ADL5387ACPZ-R2 [ADI]

30 MHz TO 2 GHz Quadrature Demodulator;
ADL5387ACPZ-R2
型号: ADL5387ACPZ-R2
厂家: ADI    ADI
描述:

30 MHz TO 2 GHz Quadrature Demodulator

电信 电信集成电路
文件: 总28页 (文件大小:695K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
30 MHz to 2 GHz  
Quadrature Demodulator  
Data Sheet  
ADL5387  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
24  
CMRF CMRF RFIP RFIN CMRF VPX  
VPA  
23  
22  
21  
20  
19  
Operating RF frequency  
30 MHz to 2 GHz  
LO input at 2 × fLO  
1
2
3
4
5
6
VPB 18  
VPB 17  
QHI 16  
QLO 15  
IHI 14  
60 MHz to 4 GHz  
COM  
BIAS  
VPL  
VPL  
VPL  
Input IP3: 31 dBm @ 900 MHz  
Input IP2: 62 dBm @ 900 MHz  
Input P1dB: 13 dBm @ 900 MHz  
Noise figure (NF)  
12.0 dB @ 140 MHz  
14.7 dB @ 900 MHz  
Voltage conversion gain > 4 dB  
Quadrature demodulation accuracy  
Phase accuracy ~0.4°  
Amplitude balance ~0.05 dB  
Demodulation bandwidth ~240 MHz  
Baseband I/Q drive 2 V p-p into 200 Ω  
Single 5 V supply  
DIVIDE-BY-2  
PHASE SPLITTER  
ILO 13  
CML LOIP LOIN CML CML COM  
10 11 12  
7
8
9
Figure 1.  
APPLICATIONS  
QAM/QPSK RF/IF demodulators  
W-CDMA/CDMA/CDMA2000/GSM  
Microwave point-to-(multi)point radios  
Broadband wireless and WiMAX  
Broadband CATVs  
GENERAL DESCRIPTION  
The ADL5387 is a broadband quadrature I/Q demodulator that  
covers an RF/IF input frequency range from 30 MHz to 2 GHz.  
With a NF = 13.2 dB, IP1dB = 12.7 dBm, and IIP3 = 32 dBm @  
450 MHz, the ADL5387 demodulator offers outstanding dynamic  
range suitable for the demanding infrastructure direct-conversion  
requirements. The differential RF/IF inputs provide a well-  
behaved broadband input impedance of 50 Ω and are best  
driven from a 1:1 balun for optimum performance.  
The fully balanced design minimizes effects from second-order  
distortion. The leakage from the LO port to the RF port is  
<−70 dBc. Differential dc-offsets at the I and Q outputs are  
<10 m V. Both of these factors contribute to the excellent IIP2  
specifications > 60 dBm.  
The ADL5387 operates off a single 4.75 V to 5.25 V supply. The  
supply current is adjustable with an external resistor from the  
BIAS pin to ground.  
Ultrabroadband operation is achieved with a divide-by-2 method  
for local oscillator (LO) quadrature generation. Over a wide  
range of LO levels, excellent demodulation accuracy is  
achieved with amplitude and phase balances ~0.05 dB and  
~0.4°, respectively. The demodulated in-phase (I) and  
quadrature (Q) differential outputs are fully buffered and  
provide a voltage conversion gain of >4 dB. The buffered  
baseband outputs are capable of driving a 2 V p-p differential  
signal into 200 Ω.  
The ADL5387 is fabricated using the Analog Devices, Inc.  
advanced silicon-germanium bipolar process and is available in  
a 24-lead exposed paddle LFCSP.  
Rev. A  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rightsof third parties that may result fromits use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks andregisteredtrademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 ©2007–2013 Analog Devices, Inc. All rights reserved.  
Technical Support  
www.analog.com  
 
 
 
 
ADL5387  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Mixers .......................................................................................... 14  
Emitter Follower Buffers ........................................................... 14  
Bias Circuit.................................................................................. 14  
Applications Information.............................................................. 15  
Basic Connections...................................................................... 15  
Power Supply............................................................................... 15  
Local Oscillator (LO) Input ...................................................... 15  
RF Input....................................................................................... 16  
Baseband Outputs ...................................................................... 16  
Error Vector Magnitude (EVM) Performance ....................... 17  
Low IF Image Rejection............................................................. 18  
Example Baseband Interface..................................................... 18  
Characterization Setups................................................................. 21  
Evaluation Board ............................................................................ 23  
Outline Dimensions....................................................................... 26  
Ordering Guide .......................................................................... 26  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Absolute Maximum Ratings............................................................ 5  
ESD Caution.................................................................................. 5  
Pin Configuration and Function Descriptions............................. 6  
Typical Performance Characteristics ............................................. 7  
Distributions for fRF = 140 MHz............................................... 10  
Distributions for fRF = 450 MHz............................................... 11  
Distributions for fRF = 900 MHz............................................... 12  
Distributions for fRF = 1900 MHz............................................. 13  
Circuit Description......................................................................... 14  
LO Interface................................................................................. 14  
V-to-I Converter......................................................................... 14  
REVISION HISTORY  
5/13—Rev. 0 to Rev. A  
Changed Minimum Operating RF Frequency from 50 MHz to  
30 MHz (Throughout) ..................................................................... 1  
Changed Minimum LO Input at 2 × fLO from 100 MHz to  
60 MHz (Throughout) ..................................................................... 1  
Added Dynamic Performance @ RF = 30 MHz Parameters ...... 3  
Changes to Local Oscillator (LO) Input Section........................ 15  
Changes to Table 4.......................................................................... 24  
Updated Outline Dimensions....................................................... 26  
Changes to Ordering Guide .......................................................... 26  
10/07—Revision 0: Initial Version  
Rev. A | Page 2 of 28  
 
