ADL5385ACPZ-R7 [ADI]

50 MHz to 2200 MHz Quadrature Modulator; 50 MHz至2200 MHz的正交调制器
ADL5385ACPZ-R7
型号: ADL5385ACPZ-R7
厂家: ADI    ADI
描述:

50 MHz to 2200 MHz Quadrature Modulator
50 MHz至2200 MHz的正交调制器

射频调制器 射频解调器 微波调制器 微波解调器 射频和微波 PC
文件: 总24页 (文件大小:1060K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
50 MHz to 2200 MHz  
Quadrature Modulator  
ADL5385  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
ENBL  
Output frequency range: 50 MHz to 2200 MHz  
1 dB output compression: 11 dBm @ 350 MHz  
Noise floor: –159 dBm/Hz @ 350 MHz  
Sideband suppression: −50 dBc @ 350 MHz  
Carrier feedthrough: −46 dBm @ 350 MHz  
Single supply: 4.75 V to 5.5 V  
BIAS  
TEMPERATURE  
TEMP  
SENSOR  
IBBP  
IBBN  
24-lead, Pb-free LFCSP_VQ with exposed paddle  
APPLICATIONS  
LOIP  
LOIN  
DIVIDE-BY-2  
Radio-link infrastructure  
VOUT  
QUADRATURE  
PHASE  
Cable modem termination systems  
Wireless infrastructure systems  
Wireless local loop  
SPLITTER  
WiMAX/broadband wireless access systems  
QBBP  
QBBN  
Figure 1.  
PRODUCT DESCRIPTION  
The ADL5385 is a silicon, monolithic, quadrature modulator  
designed for use from 50 MHz to 2200 MHz. Its excellent phase  
accuracy and amplitude balance enable both high performance  
intermediate frequency (IF) and direct radio frequency (RF)  
modulation for communication systems.  
The ADL5385 can be used as either an IF or a direct-to-RF  
modulator in digital communication systems. The wide  
baseband input bandwidth allows for either baseband drive or  
drive from a complex IF. Typical applications are in radio-link  
transmitters, cable modem termination systems, and broadband  
wireless access systems.  
The AD5385 takes the signals from two differential baseband  
inputs and modulates them onto two carriers in quadrature  
with each other. The two internal carriers are derived from  
a single-ended, external local oscillator input signal at twice the  
frequency as the desired carrier output. The two modulated  
signals are summed together in a differential-to-single-ended  
amplifier designed to drive 50 Ω loads.  
The ADL5385 is fabricated using the Analog Devices, Inc.,  
advanced silicon germanium bipolar process and is packaged in  
a 24-lead, Pb-free LFCSP_VQ with exposed paddle.  
Performance is specified over –40°C to +85°C. A Pb-free  
evaluation board is also available.  
Rev. 0  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2006 Analog Devices, Inc. All rights reserved.  
ADL5385  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
Product Description......................................................................... 1  
Specifications..................................................................................... 3  
Absolute Maximum Ratings............................................................ 6  
ESD Caution.................................................................................. 6  
Pin Configuration and Functional Descriptions.......................... 7  
Typical Performance Characteristics ............................................. 8  
Circuit Description......................................................................... 12  
Overview...................................................................................... 12  
LO Interface................................................................................. 12  
V-to-I Converter......................................................................... 12  
Mixers .......................................................................................... 12  
D-to-S Amplifier......................................................................... 12  
Bias Circuit.................................................................................. 12  
Basic Connections.......................................................................... 13  
Optimization............................................................................... 13  
Applications..................................................................................... 15  
DAC Modulator Interfacing ..................................................... 15  
155 Mbps (STM-1) 128 QAM Transmitter............................. 16  
CMTS Transmitter Application................................................ 16  
Spectral Products from Harmonic Mixing ............................. 17  
RF Second-Order Products....................................................... 17  
LO Generation Using PLLs....................................................... 18  
Transmit DAC Options ............................................................. 18  
Modulator/Demodulator Options ........................................... 18  
Evaluation Board ............................................................................ 19  
Characterization Setup .................................................................. 21  
SSB Setup..................................................................................... 21  
Outline Dimensions....................................................................... 22  
Ordering Guide .......................................................................... 22  
REVISION HISTORY  
10/06—Revision 0: Initial Version  
Rev. 0 | Page 2 of 24  
ADL5385  
SPECIFICATIONS  
Unless otherwise noted, VS = 5 V; TA = 25°C; LO = −7 dBm; I/Q inputs = 1.4 V p-p differential sine waves in quadrature on a 500 mV dc  
bias; baseband frequency = 1 MHz; LO source and RF output load impedances are 50 Ω.  
Table 1.  
Parameter  
Conditions  
Min  
50  
100  
Typ  
Max  
2200  
4400  
Unit  
MHz  
MHz  
OUTPUT FREQUENCY RANGE  
EXTERNAL LO FREQUENCY  
RANGE  
External LO frequency is twice output frequency  
OUTPUT FREQUENCY = 50 MHz  
Output Power  
Output P1 dB  
Single (lower) sideband output  
4
5.6  
8
dBm  
dBm  
dBm  
dBm  
dBm  
dBc  
dBc  
dBc  
dBc  
dBc  
dBm  
dBm  
degrees  
dB  
dBm/Hz  
dBm/Hz  
dB  
11  
−57  
−67  
−67  
−57  
−64  
−68  
−83  
−58  
69  
Carrier Feedthrough  
Unadjusted (nominal drive level)  
@ +85°C after optimization at +25°C  
@ −40°C after optimization at +25°C  
Unadjusted (nominal drive level)  
@ +85°C after optimization at +25°C  
@ −40°C after optimization at +25°C  
(FLO − (2 × FBB)), POUT = 5 dBm  
(FLO + (3 × FBB)), POUT = 5 dBm  
F1 = +3.5 MHz, F2 = +4.5 MHz, POUT = −3 dBm per tone  
F1 = +3.5 MHz, F2 = +4.5 MHz, POUT = −3 dBm per tone  
Sideband Suppression  
Second Baseband Harmonic  
Third Baseband Harmonic  
Output IP2  
Output IP3  
26  
Quadrature Phase Error  
I/Q Amplitude Balance  
Noise Floor  
−0.17  
−0.03  
−155  
−150  
−19  
20 MHz offset from LO, all BB inputs at a bias of 500 mV  
20 MHz offset from LO, output power = −5 dBm  
Output Return Loss  
OUTPUT FREQUENCY = 140 MHz  
Output Power  
Output P1 dB  
