ADL5605-EVALZ [ADI]

700 MHz to 1000 MHz; 700 MHz至1000 MHz的
ADL5605-EVALZ
型号: ADL5605-EVALZ
厂家: ADI    ADI
描述:

700 MHz to 1000 MHz
700 MHz至1000 MHz的

文件: 总20页 (文件大小:496K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
700 MHz to 1000 MHz,  
1 W RF Driver Amplifier  
ADL5605  
FUNCTIONAL BLOCK DIAGRAM  
FEATURES  
Operation from 700 MHz to 1000 MHz  
Gain of 23 dB at 943 MHz  
OIP3 of 44.2 dBm at 943 MHz  
P1dB of 30.9 dBm at 943 MHz  
Noise figure of 4.8 dB at 943 MHz  
Power supply: 5 V  
Power supply current: 307 mA typical  
Internal active biasing  
12 RFOUT  
11 RFOUT  
10 RFOUT  
RFIN  
DISABLE  
VCC  
1
2
3
4
PWDN  
VBIAS  
VBIAS  
9
RFOUT  
ADL5605  
Fast power-up/power-down function  
Compact 4 mm × 4 mm, 16-lead LFCSP  
ESD rating of 1 kV (Class 1C)  
Pin-compatible with the ADL5606 (1800 MHz to 2700 MHz)  
Figure 1.  
APPLICATIONS  
Wireless infrastructure  
Automated test equipment  
ISM/AMR applications  
0
–10  
–20  
GENERAL DESCRIPTION  
The ADL5605 is a broadband, two-stage, 1 W RF driver  
amplifier that operates over a frequency range of 700 MHz  
to 1000 MHz.  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
The ADL5605 operates on a 5 V supply voltage and a supply  
current of 307 mA. The driver also incorporates a fast power-  
up/power-down function for TDD applications, applications  
that require a power saving mode, and applications that  
intermittently transmit data.  
946MHz  
The ADL5605 is fabricated on a GaAs HBT process and is  
packaged in a compact 4 mm × 4 mm, 16-lead LFCSP that  
uses an exposed paddle for excellent thermal impedance. The  
ADL5605 operates from −40°C to +85°C. A fully populated  
evaluation board tuned to 943 MHz is also available.  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
22  
P
(dBm)  
OUT  
Figure 2. ACPR vs. Output Power, 3GPP, TM1-64, at 946 MHz  
Rev. 0  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2011 Analog Devices, Inc. All rights reserved.  
 
ADL5605  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
943 MHz Frequency Tuning Band........................................... 10  
General......................................................................................... 11  
Applications Information.............................................................. 13  
Basic Layout Connections......................................................... 13  
ADL5605 Matching.................................................................... 14  
ACPR and EVM ......................................................................... 15  
Thermal Considerations............................................................ 15  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Functional Block Diagram .............................................................. 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Typical Scattering Parameters..................................................... 5  
Absolute Maximum Ratings............................................................ 6  
Thermal Resistance ...................................................................... 6  
ESD Caution.................................................................................. 6  
Pin Configuration and Function Descriptions............................. 7  
Typical Performance Characteristics ............................................. 8  
748 MHz Frequency Tuning Band............................................. 8  
881 MHz Frequency Tuning Band............................................. 9  
Soldering Information and Recommended PCB Land  
Pattern.......................................................................................... 15  
Evaluation Board ............................................................................ 16  
Outline Dimensions....................................................................... 18  
Ordering Guide .......................................................................... 18  
REVISION HISTORY  
7/11—Revision 0: Initial Version  
Rev. 0 | Page 2 of 20  
 