Data Sheet  
ADL5387  
SPECIFICATIONS  
VS = 5 V, TA = 25°C, fRF = 900 MHz, fIF = 4.5 MHz, PLO = 0 dBm, BIAS pin open, ZO = 50 Ω, unless otherwise noted, baseband outputs  
differentially loaded with 450 Ω.  
Table 1.  
Parameter  
Condition  
Min  
Typ  
Max Unit  
OPERATING CONDITIONS  
LO Frequency Range  
RF Frequency Range  
LO INPUT  
External input = 2xLO frequency  
0.06  
0.03  
4
2
GHz  
GHz  
LOIP, LOIN  
Input Return Loss  
AC-coupled into LOIP with LOIN bypassed,  
measured at 2 GHz  
−10  
0
dB  
LO Input Level  
−6  
+6  
dBm  
I/Q BASEBAND OUTPUTS  
Voltage Conversion Gain  
QHI, QLO, IHI, ILO  
450 Ω differential load on I and Q outputs  
(@ 900 MHz)  
200 Ω differential load on I and Q outputs  
(@ 900 MHz)  
4.3  
3.2  
dB  
dB  
Demodulation Bandwidth  
Quadrature Phase Error  
I/Q Amplitude Imbalance  
Output DC Offset (Differential)  
Output Common-Mode  
0.1 dB Gain Flatness  
Output Swing  
1 V p-p signal 3 dB bandwidth  
@ 900 MHz  
240  
0.4  
0.1  
5
VPOS − 2.8  
40  
2
MHz  
Degrees  
dB  
mV  
V
MHz  
V p-p  
mA  
0 dBm LO input  
Differential 200 Ω load  
Each pin  
Peak Output Current  
POWER SUPPLIES  
12  
VPA, VPL, VPB, VPX  
Voltage  
4.75  
5.25  
V
Current  
BIAS pin open  
RBIAS = 4 kΩ  
180  
157  
mA  
mA  
DYNAMIC PERFORMANCE @ RF = 30 MHz  
Conversion Gain  
Input P1dB (IP1dB)  
Second-Order Input Intercept (IIP2)  
Third-Order Input Intercept (IIP3)  
I/Q Magnitude Imbalance  
I/Q Phase Imbalance  
RFIP, RFIN, L1, L2 = 680 nH, C10, C11 = 0.01 μF1  
4.5  
12  
69  
31  
0.1  
0.3  
dB  
dBm  
dBm  
dBm  
dB  
−5 dBm each input tone  
−5 dBm each input tone  
Degrees  
DYNAMIC PERFORMANCE @ RF = 140 MHz  
Conversion Gain  
Input P1dB (IP1dB)  
Second-Order Input Intercept (IIP2)  
Third-Order Input Intercept (IIP3)  
LO to RF  
RFIP, RFIN  
4.7  
13  
67  
31  
−100  
dB  
dBm  
dBm  
dBm  
dBm  
−5 dBm each input tone  
−5 dBm each input tone  
RFIN, RFIP terminated in 50 Ω, 1xLO  
appearing at the RF port  
RF to LO  
LOIN, LOIP terminated in 50 Ω  
−95  
0.05  
0.2  
dBc  
dB  
Degrees  
dBm  
I/Q Magnitude Imbalance  
I/Q Phase Imbalance  
LO to I/Q  
RFIN, RFIP terminated in 50 Ω, 1xLO  
appearing at the BB port  
−39  
Noise Figure  
Noise Figure under Blocking Conditions  
12.0  
14.4  
dB  
dB  
With a −5 dBm interferer 5 MHz away  
Rev. A | Page 3 of 28  
 
