 
ADMV4420  
Data Sheet  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
PIN 1  
INDICATOR  
GND  
GND  
GND  
RFIN  
GND  
1
2
3
4
5
6
7
8
24 SDO  
23  
22 CPOUT  
GND  
ADMV4420  
TOP VIEW  
(Not to Scale)  
21 VPOS3_CP  
20  
19  
ENBL1  
ENBL0  
GND  
DECL1_VCO1  
DECL2_VCO2  
18 GND  
17 GND  
NOTES  
1. THE EXPOSED PAD MUST BE CONNECTED TO GND.  
Figure 3. Pin Configuration  
Table 4. Pin Function Descriptions  
Pin No.  
Mnemonic  
Description  
1, 2, 3, 5, 6,  
16, 17, 18,  
23, 31  
GND  
Ground. Connect these pins and package bottom to RF and dc ground. See Figure 4 for the GND interface  
schematic.  
4
RFIN  
RF Input Pin. This pin has a 50 Ω input impedance.  
7, 8  
DECL1_VCO1, LDO Regulator Decoupling Pin. Place a 10 µF capacitor close to this pin.  
DECL2_VCO2  
9
VPOS1_VCO  
5 V Power Supply Pin. Place 0.1 µF and 100 pF decoupling capacitors close to this pin.  
LDO Decoupling Pin. Place a 10 µF capacitor close to this pin.  
10, 11, 32  
DECL3_PLL,  
DECL4_SDM,  
DECL5_RF  
12  
13  
VPOS2_PLL  
XTAL2/NC  
5 V Power Supply. Place the 0.1 µF and 100 pF decoupling capacitor close to this pin.  
Crystal Input or No Connect. When using an external crystal, place the crystal between the REF/XTAL1 and  
XTAL2/DNC pins. When an external reference input signal is applied through the REF/XTAL1 pin, this pin is  
used as a No Connect pin. Connect this pin to ground with a 1 nF capacitor (ac ground) when an external  
reference input signal is applied through the REF/XTAL1 pin.  
14  
REF/XTAL1  
External Reference Input or Crystal Input. When using an external crystal, place the crystal between the  
XTAL1 and XTAL2 pins. When using as external reference input, apply an external reference signal to this  
pin with a 0.01 µF, dc blocking capacitor. Refer to Figure 121 for the external reference input configuration.  
This pin is internally biased to 1.65 V.  
15  
19  
20  
21  
22  
24  
25  
26  
27  
28  
29  
30  
MUXOUT  
ENBL0  
ENBL1  
VPOS3_CP  
CPOUT  
SDO  
PLL Multiplexer Output.  
Device Enable 0. For nominal operation, keep this pin tied to 3.3 V.  
Device Enable 1. For nominal operation, keep this pin tied to 3.3 V  
5 V Power Supply. Place the 0.1 µF and 100 pF decoupling capacitor close to this pin.  
Synthesizer Charge Pump Output. Connect this pin to VTUNE (Pin 28) through the loop filter  
Serial Peripheral Interface (SPI) Data Output. 3.3 V logic.  
SPI Data Input. 3.3 V logic.  
SDI  
SCLK  
SPI Clock. 3.3 V logic.  
SPI Chip Select. 3.3 V logic. Active low.  
CS  
VTUNE  
VPOS4_IF  
IFOUT  
VCO Tuning Voltage. This pin is driven by the output of the loop filter.  
5 V Power Supply. Place 0.1 µF and 100 pF decoupling capacitors close to this pin.  
IF Output. This pin has a 75 Ω output impedance. The output stage of the IF amplifier is an open-collector  
configuration and requires a dc bias of 5 V. Use a bias choke inductor. See the IF Output—External  
Inductor/Biasing section for more details.  
EPAD  
Exposed Pad. The exposed pad must be connected to GND.  
Rev. A | Page 8 of 61  
 
Data Sheet  
ADMV4420  
INTERFACE SCHEMATICS  
GND  
VPOS3_CP  
Figure 4. GND Interface Schematic  
CPOUT  
DECL1_VCO1,  
DECL2_VCO2,  
DECL3_PLL,  
DECL4_SDM,  
DECL5_RF  
Figure 11. CPOUT Interface Schematic  
ESD  
CLAMP  
VPOS4_IF  
Figure 5. DECL1_VCO1, DECL2_VCO2, DECL3_PLL, DECL4_SDM, and  
DECL5_RF Interface Schematic  
SDO  
ESD  
RFIN  
ESD  
Figure 12. SDO Interface Schematic  
Figure 6. RFIN Interface Schematic  
VPOS4_IF  
VPOS1_VCO,  
VPOS2_PLL,  
VPOS3_CP,  
SDI,  
SCLK,  
CS  
500Ω  
VPOS4_IF  
ESD  
CLAMP  
ESD  
CLAMP  
Figure 7. VPOS1_VCO, VPOS2_PLL, VPOS3_CP, and VPOS4_IF Interface  
Schematic  
CS  
Figure 13. SDI, SCLK, and Interface Schematic  
XTAL2/NC  
REF/XTAL1  
VTUNE  
ESD  
CLAMP  
ESD  
CLAMP  
Figure 14. VTUNE Interface Schematic  
Figure 8. XTAL2/NC and REF/XTAL1 Interface Schematic  
VPOS4_IF  
VPOS2_PLL  
IFOUT  
ESD  
MUXOUT  
ESD  
CLAMP  
Figure 15. IFOUT Interface Schematic  
Figure 9. MUXOUT Interface Schematic  
VPOS4_IF  
ENBL0  
ENBL1  
500Ω  
ESD  
CLAMP  
Figure 10. ENBL0 and ENBL1 Interface Schematic  
Rev. A | Page 9 of 61  
 
 
ADMV4420  
Data Sheet  
TYPICAL PERFORMANCE CHARACTERISTICS  
A 0 dBm external reference at 50 MHz is used with VVPOS1_VCO = VVPOS2_PLL = VVPOS3_CP = VVPOS4_IF = 5 V, RF input power = −40 dBm, and  
the PLL loop filter bandwidth = 60 kHz with 45° of phase margin, unless otherwise noted.  
IF = 900 MHz, LOW-SIDE INJECTION LO PERFORMANCE  
RF minimum and maximum frequencies are limited by the LO frequency = 16.75 GHz to 21.15 GHz.  
50  
45  
40  
35  
30  
25  
20  
15  
10  
50  
45  
40  
35  
30  
25  
20  
15  
10  
+85°C  
+25°C  
–40°C  
5.25V  
5.00V  
4.75V  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 16. Conversion Gain vs. RF Frequency at Various Temperatures  
Figure 18. Conversion Gain vs. RF Frequency at Various Supply Voltages,  
TA = 25°C  
20  
20  
+85°C  
18  
5.25V  
5.00V  
4.75V  
18  
16  
14  
12  
10  
8
+25°C  
–40°C  
16  
14  
12  
10  
8
6
6
4
4
2
2
NO FILTERING APPLIED  
NO FILTERING APPLIED  
0
0
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 17. Noise Figure vs. RF Frequency at Various Temperatures  
Figure 19. Noise Figure vs. RF Frequency at Various Supply Voltages,  
TA = 25°C  
Rev. A | Page 10 of 61  
 
 
Data Sheet  
ADMV4420  
30  
30  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
+85°C  
+25°C  
–40°C  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
5.25V  
5.00V  
4.75V  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 20. Output IP3 vs. RF Frequency at Various Temperatures  
Figure 22. Output IP3 vs. RF Frequency at Various Supply Voltages,  
TA = 25°C  
16  
14  
12  
10  
8
16  
14  
12  
10  
8
6
6
5.25V  
+85°C  
5.00V  
4
4
+25°C  
4.75V  
–40°C  
2
2
0
0
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 21. Output P1dB vs. RF Frequency at Various Supply Voltages,  
TA = 25°C  
Figure 23. Output P1dB vs. RF Frequency at Various Temperatures  
Rev. A | Page 11 of 61  
ADMV4420  
Data Sheet  
IF = 900 MHz, HIGH-SIDE INJECTION LO PERFORMANCE  
The RF minimum frequency is limited at 16.95 GHz for optimal performance and the RF maximum frequency is limited at the maximum  
LO frequency (21.15 GHz).  
50  
45  
40  
35  
30  
25  
20  
15  
10  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5.25V  
5.00V  
4.75V  
+85°C  
+25°C  
–40°C  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 24. Conversion Gain vs. RF Frequency at Various Temperatures  
Figure 27. Conversion Gain vs. RF Frequency at Various Supply Voltages,  
TA = 25°C  
20  
20  
18  
16  
14  
12  
10  
8
+85°C  
+25°C  
–40°C  
18  
16  
14  
12  
10  
8
6
6
4
2
0
5.25V  
5.00V  
4.75V  
4
2
NO FILTERING APPLIED  
NO FILTERING APPLIED  
0
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 25. Noise Figure vs. RF Frequency at Various Temperatures  
Figure 28. Noise Figure vs. RF Frequency at Various Supply Voltages,  
TA = 25°C  
16  
14  
12  
10  
8
16  
14  
12  
10  
8
6
6
5.25V  
5.00V  
4.75V  
+85°C  
4
4
2
0
+25°C  
–40°C  
2
0
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 26. Output P1dB vs. RF Frequency at Various Temperatures  
Figure 29. Output P1dB vs. RF Frequency at Various Supply Voltages,  
TA = 25°C  
Rev. A | Page 12 of 61  
 
Data Sheet  
ADMV4420  
30  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
30  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
+85°C  
+25°C  
–40°C  
5.25V  
5.00V  
4.75V  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 30. Output IP3 vs. RF Frequency at Various Temperatures  
Figure 31. Output IP3 vs. RF Frequency at Various Supply Voltages,  
TA = 25°C  
Rev. A | Page 13 of 61  
ADMV4420  
Data Sheet  
IF = 1700 MHz, LOW-SIDE INJECTION LO PERFORMANCE  
The RF minimum frequency is limited at the LO frequency of 16.75 GHz and the RF maximum frequency is limited at 22.05 GHz for  
optimal performance.  
50  
45  
40  
35  
30  
25  
20  
15  
10  
50  
45  
40  
35  
30  
25  
20  
15  
10  
+85°C  
+25°C  
–40°C  
5.25V  
5.00V  
4.75V  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 32. Conversion Gain vs. RF Frequency at Various Temperatures  
Figure 35. Conversion Gain vs. RF Frequency at Various Supply Voltages,  
TA = 25°C  
20  
20  
+85°C  
+25°C  
–40°C  
18  
16  
14  
12  
10  
8
18  
5.25V  
5.00V  
16  
4.75V  
14  
12  
10  
8
6
6
4
4
2
2
NO FILTERING APPLIED  
NO FILTERING APPLIED  
0
0
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 33. Noise Figure vs. RF Frequency at Various Temperatures  
Figure 36. Noise Figure vs. RF Frequency at Various Supply Voltages,  
TA = 25°C  
16  
14  
12  
10  
8
16  
14  
5.25V  
5.00V  
4.75V  
12  
10  
8
6
6
+85°C  
4
4
+25°C  
–40°C  
2
2
0
0
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 34. Output P1dB vs. RF Frequency at Various Temperatures  
Figure 37. Output P1dB vs. RF Frequency at Various Supply Voltages,  
TA = 25°C  
Rev. A | Page 14 of 61  
 
Data Sheet  
ADMV4420  
30  
30  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
+85°C  
+25°C  
–40°C  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
5.25V  
5.00V  
4.75V  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 38. Output IP3 vs. RF Frequency at Various Temperatures  
Figure 39. Output IP3 vs. RF Frequency at Various Supply Voltages,  
TA = 25°C  
Rev. A | Page 15 of 61  
ADMV4420  
Data Sheet  
IF = 1700 MHz, HIGH-SIDE INJECTION LO PERFORMANCE  
The RF minimum frequency is limited at 16.95 GHz for optimum performance and the RF maximum frequency is limited at the  
maximum LO frequency (21.15 GHz).  
50  
45  
40  
35  
30  
25  
20  
15  
10  
50  
45  
40  
35  
30  
25  
20  
15  
10  
+85°C  
+25°C  
–40°C  
5.25V  
5.00V  
4.75V  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 40. Conversion Gain vs. RF Frequency at Various Temperatures  
Figure 43. Conversion Gain vs. RF Frequency at Various Supply Voltages,  
TA = 25°C  
20  
20  
+85°C  
+25°C  
–40°C  
18  
16  
14  
12  
10  
8
18  
16  
14  
12  
10  
8
5.25V  
5.00V  
4.75V  
6
6
4
4
2
2
NO FILTERING APPLIED  
NO FILTERING APPLIED  
0
0
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 41. Noise Figure vs. RF Frequency at Various Temperatures  
Figure 44. Noise Figure vs. RF Frequency at Various Supply Voltages,  
TA = 25°C  
16  
14  
12  
10  
8
16  
14  
12  
10  
8
6
6
+85°C  
5.25V  
4
4
+25°C  
5.00V  
–40°C  
4.75V  
2
2
0
0
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 42. Output P1dB vs. RF Frequency at Various Temperatures  
Figure 45. Output P1dB vs. RF Frequency at Various Supply Voltages,  
TA = 25°C  
Rev. A | Page 16 of 61  
 