ADL5605  
SPECIFICATIONS  
VCC1 = 5 V and TA = 25°C, unless otherwise noted.1  
Table 1.  
Parameter  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
OVERALL FUNCTION  
Frequency Range  
FREQUENCY = 748 MHz 20 MHz  
Gain  
700  
1000  
MHz  
24.3  
dB  
vs. Frequency  
vs. Temperature  
vs. Supply  
20 MHz  
−40°C ≤ TA ≤ +85°C  
4.75 V to 5.25 V  
+0.01/−0.19  
0.8  
0.07  
dB  
dB  
dB  
Output 1 dB Compression Point (P1dB)  
vs. Frequency  
vs. Temperature  
vs. Supply  
Output Third-Order Intercept (OIP3)  
vs. Frequency  
vs. Temperature  
vs. Supply  
Noise Figure  
31.4  
dBm  
dB  
dB  
dB  
dBm  
dB  
dB  
dB  
dB  
20 MHz  
−40°C ≤ TA ≤ +85°C  
4.75 V to 5.25 V  
∆f = 1 MHz, POUT = 14 dBm per tone  
20 MHz  
−40°C ≤ TA ≤ +85°C  
4.75 V to 5.25 V  
−0.68/+0.08  
+0.94/−1.99  
−0.24/−0.05  
41.9  
−0.22/+0.16  
+0.07/−1.56  
+0.04/+0.09  
4.8  
FREQUENCY = 881 MHz 13 MHz  
Gain  
23.0  
dB  
vs. Frequency  
vs. Temperature  
vs. Supply  
13 MHz  
−40°C ≤ TA ≤ +85°C  
4.75 V to 5.25 V  
−0.03/−0.08  
0.7  
0.05  
dB  
dB  
dB  
Output 1 dB Compression Point (P1dB)  
vs. Frequency  
vs. Temperature  
vs. Supply  
Output Third-Order Intercept (OIP3)  
vs. Frequency  
vs. Temperature  
vs. Supply  
Noise Figure  
31.4  
−0.18/−0.11  
0.6  
−0.4/+0.3  
43.4  
−0.32/+0.40  
−0.19/−0.99  
+0.21/−0.03  
4.7  
dBm  
dB  
dB  
dB  
dBm  
dB  
dB  
dB  
dB  
13 MHz  
−40°C ≤ TA ≤ +85°C  
4.75 V to 5.25 V  
∆f = 1 MHz, POUT = 14 dBm per tone  
13 MHz  
−40°C ≤ TA ≤ +85°C  
4.75 V to 5.25 V  
FREQUENCY = 943 MHz 18 MHz  
Gain  
23.0  
dB  
vs. Frequency  
vs. Temperature  
vs. Supply  
18 MHz  
−40°C ≤ TA ≤ +85°C  
4.75 V to 5.25 V  
+0.28/−0.04  
0.8  
0.04  
dB  
dB  
dB  
Output 1 dB Compression Point (P1dB)  
vs. Frequency  
vs. Temperature  
vs. Supply  
Adjacent Channel Power Ratio (ACPR)  
30.9  
dBm  
dB  
dB  
dB  
dBc  
18 MHz  
−40°C ≤ TA ≤ +85°C  
4.75 V to 5.25 V  
POUT = 18 dBm, one-carrier W-CDMA,  
64 DPCH, frequency = 946 MHz  
+0.39/−0.08  
+0.7/−0.9  
−0.43/+0.35  
51  
Output Third-Order Intercept (OIP3)  
vs. Frequency  
vs. Temperature  
vs. Supply  
Noise Figure  
∆f = 1 MHz, POUT = 14 dBm per tone  
18 MHz  
−40°C ≤ TA ≤ +85°C  
4.75 V to 5.25 V  
44.2  
dBm  
dB  
dB  
dB  
dB  
−0.47/−0.10  
+0.7/−1.6  
−0.08/+0.07  
4.8  
Rev. 0 | Page 3 of 20  
 