Carrier Feedthrough  
Single (lower) sideband output  
5.7  
11  
dBm  
dBm  
dBm  
dBm  
dBm  
dBc  
dBc  
dBc  
dBc  
dBc  
dBm  
dBm  
degrees  
dB  
dBm/Hz  
dB  
Unadjusted (nominal drive level)  
−52  
−66  
−67  
−53  
−63  
−68  
−83  
−57  
70  
@ +85°C after optimization at +25°C  
@ −40°C after optimization at +25°C  
Unadjusted (nominal drive level)  
@ +85°C after optimization at +25°C  
@ −40°C after optimization at +25°C  
(FLO − (2 × FBB)), POUT = 5 dBm  
(FLO + (3 × FBB)), POUT = 5 dBm  
F1 = +3.5 MHz, F2 = +4.5 MHz, POUT = −3 dBm per tone  
F1 = +3.5 MHz, F2 = +4.5 MHz, POUT =−3 dBm per tone  
Sideband Suppression  
Second Baseband Harmonic  
Third Baseband Harmonic  
Output IP2  
Output IP3  
26  
Quadrature Phase Error  
I/Q Amplitude Balance  
Noise Floor  
Output Return Loss  
OUTPUT FREQUENCY = 350 MHz  
Output Power  
−0.33  
−0.03  
−160  
−20  
20 MHz offset from LO, all BB inputs at a bias of 500 mV  
Single (lower) sideband output  
3
5.6  
11  
7
dBm  
dBm  
dBm  
dBm  
dBm  
dBc  
Output P1 dB  
Carrier Feedthrough  
Unadjusted (nominal drive level)  
@ +85°C after optimization at +25°C  
@ −40°C after optimization at +25°C  
Unadjusted (nominal drive level)  
@ +85°C after optimization at +25°C  
@ −40°C after optimization at+25°C  
−46  
−65  
−66  
−50  
−63  
−61  
Sideband Suppression  
dBc  
dBc  
Rev. 0 | Page 3 of 24  
ADL5385  
Parameter  
Conditions  
Min  
Typ  
−80  
−53  
71  
Max  
Unit  
Second Baseband Harmonic  
Third Baseband Harmonic  
Output IP2  
(FLO − (2 × FBB)), POUT = 5 dBm  
(FLO + (3 × FBB)), POUT = 5 dBm  
F1 = 3.5 MHz, F2 = 4.5 MHz, POUT = −3 dBm per tone  
F1 = 3.5 MHz, F2 = 4.5 MHz, POUT = −3 dBm per tone  
dBc  
dBc  
dBm  
dBm  
degrees  
dB  
dBm/Hz  
dBm/Hz  
dB  
Output IP3  
26  
Quadrature Phase Error  
I/Q Amplitude Balance  
Noise Floor  
0.39  
−0.03  
−159  
−157  
−21  
20 MHz offset from LO, all BB inputs at a bias of 500 mV  
20 MHz offset from LO, output power = −5 dBm  
Output Return Loss  
OUTPUT FREQUENCY = 860 MHz  
Output Power  
Output P1 dB  
Carrier Feedthrough  
Single (lower) sideband output  
2.5  
5.3  
11  
6.5  
dBm  
dBm  
dBm  
dBm  
dBm  
dBc  
dBc  
dBc  
dBc  
dBc  
dBm  
dBm  
degrees  
dB  
dBm/Hz  
dBm/Hz  
dB  
Unadjusted (nominal drive level)  
−41  
−63  
−65  
−41  
−58  
−59  
−73  
−50  
70  
−35  
@ +85°C after optimization at +25°C  
@ −40°C after optimization at +25°C  
Unadjusted (nominal drive level)  
@ +85°C after optimization at +25°C  
@ −40°C after optimization at +25°C  
(FLO − (2 × FBB)), POUT = 5 dBm  
(FLO + (3 × FBB)), POUT = 5 dBm  
F1 = +3.5 MHz, F2 = +4.5 MHz, POUT = −3 dBm per tone  
F1 = +3.5 MHz, F2 = +4.5 MHz, POUT = −3 dBm per tone  
Sideband Suppression  
−35  
Second Baseband Harmonic  
Third Baseband Harmonic  
Output IP2  
−57  
−45  
Output IP3  
25  
Quadrature Phase Error  
I/Q Amplitude Balance  
Noise Floor  
0.67  
−0.03  
−159  
−157  
−19  
20 MHz offset from LO, all BB inputs at a bias of 500 mV  
20 MHz offset from LO, output power = −5 dBm  
Output Return Loss  
OUTPUT FREQUENCY =  
1450 MHz  
Output Power  
Output P1 dB  
Carrier Feedthrough  
Single (lower) sideband output  
4.4  
10  
dBm  
dBm  
dBm  
dBm  
dBm  
dBc  
dBc  
dBc  
dBc  
dBc  
dBm  
dBm  
degrees  
dB  
dBm/Hz  
dB  
Unadjusted (nominal drive level)  
−36  
−50  
−50  
−44  
−61  
−51  
−64  
−52  
63  
@ +85°C after optimization at +25°C  
@ −40°C after optimization at +25°C  
Unadjusted (nominal drive level)  
@ +85°C after optimization at +25°C  
@ −40°C after optimization at +25°C  
(FLO − (2 × FBB)), POUT = 4 dBm  
(FLO + (3 × FBB)), POUT = 4 dBm  
F1 = 3.5 MHz, F2 = 4.5 MHz, POUT = −3 dBm per tone  
F1 = 3.5 MHz, F2 = 4.5 MHz, POUT = −3 dBm per tone  
Sideband Suppression  
Second Baseband Harmonic  
Third Baseband Harmonic  
Output IP2  
Output IP3  
24  
Quadrature Phase Error  
I/Q Amplitude Balance  
Noise Floor  
0.42  
−0.02  
−160  
−33  
20 MHz offset from LO, all BB inputs at a bias of 500 mV  
Output Return Loss  
OUTPUT FREQUENCY =  
1900 MHz  
Output Power  
Output P1 dB  
Carrier Feedthrough  
Single (lower) sideband output  
3.4  
9
−35  
−51  
−51  
−33  
dBm  
dBm  
dBm  
dBm  
dBm  
dBc  
Unadjusted (nominal drive level)  
@ +85°C after optimization at +25°C  
@ −40°C after optimization at +25°C  
Unadjusted (nominal drive level)  
Sideband Suppression  
Rev. 0 | Page 4 of 24  
ADL5385  
Parameter  
Conditions  
Min  
Typ  
−43  
−47  
−58  
−47  
57  
22  
2.6  
0.003  
−160  
−156  
−20  
Max  
Unit  
dBc  
dBc  
dBc  
dBc  
dBm  
dBm  
degrees  
dB  
dBm/Hz  
dBm/Hz  
dB  
@ +85°C after optimization at +25°C  
@ −40°C after optimization at +25°C  
(FLO − (2 × FBB)), POUT = 3 dBm  
(FLO + (3 × FBB)), POUT = 3 dBm  
F1 = +3.5 MHz, F2 = +4.5 MHz, POUT = −3 dBm per tone  
F1 = +3.5 MHz, F2 = +4.5 MHz, POUT = −3 dBm per tone  
Second Baseband Harmonic  
Third Baseband Harmonic  
Output IP2  
Output IP3  
Quadrature Phase Error  
I/Q Amplitude Balance  
Noise Floor  
20 MHz offset from LO, all BB inputs at a bias of 500 mV  
20 MHz offset from LO, output power = −5 dBm  
Output Return Loss  
OUTPUT FREQUENCY =  
2150 MHz  
Output Power  
Output P1 dB  
Carrier Feedthrough  
Single (lower) sideband output  
2.6  
8
−36  
−47  
−48  
−37  
dBm  
dBm  
dBm  
dBm  
dBm  
dBc  
Unadjusted (nominal drive level)  
@ +85°C after optimization at +25°C  
@ −40°C after optimization at +25°C  
Unadjusted (nominal drive level)  
Sideband Suppression  
Second Baseband Harmonic  
Third Baseband Harmonic  
Output IP2  
(FLO − (2 × FBB)), POUT = 2.6 dBm  
(FLO + (3 × FBB)), POUT = 2.6 dBm  
F1 = +3.5 MHz, F2 = +4.5 MHz, POUT = −3 dBm per tone  
F1 = +3.5 MHz, F2 = +4.5 MHz, POUT = −3 dBm per tone  
−56  
−45  
54  
dBc  
dBc  
dBm  
dBm  
Output IP3  
21  
Quadrature Phase Error  
I/Q Amplitude Balance  
Noise Floor  
1.5  
degrees  
dB  
dBm/Hz  
dBm/Hz  
dB  
< 0.05  
−160  
−156  
−15  
20 MHz offset from LO, all BB inputs at a bias of 500 mV  
20 MHz offset from LO, output power = −5 dBm  
Output Return Loss  
LO INPUTS  
Pin LOIP and Pin LOIN  
LO Drive Level  
Characterization performed at typical level  
−10  
–7  
50  
−20  
+5  
dBm  
Ω
dB  
Input Impedance  
Input Return Loss  
BASEBAND INPUTS  
I and Q Input Bias Level  
Input Bias Current  
Bandwidth (0.1 dB)  
Bandwidth (3 dB)  
ENABLE INPUT  
350 MHz, LOIN ac-coupled to ground  
Pin IBBP, Pin IBBN, Pin QBBP, Pin QBBN  
500  
−70  
80  
mV  
μA  
MHz  
MHz  
RF = 500 MHz, output power = 0 dBm  
RF = 500 MHz, output power = 0 dBm  
ENBL  
>500  
Turn-On Settling Time  
Turn-Off Settling Time  
ENBL High Level (Logic 1)  
ENBL Low Level (Logic 0)  
TEMPERATURE OUTPUT  
Output Voltage  
ENBL = high (for output to within 0.5 dB of final value)  
ENBL = low (at supply current falling below 20 mA)  
1.0  
1.4  
μs  
μs  
V
1.5  
0.4  
V
TEMP  