Data Sheet  
ADMV4420  
30  
30  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
+85°C  
+25°C  
–40°C  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
5.25V  
5.00V  
4.75V  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 46. Output IP3 vs. RF Frequency at Various Temperatures  
Figure 47. Output IP3 vs. RF Frequency at Various Supply Voltages,  
TA = 25°C  
Rev. A | Page 17 of 61  
ADMV4420  
Data Sheet  
IF = 2500 MHz, LOW-SIDE INJECTION LO PERFORMANCE  
In this configuration, the RF minimum frequency is limited at the LO frequency of 16.75 GHz and the RF maximum frequency is limited  
at 22.05 GHz for optimal performance.  
50  
45  
40  
35  
30  
25  
20  
15  
10  
50  
45  
40  
35  
30  
25  
20  
15  
10  
+85°C  
+25°C  
–40°C  
5.25V  
5.00V  
4.75V  
19.25  
19.65  
20.05  
20.45  
20.85  
21.25  
21.65  
22.05  
19.25  
19.65  
20.05  
20.45  
20.85  
21.25  
21.65  
22.05  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 48. Conversion Gain vs. RF Frequency at Various Temperatures  
Figure 51. Conversion Gain vs. RF Frequency at Various Supply Voltages,  
TA = 25°C  
20  
20  
+85°C  
+25°C  
–40°C  
18  
16  
14  
12  
10  
8
18  
5.25V  
5.00V  
4.75V  
16  
14  
12  
10  
8
6
6
4
4
2
2
NO FILTERING APPLIED  
NO FILTERING APPLIED  
0
0
19.25  
19.65  
20.05  
20.45  
20.85  
21.25  
21.65  
22.05  
19.25  
19.65  
20.05  
20.45  
20.85  
21.25  
21.65  
22.05  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 49. Noise Figure vs. RF Frequency at Various Temperatures  
Figure 52. Noise Figure vs. RF Frequency at Various Supply Voltages,  
TA = 25°C  
16  
14  
12  
10  
8
16  
14  
5.25V  
5.00V  
4.75V  
12  
10  
8
6
6
+85°C  
4
4
+25°C  
–40°C  
2
2
0
0
19.25  
19.65  
20.05  
20.45  
20.85  
21.25  
21.65  
22.05  
19.25  
19.65  
20.05  
20.45  
20.85  
21.25  
21.65  
22.05  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 50. Output P1dB vs. RF Frequency at Various Temperatures  
Figure 53. Output P1dB vs. RF Frequency at Various Supply Voltages,  
TA = 25°C  
Rev. A | Page 18 of 61  
 
Data Sheet  
ADMV4420  
30  
30  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
+85°C  
+25°C  
–40°C  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
5.25V  
5.00V  
4.75V  
19.25  
19.65  
20.05  
20.45  
20.85  
21.25  
21.65  
22.05  
19.25  
19.65  
20.05  
20.45  
20.85  
21.25  
21.65  
22.05  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 54. Output IP3 vs. RF Frequency at Various Temperatures  
Figure 55. Output IP3 vs. RF Frequency at Various Supply Voltages,  
TA = 25°C  
Rev. A | Page 19 of 61  
ADMV4420  
Data Sheet  
IF = 2500 MHz, HIGH-SIDE INJECTION LO PERFORMANCE  
The RF minimum frequency is limited at 16.95 GHz for optimal performance and the RF maximum frequency is limited at the maximum  
LO frequency (21.15 GHz).  
50  
45  
40  
35  
30  
25  
20  
15  
10  
50  
45  
40  
35  
30  
25  
20  
15  
10  
+85°C  
+25°C  
–40°C  
5.25V  
5.00V  
4.75V  
16.95  
17.29  
17.63  
17.97  
18.31  
18.65  
16.95  
17.29  
17.63  
17.97  
18.31  
18.65  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 56. Conversion Gain vs. RF Frequency at Various Temperatures  
Figure 59. Conversion Gain vs. RF Frequency at Various Supply Voltages,  
TA = 25°C  
20  
20  
+85°C  
+25°C  
–40°C  
18  
16  
14  
12  
10  
8
18  
16  
14  
12  
10  
8
5.25V  
5.00V  
4.75V  
6
6
4
4
2
2
NO FILTERING APPLIED  
17.97 18.31 18.65  
NO FILTERING APPLIED  
17.97 18.31 18.65  
0
0
16.95  
17.29  
17.63  
16.95  
17.29  
17.63  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 57. Noise Figure vs. RF Frequency at Various Temperatures  
Figure 60. Noise Figure vs. RF Frequency at Various Supply Voltages,  
TA = 25°C  
16  
14  
12  
10  
8
16  
14  
12  
10  
8
6
6
+85°C  
5.25V  
4
4
+25°C  
5.00V  
–40°C  
4.75V  
2
2
0
0
16.95  
17.29  
17.63  
17.97  
18.31  
18.65  
16.95  
17.29  
17.63  
17.97  
18.31  
18.65  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 58. Output P1dB vs. RF Frequency at Various Temperatures  
Figure 61. Output P1dB vs. RF Frequency at Various Supply Voltages,  
TA = 25°C  
Rev. A | Page 20 of 61  
 
Data Sheet  
ADMV4420  
30  
30  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
+85°C  
+25°C  
–40°C  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
5.25V  
5.00V  
4.75V  
16.95  
17.29  
17.63  
17.97  
18.31  
18.65  
16.95  
17.29  
17.63  
17.97  
18.31  
18.65  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 62. Output IP3 vs. RF Frequency at Various Temperatures  
Figure 63. Output IP3 vs. RF Frequency at Various Supply Voltages,  
TA = 25°C  
Rev. A | Page 21 of 61  
ADMV4420  
Data Sheet  
LO = 16.75 GHz, LOW-SIDE INJECTION PERFORMANCE  
50  
50  
45  
40  
35  
30  
25  
20  
15  
10  
45  
40  
35  
30  
25  
+85°C  
5.25V  
5.00V  
4.75V  
20  
+25°C  
–40°C  
15  
10  
900  
1100  
1300  
1500  
1700  
1900  
2100  
2300  
2500  
900  
1100  
1300  
1500  
1700  
1900  
2100  
2300  
2500  
IF FREQUENCY (MHz)  
IF FREQUENCY (MHz)  
Figure 64. Conversion Gain vs. IF Frequency at Various Temperatures  
Figure 67. Conversion Gain vs. IF Frequency at Various Supply Voltages,  
TA = 25°C  
20  
20  
+85°C  
+25°C  
–40°C  
18  
16  
14  
12  
10  
8
18  
16  
14  
12  
10  
8
5.25V  
5.00V  
4.75V  
6
6
4
4
2
2
NO FILTERING APPLIED  
NO FILTERING APPLIED  
0
900  
0
900  
1100  
1300  
1500  
1700  
1900  
2100  
2300  
2500  
1100  
1300  
1500  
1700  
1900  
2100  
2300  
2500  
IF FREQUENCY (MHz)  
IF FREQUENCY (MHz)  
Figure 65. Noise Figure vs. IF Frequency at Various Temperatures  
Figure 68. Noise Figure vs. IF Frequency at Various Supply Voltages,  
TA = 25°C  
16  
14  
12  
10  
8
16  
14  
12  
10  
8
6
6
+85°C  
5.25V  
4
4
+25°C  
5.00V  
–40°C  
4.75V  
2
2
0
900  
0
900  
1100  
1300  
1500  
1700  
1900  
2100  
2300  
2500  
1100  
1300  
1500  
1700  
1900  
2100  
2300  
2500  
IF FREQUENCY (MHz)  
IF FREQUENCY (MHz)  
Figure 66. Output P1dB vs. IF Frequency at Various Temperatures  
Figure 69. Output P1dB vs. IF Frequency at Various Supply Voltages,  
TA = 25°C  
Rev. A | Page 22 of 61  
 
Data Sheet  
ADMV4420  
30  
30  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
+85°C  
+25°C  
–40°C  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
5.25V  
5.00V  
4.75V  
900  
1100  
1300  
1500  
1700  
1900  
2100  
2300  
2500  
900  
1100  
1300  
1500  
1700  
1900  
2100  
2300  
2500  
IF FREQUENCY (MHz)  
IF FREQUENCY (MHz)  
Figure 70. Output IP3 vs. IF Frequency at Various Temperatures  
Figure 71. Output IP3 vs. IF Frequency at Various Supply Voltages,  
TA = 25°C  
Rev. A | Page 23 of 61  
ADMV4420  
Data Sheet  
LO = 16.75 GHz, HIGH-SIDE INJECTION PERFORMANCE  
50  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5.25V  
5.00V  
4.75V  
+85°C  
+25°C  
–40°C  
45  
40  
35  
30  
25  
20  
15  
10  
900  
1100  
1300  
1500  
1700  
1900  
2100  
2300  
2500  
900  
1100  
1300  
1500  
1700  
1900  
2100  
2300  
2500  
IF FREQUENCY (MHz)  
IF FREQUENCY (MHz)  
Figure 72. Conversion Gain vs. IF Frequency at Various Temperatures  
Figure 75. Conversion Gain vs. IF Frequency at Various Supply Voltages,  
TA = 25°C  
30  
30  
+85°C  
+25°C  
–40°C  
5.25V  
5.00V  
4.75V  
25  
25  
20  
15  
10  
5
20  
15  
10  
5
NO FILTERING APPLIED  
NO FILTERING APPLIED  
0
900  
0
900  
1100  
1300  
1500  
1700  
1900  
2100  
2300  
2500  
1100  
1300  
1500  
1700  
1900  
2100  
2300  
2500  
IF FREQUENCY (MHz)  
IF FREQUENCY (MHz)  
Figure 73. Noise Figure vs. IF Frequency at Various Temperatures  
Figure 76. Noise Figure vs. IF Frequency at Various Supply Voltages,  
TA = 25°C  
16  
14  
12  
10  
8
16  
14  
12  
10  
8
6
6
+85°C  
5.25V  
4
4
+25°C  
5.00V  
–40°C  
4.75V  
2
2
0
900  
0
900  
1100  
1300  
1500  
1700  
1900  
2100  
2300  
2500  
1100  
1300  
1500  
1700  
1900  
2100  
2300  
2500  
IF FREQUENCY (MHz)  
IF FREQUENCY (MHz)  
Figure 74. Output P1dB vs. IF Frequency at Various Temperatures  
Figure 77. Output P1dB vs. IF Frequency at Various Supply Voltages,  
TA = 25°C  
Rev. A | Page 24 of 61  
 
Data Sheet  
ADMV4420  
30  
30  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
+85°C  
+25°C  
–40°C  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
5.25V  
5.00V  
4.75V  
900  
1100  
1300  
1500  
1700  
1900  
2100  
2300  
2500  
900  
1100  
1300  
1500  
1700  
1900  
2100  
2300  
2500  
IF FREQUENCY (MHz)  
IF FREQUENCY (MHz)  
Figure 78. Output IP3 vs. IF Frequency at Various Temperatures  
Figure 79. Output IP3 vs. IF Frequency at Various Supply Voltages,  
TA = 25°C  
Rev. A | Page 25 of 61  
ADMV4420  
Data Sheet  
LO = 18.95 GHz, LOW-SIDE INJECTION PERFORMANCE  
50  
50  
45  
40  
35  
30  
25  
20  
15  
10  
45  
40  
35  
30  
25  
+85°C  
5.25V  
5.00V  
4.75V  
20  
+25°C  
–40°C  
15  
10  
900  
1100  
1300  
1500  
1700  
1900  
2100  
2300  
2500  
900  
1100  
1300  
1500  
1700  
1900  
2100  
2300  
2500  
IF FREQUENCY (MHz)  
IF FREQUENCY (MHz)  
Figure 80. Conversion Gain vs. IF Frequency at Various Temperatures  
Figure 83. Conversion Gain vs. IF Frequency at Various Supply Voltages,  
TA = 25°C  
20  
20  
+85°C  
+25°C  
–40°C  
18  
16  
14  
12  
10  
8
18  
16  
14  
12  
10  
8
5.25V  
5.00V  
4.75V  
6
6
4
4
2
2
NO FILTERING APPLIED  
NO FILTERING APPLIED  
1900 2100 2300 2500  
IF FREQUENCY (MHz)  
0
900  
0
900  
1100  
1300  
1500  
1700  
1100  
1300  
1500  
1700  
1900  
2100  
2300  
2500  
IF FREQUENCY (MHz)  
Figure 81. Noise Figure vs. IF Frequency at Various Temperatures  
Figure 84. Noise Figure vs. IF Frequency at Various Supply Voltages,  
TA = 25°C  
16  
14  
12  
10  
8
16  
14  
12  
10  
8
6
6
+85°C  
5.25V  
4
4
+25°C  
5.00V  
–40°C  
4.75V  
2
2
0
900  
0
900  
1100  
1300  
1500  
1700  
1900  
2100  
2300  
2500  
1100  
1300  
1500  
1700  
1900  
2100  
2300  
2500  
IF FREQUENCY (MHz)  
IF FREQUENCY (MHz)  
Figure 82. Output P1dB vs. IF Frequency at Various Temperatures  
Figure 85. Output P1dB vs. IF Frequency at Various Supply Voltages,  
TA = 25°C  
Rev. A | Page 26 of 61  
 