ADL5605  
Parameter  
Test Conditions/Comments  
DISABLE pin  
VDISABLE decreasing  
VDISABLE increasing  
VDISABLE = 5 V  
Min  
Typ  
Max  
Unit  
POWER-DOWN INTERFACE  
Logic Level to Enable  
Logic Level to Disable  
DISABLE Pin Current  
VCC1 Pin Current1  
Enable Time  
0
5
1.4  
5.5  
75  
20  
1.1  
V
V
mA  
mA  
ns  
ns  
1.4  
VDISABLE = 5 V  
10% of control pulse to 90% of RFOUT  
10% of control pulse to 90% of RFOUT  
RFOUT pin  
Disable Time  
POWER INTERFACE  
Supply Voltage  
Supply Current  
4.75  
5
307  
−20/+1  
5.25  
385  
V
mA  
mA  
vs. Temperature  
−40°C ≤ TA ≤ +85°C  
1 VCC1 is the supply to the DUT through the RFOUT pins.  
Rev. 0 | Page 4 of 20  
ADL5605  
TYPICAL SCATTERING PARAMETERS  
VCC1 = 5 V and TA = 25°C; the effects of the test fixture have been de-embedded up to the pins of the device.1  
Table 2.  
S11  
S21  
S12  
S22  
Magnitude (dB) Angle (°)  
Frequency  
(MHz)  
Magnitude (dB) Angle (°)  
Magnitude (dB) Angle (°)  
Magnitude (dB) Angle (°)  
100  
150  
200  
250  
300  
350  
400  
450  
500  
550  
600  
650  
700  
750  
800  
850  
−2.38  
−2.63  
−2.95  
−3.50  
−4.41  
−4.58  
−5.11  
−6.82  
−7.26  
−7.66  
−8.25  
−8.86  
162.05  
153.17  
144.23  
135.13  
127.84  
124.74  
110.20  
108.32  
106.20  
101.35  
95.77  
89.58  
82.66  
75.33  
66.62  
57.13  
46.13  
29.27  
−2.06  
−130.02  
−171.63  
163.88  
145.18  
129.85  
117.81  
108.51  
99.61  
92.58  
86.52  
79.79  
73.87  
5.53  
133.84  
95.13  
67.83  
39.76  
−7.79  
−48.08  
−47.50  
−55.96  
−55.27  
−61.09  
−61.80  
−52.49  
−67.98  
−62.64  
−61.53  
−61.21  
−61.13  
−59.03  
−61.26  
−57.17  
−56.35  
−56.74  
−54.82  
−52.26  
−54.70  
−54.77  
−53.44  
−55.60  
−55.37  
−57.24  
−59.07  
−60.44  
−61.45  
−57.41  
−62.00  
−56.83  
−57.60  
−59.47  
−58.70  
−55.11  
−58.19  
−61.08  
−57.28  
−56.29  
12.48  
2.17  
−1.30  
−0.55  
−0.68  
−1.24  
−1.10  
−1.06  
−1.15  
−1.11  
−0.87  
−0.92  
−0.78  
−0.87  
−0.87  
−0.90  
−0.93  
−0.93  
−0.96  
−0.96  
−0.98  
−0.94  
−0.81  
−0.76  
−0.72  
−0.66  
−0.68  
−0.66  
−0.69  
−0.63  
−0.69  
−0.66  
−0.69  
−0.68  
−0.68  
−0.67  
−0.68  
−0.67  
−0.68  
−0.67  
−0.68  
−147.53  
−172.43  
−173.81  
−171.76  
−176.42  
−177.13  
−176.29  
−177.02  
−177.37  
−179.14  
179.80  
179.43  
178.46  
178.01  
177.54  
177.22  
176.90  
176.66  
176.43  
176.27  
176.15  
175.49  
174.79  
173.83  
173.19  
172.57  
171.85  
171.46  
170.87  
170.42  
169.98  
169.51  
168.99  
168.59  
168.10  
167.72  
167.18  
166.94  
166.45  
14.11  
18.99  
22.75  
25.46  
23.14  
17.94  
22.16  
21.56  
20.40  
19.42  
18.55  
17.89  
17.40  
17.07  
16.89  
16.84  
16.93  
16.96  
16.77  
16.17  
14.89  
13.13  
11.09  
8.95  
−119.96  
52.76  
77.07  
140.72  
171.89  
−27.39  
−21.99  
34.70  
99.93  
129.82  
107.89  
91.70  
92.00  
107.58  
99.86  
107.20  
73.48  
68.96  
47.54  
43.95  
11.97  
33.66  
20.12  
24.50  
14.20  
45.66  
62.21  
53.37  
57.90  
58.62  
77.96  
76.85  
66.53  
37.40  
43.12  
78.91  
83.05  
−63.51  
−30.49  
−61.71  
−87.12  
−105.19  
−118.96  
−130.30  
−140.88  
−150.63  
−160.56  
−170.83  
178.03  
165.27  
150.36  
132.88  
113.62  
94.11  
76.86  
62.33  
50.66  
41.54  
33.49  
26.87  
21.09  
16.01  
−9.58  
−10.59  
−11.75  
−13.27  
−15.44  
−18.94  
−26.34  
−26.92  
−18.87  
−15.30  
−13.83  
−13.51  
−13.68  
−14.26  
−14.96  
−15.76  
−16.83  
−17.90  
−19.28  
−20.56  
−22.42  
−24.45  
−26.42  
−28.73  
−29.99  
−29.61  
−27.80  
900  
950  
1000  
1050  
1100  
1150  
1200  
1250  
1300  
1350  
1400  
1450  
1500  
1550  
1600  
1650  
1700  
1750  
1800  
1850  
1900  
1950  
2000  
6.91  
4.91  
3.04  
1.23  
−0.47  
−2.09  
−3.63  
−5.10  
−6.53  
−7.92  
−9.27  
−10.56  
−11.84  
−13.07  
11.40  
7.32  
3.62  
0.23  
−3.05  
−6.05  
−8.66  
−11.11  
−13.38  
67.65  
60.60  
51.72  
38.39  
21.43  
−4.11  
−32.34  
−55.73  
1 VCC1 is the supply to the DUT through the RFOUT pins.  
Rev. 0 | Page 5 of 20  
 
ADL5605  
ABSOLUTE MAXIMUM RATINGS  
THERMAL RESISTANCE  
Table 3.  
Table 4 lists the junction-to-air thermal resistance (θJA) and the  
junction-to-paddle thermal resistance (θJC) for the ADL5605.  
For more information, see the Thermal Considerations section.  
Parameter  
Rating  
Supply Voltage, VCC11  
6.5 V  
20 dBm  
Input Power (50 Ω Impedance)  
Internal Power Dissipation (Paddle Soldered) 2 W  
Table 4. Thermal Resistance  
Package Type  
Maximum Junction Temperature  
Lead Temperature (Soldering 60 sec)  
Operating Temperature Range  
Storage Temperature Range  
150°C  
240°C  
−40°C to +85°C  
−65°C to +150°C  
θJA  
θJC  
Unit  
16-Lead LFCSP (CP-16-10)  
52.1  
12.1  
°C/W  
1 VCC1 is the supply to the DUT through the RFOUT pins.  
ESD CAUTION  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Rev. 0 | Page 6 of 20  
 