1.56  
4.6  
V
TA = 27.15°C, 300K, RL = 1 MΩ (after full warmup)  
−40°C TA +85°C, RL = 1 MΩ  
Temperature Slope  
Output Impedance  
POWER SUPPLIES  
Voltage  
mV/°C  
kΩ  
1.0  
Pin VPS1 and Pin VPS2  
4.75  
5.5  
V
Supply Current  
ENBL = high  
ENBL = low  
215  
80  
240  
mA  
μA  
Rev. 0 | Page 5 of 24  
ADL5385  
ABSOLUTE MAXIMUM RATINGS  
Table 2.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Parameter  
Rating  
Supply Voltage VPOS  
5.5 V  
IBBP, IBBN, QBBP, QBBN Range  
LOIP and LOIN  
0 V to 2.0 V  
13 dBm  
Internal Power Dissipation  
θJA (Exposed Paddle Soldered Down)  
Maximum Junction Temperature  
Operating Temperature Range  
Storage Temperature Range  
1.375 W  
58°C/W  
164°C  
−40°C to +85°C  
−65°C to +150°C  
ESD CAUTION  
Rev. 0 | Page 6 of 24  
ADL5385  
PIN CONFIGURATION AND FUNCTIONAL DESCRIPTIONS  
PIN 1  
INDICATOR  
NC  
NC  
NC  
COM1  
COM1  
COM1  
1
2
3
4
5
6
18 QBBP  
17 QBBN  
16 COM2  
15 COM2  
14 IBBN  
13 IBBP  
EXPOSED  
PADDLE  
ADL5385  
4 × 4 LFCSP  
NC = NO CONNECT  
Figure 2. Pin Configuration  
Table 3. Pin Function Descriptions  
Pin No.  
Mnemonic  
Description  
1, 2, 3  
NC  
No Connection. These pins can be left open or tied to ground.  
4, 5, 6, 15,  
16, 19, 20  
COM1, COM2,  
COM3  
Power Supply Common Pins. COM1, COM2, and COM3 must all be connected to a ground plane via a  
low impedance path.  
7
VOUT  
Device Output. Single-ended, 50 Ω internally biased RF/IF output; pin must be ac-coupled to the load.  
8, 9, 11, 23,  
24  
VPS1, VPS2,  
VPS3  
Power Supply Pins. Decouple each pin with a 0.1 ꢀF capacitor; Pin 8 and Pin 9 can share a single  
capacitor, as can Pin 23 and Pin 24. All pins must be connected to the same supply (Vs).  
10  
12  
TEMP  
ENBL  
Temperature Sensor Output. Provides dc voltage proportional to die temperature. Slope is 4.6 mV/°C  
Device Enable. Shuts device down when grounded and enables device when pulled to supply  
voltage.  
13, 14, 17,  
18  
IBBP, IBBN,  
QBBN, QBBP  
Differential In-Phase and Quadrature Baseband Inputs. These high impedance inputs must be  
externally dc-biased to 500 mV dc and driven from a low impedance source. Nominal characterized  
ac signal swing is 700 mV p-p on each pin (150 mV to 850 mV). This results in a differential drive of  
1.4 V p-p with a 500 mV dc bias.  
21  
22  
LOIP  
LOIN  
Single-Ended Two-Times Local Oscillator Input. This input is internally biased and must be  
ac-coupled to the LO source.  
Common for LO Input. Must be ac-coupled to ground through a low impedance path.  
Rev. 0 | Page 7 of 24  
ADL5385  
TYPICAL PERFORMANCE CHARACTERISTICS  
Unless otherwise noted, VS = 5 V; TA = 25°C; LO = −7 dBm; I/Q inputs = 1.4 V p-p differential sine waves in quadrature on a 500 mV dc bias;  
baseband frequency = 1 MHz; LO source and RF output load impedances are 50 Ω.  
8
7
14  
13  
12  
11  
10  
9
V
V
V
= 5.5V  
= 5.V  
= 4.75V  
V
V
V
= 5.5V  
= 5.V  
= 4.75V  
S
S
S
S
S
S
6
5
4
3
2
1
8
0
7
–1  
–2  
–3  
–4  
6
5
4
50  
550  
1050  
1550  
2050  
50  
550  
1050  
1550  
2050  
OUTPUT FREQUENCY (MHz)  
OUTPUT FREQUENCY (MHz)  
Figure 3. Single Sideband (SSB) Output Power (POUT) vs. Output Frequency  
and Power Supply  
Figure 6. Output 1 dB Compression Point (OP1dB) vs. Output Frequency  
and Power Supply  
8
14  
T
T
T
= –40°C  
= +25°C  
= +85°C  
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
A
A
A
7
6
5
4
3
2
1
0
12  
10  
8
6
4
2
0
50  
550  
1050  
1550  
2050  
50  
550  
1050  
1550  
2050  
OUTPUT FREQUENCY (MHz)  
OUTPUT FREQUENCY (MHz)  
Figure 7. Output 1 dB Compression Point (OP1dB) vs. Output Frequency  
and Temperature  
Figure 4. Single Sideband (SSB) Output Power (POUT) vs. Output Frequency  
and Temperature  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
15  
10  
5
SSB OUTPUT POWER (dBm)  
2.0  
1.5  
CARRIER FEEDTHROUGH (dBm)  
SIDEBAND SUPPRESSION (dBc)  
SECOND-ORDER DISTORTION (dBc)  
THIRD-ORDER DISTORTION (dBc)  
1.0  
0.5  
0
0
–5  
–10  
–15  
–0.5  
–1.0  
–1.5  
–2.0  
0.2  
0.6  
1.0  
1.4  
1.8  
2.2  
2.6  
3.0  
3.4  
BASEBAND AMPLITUDE (V p-p)  
10M  
100M  
1G  
BASEBAND FREQUENCY (Hz)  
Figure 8. SSB Output Power, Second- and Third-Order Distortion,  
Carrier Feedthrough and Sideband Suppression vs. Differential  
Baseband Input Level; Output Frequency = 350 MHz  
Figure 5. Baseband Frequency Response Normalized to Response for 1 MHz  
BB Signal; Carrier Frequency = 500 MHz  
Rev. 0 | Page 8 of 24  
ADL5385  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
15  
10  
5
0.7100  
0.7075  
0.7050  
0.7025  
0.7000  
0.6975  
0.6950  
0.6925  
0.6900  
SSB OUTPUT POWER (dBm)  
CARRIER FEEDTHROUGH (dBm)  
SIDEBAND SUPPRESSION (dBc)  
SECOND-ORDER DISTORTION (dBc)  
THIRD-ORDER DISTORTION (dBc)  
0
–5  
–10  
–15  
0.2  
0.6  
1.0  
1.4  
1.8  
2.2  
2.6  
3.0  
3.4  
50  
250  
450  
650  
850 1050 1250 1450 1650 1850  
BASEBAND AMPLITUDE (V p-p)  
OUTPUT FREQUENCY (MHz)  
Figure 12. Distribution of Peak Q Amplitude to Null Undesired Sideband  
(Peak I Amplitude Held Constant at 0.7 V)  
Figure 9. SSB Output Power, Second- and Third-Order Distortion,  
Carrier Feedthrough and Sideband Suppression vs. Baseband Single-  
Ended Input Level; Output Frequency = 860 MHz  
0
98  
97  
96  
95  
94  
93  
92  
91  
90  
89  
88  
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
50  
550  
1050  
1550  
2050  
50  
250  
450  
650  
850 1050 1250 1450 1650 1850  
OUTPUT FREQUENCY (MHz)  
OUTPUT FREQUENCY (MHz)  
Figure 13. Distribution of IQ Phase to Null Undesired Sideband  
Figure 10. Sideband Suppression vs. Output Frequency and  
Temperature  
–20  
0
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
–25  
–30  
–35  
–40  
–45  
–50  
–55  
–60  
–65  
–70  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
1M  
10M  
100M  
50  
250  
450  
650  
850 1050 1250 1450 1650 1850  
BASEBAND FREQUENCY (Hz)  
OUTPUT FREQUENCY (MHz)  
Figure 11. Sideband Suppression vs. Baseband Frequency;  
Output Frequency = 350 MHz  
Figure 14. Sideband Suppression Distribution at Temperature Extremes,  
After Sideband Suppression Nulled to < −50 dBc at TA = +25°C  
Rev. 0 | Page 9 of 24  
ADL5385  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
0.010  
0.008  
0.006  
0.004  
0.002  
0
50MHz  
350MHz  
Q OFFSET  
I OFFSET  
–0.002  
–0.004  
–0.006  
–0.008  
–0.010  
–10  
–8  
–6  
–4  
–2  
0
2
4
50  
550  
1050  
1550  
2050  
LO AMPLITUDE (dBm)  
OUTPUT FREQUENCY (MHz)  
Figure 15. Distribution of Sideband Suppression vs. LO Input Power at  
50 MHz and 350 MHz  
Figure 18. Distribution of I and Q Offset Required to Null Carrier  
Feedthrough  
–20  
–20  
T
T
T
= –40°C  
= +25°C  
= +85°C  
50MHz  
350MHz  
A
A
A
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–30  
–40  
–50  
–60  
–70  
–80  
50  
550  
1050  