Data Sheet  
ADMV4420  
30  
30  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
+85°C  
+25°C  
–40°C  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
5.25V  
5.00V  
4.75V  
900  
1100  
1300  
1500  
1700  
1900  
2100  
2300  
2500  
900  
1100  
1300  
1500  
1700  
1900  
2100  
2300  
2500  
IF FREQUENCY (MHz)  
IF FREQUENCY (MHz)  
Figure 86. Output IP3 vs. IF Frequency at Various Temperatures  
Figure 87. Output IP3 vs. IF Frequency at Various Supply Voltages,  
TA = 25°C  
Rev. A | Page 27 of 61  
ADMV4420  
Data Sheet  
LO = 18.95 GHz, HIGH-SIDE INJECTION PERFORMANCE  
50  
50  
45  
40  
35  
30  
25  
20  
15  
10  
45  
40  
35  
30  
25  
+85°C  
5.25V  
5.00V  
4.75V  
20  
+25°C  
–40°C  
15  
10  
900  
1100  
1300  
1500  
1700  
1900  
2100  
2300  
2500  
900  
1100  
1300  
1500  
1700  
1900  
2100  
2300  
2500  
IF FREQUENCY (MHz)  
IF FREQUENCY (MHz)  
Figure 88. Conversion Gain vs. IF Frequency at Various Temperatures  
Figure 91. Conversion Gain vs. IF Frequency at Various Supply Voltages,  
TA = 25°C  
20  
20  
+85°C  
+25°C  
–40°C  
18  
16  
14  
12  
10  
8
18  
16  
14  
12  
10  
8
5.25V  
5.00V  
4.75V  
6
6
4
4
2
2
NO FILTERING APPLIED  
NO FILTERING APPLIED  
0
0
900  
1100  
1300  
1500  
1700  
1900  
2100  
2300  
2500  
900  
1100  
1300  
1500  
1700  
1900  
2100  
2300  
2500  
IF FREQUENCY (MHz)  
IF FREQUENCY (MHz)  
Figure 89. Noise Figure vs. IF Frequency at Various Temperatures  
Figure 92. Noise Figure vs. IF Frequency at Various Supply Voltages,  
TA = 25°C  
16  
14  
12  
10  
8
16  
14  
12  
10  
8
6
6
+85°C  
5.25V  
4
4
+25°C  
5.00V  
–40°C  
4.75V  
2
2
0
900  
0
900  
1100  
1300  
1500  
1700  
1900  
2100  
2300  
2500  
1100  
1300  
1500  
1700  
1900  
2100  
2300  
2500  
IF FREQUENCY (MHz)  
IF FREQUENCY (MHz)  
Figure 90. Output P1dB vs. IF Frequency at Various Temperatures  
Figure 93. Output P1dB vs. IF Frequency at Various Supply Voltages,  
TA = 25°C  
Rev. A | Page 28 of 61  
 
Data Sheet  
ADMV4420  
30  
30  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
+85°C  
+25°C  
–40°C  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
5.25V  
5.00V  
4.75V  
900  
1100  
1300  
1500  
1700  
1900  
2100  
2300  
2500  
900  
1100  
1300  
1500  
1700  
1900  
2100  
2300  
2500  
IF FREQUENCY (MHz)  
IF FREQUENCY (MHz)  
Figure 94. Output IP3 vs. IF Frequency at Various Temperatures  
Figure 95. Output IP3 vs. IF Frequency at Various Supply Voltages,  
TA = 25°C  
Rev. A | Page 29 of 61  
ADMV4420  
Data Sheet  
LO = 21.15 GHz, LOW-SIDE INJECTION PERFORMANCE  
50  
50  
45  
40  
35  
30  
25  
20  
15  
10  
45  
+85°C  
+25°C  
–40°C  
40  
35  
30  
25  
20  
15  
10  
5.25V  
5.00V  
4.75V  
900  
1100  
1300  
1500  
1700  
1900  
2100  
2300  
2500  
900  
1100  
1300  
1500  
1700  
1900  
2100  
2300  
2500  
IF FREQUENCY (MHz)  
IF FREQUENCY (MHz)  
Figure 96. Conversion Gain vs. IF Frequency at Various Temperatures  
Figure 99. Conversion Gain vs. IF Frequency at Various Supply Voltages,  
TA = 25°C  
30  
30  
+85°C  
+25°C  
–40°C  
5.25V  
5.00V  
25  
25  
4.75V  
20  
15  
10  
5
20  
15  
10  
5
NO FILTERING APPLIED  
NO FILTERING APPLIED  
0
900  
0
900  
1100  
1300  
1500  
1700  
1900  
2100  
2300  
2500  
1100  
1300  
1500  
1700  
1900  
2100  
2300  
2500  
IF FREQUENCY (MHz)  
IF FREQUENCY (MHz)  
Figure 97. Noise Figure vs. IF Frequency at Various Temperatures  
Figure 100. Noise Figure vs. IF Frequency at Various Supply Voltages,  
TA = 25°C  
16  
14  
12  
10  
8
16  
14  
12  
10  
8
6
6
+85°C  
5.25V  
4
4
+25°C  
5.00V  
–40°C  
4.75V  
2
2
0
900  
0
900  
1100  
1300  
1500  
1700  
1900  
2100  
2300  
2500  
1100  
1300  
1500  
1700  
1900  
2100  
2300  
2500  
IF FREQUENCY (MHz)  
IF FREQUENCY (MHz)  
Figure 98. Output P1dB vs. IF Frequency at Various Temperatures  
Figure 101. Output P1dB vs. IF Frequency at Various Supply Voltages,  
TA = 25°C  
Rev. A | Page 30 of 61  
 
Data Sheet  
ADMV4420  
30  
30  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
+85°C  
+25°C  
–40°C  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
5.25V  
5.00V  
4.75V  
900  
1100  
1300  
1500  
1700  
1900  
2100  
2300  
2500  
900  
1100  
1300  
1500  
1700  
1900  
2100  
2300  
2500  
IF FREQUENCY (MHz)  
IF FREQUENCY (MHz)  
Figure 102. Output IP3 vs. IF Frequency at Various Temperatures  
Figure 103. Output IP3 vs. IF Frequency at Various Supply Voltages,  
TA = 25°C  
Rev. A | Page 31 of 61  
ADMV4420  
Data Sheet  
LO = 21.15 GHz, HIGH-SIDE INJECTION PERFORMANCE  
50  
50  
45  
40  
35  
30  
25  
20  
15  
10  
45  
40  
35  
30  
25  
+85°C  
5.25V  
5.00V  
4.75V  
+25°C  
–40°C  
20  
15  
10  
900  
1100  
1300  
1500  
1700  
1900  
2100  
2300  
2500  
900  
1100  
1300  
1500  
1700  
1900  
2100  
2300  
2500  
IF FREQUENCY (MHz)  
IF FREQUENCY (MHz)  
Figure 107. Conversion Gain vs. IF Frequency at Various Supply Voltages,  
TA = 25°C  
Figure 104. Conversion Gain vs. IF Frequency at Various Temperatures  
20  
20  
+85°C  
+25°C  
–40°C  
18  
18  
16  
14  
12  
10  
8
5.25V  
5.00V  
4.75V  
16  
14  
12  
10  
8
6
6
4
4
2
2
NO FILTERING APPLIED  
NO FILTERING APPLIED  
0
900  
0
900  
1100  
1300  
1500  
1700  
1900  
2100  
2300  
2500  
1100  
1300  
1500  
1700  
1900  
2100  
2300  
2500  
IF FREQUENCY (MHz)  
IF FREQUENCY (MHz)  
Figure 108. Noise Figure vs. IF Frequency at Various Supply Voltages,  
TA = 25°C  
Figure 105. Noise Figure vs. IF Frequency at Various Temperatures  
16  
14  
12  
10  
8
16  
14  
12  
10  
8
6
6
5.25V  
+85°C  
4
4
5.00V  
+25°C  
4.75V  
–40°C  
2
2
0
900  
0
900  
1100  
1300  
1500  
1700  
1900  
2100  
2300  
2500  
1100  
1300  
1500  
1700  
1900  
2100  
2300  
2500  
IF FREQUENCY (MHz)  
IF FREQUENCY (MHz)  
Figure 109. Output P1dB vs. IF Frequency at Various Supply Voltages,  
TA = 25°C  
Figure 106. Output P1dB vs. IF Frequency at Various Temperatures  
Rev. A | Page 32 of 61  
 
Data Sheet  
ADMV4420  
30  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
30  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
+85°C  
+25°C  
–40°C  
5.25V  
5.00V  
4.75V  
900  
1100  
1300  
1500  
1700  
1900  
2100  
2300  
2500  
900  
1100  
1300  
1500  
1700  
1900  
2100  
2300  
2500  
IF FREQUENCY (MHz)  
IF FREQUENCY (MHz)  
Figure 110. Output IP3 vs. IF Frequency at Various Temperatures  
Figure 111. Output IP3 vs. IF Frequency at Various Supply Voltages,  
TA = 25°C  
Rev. A | Page 33 of 61  
ADMV4420  
Data Sheet  
PHASE NOISE PERFORMANCE  
–40  
–40  
–50  
–50  
–60  
–60  
–70  
–70  
–80  
–80  
–90  
–90  
–100  
–100  
–110  
–120  
–130  
–140  
LO = 16.75GHz LOW-SIDE INJECTION  
LO = 18.95GHz HIGH-SIDE INJECTION  
LO = 18.95GHz LOW-SIDE INJECTION  
LO = 21.15GHz HIGH-SIDE INJECTION  
+85°C  
+25°C  
–40°C  
–110  
–120  
–130  
–140  
10  
100  
1k  
10k  
100k  
1M  
10M  
10  
100  
1k  
10k  
100k  
1M  
10M  
OFFSET FREQUENCY (Hz)  
OFFSET FREQUENCY (Hz)  
Figure 112. Closed-Loop Phase Noise vs. Offset Frequency at Various  
Temperatures, IF = 900 MHz, Low-Side Injection LO = 18.95 GHz  
Figure 114. Closed-Loop Phase Noise vs. Offset Frequency at Various LO  
Frequencies, TA = 25°C GHz  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
0
8375MHz  
8805MHz  
9270MHz  
9720MHz  
10570MHz  
10740MHz  
–20  
–40  
–60  
–80  
+85°C  
+25°C  
–40°C  
–110  
–120  
–130  
–140  
–100  
–120  
–140  
10  
100  
1k  
10k  
100k  
1M  
10M  
100  
1k  
10k  
100k  
1M  
10M  
OFFSET FREQUENCY (Hz)  
OFFSET FREQUENCY (Hz)  
Figure 113. Closed-Loop Phase Noise vs. Offset Frequency at Various  
Temperatures, IF = 900 MHz, High-Side Injection LO = 18.95 GHz  
Figure 115. Free Running Phase Noise vs. Offset Frequency at Various  
VCO Frequencies, TA = 25°C  
Rev. A | Page 34 of 61  
 