 
ADL5605  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
PIN 1  
INDICATOR  
12 RFOUT  
11 RFOUT  
10 RFOUT  
RFIN  
DISABLE  
VCC  
1
2
3
4
ADL5605  
TOP VIEW  
(Not to Scale)  
VBIAS  
9 RFOUT  
NOTES  
1. THE EXPOSED PADDLE SHOULD BE SOLDERED  
TO A LOW IMPEDANCE ELECTRICAL AND  
THERMAL GROUND PLANE.  
2. NC = NO CONNECT. DO NOT CONNECT TO THIS PIN.  
Figure 3. Pin Configuration  
Table 5. Pin Function Descriptions  
Pin No.  
Mnemonic  
Description  
1
2
RFIN  
DISABLE  
RF Input. Requires a dc blocking capacitor.  
Connect this pin to 5 V to disable the part. In the disabled state, the part draws approximately 5 mA  
of current from the power supply and 1.4 mA from the DISABLE pin.  
3
VCC  
Under normal operation, this pin is connected to the power supply and draws a combined 307 mA  
of current. When this pin is grounded along with the VBIAS pin, the device is disabled and draws  
approximately 1.4 mA from the DISABLE pin.  
4
VBIAS  
NC  
Applying 5 V to this pin enables the bias circuit. When this pin is grounded, the device is disabled.  
No Connect. Do not connect to this pin.  
5, 6, 7, 8, 13,  
14, 15, 16  
9, 10, 11, 12  
RFOUT  
EP  
RF Output. DC bias is provided to this pin through an inductor that is connected to the 5 V power  
supply. The RF path requires a dc blocking capacitor.  
The exposed paddle should be soldered to a low impedance electrical and thermal ground plane.  
Rev. 0 | Page 7 of 20  
 
ADL5605  
TYPICAL PERFORMANCE CHARACTERISTICS  
748 MHZ FREQUENCY TUNING BAND  
50  
42  
40  
38  
46  
44  
42  
45  
–40°C  
OIP3 (dBm)  
40  
+25°C  
+85°C  
35  
P1dB (dBm)  
36  
34  
32  
30  
28  
26  
24  
40  
38  
36  
34  
32  
30  
28  
30  
GAIN (dB)  
25  
–40°C  
+25°C  
+85°C  
20  
15  
10  
NF (dB)  
5
0
728  
733  
738  
743  
748  
753  
758  
763  
768  
728  
733  
738  
743  
748  
753  
758  
763  
768  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 4. Noise Figure, Gain, P1dB, and OIP3 vs. Frequency  
(OIP3 at POUT = 14 dBm per Tone)  
Figure 7. P1dB and OIP3 vs. Frequency and Temperature  
(OIP3 at POUT = 14 dBm per Tone)  
28  
44  
27  
26  
25  
24  
23  
22  
21  
20  
43  
42  
768MHz  
–40°C  
+25°C  
+85°C  
748MHz  
728MHz  
41  
40  
39  
38  
728  
733  
738  
743  
748  
753  
758  
763  
768  
–2  
0
2
4
6
8
10  
12  
14  
16  
18  
FREQUENCY (MHz)  
P
PER TONE (dBm)  
OUT  
Figure 5. Gain vs. Frequency and Temperature  
Figure 8. OIP3 vs. POUT and Frequency  
0
–10  
–20  
7
6
S22  
S11  
+85°C  
5
4
+25°C  
–40°C  
–30  
–40  
–50  
–60  
3
2
S12  
728  
733  
738  
743  
748  
753  
758  
763  
768  
728  
738  
748  
758  
768  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 9. Noise Figure vs. Frequency and Temperature  
Figure 6. Input Return Loss (S11), Output Return Loss (S22),  
and Reverse Isolation (S12) vs. Frequency  
Rev. 0 | Page 8 of 20  
 
ADL5605  
881 MHZ FREQUENCY TUNING BAND  
50  
40  
38  
46  
44  
+25°C  
–40°C  
OIP3 (dBm)  
45  
40  
+85°C  
42  
40  
38  
36  
34  
32  
36  
34  
32  
30  
28  
26  
35  
P1dB (dBm)  
30  
–40°C  
+25°C  
GAIN (dB)  
25  
20  
15  
10  
+85°C  
NF (dB)  
883  
5
0
868  
873  
878  
888  
893  
868 870 872 874 876 878 880 882 884 886 888 890 892 894  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 10. Noise Figure, Gain, P1dB, and OIP3 vs. Frequency  
(OIP3 at POUT = 14 dBm per Tone)  
Figure 13. P1dB and OIP3 vs. Frequency and Temperature  
(OIP3 at POUT = 14 dBm per Tone)  
45  
27  
26  
25  
894MHz  
44  
881MHz  
43  
–40°C  
24  
868MHz  
+25°C  
23  
42  
41  
40  
39  
+85°C  
22  
21  
20  
19  
868 870 872 874 876 878 880 882 884 886 888 890 892 894  
–2  
0
2
4
6
8
10  
12  
14  
16  
18  
FREQUENCY (MHz)  
P
PER TONE (dBm)  
OUT  
Figure 11. Gain vs. Frequency and Temperature  
Figure 14. OIP3 vs. POUT and Frequency  
0
7
S22  
–10  
S11  
6
+85°C  
+25°C  
–40°C  
–20  
–30  
–40  
–50  
–60  
5
4
3
2
S12  
868  
873  
878  
883  
888  
893  
868  
878  
888  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 12. Input Return Loss (S11), Output Return Loss (S22),  
and Reverse Isolation (S12) vs. Frequency  
Figure 15. Noise Figure vs. Frequency and Temperature  
Rev. 0 | Page 9 of 20  
 