1550  
2050  
–10  
–8  
–6  
–4  
–2  
0
2
4
OUTPUT FREQUENCY (MHz)  
LO AMPLITUDE (dBm)  
Figure 16. Distribution Carrier Feedthrough vs. Output Frequency and  
Temperature  
Figure 19. Distribution Carrier Feedthrough vs. LO Input Power at  
50 MHz and 350 MHz  
0
80  
T
T
T
= –40°C  
= +25°C  
= +85°C  
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
A
A
A
OIP2  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
70  
60  
50  
40  
30  
20  
10  
0
OIP3  
50  
550  
1050  
1550  
2050  
50  
550  
1050  
1550  
2050  
OUTPUT FREQUENCY (MHz)  
OUTPUT FREQUENCY (MHz)  
Figure 17. Carrier Feedthrough Distribution at Temperature Extremes,  
After Nulling to < −65 dBm at TA = +25°C  
Figure 20. OIP3 and OIP2 vs. Output Frequency and Temperature  
Rev. 0 | Page 10 of 24  
ADL5385  
20  
18  
16  
14  
12  
10  
8
90  
60  
120  
S11 OF LOIP  
4400MHz  
150  
30  
S22 OF OUTPUT  
2200MHz  
50MHz  
180  
0
6
4
100MHz  
2
210  
330  
0
–156.7 –156.6 –156.5 –156.4 –156.3 –156.2 –156.1 –156.0 –155.9  
dBm/Hz AT 20MHz OFFSET FROM LO FREQUENCY  
Figure 21. 20 MHz Offset Noise Floor Distribution,  
Output Frequency = 350 MHz, POUT = −5 dBm, QPSK Carrier,  
Symbol Rate = 3.84 MSPS  
240  
300  
270  
20  
Figure 24. Output Impedance and LO Input Impedance vs. Frequency  
18  
16  
14  
12  
10  
8
0.300  
V
V
V
= 5.5V  
= 5V  
= 4.75V  
S
S
S
0.275  
0.250  
0.225  
0.200  
0.175  
0.150  
6
4
2
0
–155.2 –155.1 –155.0 –154.9 –154.8 –154.7 –154.6 –154.5 –154.4  
dBm/Hz AT 12MHz OFFSET FROM LO FREQUENCY  
–40  
25  
85  
Figure 22. 12 MHz Offset Noise Floor Distribution,  
TEMPERATURE (°C)  
Output Frequency = 860 MHz, POUT = −5 dBm, 64 QAM Carrier,  
Symbol Rate = 5 MSPS  
Figure 25. Power Supply Current vs. Temperature and Supply Voltage  
0
–5  
–10  
–15  
–20  
–25  
100 530 960 1390 1820 2250 2680 3110 3540 3970 4400  
LOIP FREQUENCY (MHz)  
Figure 23. LO Port Input Return Loss vs. Frequency  
Rev. 0 | Page 11 of 24  
ADL5385  
CIRCUIT DESCRIPTION  
OVERVIEW  
V-TO-I CONVERTER  
The differential baseband input voltages that are applied to the  
baseband input pins are fed to a pair of common-emitter,  
voltage-to-current converters. The output currents then  
modulate the two half-frequency LO carriers in the mixer stage.  
The ADL5385 can be divided into five sections: the local  
oscillator (LO) interface, the baseband voltage-to-current (V-to-I)  
converter, the mixers, the differential-to-single-ended (D-to-S)  
amplifier, and the bias circuit. A detailed block diagram of the  
device is shown in Figure 26.  
MIXERS  
ENBL  
The ADL5385 has two double-balanced mixers: one for the in-  
phase channel (I channel) and one for the quadrature channel  
(Q channel). These mixers are based on the Gilbert cell design  
of four cross-connected transistors. The output currents from  
the two mixers are summed together in the resistor-inductor  
(RL) loads in the D-to-S amplifier.  
BIAS  
TEMPERATURE  
TEMP  
SENSOR  
IBBP  
IBBN  
D-TO-S AMPLIFIER  
The output D-to-S amplifier consists of two emitter followers  
driving a totem-pole output stage. Output impedance is  
established by the emitter resistors in the output transistors.  
The output of this stage connects to the output (VOUT) pin.  
LOIP  
LOIN  
DIVIDE-BY-2  
QUADRATURE  
PHASE  
VOUT  
SPLITTER  
BIAS CIRCUIT  
A band gap reference circuit generates the proportional-to-  
absolute-temperature (PTAT) as well as temperature-independ-  
ent reference currents used by different sections. The band-gap  
circuit is turned on by a logic HIGH at the ENBL pin, which in  
turn powers up the whole device. A PTAT voltage output is  
available at the TEMP pin, which can be used for temperature  
monitoring as well as for temperature compensation purposes.  
QBBP  
QBBN  
Figure 26. ADL5385 Block Diagram  
The LO interface generates two LO signals at 90° of phase  
difference to drive two mixers in quadrature. Baseband signals  
are converted into currents by the V-to-I converters that feed  
into the two mixers. The outputs of the mixers are combined in  
the differential-to-single-ended amplifier, which provides a 50 Ω  
output interface. Reference currents to each section are  
generated by the bias circuit. A detailed description of each  
section follows.  
LO INTERFACE  
The LO interface consists of a buffer amplifier followed by a  
pair of frequency dividers that generate two carriers at half the  
input frequency and in quadrature with each other. Each carrier  
is then amplified and amplitude-limited to drive the double-  
balanced mixers.  
Rev. 0 | Page 12 of 24  
ADL5385  
RF Output  
BASIC CONNECTIONS  
The RF output is available at the VOUT pin (Pin 7). This pin  
must also be ac-coupled. The VOUT pin has a nominal  
broadband impedance of 50 Ω and does not need further  
external matching.  
Figure 27 shows the basic connections for the ADL5385.  
QBBP  
QBBN  
IBBN  
IBBP  
RFPQ  
0  
RFNQ  
0Ω  
RFNI  
0Ω  
RFPI  
0Ω  
CFPQ  
OPEN  
CFNQ  
OPEN  
CFNI  
OPEN  
CFPI  
OPEN  
RTQ  
OPEN  
RTI  
OPEN  
OPTIMIZATION  
R21  
The carrier feedthrough and sideband suppression performance  
of the ADL5385 can be improved through the use of optimiza-  
tion techniques.  
49.9Ω  
OFF  
ON  
SW21  
ENB  
ENBL  
19 COM3  
ENBL 12  
R22  
10kΩ  
VPOS  
R13  
0Ω  
20 COM3  
21 LOIP  
22 LOIN  
VPS2 11  
TEMP 10  
CLOP  
C16  
0.1µF  
C15  
OPEN  
LO  
Carrier Feedthrough Nulling  
0.1µF  
ADL5385  
RTEMP  
200Ω  
TEMP  
VPS1  
9
4 × 4 LFCSP  
Carrier feedthrough results from minute dc offsets that occur  
between each of the differential baseband inputs. In an ideal  
R12  
0Ω  
CLON  
0.1µF  
VPOS  
23 VPS3  
24 VPS3  
VPS1  
VOUT  
8
7
EXPOSED PADDLE  
R11  
0Ω  
C14  
0.1µF  
C13  
OPEN  
modulator, the quantities (VIOPP − VIOPN) and (VQOPP − VQOPN  
are equal to zero, and this results in no carrier feedthrough. In  
a real modulator, those two quantities are nonzero and, when  
)
C11  
C12  
0.1µF  
VOUT  
OPEN  
COUT  
0.1µF  
VPOS  
GND  
mixed with the LO, result in a finite amount of carrier feedthrough.  
The ADL5385 is designed to provide a minimal amount of carrier  
feedthrough. If even lower carrier feedthrough levels are required,  
Figure 27. Basic Connections for the ADL5385  
Power Supply and Grounding  
All the VPS pins must be connected to the same 5 V source. Adja-  
cent pins of the same name can be tied together and decoupled with  
a 0.1 μF capacitor. These capacitors are located as close as possible  
to the device. The power supply can range from 4.75 V to 5.5 V.  
minor adjustments can be made to the (VIOPP − VIOPN) and (VQOPP  
QOPN) offsets. The I-channel offset is held constant while the  
V
Q-channel offset is varied until a minimum carrier feedthrough  
level is obtained. The Q-channel offset required to achieve this  