Data Sheet  
ADMV4420  
RETURN LOSS AND ISOLATION  
0
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
+85°C  
+85°C  
+25°C  
–40°C  
+25°C  
–40°C  
–5  
–10  
–15  
–20  
–25  
–30  
–35  
FREQUENCY (GHz)  
LO FREQUENCY (GHz)  
Figure 116. RF Return Loss vs. Frequency at Various Temperatures,  
LO = 18.95 GHz  
Figure 119. LO to IF Leakage vs. LO Frequency at Various Temperatures for  
Low-Side Injection LO, IF = 900 MHz  
0
0
–10  
–20  
–30  
–40  
–50  
–60  
+85°C  
–2  
+25°C  
–40°C  
–4  
–6  
–8  
–70  
–80  
+85°C  
+25°C  
–40°C  
–10  
–90  
–100  
–12  
16.95 17.59 18.23 18.86 19.50 20.14 20.78 21.41 22.05  
0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00  
RF FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 120. RF to IF Leakage vs. RF Frequency at Various Temperatures for  
LO = 21.15 GHz  
Figure 117. IF Return Loss vs. Frequency at Various Temperatures,  
LO = 18.95 GHz, Based on 75 Ω Output System  
0
+85°C  
+25°C  
–40°C  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
LO FREQUENCY (GHz)  
Figure 118. LO to RF Leakage vs. LO Frequency at Various Temperatures for  
Low-Side Injection LO, IF = 900 MHz  
Rev. A | Page 35 of 61  
 
ADMV4420  
Data Sheet  
Downconverter Spurious Outputs  
SPURIOUS AND HARMONICS PERFORMANCE  
Mixer spurious products are measured in dBc from the IF  
output power level, unless otherwise specified. Trace and  
connector losses are de-embedded. N/A means not applicable.  
LO Harmonics  
All values are in dBm and are measured at the IF output. Trace  
and connector losses are de-embedded.  
RF = 19.85 GHz, LO = 18.95 GHz, IF = 0.9 GHz, RF power =  
−40 dBm. Spur frequencies are the absolute value of (M × RF) +  
(N × LO/2)  
Table 5. LO Harmonics at IF Output  
LO Harmonics (dBm)  
LO Frequency (GHz) 0.25  
0.5  
1
1.5  
2
N × LO  
16.75  
18.95  
21.15  
−110  
−113  
−111  
−49  
−41  
−34  
−58  
−45  
−58  
−71  
−63  
−85  
−66  
−62  
−69  
0
1
2
3
4
−95  
−78  
N/A  
−78  
−95  
−99  
−77  
−46  
−98  
−88  
−101  
0
−91  
−81  
−65  
−88  
N/A  
−37  
−90  
−56  
N/A  
N/A  
−2  
−1  
0
Reference Input (REFIN) Harmonics  
−50  
−80  
N/A  
M × RF  
All values are in dBm and measured at the IF output. Trace and  
connector losses are de-embedded. Reference frequency is at  
50 MHz.  
+1  
+2  
RF = 18.05 GHz, LO = 18.95 GHz, IF = 0.9 GHz, RF power =  
−40 dBm. Spur frequencies are the absolute value of (M × RF) +  
(N × LO/2).  
Table 6. REFIN Harmonics at the IF Output  
REFIN  
REFIN Harmonics (dBm)  
Frequency  
(MHz)  
N × LO  
1
2
3
4
5
6
7
8
0
1
2
3
4
50  
−78 −46 −60 −47 −57 −56 −61 −59  
−77  
−95  
N/A  
−77  
−95  
−70  
−98  
−45  
−98  
−89  
0
−82  
−96  
−64  
−89  
N/A  
−87  
−41  
−55  
N/A  
N/A  
−2  
−1  
0
IF Harmonics  
−103  
−49  
−93  
N/A  
All values are in dBm and are measured at the IF output. Trace  
and connector losses are de-embedded. The downconverted IF  
frequency is at 900 MHz.  
M × RF  
+1  
+2  
Table 7. IF Harmonics at the IF Output  
IF Harmonics (dBm)  
IF Frequency (MHz)  
1
2
3
4
5
900  
−7  
−42  
−58  
−89  
−90  
Rev. A | Page 36 of 61  
 
Data Sheet  
ADMV4420  
THEORY OF OPERATION  
REFERENCE INPUT STAGE  
REFERENCE DOUBLER, R COUNTER, AND RDIV2  
The reference input stage is shown in Figure 121 and employs a  
differentially excited, 50 MHz crystal oscillator. Alternatively,  
the reference input can be driven by an external singled-ended  
50 MHz source. Use the REF_IN_MODE bit (Register 0x20E,  
Bit 1) to select the input configuration. To select crystal  
oscillator mode, set this bit to 0 to close the SW1 switch and  
open the SW2 switch. To select single-ended mode, set this bit  
to 1 to close the SW2 switch and open the SW1 switch.  
Following the reference input stage as shown in Figure 121,  
there is an internal reference multiply by 2 block (×2 doubler)  
that allows generation of higher phase frequency detector  
frequencies (fPFD). A higher fPFD is useful for improving overall  
system phase noise performance. Typically, doubling the fPFD  
improves the inband phase noise performance by up to  
3 dBc/Hz. Use the EN_REF_X2 bit (Register 0x20E, Bit 2) to  
enable the reference doubler, which toggles the SW3 switch, as  
shown in Figure 121.  
The selection of a crystal oscillator must be such that the  
electrical series resistance (ESR) and the load capacitance are  
well defined. For worst case demonstration purposes, the  
crystal oscillator selected for the evaluation board uses a  
maximum ESR of 100 Ω. To ensure the crystal oscillation  
startup over all temperature and process variations, a maximum  
ESR of 40 Ω is recommended. The nominal crystal load  
capacitance (CLOAD) = 10 pF, which is computed from series  
combination of the C5 and C6 capacitors. It is recommended to  
keep CLOAD between 8 pF and 12 pF. Additionally, ensure that  
C21 is not installed for crystal oscillator mode, as this can  
impact capacitive loading on the crystal, which can in turn  
prevent the oscillation from starting up.  
Following the reference doubler block, there are two frequency  
dividers: a 10-bit R counter (1 to 1023 allowed) and a divide  
by 2 block. These dividers allow the input reference frequency  
(fREF) to be divided down to produce lower fPFD, which helps to  
minimize fractional-N integer boundary spurs at the output.  
The R counter is set using the R_DIV bits in Register 0x20C  
and Register 0x20D. If the R_DIV = 1, the SW4 switch is in the  
position shown in Figure 121. Otherwise, the SW4 switch  
toggles to use the R counter.  
The reference divide by 2 block is enabled by using the RDIV2_  
SEL bit (Register 0x20E, Bit 0), which toggles the SW5 switch,  
as shown in Figure 121.  
×2  
DOUBLER  
10-BIT  
R COUNTER  
SW1  
TO  
PFD  
÷2  
SW3  
SW4  
SW5  
SW2  
XTAL2/NC  
C6  
REF/XTAL1  
C21  
Y1  
EXTERNAL  
REFERENCE  
R1  
C5  
Figure 121. Reference Input Path Block Diagram  
Rev. A | Page 37 of 61  
 
 
 
 
ADMV4420  
Data Sheet  
The N counter value is defined as:  
FRAC fLO  
N COUNTER  
The N counter allows a division ratio in the PLL feedback path  
from the VCO. Note that the VCO signal is multiplied by 2 to  
achieve the LO frequency at the double balanced mixer. The  
division ratio is determined using the integer-N (INT),  
fractional-N (FRAC), and modulus (MOD) values that this  
counter comprises. The applicable registers for setting the INT,  
FRAC, and MOD values are Register 0x200 to Register 0x20A.  
fVCO  
N = INT +  
=
=
(3)  
MOD 2 fPFD fPFD  
where:  
INT is the 16-bit integer value (75 to 65,535).  
FRAC is the numerator of the 24-bit primary modulus value  
(0 to 16,777,215).  
MOD is the denominator of the 24-bit primary modulus value  
(1 to 16,777,215).  
N = INT + FRAC/MOD  
TO PFD  
To obtain the INT portion of the N counter value, round down  
using the mathematical floor function,  
FROM VCO  
N COUNTER  
THIRD-ORDER  
FRACTIONAL  
INTERPOLATOR  
INT = FLOOR(N)  
(4)  
where FLOOR is the mathematical floor function.  
INT  
VALUE  
MOD  
VALUE  
FRAC  
VALUE  
To determine the value of the MOD parameter, a channel  
spacing step size (fCHSP) and the fPFD must be selected first.  
The MOD parameter is then computed with the fPFD and the  
greatest common denominator (GCD),  
Figure 122. N Counter Functional Diagram  
INT, FRAC, MOD, AND REFERENCE PATH  
RELATIONSHIP  
fPFD  
MOD =  
(5)  
(6)  
GCD( fCHSP , fPFD  
)
The INT, FRAC, and MOD values, in conjunction with the  
reference path, make it possible to generate VCO frequencies  
The FRAC value can be computed for a given an N counter  
value, INT value, and MOD value,  
spaced by fractions of the fPFD  
.
FRAC = FLOOR(MOD × (N INT))  
The fPFD can be calculated from the reference frequency (fREF  
)
and the reference path configuration parameters,  
INTEGER-N MODE  
When the FRAC value is equal to zero, the synthesizer operates  
in integer-N mode.  
1 + D  
R ×(1 + T)  
fPFD = fREF  
where:  
×
(1)  
PHASE FREQUENCY DETECTOR AND CHARGE  
PUMP  
D is the reference doubler bit (0 or 1).  
R is the reference divide ratio of the binary, 10-bit  
programmable counter (1 to 1023).  
The PFD takes inputs from the R counter and N counter to  
produce an output that is proportional to the phase and  
frequency differences between them. This proportional  
information is then output to a charge pump (CP) circuit that  
generates current to drive an external loop filter, which is then  
used to appropriately increase or decrease the VTUNE tuning  
voltage.  
T is the reference divide by 2 bit (0 or 1).  
The VCO frequency (fVCO) is calculated with the following  
equation:  
fLO  
2
fVCO  
=
= fPFD × N  
(2)  
Figure 123 shows a simplified schematic of the PFD and CP.  
Note that the PFD includes a fixed delay element, which is used  
to ensure there is no dead zone in the PFD transfer function for  
consistent reference spur levels.  
where:  
LO is the frequency of the LO driving the mixer.  
N is the desired value of the N counter.  
f
Rev. A | Page 38 of 61  
 
 
 
 
Data Sheet  
ADMV4420  
UP  
To change the fPFD, if no change has been made to the existing  
loop filter components, it is recommended to scale the ICP using  
the following equation:  
HIGH  
D1  
Q1  
U1  
CLR1  
+IN  
ICP(DEFAULT ) × fPFD(DEFAULT )  
1.25 mA × 50 MHz  
(8)  
ICP(NEW )  
=
=
CHARGE  
PUMP  
CPOUT  
U3  
DELAY  
fPFD(NEW )  
fPFD(NEW )  
where:  
CLR2  
D2 Q2  
I
I
CP(NEW) is the new desired ICP.  
CP(DEFAULT) is the default ICP.  
DOWN  
HIGH  
U2  
fPFD(DEFAULT) is the default fPFD  
.
–IN  
fPFD(NEW) is the new desired fPFD.  
Figure 123. PFD and CP Simplified Schematic  
When ICP(NEW) is obtained, the CP_CURRENT value in  
Register 0x22E can be updated using the round function,  
LOOP FILTER  
Defining a loop filter for a PLL is dependent on several dynamics,  
such as the PFD frequency, the N counter value, the tuning  
sensitivity characteristics (kVCO) of the VCO, and the selected  
CP current. A higher fPFD has the advantage of lowering inband  
phase noise performance at the expense of integer boundary spur  
levels when operating in fractional-N mode. Consequently, a  
lower fPFD can allow the PLL to operate in integer-N mode,  
which can eliminate integer boundary spurs at the expense of  
higher inband phase noise performance. Given the trade-offs,  
care must be taken with frequency planning and fPFD selection  
to ensure the appropriate inband phase noise performance is  
met with acceptable spur levels for the end application.  
ICP(NEW)  
312.5 μA  
(9)  
CP _CURRENT = ROUND  
1  
where ROUND is the mathematical round function.  
BLEED CURRENT (CP_BLEED) SETUP  
The charge pump includes a binary scaled bleed current (IBLEED),  
which is set by using the CP_BLEED value in Register 0x22F.  
The bleed current introduces a slight phase offset in the PFD to  
improve integer boundary spurs when operating in fractional-N  
mode.  
Generally, the bleed current follows Equation 10 and provides a  
value that can be applicable for most applications, but there can  
be additional spur level improvement by empirically  
determining the appropriate bleed current value from actual  
measurements for the intended application. The applicable  
range is 0 µA to 956.25 µA, with 3.75 µA steps.  
The loop filter, as implemented in the ADMV4420-EVALZ  
evaluation board, is a third-order passive filter, as shown in  
Figure 124. The filter is designed with the following simulation  
input parameters: fPFD = 50 MHz, kVCO = 80 MHz/V, f VCO = 9.4 GHz  
and ICP = 1.25 mA. The resulting loop filter bandwidth and  
phase margin are 60 kHz and 45°, respectively.  
4 × ICP  
IBLEED = CP _ BLEED × 3.75 μA =  
(10)  
For additional guidance with loop filter simulations on the  
ADMV4420, contact Analog Devices, Inc., for technical  
support.  
N
where CP_BLEED is an integer value (0 to 255).  
When IBLEED is obtained, the CP_BLEED value in Register 0x22F  
can be updated using the round function,  
R2  
R3  
1.5kΩ  
0Ω  
CPOUT  
VTUNE  
R1  
680Ω  
IBLEED  
3.75 μA  
C1  
470pF  
C2  
6.8nF  
C3  
220pF  
C2  
DNI  
(11)  
CP _ BLEED = ROUND  
Figure 124. Recommended Loop Filter Schematic  
where IBLEED is the desired charge pump bleed current.  
CP CURRENT SETUP  
MUXOUT  
For a specifically designed loop filter, the CP current (ICP) must  
be set by adjusting the CP_CURRENT value in Register 0x22E.  
The on-chip multiplexer output (MUXOUT) allows access to  
various internal signals, in addition to providing a digital lock  
detect function. A representative diagram is shown in  
Figure 125. The state of the MUXOUT pin is determined from  
the PLL_MUX_SEL value in Register 0x213. See Table 31 for  
full details.  
The CP current follows the equation,  
ICP = (CP_CURRENT + 1) × 312.5 μA  
(7)  
where CP_CURRENT is an integer value (0 to 15).  
Note that the default value of CP_CURRENT is 3, which yields  
a current of 1.25 mA. The applicable range is 312.5 µA to 5 mA,  
with 312.5 µA steps.  
Rev. A | Page 39 of 61  
 