ADL5605  
943 MHZ FREQUENCY TUNING BAND  
50  
40  
38  
36  
34  
32  
30  
28  
48  
46  
44  
42  
40  
38  
36  
OIP3 (dBm)  
45  
+25°C  
–40°C  
40  
35  
P1dB (dBm)  
+85°C  
30  
GAIN (dB)  
25  
20  
15  
10  
+25°C  
–40°C  
+85°C  
NF (dB)  
5
0
26  
925  
34  
960  
925  
930  
935  
940  
945  
950  
955  
960  
930  
935  
940  
945  
950  
955  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 16. Noise Figure, Gain, P1dB, and OIP3 vs. Frequency  
(OIP3 at POUT = 14 dBm per Tone)  
Figure 19. P1dB and OIP3 vs. Frequency and Temperature  
(OIP3 at POUT = 14 dBm per Tone)  
46  
27  
26  
25  
24  
23  
22  
21  
20  
19  
45  
44  
943MHz  
925MHz  
–40°C  
+25°C  
+85°C  
960MHz  
43  
42  
41  
40  
925  
930  
935  
940  
945  
950  
955  
960  
–2  
0
2
4
6
8
10  
12  
14  
16  
18  
P
PER TONE (dBm)  
FREQUENCY (MHz)  
OUT  
Figure 17. Gain vs. Frequency and Temperature  
Figure 20. OIP3 vs. POUT and Frequency  
0
–10  
–20  
7
6
5
4
3
2
S22  
S11  
+85°C  
+25°C  
–30  
–40  
–50  
–60  
–40°C  
S12  
925  
930  
935  
940  
945  
950  
955  
960  
925  
930  
935  
940  
945  
950  
955  
960  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 18. Input Return Loss (S11), Output Return Loss (S22),  
and Reverse Isolation (S12) vs. Frequency  
Figure 21. Noise Figure vs. Frequency and Temperature  
Rev. 0 | Page 10 of 20  
 
ADL5605  
GENERAL  
35  
30  
25  
20  
15  
10  
35  
30  
25  
20  
15  
10  
5
5
0
0
43.7 43.8 43.9 44.0 44.1 44.2 44.3 44.4 44.5 44.6 44.7 44.8  
4.45  
4.50  
4.55  
4.60  
4.65  
4.70  
4.75  
4.80  
OIP3 (dBm)  
NOISE FIGURE (dB)  
Figure 22. OIP3 Distribution at 943 MHz, 14 dBm per Tone  
Figure 25. Noise Figure Distribution at 943 MHz  
40  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
35  
30  
25  
20  
15  
10  
946MHz  
5
0
30.5 30.6 30.7 30.8 30.9 31.0 31.1 31.2 31.3 31.4 31.5  
P1dB (dBm)  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
22  
P
(dBm)  
OUT  
Figure 26. ACPR vs. POUT, 3GPP, TM1-64, at 946 MHz  
Figure 23. P1dB Distribution at 943 MHz  
40  
35  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
30  
25  
20  
15  
10  
946MHz  
5
0
–10  
–5  
0
5
10  
15  
20  
25  
22.7  
22.8  
22.9  
23.0  
23.1  
23.2  
23.3  
23.4  
P
(dBm)  
GAIN (dB)  
OUT  
Figure 24. Gain Distribution at 943 MHz  
Figure 27. EVM vs. POUT, 3GPP, TM1-64, at 946 MHz  
Rev. 0 | Page 11 of 20  
 
 
 
ADL5605  
320  
5.25V  
5V  
310  
300  
290  
280  
4.75V  
3
2
CH2 1V   
M20ns 10GS/s  
A CH2 2.5V  
IT 4ps/pt  
–40 –30 –20 –10  
0
10 20 30 40 50 60 70 80  
TEMPERATURE (°C)  
CH3 1V Ω  
Figure 28. Supply Current vs. Temperature and Supply Voltage at 943 MHz  
Figure 30. Turn-On Time, 10% of Control Pulse to 90% of RFOUT  
3
2
CH2 1V Ω  
M20ns 10GS/s  
A CH2 2.5V  
IT 4ps/pt  
CH3 1V Ω  
Figure 29. Turn-Off Time, 10% of Control Pulse to 90% of RFOUT  
Rev. 0 | Page 12 of 20  
ADL5605  
APPLICATIONS INFORMATION  
For complete information about component values and spacing  
for the different frequency tuning bands, see the ADL5605  
Matching section.  
BASIC LAYOUT CONNECTIONS  
The basic connections for operating the ADL5605 are shown  
in Figure 31. The RF matching components correspond to the  
943 MHz frequency tuning band.  
RF Output Interface  
Pin 9 to Pin 12 are the RF output pins. Inductor L2, the shunt  
capacitor, COUT, and the inductance from the microstrip line are  
used to match the RF output to 50 Ω. For complete information  
about component values and spacing for the different frequency  
tuning bands, see the ADL5605 Matching section.  
Power Supply  
The voltage supply for the ADL5605, which ranges from 4.75 V  
to 5.25 V, should be connected to the VCC1 test pin. The dc bias  
to the output stage is supplied through L1 and is connected to the  
RFOUT pin. Three decoupling capacitors (C7, C8, and C9) are  
used to prevent RF signals from propagating on the dc lines. The  
VBIAS and VCC pins can be directly connected to the main  
supply voltage. Additional decoupling capacitors (C5, C6, C11,  
C12, C13, and C14) are required on the VCC and VBIAS pins.  
Power-Down  
The ADL5605 can be disabled by connecting the DISABLE pin  
to 5 V. When disabled, the ADL5605 draws approximately 5 mA  
of current from the power supply and 1.4 mA from the DISABLE  
pin. Decoupling Capacitor C3 is recommended to prevent the  
propagation of RF signals. To completely shut down the device,  
connect the VCC pin, the VBIAS pin, and the VCC1 test pin to  
ground. In this state, the part draws approximately 1.4 mA from  
the DISABLE pin.  
RF Input Interface  
Pin 1 is the RF input pin for the ADL5605. The RF input is easily  
matched to 50 Ω with only one shunt capacitor and the micro-  
strip line used as an inductor. For the 881 MHz and 943 MHz  
frequency tuning bands, the input requires no external matching  
components.  
16  
15  
14  
13  
C1  
100pF  
RFIN  
NC NC NC NC  
1
12  
11  
RFIN  
RFOUT  
C
OUT  
8pF  
C2  
100pF  
RFOUT  
DISABLE  
VCC  
RFOUT  
ADL5605  
2
3
4
L2  
RFOUT 10  
1.6nH  
C3  
10pF  
DISABLE  
L1  
VBIAS  
RFOUT  
9
18nH  
NC NC NC NC  
C7  
100pF  
5
6
7
8
C11  
10µF  
C6  
0.01µF  
C5  
100pF  
VCC  
C8  
0.01µF  
C14  
10µF  
C13  
0.01µF  
C12  
100pF  
VBIAS  
C9  
10µF  
VCC1  
Figure 31. Basic Connections  
Rev. 0 | Page 13 of 20  
 