minimum is held constant while the offset on the I-channel is  
adjusted, until a better minimum is reached. Through two  
iterations of this process, the carrier feedthrough can be  
reduced to as low as the output noise. The ability to null is  
sometimes limited by the resolution of the offset adjustment.  
Figure 28 shows the relationship of carrier feedthrough vs. dc offset.  
–58  
The COM1 pin, COM2 pin, and COM3 pin are tied to the same  
ground plane through low impedance paths. The exposed  
paddle on the underside of the package is also soldered to a low  
thermal and electrical impedance ground plane. If the ground  
plane spans multiple layers on the circuit board, they should be  
stitched together with nine vias under the exposed paddle. The  
Analog Devices AN-772 application note discusses the thermal  
and electrical grounding of the LFCSP in greater detail.  
–62  
–66  
–70  
–74  
–78  
–82  
–86  
–90  
–94  
Baseband Inputs  
The baseband inputs QBBP, QBBN, IBBP, and IBBN must be  
driven from a differential source. The nominal drive level of  
1.4 V p-p differential (700 mV p-p on each pin) is biased to  
a common-mode level of 500 mV dc.  
The dc common-mode bias level for the baseband inputs can  
range from 400 mV to 600 mV. This results in a reduction in the  
usable input ac swing range. The nominal dc bias of 500 mV  
allows for the largest ac swing, limited on the bottom end by the  
ADL5385 input range and on the top end by the output  
compliance range on most Analog Devices DACs.  
VP-VN OFFEST (µV)  
LO Input  
Figure 28. Carrier Feedthrough vs. DC Offset Voltage at 450 MHz  
A single-ended LO signal is applied to the LOIP pin through an  
ac coupling capacitor. The recommended LO drive power is  
−7 dBm. The LO return pin, LOIN, must be ac-coupled to  
ground though a low impedance path.  
Note that throughout the nulling process, the dc bias for the  
baseband inputs remains at 500 mV. When no offset is applied,  
V
V
IOPP = VIOPN = 500 mV, or  
IOPP VIOPN = VIOS = 0 V  
The nominal LO drive of −7 dBm can be increased to up to  
+5 dBm. The effect of LO power on sideband suppression and  
carrier feedthrough is shown in Figure 15 and Figure 19.  
Rev. 0 | Page 13 of 24  
ADL5385  
When an offset of +VIOS is applied to the I-channel inputs,  
Sideband Suppression Optimization  
Sideband suppression results from relative gain and relative  
phase offsets between the I and Q channels and can be  
suppressed through adjustments to those two parameters.  
Figure 30 illustrates how sideband suppression is affected by the  
gain and phase imbalances.  
V
V
V
IOPP = 500 mV + VIOS/2, while  
IOPN = 500 mV − VIOS/2, such that  
IOPP VIOPN = VIOS  
The same applies to the Q channel.  
It is often desirable to perform a one-time carrier null  
calibration. This is usually performed at a single frequency.  
Figure 29 shows how carrier feedthrough varies with LO  
frequency over a range of 50 MHz on either side of a null at  
350 MHz.  
0
–10  
2.5dB  
–20  
1.25dB  
0.5dB  
–30  
–40  
–50  
–60  
–70  
–80  
0.25dB  
0.125dB  
–25  
–30  
–35  
–40  
–45  
–50  
–55  
–60  
–65  
–70  
–75  
–80  
0.05dB  
0.025dB  
0.0125dB  
0dB  
–90  
0.01  
0.1  
1
10  
100  
PHASE ERROR (Degrees)  
Figure 30. Sideband Suppression vs. Quadrature Phase Error for Various  
Quadrature Amplitude Offsets  
Figure 30 underscores the fact that adjusting one parameter  
improves the sideband suppression only to a point; the other  
parameter must also be adjusted. For example, if the amplitude  
offset is 0.25 dB, improving the phase imbalance better than 1°  
does not yield any improvement in the sideband suppression.  
For optimum sideband suppression, an iterative adjustment  
between phase and amplitude is required.  
–85  
300 310 320 330 340 350 360 370 380 390 400  
OUTPUT FREQUENCY (MHz)  
Figure 29. Carrier Feedthrough vs. Frequency After Nulling at 350 MHz  
The sideband suppression nulling can be performed either through  
adjusting the gain for each channel or through the modification  
of the phase and gain of the digital data coming from the digital  
signal processor.  
Rev. 0 | Page 14 of 24  
ADL5385  
APPLICATIONS  
DAC MODULATOR INTERFACING  
AD9777  
ADL5385  
73  
72  
13  
14  
The ADL5385 is designed to interface with minimal components  
to members of the Analog Devices family of digital-to-analog  
converters (DAC). These DACs feature an output current swing  
from 0 to 20 mA, and the interface described in this section can  
be used with any DAC that has a similar output.  
I
IBBP  
OUTA1  
RBIP  
50  
RSLI  
100Ω  
RBIN  
50Ω  
I
IBBN  
QBBN  
QBBP  
OUTB1  
Driving the ADL5385 with an Analog Devices TxDAC®  
69  
68  
17  
18  
I
OUTB2  
An example of the interface using the AD9777 TxDAC is shown  
in Figure 31. The baseband inputs of the ADL5385 require a dc  
bias of 500 mV. The average output current on each of the  
outputs of the AD9777 is 10 mA. Therefore, a single 50 Ω  
resistor to ground from each of the DAC outputs results in an  
average current of 10 mA flowing through each of the resistors,  
thus producing the desired 500 mV dc bias for the inputs to the  
ADL5385.  
RBQN  
50Ω  
RSLQ  
100Ω  
RBQP  
50Ω  
I
OUTA2  
Figure 32. AC Voltage Swing Reduction Through Introduction of Shunt  
Resistor Between Differential Pair  
The value of this ac voltage swing-limiting resistor is chosen  
based on the desired ac voltage swing. Figure 33 shows the  
relationship between the swing-limiting resistor and the peak-  
to-peak ac swing that it produces when 50 Ω bias-setting  
resistors are used.  
AD9777  
ADL5385  
73  
72  
13  
14  
I
IBBP  
OUTA1  
RBIP  
50Ω  
RBIN  
50Ω  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
I
OUTB1  
IBBN  
QBBN  
QBBP  
69  
68  
17  
18  
I
OUTB2  
RBQN  
50Ω  
RBQP  
50Ω  
I
OUTA2  
Figure 31. Interface Between AD9777 and ADL5385 with 50 Ω Resistors to  
Ground to Establish the 500 mV DC Bias for the ADL5385 Baseband Inputs  
The AD9777 output currents have a swing that ranges from  
0 to 20 mA. With the 50 Ω resistors in place, the ac voltage  
swing going into the ADL5385 baseband inputs ranges from  
0 V to 1 V. A full-scale sine wave out of the AD9777 can be  
described as a 1 V p-p single-ended (or 2 V p-p differential)  
sine wave with a 500 mV dc bias.  
10  
100  
1000  
10000  
R
()  
L
Figure 33. Relationship Between AC Swing-Limiting Resistor and  
Peak-to-Peak Voltage Swing with 50 Ω Bias-Setting Resistors  
Filtering  
Limiting the AC Swing  
When driving a modulator from a DAC, it is necessary to  
introduce a low-pass filter between the DAC and the modulator  
to reduce the DAC images. The interface for setting up the  
biasing and ac swing lends itself well to the introduction of such  