 
 
 
 
 
ADMV4420  
Data Sheet  
on the falling edge of SCLK. The output logic level for a read  
cycle is 3.3 V. The output drivers of the SDO are enabled after  
the last rising edge of SCLK of the instruction cycle and remain  
active until the end of the read cycle. In a read operation, when  
OUTPUT LOW  
DIGITAL LOCK DETECT  
R COUNTER/2  
MUX  
MUXOUT  
N COUNTER/2  
OUTPUT HIGH  
is deasserted, SDO returns to high impedance until the next  
CS  
read transaction. The  
is active low and must be deasserted at  
CS  
the end of the write or read sequence.  
An active low input on starts and gates a communication  
Figure 125. Multiplexer Output Diagram  
DIGITAL LOCK DETECT  
CS  
pin allows more than one device to be used on the  
The digital lock detect function that is output on the MUXOUT  
pin has two adjustable settings in Register 0x214. LD_BIAS  
adjusts an internal precision window and LD_COUNT adjusts  
the consecutive cycle count to declare PLL lock. It is recom-  
mended to keep the 20 µA and 8192 PFD cycle count factory  
settings. For special applications, contact Analog Devices  
technical support for guidance on adjusting these settings.  
cycle. The  
CS  
same serial communications lines. The SDO pin goes to a high  
impedance state when the input is high. During the  
CS  
communication cycle, the chip select must stay low.  
The SPI communications protocol follows the Analog Devices  
SPI standard. For more information, see the ADI-SPI Serial  
Control Interface Standard (Rev 1.0).  
ENABLES  
VCO AUTOCALIBRATION AND AUTOMATIC LEVEL  
CONTROL  
Register 0x103 has individual circuit block enables. Setting this  
register to 0 disables all circuit blocks, resulting in approximately  
80 mW of power dissipation. For nominal operation, keep all  
enables in this register set to 1 (register value of 0x6F). Note that  
Bit 4 and Bit 7 are reserved and must be set to 0.  
The multicore VCO uses an internal autocalibration  
(AUTOCAL) and automatic level control (ALC) routine that  
optimizes the VCO settings for a particular frequency and  
allows the PLL to lock in approximately 400 µs after the lower  
portion of the N counter integer value (INT_L) has been  
programmed. For nominal applications, maintain the  
AUTOCAL and ALC default values in the register map (see  
Table 8).  
IF OUTPUT—EXTERNAL INDUCTOR/BIASING  
The IF amplifier output is an open-collector configuration and  
requires an external biasing inductor pulled up to the  
VPOS4_IF supply. The recommended value of the inductor is  
approximately 50 nH, which requires a current carrying  
capability of at least 150 mA. Because this configuration is  
dc-coupled, it is necessary to place a series capacitor between  
the IF output and the next stage in the end application. A  
recommended minimum value for the series capacitor is 1 nF.  
PROGRAMMING SEQUENCE  
A number of double buffered registers that take effect only after  
a write to the lower portion of the N counter integer value  
(INT_L). The INT_L register applies any changes to these  
double registers and initiate the autocalibration routine.  
Additionally, it is recommended to allow 16 SPI clock cycles  
after writing to the INT_L register.  
SPI CONFIGURATION  
The SPI of the ADMV4420 allows configuration of the device  
for specific functions or operations via the 4-pin SPI port. This  
interface provides users with added flexibility and customization.  
The following describes the recommended programming  
sequence:  
The SPI consists of four control lines: SCLK, SDI, SDO, and  
.
CS  
The ADMV4420 protocol consists of a write/read bit followed  
by 15 register address bits and 8 data bits. The address field and  
data field are organized MSB first and end with the LSB.  
1. Program the CP_CURRENT register (Register 0x22E).  
2. Program the FRAC_H register (Register 0x204).  
3. Program the FRAC_M register (Register 0x203).  
4. Program the FRAC_L register (Register 0x202).  
5. Program the MOD_H register (Register 0x20A).  
6. Program the MOD_M register (Register 0x209).  
7. Program the MOD_L register (Register 0x208).  
8. Program the INT_H register (Register 0x201).  
9. Program the INT_L register (Register 0x200).  
10. Program 16 SPI clock cycles.  
For a write operation, set the MSB to 0, and for a read  
operation, set the MSB to 1. The write cycle sampling must be  
done on the rising edge of SCLK. The 24 bits of the serial write  
address and data are shifted in on the SDI control line, MSB to  
LSB. The ADMV4420 input logic level for the write cycle  
supports a 3.3 V interface.  
For a read cycle, the R/W bit and the 15 bits of address shift in  
on the rising edge of SCLK on the SDI control line. Then, 8 bits  
of serial read data shift out on the SDO control line, MSB first,  
Rev. A | Page 40 of 61  
 
 
 
 
 
 
 
Data Sheet  
ADMV4420  
CONTROL REGISTERS  
Table 8. Control Register Map  
Register  
Address  
Name  
Bits  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reset  
R/W  
0x000  
ADI_SPI_  
[7:0]  
SOFTRESET_  
LSB_  
ENDIAN_  
SDOACTIVE_  
SDOACTIVE  
ENDIAN  
LSB_FIRST  
SOFTRESET  
0x00  
R/W  
CONFIG_1  
FIRST_  
0x001  
ADI_SPI_  
CONFIG_2  
[7:0]  
SINGLE_  
INSTRUCTION  
CSB_  
STALL  
MASTER_  
SLAVE_RB  
RESERVED  
MASTER_SLAVE_  
TRANSFER  
0x00  
R/W  
0x003  
0x004  
CHIPTYPE  
[7:0]  
[7:0]  
CHIPTYPE  
0x01  
0x03  
R
R
PRODUCT_  
ID_L  
PRODUCT_ID_L  
0x005  
PRODUCT_  
ID_H  
[7:0]  
PRODUCT_ID_H  
0x00  
R
0x00A  
0x00B  
0x103  
0x108  
0x200  
0x201  
0x202  
0x203  
0x204  
0x208  
0x209  
0x20A  
0x20C  
0x20D  
0x20E  
SCRATCHPAD  
SPI_REV  
ENABLES  
SDO_LEVEL  
INT_L  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
SCRATCHPAD  
SPI_REV  
0x00  
0x00  
0x6F  
0x05  
0xA7  
0x00  
0x02  
0x00  
0x00  
0x04  
0x00  
0x00  
0x01  
0x00  
0x00  
R/W  
R
RESERVED  
EN_PLL  
EN_LO  
RESERVED  
EN_VCO  
EN_IFAMP  
EN_MIXER  
EN_LNA  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
RESERVED  
SDO_LEVEL  
RESERVED  
INT[7:0]  
INT[15:8]  
INT_H  
FRAC_L  
FRAC[7:0]  
FRAC[15:8]  
FRAC[23:16]  
MOD[7:0]  
MOD[15:8]  
MOD[23:16]  
R_DIV[7:0]  
FRAC_M  
FRAC_H  
MOD_L  
MOD_M  
MOD_H  
R_DIV_L  
R_DIV_H  
REFERENCE  
RESERVED  
R_DIV[9:8]  
RDIV2_SEL  
RESERVED  
END_REF_  
X2  
REF_IN_  
MODE  
0x211  
0x212  
0x213  
0x214  
0x215  
0x216  
0x217  
VCO_DATA_  
READBACK1  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
VCO_DATA_READBACK[7:0]  
0x00  
0x00  
0x01  
0x98  
0x00  
0x00  
0x01  
R
VCO_DATA_  
READBACK2  
RESERVED  
VCO_DATA_READBACK[10:8]  
RESERVED  
R
PLL_  
MUX_SEL  
PLL_MUX_SEL  
LD_COUNT  
R/W  
R/W  
R/W  
R/W  
R/W  
LOCK_  
DETECT  
LD_BIAS  
VCO_BAND_  
SELECT  
VCO_BAND_SELECT  
VCO_ALC_  
TIMEOUT  
RESERVED  
VCO_ALC_TIMEOUT  
VCO_BIAS_ADJUST  
RESERVED  
VCO_  
MANUAL  
RESERVED  
RESERVED  
VCO_CORE_SELECT  
EN_ALC  
0x219  
0x21C  
ALC  
[7:0]  
[7:0]  
0x13  
0x90  
R/W  
R/W  
VCO_  
VCO_TIMEOUT[7:0]  
TIMEOUT1  
0x21D  
0x21E  
0x21F  
0x226  
VCO_  
TIMEOUT2  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
RESERVED  
VCO_TIMEOUT[9:8]  
0x01  
0x4B  
0x18  
0x02  
R/W  
R/W  
R/W  
R/W  
VCO_BAND_  
DIV  
VCO_BAND_DIV  
VCO_  
READBACK_SEL  
RESERVED  
RESERVED  
RESERVED  
VCO_READBACK_SEL  
AUTOCAL  
EN_  
RESERVED  
AUTOCAL  
0x22C  
2x22D  
0x22E  
0x22F  
CP_STATE  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
CP_STATE  
EN_BLEED  
0x07  
0x01  
0x03  
0x0C  
R/W  
R/W  
R/W  
R/W  
CP_BLEED_EN  
CP_CURRENT  
CP_BLEED  
RESERVED  
RESERVED  
CP_CURRENT  
BICP  
Rev. A | Page 41 of 61  
 
 
ADMV4420  
Data Sheet  
REGISTER DETAILS  
ADDRESS 0x000, RESET: 0x00, NAME: ADI_SPI_CONFIG_1  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7] SOFTRESET_ (R/W)  
SoftReset  
[0] SOFTRESET (R/W)  
SoftReset  
0: Reset Asserted.  
1: Reset not Asserted.  
0: Reset Asserted.  
1: Reset not Asserted.  
[6] LSB_FIRST_ (R/W)  
LSB_First  
[1] LSB_FIRST (R/W)  
LSB_First  
0: LSB First.  
1: MSB First.  
0: LSB First.  
1: MSB First.  
[5] ENDIAN_ (R/W)  
Endian  
[2] ENDIAN (R/W)  
Endian  
0: Little Endian.  
1: Big Endian.  
0: Little Endian.  
1: Big Endian.  
[4] SDOACTIVE_ (R/W)  
SDOActive  
[3] SDOACTIVE (R/W)  
SDOActive  
0: SDO Inactive.  
1: SDO Active.  
0: SDO Inactive.  
1: SDO Active.  
Table 9. ADI_SPI_CONFIG1 Bit Descriptions  
Bit  
Bit Name  
Description  
Reset  
Access  
7
SOFTRESET_  
Soft reset bit  
0x0  
R/W  
0: Reset asserted  
1: Reset not asserted  
LSB first bit  
0: LSB first  
6
5
4
3
2
1
0
LSB_FIRST_  
ENDIAN_  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
1: MSB first  
Endian bit  
0: Little endian  
1: Big endian  
SDO active bit  
0: SDO inactive  
1: SDO active  
SDO active bit  
0: SDO inactive  
1: SDO active  
Endian bit  
0: Little endian  
1: Big endian  
LSB first bit  
0: LSB first  
1: MSB first  
SDOACTIVE_  
SDOACTIVE  
ENDIAN  
LSB_FIRST  
SOFTRESET  
Soft reset  
0: Reset asserted  
1: Reset not asserted  
Rev. A | Page 42 of 61  
 