 
ADL5605  
Figure 32 to Figure 34 show the matching networks.  
ADL5605 MATCHING  
The RF input of the ADL5605 can be easily matched to 50 Ω  
with at most one external component and the microstrip line  
used as an inductor. The RF output requires one series inductor,  
one shunt capacitor, and the microstrip line used as an inductor.  
Table 6 lists the required matching component values. Capac-  
itors CIN and COUT are Murata GRM155 series (0402 size), and  
Inductor L2 is a Coilcraft® 0603CS series (0603 size).  
Table 6. Recommended Components for Basic Connections  
Frequency (MHz)  
CIN (pF)  
L2 (nH)  
COUT (pF)  
728 to 768  
2.4  
2.7  
12.0  
868 to 894  
N/A  
1.6  
8.0  
925 to 961  
N/A  
1.6  
8.0  
Table 7. Matching Component Spacing  
For all frequency tuning bands, the placement of CIN, L2, and  
Frequency (MHz)  
λ1 (mils)  
λ2 (mils)  
λ3 (mils)  
169  
268  
COUT is critical. Table 7 lists the recommended component  
728 to 768  
63  
94.5  
spacing for the various frequency tuning bands. The component  
spacing is referenced from the center of the component to the  
edge of the package.  
868 to 894  
N/A  
94.5  
925 to 961  
N/A  
94.5  
240  
16  
15  
14  
13  
C1  
NC  
NC  
NC  
NC  
RFIN  
RFIN  
RFIN  
100pF  
1
2
RFIN  
RFOUT 12  
λ
1
C
IN  
2.4pF  
C
12pF  
RFOUT  
RFOUT  
RFOUT  
11  
DISABLE  
OUT  
RFOUT  
λ
λ
3
2
ADL5605  
L2  
C2  
100pF  
10  
9
2.7nH  
L1  
18nH  
Figure 32. ADL5605 Match Parameters, 748 MHz Frequency Tuning Band  
16  
15  
14  
13  
C1  
100pF  
NC  
NC  
NC  
NC  
1
2
RFIN  
RFOUT 12  
C
IN  
OPEN  
C
RFOUT  
RFOUT  
RFOUT  
11  
DISABLE  
OUT  
8pF  
RFOUT  
λ
λ
3
2
ADL5605  
L2  
1.6nH  
C2  
100pF  
10  
9
L1  
18nH  
Figure 33. ADL5605 Match Parameters, 881 MHz Frequency Tuning Band  
16  
15  
14  
13  
C1  
100pF  
NC  
NC  
NC  
NC  
1
2
RFIN  
RFOUT 12  
C
IN  
OPEN  
C
OUT  
8pF  
RFOUT  
RFOUT  
RFOUT  
11  
DISABLE  
RFOUT  
λ
λ
3
2
ADL5605  
L2  
C2  
10  
9
1.6nH  
100pF  
L1  
18nH  
Figure 34. ADL5605 Match Parameters, 943 MHz Frequency Tuning Band  
Rev. 0 | Page 14 of 20  
 
 
 
 
 