a filter. The filter can be inserted in between the dc bias setting  
resistors and the ac swing-limiting resistor, thus establishing the  
input and output impedances for the filter.  
There are situations in which it is desirable to reduce the  
ac voltage swing for a given DAC output current. This can be  
achieved through the addition of another resistor to the  
interface. This resistor is placed in shunt between each side of  
the differential pair, as illustrated in Figure 32. It has the effect  
of reducing the ac swing without changing the dc bias already  
established by the 50 Ω resistors.  
Examples of filters are discussed in the 155 MBPS (STM-1) 128  
QAM Transmitter and the CMTS Transmitter Application  
sections.  
Rev. 0 | Page 15 of 24  
ADL5385  
Using AD9777 Auxiliary DAC for Carrier Feedthrough  
Nulling  
79  
77  
75  
73  
71  
69  
67  
65  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
SNR  
The AD9777 features an auxiliary DAC that can be used to  
inject small currents into the differential outputs for each  
channel. The auxiliary DAC can produce the small offset  
currents necessary to implement the nulling described in the  
Carrier Feedthrough Nulling section.  
EVM WITHOUT EQUALIZATION  
EVM WITH EQUALIZATION  
155 Mbps (STM-1) 128 QAM TRANSMITTER  
Figure 34 shows how the ADL5385 can be interfaced to the  
AD9777 DAC (or any Analog Devices dual DAC with an output  
bias level of 0.5 V) to generate a 155 Mbps 128 QAM carrier at  
355 MHz. Because the TxDAC output and the IQ modulator inputs  
operate at the same bias levels of 0.5 V, a simple dc-coupled  
connection can be implemented without any active or passive  
level shifting. The bias level and modulator drive level is set by  
the 50 Ω ground-referenced resistors and the 100 Ω shunt  
resistors, respectively (see the DAC Modulator Interfacing  
section). A baseband filter is placed between the bias and signal  
swing resistors. This 5-pole Chebychev filter with in-band  
ripple of 0.1 dB has a corner frequency of 39 MHz.  
I
–18  
–16  
–14  
–12  
–10  
–8  
–6  
–4  
–2  
0
CARRIER POWER (dBm)  
Figure 36. EVM and SNR vs. Output Power for 128 QAM Transmitter  
Application  
CMTS TRANSMITTER APPLICATION  
Because of its broadband operating range from 50 MHz to  
2200 MHz, the ADL5385 can be used in direct-launch cable  
modem termination systems (CMTS) applications in the  
50 MHz to 860 MHz cable band.  
50LINE  
100LINE  
CHANNEL  
0Ω  
317.4nH  
372.5nH  
The same DAC and DAC-to-modulator interface and filtering  
circuit shown in Figure 34 was used in this application. Figure 37  
shows a plot of a 4-carrier 256 QAM spectrum at an output  
frequency of 485 MHz. Figure 38 shows how adjacent channel  
power (measured at 750 KHz, 5.25 MHz, and 12 MHz offset  
from the last carrier) and modulation error ratio (MER) vary  
with carrier power.  
IBBP  
50Ω  
67.5pF  
1/2  
AD9777  
156.9pF  
372.5nH  
124.7pF  
100LINE  
200Ω  
317.4nH  
50LINE  
0Ω  
IBBN  
50Ω  
67.5pF  
156.9pF  
124.7pF  
ADL5385  
QBBP  
Q
50LINE  
100LINE  
CHANNEL  
0Ω  
0Ω  
317.4nH  
317.4nH  
372.5nH  
50Ω  
67.5pF  
1/2  
AD9777  
156.9pF  
372.5nH  
124.7pF  
100LINE  
200Ω  
50LINE  
QBBN  
50Ω  
67.5pF  
156.9pF  
124.7pF  
–70  
Figure 34. Recommended DAC-Modulator Interconnect for128 QAM  
Transmitter  
–80  
–90  
Figure 35 shows a spectral plot of the 128 QAM spectrum at  
a carrier power of −6.3 dBm. Figure 36 shows how EVM  
(measured with the analyzer’s internal equalizer both on and  
off) and SNR, measured at 55 MHz carrier offset (2.5 times the  
carrier bandwidth) varies with output power.  
–70  
–100  
–110  
–120  
–130  
–140  
–150  
–160  
–80  
–90  
–170  
–100  
–110  
–120  
–130  
–140  
–150  
430 440 450 460 470 480 490 500 510 520 530 540  
FREQUENCY (MHz)  
Figure 37. Spectrum of 4-Carrier 256 QAM CMTS Signal at 485 MHz  
–160  
290 300 310 320 330 340 350 360 370 380 390 400 410 420  
FREQUENCY (MHz)  
Figure 35. Spectral Plot of 128 QAM Transmitter at −6.3 dBm Output Power  
Rev. 0 | Page 16 of 24  
ADL5385  
–50  
–55  
–60  
–65  
–70  
–75  
–80  
–85  
–90  
48  
47  
46  
45  
44  
43  
42  
41  
40  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
P
OUT  
P
3LO + BB  
ACPR2 (5.25MHz)  
ACPR3 (6.00MHz)  
P
7LO + BB  
P
5LO – BB  
ACPR1 (750kHz)  
P
2LO – BB  
MER  
P
4LO + BB  
P
6LO – BB  
–24  
–22  
–20  
–18  
–16  
–14  
–12  
–10  
0
100 200 300 400 500 600 700 800 900 1000  
OUTPUT FREQUENCY (MHz)  
CARRIER POWER (dBm)  
Figure 38. ACP1, ACP2, ACP3, and Modulation Error Ratio (MER) vs. Output  
Power for 256 QAM Transmitter  
Figure 39. Spectral Components for Output Frequencies  
from 50 MHz to 1000 MHz  
SPECTRAL PRODUCTS FROM HARMONIC MIXING  
RF SECOND-ORDER PRODUCTS  
For broadband applications such as cable TV head-end  
modulators, special attention must be paid to harmonics of the  
LO. Figure 39 shows the level of these harmonics (out to 3 GHz)  
as a function of the output frequency from 50 MHz to 1000 MHz,  
in a single-sideband (SSB) test configuration, with a baseband  
signal of 1 MHz and a SSB level of approximately −5 dBm. To  
read this plot correctly, first pick the output frequency of  
interest on the trace called POUT. The associated harmonics can  
be read off the harmonic traces at multiples of this frequency.  
For example, at an output frequency of 500 MHz, the  
fundamental power is −5 dBm. The power of the second  
(P2fc − BB) and third (P3fc + BB) harmonics is −63 dBm (at 1000 MHz)  
and −16 dBm (at 1500 MHz), respectively. Of particular  
importance are the products from odd-harmonics of the LO,  
generated from the switching operation in the mixers.  
A two-tone RF output signal produces second-order spectral  
components at sum and difference frequencies. In broadband  
systems, these intermodulation products fall inside the carrier  
or in the adjacent channels. Output second-order RF  
intermodulation intercept is defined as  
OIP2_RF = POUT + (POUT PIM(RF)  
)
where PIM(RF) is the level of the intermodulation product at  
FOUT1 + FOUT2. OIP2_RF levels from a two-tone test are plotted  
as a function of carrier frequency in Figure 40, where the  
baseband tones are 3.5 MHz and 4.5 MHz at −5 dBm each.  
70  
60  
50  
40  
30  
20  
10  
0
For cable TV operation at frequencies above approximately  
500 MHz, these harmonics fall out of the band and can be  
filtered by a fixed filter. However, as the frequency drops below  
500 MHz, these harmonics start to fall close to or inside the  
cable band. This calls for either limitation of the frequency  
range to above 500 MHz or the use of a switchable filter bank to  
block in-band harmonics at low frequencies.  
0
250  
500  
750 1000 1250 1500 1750 2000 2250  
OUTPUT FREQUENCY (MHz)  
Figure 40. Output Second-Order Intermodulation vs. Carrier Frequency  