 
Data Sheet  
ADMV4420  
ADDRESS 0x001, RESET: 0x00, NAME: ADI_SPI_CONFIG_2  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7] SINGLE_INSTRUCTION (R/W)  
Single Instruction  
[0] MASTER_SLAVE_TRANSFER (R/W)  
Master Slave Transfer  
0: Enable Streaming.  
1: Disable Streaming Regardless of  
CSB.  
[4:1] RESERVED  
[6] CSB_STALL (R/W)  
CSB Stall  
[5] MASTER_SLAVE_RB (R/W)  
Master Slave RB  
Table 10. ADI_SPI_CONFIG_2 Bit Descriptions  
Bit  
Bit Name  
Description1  
Reset  
Access  
7
SINGLE_INSTRUCTION  
Single instruction bit  
0: Enable streaming  
0x0  
R/W  
1: Disable streaming regardless of CSB  
CSB stall bit  
6
CSB_STALL  
0x0  
0x0  
0x0  
0x0  
R/W  
R/W  
R
5
MASTER_SLAVE_RB  
RESERVED  
Master slave readback bit  
Reserved  
[4:1]  
0
MASTER_SLAVE_TRANSFER  
Master slave transfer bit  
R/W  
1
CS  
Note that corresponds to CSB.  
Rev. A | Page 43 of 61  
 
ADMV4420  
Data Sheet  
ADDRESS 0x003, RESET: 0x01, NAME: CHIPTYPE  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
1
[7:0] CHIPTYPE (R)  
Chip Type (Read Only)  
Table 11. CHIPTYPE Bit Descriptions  
Bits  
Bit Name  
Description  
Chip type bits, read only.  
Reset  
Access  
[7:0]  
CHIPTYPE  
0x01  
R
ADDRESS 0x004, RESET: 0x03, NAME: PRODUCT_ID_L  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
1
1
[7:0] PRODUCT_ID_L (R)  
Product_ID_L, Lower 8 Bits  
Table 12. PRODUCT_ID_L Bit Descriptions  
Bits  
Bit Name  
Description  
Reset  
0x03  
Access  
[7:0]  
PRODUCT_ID_L  
PRODUCT_ID_L bits, lower 8 bits.  
R
ADDRESS 0x005, RESET: 0x00, NAME: PRODUCT_ID_H  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:0] PRODUCT_ID_H (R)  
Product_ID_H, Higher 8 Bits  
Table 13. PRODUCT_ID_H Bit Descriptions  
Bits  
Bit Name  
Description  
Reset  
0x00  
Access  
[7:0]  
PRODUCT_ID_H  
PRODUCT_ID_H bits, higher 8 bits.  
R
ADDRESS 0x00A, RESET: 0x00, NAME: SCRATCHPAD  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:0] SCRATCHPAD (R/W)  
ScratchPad  
Table 14. SCRATCHPAD Bit Descriptions  
Bits  
Bit Name  
Description  
Scratch pad bits  
Reset  
Access  
R/W  
[7:0]  
SCRATCHPAD  
0x00  
ADDRESS 0x00B, RESET: 0x00, NAME: SPI_REV  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:0] SPI_REV (R)  
SPI Register Map Revision  
Table 15. SPI_REV Bit Descriptions  
Bits  
Bit Name  
Description  
SPI register map revision bits  
Reset  
0x00  
Access  
[7:0]  
SPI_REV  
R
Rev. A | Page 44 of 61  
 
 
 
 
 
Data Sheet  
ADMV4420  
ADDRESS 0x103, RESET: 0x6F, NAME: ENABLES  
7
6
5
4
3
2
1
0
0
1
1
0
1
1
1
1
[7] RESERVED  
[0] EN_LNA (R/W)  
LNA Enable  
0: Power Down LNA.  
1: Power Up LNA.  
[6] EN_PLL (R/W)  
PLL Enable  
0: Power Down PLL.  
1: Power Up PLL.  
[1] EN_MIXER (R/W)  
Mixer Enable  
0: Power Down Mixer.  
1: Power Up Mixer.  
[5] EN_LO (R/W)  
LO Enable  
0: Power Down LO.  
1: Power Up LO.  
[2] EN_IFAMP (R/W)  
IF Amp Enable  
0: Power Down IF Amplifier.  
1: Power Up IF Amplifier.  
[4] RESERVED  
[3] EN_VCO (R/W)  
VCO Enable  
0: Power Down VCO.  
1: Power Up VCO.  
Table 16. ENABLES Bit Descriptions  
Bits  
Bit Name  
RESERVED  
EN_PLL  
Description  
Reset  
0x0  
Access  
R
7
Reserved  
6
PLL enable bit  
0x1  
R/W  
0: Power down PLL  
1: Power up PLL  
LO enable bit  
5
EN_LO  
0x1  
R/W  
0: Power down LO  
1: Power up LO  
Reserved  
4
3
RESERVED  
EN_VCO  
0x0  
0x1  
R
VCO enable bit  
R/W  
0: Power down VCO  
1: Power up VCO  
2
1
0
EN_IFAMP  
EN_MIXER  
EN_LNA  
IF amplifier enable bit  
0x1  
0x1  
0x1  
R/W  
R/W  
R/W  
0: Power down IF amplifier  
1: Power up IF amplifier  
Mixer enable bit  
0: Power down mixer  
1: Power up mixer  
LNA enable bit  
0: Power down LNA  
1: Power up LNA  
ADDRESS 0x108, RESET: 0x05, NAME: SDO_LEVEL  
7
6
5
4
3
2
1
0
0
0
0
0
0
1
0
1
[7:3] RESERVED  
[1:0] RESERVED  
[2] SDO_LEVEL (R/W)  
SPI Supply Control  
0: 1.8V Read Back.  
1: 3.3V Read Back.  
Table 17. SDO_LEVEL Bit Descriptions  
Bits  
[7:3]  
2
Bit Name  
RESERVED  
SDO_LEVEL  
Description  
Reset  
Access  
R
Reserved  
0x0  
0x1  
SPI supply control bit  
0: 1.8 V readback  
1: 3.3 V readback  
Reserved  
R/W  
[1:0]  
RESERVED  
0x1  
R/W  
Rev. A | Page 45 of 61  
 
 
ADMV4420  
Data Sheet  
ADDRESS 0x200, RESET: 0xA7, NAME: INT_L  
7
6
5
4
3
2
1
0
1
0
1
0
0
1
1
1
[7:0] INT[7:0] (R/W)  
Integer-N Word (16-Bit)  
Table 18. INT_L Bit Descriptions  
Bits  
Bit Name  
Description  
Reset  
Access  
[7:0]  
INT[7:0]  
Integer-N word (16-bit)  
0xA7  
R/W  
ADDRESS 0x201, RESET: 0x00, NAME: INT_H  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:0] INT[15:8] (R/W)  
Integer-N Word (16-Bit)  
Table 19. INT_H Bit Descriptions  
Bits  
Bit Name  
Description  
Reset  
Access  
[7:0]  
INT[15:8]  
Integer-N word (16-bit)  
0x0  
R/W  
ADDRESS 0x202, RESET: 0x02, NAME: FRAC_L  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
1
0
[7:0] FRAC[7:0] (R/W)  
Fractional-N Word (24-Bit)  
Table 20. FRAC_L Bit Descriptions  
Bits  
Bit Name  
Description  
Reset  
Access  
[7:0]  
FRAC[7:0]  
Fractional-N word (24-bit)  
0x2  
R/W  
ADDRESS 0x203, RESET: 0x00, NAME: FRAC_M  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:0] FRAC[15:8] (R/W)  
Fractional-N Word (24-Bit)  
Table 21. FRAC_M Bit Descriptions  
Bits  
Bit Name  
Description  
Reset  
Access  
[7:0]  
FRAC[15:8]  
Fractional-N word (24-bit)  
0x0  
R/W  
ADDRESS 0x204, RESET: 0x00, NAME: FRAC_H  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:0] FRAC[23:16] (R/W)  
Fractional-N Word (24-Bit)  
Table 22. FRAC_H Bit Descriptions  
Bits  
Bit Name  
Description  
Reset  
Access  
[7:0]  
FRAC[23:16]  
Fractional-N word (24-bit)  
0x0  
R/W  
Rev. A | Page 46 of 61  
 
 
 
 
 
Data Sheet  
ADMV4420  
ADDRESS 0x208, RESET: 0x04, NAME: MOD_L  
7
6
5
4
3
2
1
0
0
0
0
0
0
1
0
0
[7:0] MOD[7:0] (R/W)  
Fractional-N Modulus (24-Bit)  
Table 23. MOD_L Bit Descriptions  
Bits  
Bit Name  
Description  
Reset  
Access  
[7:0]  
MOD[7:0]  
Fractional-N modulus (24-bit)  
0x4  
R/W  
ADDRESS 0x209, RESET: 0x00, NAME: MOD_M  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:0] MOD[15:8] (R/W)  
Fractional-N Modulus (24-Bit)  
Table 24. MOD_M Bit Descriptions  
Bits  
Bit Name  
Description  
Reset  
Access  
[7:0]  
MOD[15:8]  
Fractional-N modulus (24-bit)  
0x0  
R/W  
ADDRESS 0x20A, RESET: 0x00, NAME: MOD_H  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:0] MOD[23:16] (R/W)  
Fractional-N Modulus (24-Bit)  
Table 25. MOD_H Bit Descriptions  
Bits  
Bit Name  
Description  
Reset  
Access  
[7:0]  
MOD[23:16]  
Fractional-N modulus (24-bit)  
0x0  
R/W  
Rev. A | Page 47 of 61  
 
 
 
ADMV4420  
Data Sheet  
ADDRESS 0x20C, RESET: 0x01, NAME: R_DIV_L  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
1
[7:0] R_DIV[7:0] (R/W)  
R-Divider Word (10-Bit)  
Table 26. R_DIV_L Bit Descriptions  
Bits  
Bit Name  
Description  
Reset  
Access  
[7:0]  
R_DIV[7:0]  
R divider word (10-bit)  
0x1  
R/W  
ADDRESS 0x20D, RESET: 0x00, NAME: R_DIV_H  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:2] RESERVED  
[1:0] R_DIV[9:8] (R/W)  
R-Divider Word (10-Bit)  
Table 27. R_DIV_H Bit Descriptions  
Bits  
[7:2]  
[1:0]  
Bit Name  
RESERVED  
R_DIV[9:8]  
Description  
Reset  
0x0  
Access  
R
Reserved  
R divider word (10-bit)  
0x0  
R/W  
ADDRESS 0x20E, RESET: 0x00, NAME: REFERENCE  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:3] RESERVED  
[2] EN_REF_X2 (R/W)  
Reference Doubler Enable  
0: Disable.  
[0] RDIV2_SEL (R/W)  
Reference Divide by 2  
0: Reference Divide by 2 Disabled.  
1: Reference Divide by 2 Enabled.  
1: Enable.  
[1] REF_IN_MODE (R/W)  
Reference Input Mode  
0: XTAL Oscillator Mode.  
1: Single-Ended Mode.  
Table 28. REFERENCE Bit Descriptions  
Bits  
[7:3]  
2
Bit Name  
RESERVED  
EN_REF_X2  
Description  
Reset  
0x0  
Access  
R
Reserved  
Reference doubler enable bit  
0: Disable  
0x0  
R/W  
1: Enable  
1
0
REF_IN_MODE  
RDIV2_SEL  
Reference input mode bit  
0: Crystal (XTAL) oscillator mode  
1: Single-ended mode  
0x0  
0x0  
R/W  
R/W  
Reference divide by 2 bit  
0: Reference divide by 2 disabled  
1: Reference divide by 2 enabled  
Rev. A | Page 48 of 61  
 
 
 
Data Sheet  
ADMV4420  
ADDRESS 0x211, RESET: 0x00, NAME: VCO_DATA_READBACK1  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:0] VCO_DATA_READBACK[7:0] (R)  
VCO Data Readback  
Table 29. VCO_DATA_READBACK1 Bit Descriptions  
Bits  
Bit Name  
Description  
Reset  
Access  
[7:0]  
VCO_DATA_READBACK[7:0] VCO data readback  
0x0  
R
ADDRESS 0x212, RESET: 0x00, NAME: VCO_DATA_READBACK2  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:3] RESERVED  
[2:0] VCO_DATA_READBACK[10:8] (R)  
VCO Data Readback  
Table 30. VCO_DATA_READBACK2 Bit Descriptions  
Bits  
[7:3]  
[2:0]  
Bit Name  
Description  
Reset  
0x0  
Access  
RESERVED  
Reserved  
R
R
VCO_DATA_READBACK[10:8] VCO data readback bits  
0x0  
Rev. A | Page 49 of 61  
 