 
ADL5605  
For optimal performance, it is recommended that the thermal  
vias be filled with a conductive paste of the equivalent thermal  
conductivity specified earlier in this section; alternatively, an  
external heat sink can be used to dissipate heat quickly without  
affecting the die junction temperature. It is also recommended  
that the ground pattern be extended above and below the device  
to improve thermal efficiency (see Figure 35).  
ACPR AND EVM  
All adjacent channel power ratio (ACPR) and error vector  
magnitude (EVM) measurements were made using a single  
W-CDMA carrier and Test Model 1-64.  
The signal is generated by a very low ACPR source and is meas-  
ured at the output by a high dynamic range spectrum analyzer.  
For ACPR measurements, the filter setting was chosen for low  
ACPR; for EVM measurements, the low EVM setting was selected.  
The spectrum analyzer incorporates an instrument noise correc-  
tion function, and highly linear amplifiers were used to boost  
the power levels for ACPR measurements.  
SOLDERING INFORMATION AND RECOMMENDED  
PCB LAND PATTERN  
Figure 35 shows the recommended land pattern for the ADL5605.  
To minimize thermal impedance, the exposed paddle on the  
4 mm × 4 mm LFCSP is soldered to a ground plane along with  
Pin 5 to Pin 8 and Pin 13 to Pin 16. To improve thermal dissi-  
pation, 25 thermal vias are arranged in a 5 × 5 array under the  
exposed paddle. Areas above and below the paddle are tied with  
regular vias. If multiple ground layers exist, they should be tied  
together using vias. For more information about land pattern  
design and layout, see the AN-772 Application Note, A Design  
and Manufacturing Guide for the Lead Frame Chip Scale Package  
(LFCSP).  
Figure 26 shows ACPR vs. POUT at 946 MHz. For power levels  
up to 18 dBm, an ACPR of 51 dBc or better can be achieved  
at 946 MHz.  
Figure 27 shows EVM vs. POUT at 946 MHz. The EVM measured  
is 0.5% for power levels up to 18 dBm at 946 MHz. The baseline  
composite EVM for the signal source was approximately 0.5%.  
When operated in the linear region, there is little or no contribu-  
tion to EVM by the amplifier.  
THERMAL CONSIDERATIONS  
The ADL5605 is packaged in a thermally efficient 4 mm ×  
4 mm, 16-lead LFCSP. The thermal resistance from junction  
to air (θJA) is 52.1°C/W. The thermal resistance for the product  
was extracted assuming a standard 4-layer JEDEC board with  
25 copper plated thermal vias. The thermal vias are filled with  
conductive copper paste (AE3030 with thermal conductivity of  
7.8 W/mK and thermal expansion α1 of 4 × 10−5/°C and α2 of  
8.6 × 10−5/°C). The thermal resistance from junction to case (θJC)  
is 12.1°C/W, where the case is the exposed pad of the lead frame  
package.  
16  
13  
RFIN  
RFOUT  
16 MIL VIA PAD  
WITH 8 MIL VIA  
For the best thermal performance, it is recommended that as  
many thermal vias as possible be added under the exposed pad  
of the LFCSP. The thermal resistance values assume a minimum  
of 25 thermal vias arranged in a 5 × 5 array with a via diameter  
of 8 mils, via pad of 16 mils, and a pitch of 20 mils. The vias are  
plated with copper, and the drill hole is filled with a conductive  
copper paste.  
5
8
Figure 35. Recommended Land Pattern  
Rev. 0 | Page 15 of 20  
 
 
 