Rev. 0 | Page 17 of 24  
ADL5385  
LO GENERATION USING PLLs  
TRANSMIT DAC OPTIONS  
Analog Devices has a line of PLLs that can be used for  
generating the LO signal. Table 4 lists the PLLs together with  
their maximum frequency and phase noise performance.  
The AD9777 recommended in the previous sections is by no  
means the only DAC that can be used to drive the ADL5385.  
There are other appropriate DACs depending on the level of  
performance required. Table 6 lists the dual Tx-DACs that  
Analog Devices offers.  
Table 4. PLL Selection Table  
@ 1 kHz Phase Noise  
Table 6. Dual Tx—DAC Selection Table  
Model  
Frequency FIN (MHz)  
dBc/Hz, 200 kHz PFD  
−91 @ 540 MHz  
−87@ 900 MHz  
−90 @ 900 MHz  
−91 @ 900 MHz  
−89 @ 540 MHz  
−87 @ 900 MHz  
−90 @ 900 MHz  
Update Rate  
(MSPS Minimum)  
ADF4110 550  
ADF4111 1200  
ADF4112 3000  
ADF4113 4000  
ADF4116 550  
ADF4117 1200  
ADF4118 3000  
Part  
Resolution (Bits)  
AD9709  
AD9761  
AD9763  
AD9765  
AD9767  
AD9773  
AD9775  
AD9777  
AD9776  
AD9778  
AD9779  
8
125  
40  
10  
10  
12  
14  
12  
14  
16  
12  
14  
16  
125  
125  
125  
160  
160  
160  
1000  
1000  
1000  
The ADF4360 comes as a family of chips, with nine operating  
frequency ranges. One can be chosen depending on the local  
oscillator frequency required. While the use of the integrated  
synthesizer might come at the expense of slightly degraded  
noise performance from the ADL5385, it can be a cheaper  
alternative to a separate PLL and VCO solution. Table 5 shows  
the options available.  
All DACs listed have nominal bias levels of 0.5 V and use the  
same DAC-modulator interface shown in Figure 31.  
Table 5. ADF4360 Family Operating Frequencies  
MODULATOR/DEMODULATOR OPTIONS  
Model  
Output Frequency Range (MHz)  
Table 7 lists other Analog Devices modulators and  
demodulators.  
ADF4360-0  
ADF4360-1  
ADF4360-2  
ADF4360-3  
ADF4360-4  
ADF4360-5  
ADF4360-6  
ADF4360-7  
ADF4360-8  
2400/2725  
2050/2450  
1850/2150  
1600/1950  
1450/1750  
1200/1400  
1050/1250  
350/1800  
Table 7. Modulator/Demodulator Options  
Frequency  
Part  
Mod/Demod Range (MHz) Comments  
AD8345  
AD8346  
AD8349  
ADL5390 Mod  
ADL5370 Mod  
ADL5371 Mod  
ADL5372 Mod  
ADL5373 Mod  
ADL5374 Mod  
AD8347  
AD8348  
AD8340  
AD8341  
Mod  
Mod  
Mod  
140 to 1000  
800 to 2500  
700 to 2700  
20 to 2400  
300 to 1000  
700 to 1300  
1600 to 2400  
2300 to 3000  
3000 to 4000  
800 to 2700  
50 to 1000  
65/400  
External Quadrature  
Demod  
Demod  
Vector Mod  
Vector Mod  
700 to 1000  
1500 to 2400  
Rev. 0 | Page 18 of 24  
ADL5385  
EVALUATION BOARD  
A populated, RoHS-compliant ADL5385 evaluation board is available. The ADL5385 has an exposed paddle underneath the package,  
which is soldered to the board. The evaluation board is designed without any components on the underside so that heat can be applied to  
the underside for easy removal and replacement of the ADL5385.  
QBBP  
QBBN  
IBBN  
IBBP  
RFPQ  
0  
RFNQ  
0Ω  
RFNI  
0Ω  
RFPI  
0Ω  
CFPQ  
OPEN  
CFNQ  
OPEN  
CFNI  
OPEN  
CFPI  
OPEN  
RTQ  
OPEN  
RTI  
OPEN  
R21  
49.9Ω  
ON  
OFF  
SW21  
ENB  
ENBL  
19 COM3  
ENBL 12  
R22  
10kΩ  
VPOS  
C15  
OPEN  
R13  
0Ω  
VPS2 11  
TEMP 10  
20 COM3  
21 LOIP  
22 LOIN  
CLOP  
0.1µF  
C16  
0.1µF  
LO  
ADL5385  
RTEMP  
200Ω  
TEMP  
VPS1  
9
4 × 4 LFCSP  
R12  
CLON  
0.1µF  
0Ω  
VPOS  
VPS1  
VOUT  
8
7
23 VPS3  
24 VPS3  
EXPOSED PADDLE  
R11  
0Ω  
C14  
0.1µF  
C13  
OPEN  
C11  
OPEN  
C12  
0.1µF  
VOUT  
COUT  
0.1µF  
VPOS  
GND  
Figure 41. Evaluation Board Schematic  
Table 8. Evaluation Board Configuration Options  
Component  
Function  
Default Condition  
VPOS, GND  
Power Supply and Ground Clip Leads.  
Not applicable  
SW21, R21,  
R22, ENB Test  
Point, ENBL  
SMA  
Device Enable. Set SW21 to the OFF position to power down the device; set SW21 to the ON  
position to enable the device. Part can be driven from an external enable control source via the  
test point or the SMA connector. R21 provides a 50 Ω termination for any 50 Ω driving source.  
R21 = 50 Ω, R22 =  
10k Ω, SW21 = ON  
RFNQ, CFNQ,  
RTQ, CFPQ,  
RFPQ, RFNI,  
CFNI, RTI, CFPI,  
RFPI  
Baseband Input Filters. These components can be used to implement a low-pass filter for the  
baseband signals.  
RFNQ, RFPQ, RFNI  
RFPI = 0 Ω (0402)  
RTQ, RTI = open  
(0402)  
CFNQ, CFPQ, CFNI,  
CFPI = open (0402)  
Rev. 0 | Page 19 of 24  
ADL5385  
Figure 42. Layout of Evaluation Board  
Rev. 0 | Page 20 of 24  
ADL5385  
CHARACTERIZATION SETUP  
SSB SETUP  
Figure 43 is a diagram of the characterization test stand setup for the ADL5385, which is intended to test the product as a single-sideband  
modulator. The Aeroflex IFR3416 signal generator provides the I and Q inputs as well as the LO input. Output signals are measured  
directly using the spectrum analyzer, and currents and voltages are measured using the Agilent 34401A multimeter.  
AEROFLEX IFR 3416 250kHz TO 6GHz  
FREQ 100MHz TO 4GHz LEVEL 0dBm  
SIGNAL GENERATOR  
BIAS 0.5V  
BIAS 0.5V  
GAIN 0.7V  
GAIN 0.7V  
R&S SPECTRUM ANALYZER FSU 20Hz TO 8GHz  
RF  
OUT  
LO  
50MHz TO 2GHz  
+6dBm  
CONNECT TO BACK OF UNIT  
RF  
IN  
Q
I
90 DEG  
0 DEG  
OUTPUT  
RLM TEST RACK 1  
GND  
VPOS  
ADL5385  
AGILENT 34401A MULTIMETER  
0.210 ADC  
J1(OUT)  
J3(QN)  
J4(QP)  
J7(LO)  
J6(IP)  
J5(IN)  
VPOS +5V  
5.0000 0.210A  
AGILENT E3631A  
POWER SUPPLY  
±25V  
COM  
+
6V  
+
DELL  
Figure 43. ADL5385 Characterization Board SSB Test Setup  
Rev. 0 | Page 21 of 24  
ADL5385  
OUTLINE DIMENSIONS  
0.60 MAX  
4.00  
BSC SQ  
0.60 MAX  
PIN 1  
INDICATOR  
1
24  
19  
18  
0.50  
BSC  
PIN 1  
INDICATOR  
*
2.45  
2.30 SQ  
2.15  
TOP  
3.75  
EXPOSED  
VIEW  
BSC SQ  
PA D  
(BOTTOMVIEW)  
0.50  
0.40  
0.30  
6
13  
12  
7
0.23 MIN  
2.50 REF  
0.80 MAX  
0.65 TYP  
1.00  
0.85  
0.80  
12° MAX  
0.05 MAX  
0.02 NOM  
0.30  
0.23  
0.18  
COPLANARITY  
0.08  
0.20 REF  
SEATING  
PLANE  
*
COMPLIANT TO JEDEC STANDARDS MO-220-VGGD-2  
EXCEPT FOR EXPOSED PAD DIMENSION  
Figure 44. 24-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
4 mm × 4 mm Body, Very Thin Quad  
(CP-24-2)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model  
ADL5385ACPZ-WP1  
ADL5385ACPZ-R21  
ADL5385ACPZ-R71  
ADL5385-EVALZ1  
Temperature Range  
–40°C to +85°C  
–40°C to +85°C  
Package Description  
Package Option  
CP-24-2  
CP-24-2  
Ordering Quantity  
24-Lead LFCSP_VQ, Waffle Pack  
24-Lead LFCSP_VQ, 7”Tape and Reel  
24-Lead LFCSP_VQ, 7”Tape and Reel  
Evaluation Board  
64  
250  
1500  
1
–40°C to +85°C  
CP-24-2  
1 Z = Pb-free part.  
Rev. 0 | Page 22 of 24  
ADL5385  
NOTES  
Rev. 0 | Page 23 of 24  
ADL5385  
NOTES  
©2006 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D06118-0-10/06(0)  
Rev. 0 | Page 24 of 24  