 
ADMV4420  
Data Sheet  
ADDRESS 0x213, RESET: 0x01, NAME: PLL_MUX_SEL  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
1
[7:0] PLL_MUX_SEL (R/W)  
PLL Mux Select  
00000000: Output Logic Low.  
00000001: Digital Lock Detect.  
00000100: RDiv-by-2 to Mux Out, Frequency =  
REFIN/(2 x R)  
00000101: NDiv-by-2 to Mux Out, Frequency =  
VCO/(2 x N)  
00001000: Output Logic High.  
Table 31. PLL_MUX_SEL Bit Descriptions  
Bits  
Bit Name  
Description  
Reset  
0x1  
Access  
[7:0]  
PLL_MUX_SEL  
PLL mux select bits  
R/W  
00000000: Output logic low  
00000001: Digital lock detect  
00000100: R divide by 2 to mux out, frequency = REFIN /2 × R)  
00000101: N divide by 2 to mux out, frequency = VCO/(2 × N)  
00001000: Output logic high  
ADDRESS 0x214, RESET: 0x98, NAME: LOCK_DETECT  
7
6
5
4
3
2
1
0
1
0
0
1
1
0
0
0
[7:6] LD_BIAS (R/W)  
Lock Detect Bias  
00: 40uA.  
[2:0] RESERVED  
01: 30uA.  
10: 20uA.  
11: 10uA.  
[5:3] LD_COUNT (R/W)  
Lock Detect Count  
000: 1024 Consecutive PFD Cycles to  
Declare Lock.  
001: 2048 Consecutive PFD Cycles to  
Declare Lock.  
010: 4096 Consecutive PFD Cycles to  
Declare Lock.  
011: 8192 Consecutive PFD Cycles to  
Declare Lock.  
Table 32. LOCK_DETECT Bit Descriptions  
Bits  
Bit Name  
Description  
Reset  
Access  
[7:6]  
LD_BIAS  
Lock detect bias bits  
00: 40 μA  
01: 30 μA  
10: 20 μA  
11: 10 μA  
0x2  
0x3  
0x0  
R/W  
R/W  
R/W  
[5:3]  
[2:0]  
LD_COUNT  
RESERVED  
Lock detect count bits  
000: 1024 consecutive PFD cycles to declare lock  
001: 2048 consecutive PFD cycles to declare lock  
010: 4096 consecutive PFD cycles to declare lock  
011: 8192 consecutive PFD cycles to declare lock  
Reserved  
Rev. A | Page 50 of 61  
 
 
 
Data Sheet  
ADMV4420  
ADDRESS 0x215, RESET: 0x00, NAME: VCO_BAND_SELECT  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:0] VCO_BAND_SELECT (R/W)  
Manually Programmed VCO Band  
Table 33. VCO_BAND_SELECT Bit Descriptions  
Bits  
Bit Name  
Description  
Reset  
Access  
[7:0]  
VCO_BAND_SELECT Manually programmed VCO band  
0x0  
R/W  
ADDRESS 0x216, RESET: 0x00, NAME: VCO_ALC_TIMEOUT  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:4] RESERVED  
[3:0] VCO_ALC_TIMEOUT (R/W)  
VCO ALC Timeout Divide  
Table 34. VCO_ALC_TIMEOUT Bit Descriptions  
Bits  
[7:4]  
[3:0]  
Bit Name  
Description  
Reset  
0x0  
Access  
R
RESERVED  
Reserved  
VCO_ALC_TIMEOUT  
VCO ALC timeout divide  
0x0  
R/W  
ADDRESS 0x217, RESET: 0x01, NAME: VCO_MANUAL  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
1
[7:6] RESERVED  
[3:0] VCO_BIAS_ADJUST (R/W)  
Manually Control VCO Bias  
[5:4] VCO_CORE_SELECT (R/W)  
Manually Control VCO Core  
01: Core#1.  
10: Core#2.  
Table 35. VCO_MANUAL Bit Descriptions  
Bits  
[7:6]  
[5:4]  
Bit Name  
Description  
Reset  
Access  
RESERVED  
Reserved  
0x0  
0x0  
R
VCO_CORE_SELECT  
Manual control of VCO core  
01: Core 1  
R/W  
10: Core 2  
[3:0]  
VCO_BIAS_ADJUST  
Manual control of VCO bias  
0x1  
R/W  
ADDRESS 0x219, RESET: 0x13, NAME: ALC  
7
6
5
4
3
2
1
0
0
0
0
1
0
0
1
1
[7:5] RESERVED  
[3:0] RESERVED  
[4] EN_ALC (R/W)  
VCO ALC Enable  
0: Disable.  
1: Enable.  
Table 36. ALC Bit Descriptions  
Bits  
[7:5]  
4
Bit Name  
RESERVED  
EN_ACL  
Description  
Reset  
0x0  
Access  
R
Reserved  
VCO ALC enable bit  
0: Disable  
0x1  
R/W  
1: Enable  
[3:0]  
RESERVED  
Reserved  
0x3  
R/W  
Rev. A | Page 51 of 61  
 
 
 
 
ADMV4420  
Data Sheet  
ADDRESS 0x21C, RESET: 0x90, NAME: VCO_TIMEOUT1  
7
6
5
4
3
2
1
0
1
0
0
1
0
0
0
0
[7:0] VCO_TIMEOUT[7:0] (R/W)  
Main VCO Calibration Timeout  
Table 37. VCO_TIMEOUT1 Bit Descriptions  
Bits  
Bit Name  
Description  
Reset  
0x90  
Access  
[7:0]  
VCO_TIMEOUT[7:0] Main VCO calibration timeout  
R/W  
ADDRESS 0x21D, RESET: 0x01, NAME: VCO_TIMEOUT2  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
1
[7:2] RESERVED  
[1:0] VCO_TIMEOUT[9:8] (R/W)  
Main VCO Calibration Timeout  
Table 38. VCO_TIMEOUT2 Bit Descriptions  
Bits  
[7:2]  
[1:0]  
Bit Name  
Description  
Reset  
0x0  
Access  
RESERVED  
Reserved  
R
VCO_TIMEOUT[9:8]  
Main VCO calibration timeout  
0x1  
R/W  
ADDRESS 0x21E, RESET: 0x4B, NAME: VCO_BAND_DIV  
7
6
5
4
3
2
1
0
0
1
0
0
1
0
1
1
[7:0] VCO_BAND_DIV (R/W)  
VCO Band Select Divide  
Table 39. VCO_BAND_DIV Bit Descriptions  
Bits  
[7:0]  
Bit Name  
VCO_BAND_DIV  
Description  
VCO band select divide  
Reset  
0x4B  
Access  
R/W  
ADDRESS 0x21F, RESET: 0x18, NAME: VCO_READBACK_SEL  
7
6
5
4
3
2
1
0
0
0
0
1
1
0
0
0
[7:3] RESERVED  
[2:0] VCO_READBACK_SEL (R/W)  
VCO Read Back Select  
000: Read Back Checkered Board (Functionality  
Test)  
001: Read Back Core & Band.  
011: Read Back Bias Code.  
100: Read Back Core.  
101: Read Back Low (Zeros)  
Table 40. VCO_READBACK_SEL Bit Descriptions  
Bits  
[7:3]  
[2:0]  
Bit Name  
Description  
Reset  
Access  
RESERVED  
Reserved  
0x3  
0x0  
R
VCO_READBACK_SEL  
VCO read back select  
R/W  
000: Read back checkered board (functionality test)  
001: Read back core and band  
011: Read back bias code  
100: Read back core  
101: Read back low (zeros)  
Rev. A | Page 52 of 61  
 
 
 
 
Data Sheet  
ADMV4420  
ADDRESS 0x226, RESET: 0x02, NAME: AUTOCAL  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
1
0
[7:2] RESERVED  
[0] RESERVED  
[1] EN_AUTOCAL (R/W)  
Enable VCO Auto Cal and Lock PLL  
0: Disable.  
1: Enable.  
Table 41. AUTOCAL Bit Descriptions  
Bits  
[7:2]  
1
Bit Name  
RESERVED  
EN_AUTOCAL  
Description  
Reserved  
Reset  
0x0  
Access  
R
Enable VCO autocalibration and lock PLL  
0x1  
R/W  
0: Disable  
1: Enable  
Reserved  
0
RESERVED  
0x0  
R
Rev. A | Page 53 of 61  
 
ADMV4420  
Data Sheet  
ADDRESS 0x22C, RESET: 0x07, NAME: CP_STATE  
7
6
5
4
3
2
1
0
0
0
0
0
0
1
1
1
[7:2] RESERVED  
[1:0] CP_STATE (R/W)  
Charge Pump State  
0: Tri-State (Hi-Z)  
1: Force Up.  
2: Force Down.  
3: Normal Operation.  
Table 42. CP_STATE Bit Descriptions  
Bits  
[7:2]  
[1:0]  
Bit Name  
RESERVED  
CP_STATE  
Description  
Reset  
0x1  
Access  
Reserved  
R
Charge pump state  
0: Tristate (high-Z)  
1: Force up  
0x3  
R/W  
2: Force down  
3: Normal operation  
ADDRESS 0x22D, RESET: 0x01, NAME: CP_BLEED_EN  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
1
[7:1] RESERVED  
[0] EN_BLEED (R/W)  
Bleed CP Current Enable  
0: Disable.  
1: Enable.  
Table 43. CP_BLEED_EN Bit Descriptions  
Bits  
[7:1]  
0
Bit Name  
RESERVED  
EN_BLEED  
Description  
Reserved  
Reset  
0x0  
Access  
R
Bleed CP current enable  
0: Disable  
0x1  
R/W  
1: Enable  
ADDRESS 0x22E, RESET: 0x03, NAME: CP_CURRENT  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
1
1
[7:4] RESERVED  
[3:0] CP_CURRENT (R/W)  
Main Charge Pump Current  
Table 44. CP_CURRENT Bit Descriptions  
Bits  
[7:4]  
[3:0]  
Bit Name  
Description  
Reset  
0x0  
Access  
R
RESERVED  
CP_CURRENT  
Reserved  
Main charge pump current bit  
0x3  
R/W  
ADDRESS 0x22F, RESET: 0x0C, NAME: CP_BLEED  
7
6
5
4
3
2
1
0
0
0
0
0
1
1
0
0
[7:0] BICP (R/W)  
Binary Scaled Bleed Current  
Table 45. CP_BLEED Bit Descriptions  
Bits  
Bit Name  
Description  
Binary scaled bleed current  
Reset  
0xC  
Access  
[7:0]  
BICP  
R/W  
Rev. A | Page 54 of 61  
 
 
 
 
Data Sheet  
ADMV4420  
APPLICATIONS INFORMATION  
The ADMV4420-EVALZ evaluation board layout consists of  
four layers. Layer 1 contains the charge pump, IF supplies  
(VPOS3_CP and VPOS4_IF), and the multiplexer output signal  
(MUXOUT) trace, which are routed together with the  
peripheral component placements. Layer 2 is arranged to  
provide the ground plane for the board. Layer 3 includes the  
VCO (VPOS1_VCO) supply, the PLL (VPOS2_PLL) supply,  
EVALUATION BOARD  
The ADMV4420-EVALZ evaluation board can be used to  
evaluate the performance of the ADMV4420. The top and cross  
sectional layout views of the ADMV4420-EVALZ evaluation  
board are shown in Figure 126 and Figure 127, respectively. The  
RF transmission lines were designed using a coplanar waveguide  
(CPWG) model with a line width (W) of 16 mil and 13 mil of  
ground spacing for a characteristic impedance of 50Ω for the  
RF input (RFIN) and the external reference input (REF/XTAL1).  
The line width and ground spacing for the IF output (IFOUT)  
are 9 mil and 15 mil, respectively. The PCB is made with Rogers  
4350B dielectric material, which offers low loss performance,  
and isola 370HR dielectric material, which achieves the  
required thickness of the PCB.  
and digital SPI control signal ( , SDI, SDO, and SCLK) traces,  
CS  
and Layer 4 includes the chip enable (ENBL0 and ENBL1) traces  
on the bottom side of the board. Note that on the evaluation  
board,  
is indicated by CSB. Figure 128 to Figure 130 show  
CS  
the routing details of Layer 2 to Layer 4. For optimal RF and  
thermal grounding place as many plated through vias as possible  
around the RF transmission lines, underneath the exposed pad  
and throughout the entire PCB (See Figure 128).  
Figure 126. ADMV4420-EVALZ Evaluation Board Layout, Top View (Layer 1)  
Rev. A | Page 55 of 61  
 