ADL5605  
EVALUATION BOARD  
The schematic of the ADL5605 evaluation board is shown in  
Figure 36. The evaluation board uses 25 mils wide, 50 Ω traces  
and is made from IS410 material with a 20 mils gap to ground.  
The evaluation board is tuned for operation at 943 MHz. The  
inputs and outputs should be ac-coupled with appropriately  
sized capacitors; therefore, for low frequency applications, the  
value of C1 and C2 may need to be increased. DC bias is  
provided to the output stage via an inductor (L1) connected  
to the RFOUT pin. A bias voltage of 5 V is recommended.  
The evaluation board has a short, non-50 Ω line on its output  
to accommodate the four output pins and to allow for easier low  
inductance output matching. The pads for Pin 9 to Pin 12 are  
included on this microstrip line and are included in all matches.  
The evaluation board uses numbers as identifiers to aid in the  
placement of matching components at both the RF input and  
RF output of the device. Figure 37 and Figure 38 show images  
of the board layout.  
16  
15  
14  
13  
C1  
100pF  
RFIN  
NC NC NC NC  
1
12  
11  
RFIN  
RFOUT  
RFOUT  
ADL5605  
C
C
OUT  
8pF  
C2  
100pF  
IN  
N/A  
RFOUT  
DISABLE  
VCC  
2
3
4
L2  
1.6nH  
RFOUT 10  
C10  
C4  
C3  
DISABLE  
L1  
18nH  
OPEN OPEN 10pF  
VBIAS  
RFOUT  
9
R4  
OPEN  
NC NC NC NC  
C7  
100pF  
5
6
7
8
C11  
10µF  
C6  
0.01µF  
C5  
100pF  
VCC3  
C8  
0.01µF  
R1  
0  
VCC2  
C14  
10µF  
C13  
0.01µF  
C12  
100pF  
R5  
OPEN  
C9  
10µF  
R2  
0Ω  
VCC1  
Figure 36. Evaluation Board, 943 MHz Frequency Tuning Band  
Table 8. Evaluation Board Configuration Options, 943 MHz Frequency Tuning Band  
Component  
Function/Notes  
Default Value  
C1, C2 = 100 pF  
C3 = 10 pF  
C1, C2  
Input/output dc blocking capacitors.  
C3, C4, C5, C6, C7, Power supply decoupling capacitors. Power supply decoupling capacitors are required to  
C8, C9, C10, C11,  
C12, C13, C14  
filter out the high frequency noise on the power supply. The smallest capacitor should be the C5, C7, C12 = 100 pF  
closest to the ADL5605. The main bias that goes through RFOUT is the most sensitive to noise C6, C8, C13 = 0.01 μF  
because the bias is connected directly to the RF output.  
C9, C11, C14 = 10 μF  
C4, C10 = open  
CIN  
Input matching capacitor. To match the ADL5605 at the 943 MHz or 881 MHz frequency tuning  
band, CIN is not required. For the 748 MHz frequency tuning band, CIN is set at a specific distance  
from the device so that the microstrip line can act as inductance for the matching network  
(see Table 7). If space is at a premium, an inductor can take the place of the microstrip line.  
CIN = open  
COUT  
Output matching capacitor. The output match is set for 943 MHz and is easily changed for  
other frequency tuning bands. The tolerance of this capacitor should be tight. COUT is set at  
a specific distance from the device so that the microstrip line can act as inductance for the  
matching network (see Table 7). If space is at a premium, an inductor can take the place of the  
microstrip line. A short length of low impedance line on the output is embedded in the match.  
COUT = 8.0 pF HQ  
L2  
L1  
Output matching inductor. The output match is set for 943 MHz and is easily changed for other  
frequency tuning bands. A high Q Coilcraft inductor with tight tolerance is recommended.  
L2 = 1.6 nH HQ  
L1 = 18 nH  
The main bias for the ADL5605 comes through L1 to the output stage. L1 should be high  
impedance for the frequency of operation while providing low resistance for the dc current.  
The evaluation board uses a Coilcraft 0603HP-18NX_LU inductor; this 18 nH inductor provides  
some of the match at 943 MHz.  
R1, R2, R4, R5  
To provide bias to all stages through just one supply, set R1 and R2 to 0 Ω, and leave R4 and  
R5 open. To provide separate bias to stages, set R1 and R2 to open and R4 and R5 to 0 Ω.  
R1, R2 = 0 Ω  
R4, R5 = open  
Exposed Paddle  
The paddle should be connected to both thermal and electrical ground.  
Rev. 0 | Page 16 of 20  
 
 
ADL5605  
Figure 37. Evaluation Board Layout, Top  
Figure 38. Evaluation Board Layout, Bottom  
Rev. 0 | Page 17 of 20  
 
ADL5605  
OUTLINE DIMENSIONS  
4.00  
BSC SQ  
0.60 MAX  
0.60 MAX  
0.65 BSC  
PIN 1  
INDICATOR  
13  
16  
1
12  
9
PIN 1  
INDICATOR  
2.50  
2.35 SQ  
2.20  
TOP  
VIEW  
EXPOSED  
3.75  
BSC SQ  
PAD  
(BOTTOM VIEW)  
0.50  
0.40  
0.30  
4
8
5
0.25 MIN  
0.80 MAX  
0.65 TYP  
12° MAX  
1.95 BSC  
0.05 MAX  
0.02 NOM  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
1.00  
0.85  
0.80  
0.35  
0.30  
0.25  
0.20 REF  
COPLANARITY  
0.08  
SECTION OF THIS DATA SHEET.  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MO-220-VGGC  
Figure 39. 16-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
4 mm × 4 mm Body, Very Thin Quad  
(CP-16-10)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
Temperature Range  
−40°C to +85°C  
Package Description  
Package Option  
ADL5605ACPZ-R7  
ADL5605-EVALZ  
16-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
Evaluation Board  
CP-16-10  
1 Z = RoHS Compliant Part.  
Rev. 0 | Page 18 of 20  
 
 
ADL5605  
NOTES  
Rev. 0 | Page 19 of 20  
ADL5605  
NOTES  
©2011 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D09353-0-7/11(0)  
Rev. 0 | Page 20 of 20  

相关型号:

ADL5605ACPZ-R7

700 MHz to 1000 MHz
ADI

ADL5606

1800 MHz to 2700 MHz
ADI

ADL5606-EVALZ

1800 MHz to 2700 MHz
ADI

ADL5606ACPZ-R7

1800 MHz to 2700 MHz
ADI

ADL5610

30 MHz to 6 GHz RF/IF Gain Block
ADI

ADL5610-EVALZ

30 MHz to 6 GHz RF/IF Gain Block
ADI

ADL5610ARKZ-R7

30 MHz to 6 GHz RF/IF Gain Block
ADI

ADL5611

30 MHz to 6 GHz RF/IF Gain Block
ADI

ADL5611-EVALZ

30 MHz to 6 GHz RF/IF Gain Block
ADI

ADL5611ARKZ-R7

30 MHz to 6 GHz RF/IF Gain Block
ADI

ADL5721

Point to point microwave radios
ADI

ADL5721-EVALZ

Point to point microwave radios
ADI