相关型号:

ADL5385ACPZ-WP

50 MHz to 2200 MHz Quadrature Modulator
ADI

ADL5386

Correcting Imperfections in IQ Modulators to Improve RF Signal Fidelity
ADI

ADL5386ACPZ-R2

SPECIALTY TELECOM CIRCUIT, QCC40, 6 X 6 MM, ROHS COMPLIANT, MO-220-VJJD-2, LFCSP-40
ADI

ADL5386ACPZ-R7

50 MHz TO 2200 MHz Quadrature Modulator with Integrated Detector and VVA
ADI

ADL5387

50 MHz to 2 GHz Quadrature Demodulator
ADI

ADL5387-EVALZ1

50 MHz to 2 GHz Quadrature Demodulator
ADI

ADL5387ACPZ-R2

30 MHz TO 2 GHz Quadrature Demodulator
ADI

ADL5387ACPZ-R7

30 MHz TO 2 GHz Quadrature Demodulator
ADI

ADL5387ACPZ-R71

50 MHz to 2 GHz Quadrature Demodulator
ADI

ADL5387ACPZ-WP1

50 MHz to 2 GHz Quadrature Demodulator
ADI

ADL5390

RF/IF Vector Multiplier
ADI

ADL5390-EVAL

RF/IF Vector Multiplier
ADI