 
 
ADMV4420  
Data Sheet  
W = 16mil FOR 50W = 13mil FOR 50Ω  
W = 9mil FOR 75Ω  
W = 15mil FOR 75Ω  
0.5oz Cu (0.7mil)  
0.5oz Cu (0.7mil)  
0.5oz Cu (0.7mil)  
LAYER 1  
10mil ROGERS 4350B  
1oz Cu (1.4mil)  
ISOLA 370HR  
LAYER 2  
1oz Cu (1.4mil) – POWER LINES  
0.5oz Cu (0.7mil) – SIGNAL LINES  
LAYER 3  
LAYER 4  
ISOLA 370HR  
0.5oz Cu (0.7mil)  
Figure 127. ADMV4420-EVALZ PCB, Cross Sectional View  
Figure 128. ADMV4420-EVALZ Evaluation Board, Layer 2  
Figure 129. ADMV4420-EVALZ Evaluation Board, Layer 3  
Rev. A | Page 56 of 61  
 
 
Data Sheet  
ADMV4420  
Figure 130. ADMV4420-EVALZ Evaluation Board, Layer 4 (Bottom Side)  
Figure 126 shows the ADMV4420-EVALZ evaluation board  
with component placement. The decoupling capacitors on the  
LDO decoupling pin and power supply traces to minimize noise  
effects. The schematic and Pb-free reflow solder profile of the  
evaluation board are shown in and Figure 2 and Figure 132,  
respectively.  
There are two different options to apply an external reference  
input to the ADMV4420, as shown in Figure 132. The required  
configurations for these options are described in Table 46.  
When using the Case 1 option, the external reference input is  
applied through the J2 connector with a signal generator. When  
using the Case 2 option, the external reference input is provided  
by the crystal (Y1).  
There are two options to power up the evaluation board. The  
first option is to apply a 5 V supply to the VPOS1, VPOS2,  
VPOS3, and VPOS4 test points for the VCO, PLL, CP, and IF  
blocks (VPOS1_VCO, VPOS2_PLL, VPOS3_CP, and  
VPOS4_IF pins) respectively, and connect a 0 V supply to one  
of the GND1, GND2, or GND3 ground test points. In this  
option, remove the R13, R14, R15, and R16 resistors from the  
evaluation board. This option allows the user to monitor the  
currents of each block separately.  
A loop filter circuit generates the VCO control voltage (VTUNE)  
by applying the CP current output of the ADMV4420 from the  
charge pump output pin (CPOUT) to obtain the target LO  
frequency. Figure 131 shows the recommended schematic and  
Table 47 describes the loop filter components when the phase  
frequency detector frequency is 50 MHz. Table 48 describes the  
complete list of materials, which includes the loop filter  
components. For details about the evaluation board, see the  
ADMV4420-EVALZ user guide.  
The second option to power up the board requires the power  
supply to be applied through the VCC5P0 test point with the  
appropriate ground connection. Only the total current of the  
ADMV4420 can be monitored with this option. After powering  
up the evaluation board, program the required digital settings  
for the target configuration through the SDP-S controller board  
by using the Analysis, Control, Evaluation (ACE) software,  
which can be downloaded from the Analysis, Control,  
Evaluation (ACE) product page. See the ADMV4420-EVALZ  
user guide for details.  
Table 46. External Reference Input Configurations  
Option  
Component Configuration  
Case 1  
Populate C21. Replace C6 with 1 nF capacitor.  
Remove C5 and Y1.  
Case 2 (Default) C5 = 20 pF, C6 = 20 pF. Do not populate C21.  
Rev. A | Page 57 of 61  
 
 
ADMV4420  
Data Sheet  
R5  
R11  
CPOUT  
VTUNE  
Table 47. Recommended Integer Mode Loop Filter  
Components for Phase Frequency Detector = 50 MHz  
1.5kΩ  
0Ω  
R4  
680Ω  
C24  
470pF  
C26  
220pF  
Component  
Value  
C25  
C24  
C25  
C26  
R4  
R5  
R11  
470 pF (0402)  
6800 pF (0402)  
220 pF (0402)  
680 Ω (0402)  
1.5 kΩ (0402)  
0 Ω (0402)  
6800pF  
AGND  
Figure 131. Recommended Integer Mode Loop Filter Schematic  
Table 48. Bill of Materials for ADMV4420-EVALZ  
Reference Designator  
Description  
C1, C3, C14, C32, C33, C35  
Power supply decoupling and LDO decoupling capacitor, 10 μF, 0603  
Power supply decoupling and LDO decoupling capacitor, 10 pF, 0402  
Crystal loading capacitors  
C2, C10, C16, C18, C30  
C5, C6  
C7, C8, C11, C12, C13, C22, C27  
C15, C19, C20, C23, C29  
C4, C34  
C9  
C17, C21  
C24  
Power supply decoupling and LDO decoupling capacitor, 0.1 μF, 0402  
Power supply decoupling and LDO decoupling capacitor, 100 pF, 0402)  
Power supply decoupling and LDO decoupling capacitor, 10 μF, 0402  
Power supply decoupling and LDO decoupling capacitor, 4.7 μF, 0402  
AC coupling capacitor, 0.01 μF, 0402  
Loop filter capacitor, 470 pF, 0402  
C25  
C26  
Loop filter capacitor, 6800 pF, 0402  
Loop filter capacitor, 220 pF, 0402  
Test point, yellow  
CS, ENBL0, ENBL1, MUXOUT, SCLK, SDI, SDO  
DS1  
LED, green  
GND1, GND2, GND3  
Test point, black  
J1  
RF connector, SRI, K type, female  
J2  
J3  
J4  
RF connector, subminiature version a (SMA), female  
System demonstration platform (SDP) connector  
RF connector, F type, female  
L1  
Choke inductor, 51 nH, 0402  
M1  
Heat sink  
R1  
External reference input matching, 49.9 Ω, 0402  
Resistor, 0 Ω, 0402  
R11, R13, R14, R15, R16  
R19, R29  
Resistor, 1 kΩ, 0402  
R25, R27  
Resistor, pull-down, 100 kΩ, 0402  
R4  
Resistor, loop filter, 680 Ω, 0402  
R5  
Resistor, loop filter,1.5 kΩ, 0402  
U1  
U2  
K band downconverter with integrated fractional-N PLL and VCO, ADMV4420  
Serial EEPROM, 32-bit  
VCC5P0, VPOS1, VPOS2, VPOS3, VPOS4  
Y1  
Test point, red  
Crystal  
Rev. A | Page 58 of 61  
 
 
 
Data Sheet  
ADMV4420  
I D S  
K L C S  
S C  
5 2  
6 2  
7 2  
8 2  
9 2  
0 3  
1 3  
2 3  
D N G  
T U O X U M  
1 L A T X / F E R  
C N / 2 L A T X  
L L P 2 _ S O V P  
M D S 4 _ L C E D  
L L P 3 _ L C E D  
O C V 1 _ S O V P  
6 1  
5 1  
4 1  
3 1  
2 1  
1 1  
0 1  
9
E
U T N V  
F I 4 _ S O V P  
T U O F I  
D N G  
F R 5 _ L C E D  
D A P  
Figure 132. ADMV4420-EVALZ Evaluation Board Schematic  
Rev. A | Page 59 of 61  
 
ADMV4420  
Data Sheet  
OUTLINE DIMENSIONS  
DETAIL A  
(JEDEC 95)  
5.10  
5.00 SQ  
4.90  
0.30  
0.25  
0.18  
PIN 1  
INDICATOR  
AREA  
PIN 1  
25  
32  
IONS  
INDICATOR AR EA OP T  
(SEE DETAIL A)  
24  
1
0.50  
BSC  
3.75  
EXPOSED  
PAD  
3.60 SQ  
3.55  
17  
8
16  
9
0.50  
0.40  
0.30  
0.20 MIN  
TOP VIEW  
TOP VIEW  
0.80  
0.75  
0.70  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.05 MAX  
0.02 NOM  
COPLANARITY  
0.08  
SECTION OF THIS DATA SHEET.  
SEATING  
PLANE  
0.20 REF  
COMPLIANT TO JEDEC STANDARDS MO-220-WHHD-5  
Figure 133. 32-Lead Lead Frame Chip Scale Package [LFCSP]  
5 mm × 5 mm Body and 0.75 mm Package Height  
(CP-32-12)  
Dimensions shown in millimeters  
(NOTE 2)  
1.60  
Ø 1.55  
1.50  
(NOTE 1)  
4.10  
4.00  
3.90  
2.05  
2.00  
1.95  
(NOTE 3)  
1.85  
1.75  
1.65  
0.35  
0.30  
0.25  
A
5.60  
5.50  
Ø 1.50 MIN  
5.40  
5.30  
12.30  
12.00  
11.70  
5.40  
(NOTE 1)  
3° BSC  
5.20  
(NOTE 6)  
1.35  
1.25  
TOP VIEW  
A
DETAIL A  
8.00  
R 0.50  
R 0.50  
1.15  
0.50  
0.40  
0.30  
(NOTE 8)  
DIRECTION OF FEED  
SECTION A-A  
DETAIL A  
NOTES:  
1. MEASURED FROM THE CENTERLINE OF SPROCKET HOLE TO CENTERLINE OF THE  
POCKET HOLE  
2. 10 SPROCKET HOLE PITCH CUMUL ATIVE TOLERANCE IS ± 0.20  
3. THICKNESS IS APPLICABLE AS MEASURED AT EDGE OF TAPE  
4. BLACK POLYSTYRENE MATERIAL  
5. ALLOWABLE CAMBER TO BE 1 mm PER 100 mm IN LENGHT, NON-CUMULATIVE OVER 250 mm  
6. MEASUREMENT POINT TO BE 0.3 mm FROM BOTTOM POCKET  
5
11  
7. SURFACE RESISTIVITY FROM 10 TO 10 Ω/SQ  
8. KO MEASUREMENT POINT SHOULD NOT BE REFERED ON POCKET RIDGE  
Figure 134. 32-Lead Lead Frame Chip Scale Package [LFCSP] Tape and Reel Outline Dimensions  
Dimensions shown in millimeters  
ORDERING GUIDE  
Temperature  
Range  
Moisture Sensitivity  
Model1  
Level (MSL) Rating2 Package Description  
Package Option  
ADMV4420ACPZ  
ADMV4420ACPZ-R2  
ADMV4420ACPZ-RL7  
ADMV4420-EVALZ  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
MSL3  
MSL3  
MSL3  
32-Lead Lead Frame Chip Scale Package [LFCSP] CP-32-12  
32-Lead Lead Frame Chip Scale Package [LFCSP] CP-32-12  
32-Lead Lead Frame Chip Scale Package [LFCSP] CP-32-12  
1 Z = RoHS Compliant Part.  
2 See Table 2 and Figure 2 for the peak reflow temperature.  
Rev. A | Page 60 of 61  
 
 
Data Sheet  
NOTES  
ADMV4420  
©2018–2019 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D16995-0-4/19(A)  
Rev. A | Page 61 of 61  

相关型号:

ADMV4420ACPZ-R2

K Band Downconverter with Integrated Fractional-N PLL and VCO
ADI

ADMV4420ACPZ-RL7

K Band Downconverter with Integrated Fractional-N PLL and VCO
ADI

ADMV4540

K Band Quadrature Demodulator with Integrated Fractional-N PLL and VCO
ADI

ADMV4540-EVALZ

K Band Quadrature Demodulator with Integrated Fractional-N PLL and VCO
ADI

ADMV4540ACCZ

K Band Quadrature Demodulator with Integrated Fractional-N PLL and VCO
ADI

ADMV4540ACCZ-RL7

K Band Quadrature Demodulator with Integrated Fractional-N PLL and VCO
ADI

ADMV7310

E-Band Upconverter SiP, 71 GHz to 76 GHz
ADI

ADMV7310-EVALZ

E-Band Upconverter SiP, 71 GHz to 76 GHz
ADI

ADMV7310BCEZ

E-Band Upconverter SiP, 71 GHz to 76 GHz
ADI

ADMV7320

E-Band Upconverter SiP, 81 GHz to 86 GHz
ADI

ADMV7320-EVALZ

E-Band Upconverter SiP, 81 GHz to 86 GHz
ADI

ADMV7320BCEZ

E-Band Upconverter SiP, 81 GHz to 86 GHz
ADI