ADL5387  
Data Sheet  
Parameter  
Condition  
Min Typ  
Max Unit  
DYNAMIC PERFORMANCE @ RF = 450 MHz  
Conversion Gain  
4.4  
dB  
Input P1dB (IP1dB)  
12.7  
69.2  
32.8  
−87  
dBm  
dBm  
dBm  
dBm  
Second-Order Input Intercept (IIP2)  
Third-Order Input Intercept (IIP3)  
LO to RF  
−5 dBm each input tone  
−5 dBm each input tone  
RFIN, RFIP terminated in 50 Ω, 1xLO  
appearing at the RF port  
RF to LO  
LOIN, LOIP terminated in 50 Ω  
−90  
0.05  
0.6  
dBc  
dB  
Degrees  
dBm  
I/Q Magnitude Imbalance  
I/Q Phase Imbalance  
LO to I/Q  
RFIN, RFIP terminated in 50 Ω, 1xLO  
appearing at the BB port  
−38  
Noise Figure  
13.2  
dB  
DYNAMIC PERFORMANCE @ RF = 900 MHz  
Conversion Gain  
4.3  
dB  
Input P1dB (IP1dB)  
12.8  
61.7  
31.2  
−79  
dBm  
dBm  
dBm  
dBm  
Second-Order Input Intercept (IIP2)  
Third-Order Input Intercept (IIP3)  
LO to RF  
−5 dBm each input tone  
−5 dBm each input tone  
RFIN, RFIP terminated in 50 Ω, 1xLO  
appearing at the RF port  
RF to LO  
LOIN, LOIP terminated in 50 Ω  
−88  
0.05  
0.2  
dBc  
dB  
Degrees  
dBm  
I/Q Magnitude Imbalance  
I/Q Phase Imbalance  
LO to I/Q  
RFIN, RFIP terminated in 50 Ω,  
1XLO appearing at the BB port  
−41  
Noise Figure  
Noise Figure under Blocking Conditions  
DYNAMIC PERFORMANCE @ RF = 1900 MHz  
14.7  
15.8  
dB  
dB  
With a −5 dBm interferer 5 MHz away  
Conversion Gain  
3.8  
dB  
Input P1dB (IP1dB)  
12.8  
59.8  
27.4  
−75  
dBm  
dBm  
dBm  
dBm  
Second-Order Input Intercept (IIP2)  
Third-Order Input Intercept (IIP3)  
LO to RF  
−5 dBm each input tone  
−5 dBm each input tone  
RFIN, RFIP terminated in 50 Ω, 1xLO  
appearing at the RF port  
RF to LO  
LOIN, LOIP terminated in 50 Ω  
−70  
0.05  
0.3  
dBc  
dB  
Degrees  
dBm  
I/Q Magnitude Imbalance  
I/Q Phase Imbalance  
LO to I/Q  
RFIN, RFIP terminated in 50 Ω, 1xLO  
appearing at the BB port  
−43  
Noise Figure  
Noise Figure under Blocking Conditions  
16.5  
18.7  
dB  
dB  
With a −5 dBm interferer 5 MHz away  
1 See Figure 63 for locations of L1, L2, C10, and C11.  
Rev. A | Page 4 of 28  
 
Data Sheet  
ADL5387  
ABSOLUTE MAXIMUM RATINGS  
ESD CAUTION  
Table 2.  
Parameter  
Rating  
Supply Voltage VPOS1, VPOS2, VPOS3  
LO Input Power  
5.5 V  
13 dBm (re: 50 Ω)  
15 dBm (re: 50 Ω)  
1100 mW  
RF/IF Input Power  
Internal Maximum Power Dissipation  
θJA  
54°C/W  
Maximum Junction Temperature  
Operating Temperature Range  
Storage Temperature Range  
150°C  
−40°C to +85°C  
−65°C to +125°C  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Rev. A | Page 5 of 28  
 
 
ADL5387  
Data Sheet  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
VPA 1  
COM 2  
BIAS 3  
VPL 4  
VPL 5  
VPL 6  
18 VPB  
17 VPB  
16 QHI  
15 QLO  
14 IHI  
ADL5387  
TOP VIEW  
(Not to Scale)  
13 ILO  
NOTES  
1. CONNECT THE EXPOSED PADDLE TO A  
LOW IMPEDANCE GROUND PLANE.  
Figure 2. Pin Configuration  
Table 3. Pin Function Descriptions  
Pin No.  
Mnemonic  
Description  
1, 4 to 6,  
17 to 19  
VPA, VPL, VPB, VPX Supply. Positive supply for LO, IF, biasing and baseband sections, respectively. These pins should  
be decoupled to board ground using appropriate sized capacitors.  
2, 7, 10 to 12, COM, CML, CMRF  
20, 23, 24  
Ground. Connect to a low impedance ground plane.  
3
BIAS  
Bias Control. A resistor can be connected between BIAS and COM to reduce the mixer core current.  
The default setting for this pin is open.  
8, 9  
LOIP, LOIN  
Local Oscillator. External LO input is at 2xLO frequency. A single-ended LO at 0 dBm can be applied  
through a 1000 pF capacitor to LOIP. LOIN should be ac-grounded, also using a 1000 pF. These inputs  
can also be driven differentially through a balun (recommended balun is M/A-COM ETC1-1-13).  
13 to 16  
21, 22  
ILO, IHI, QLO, QHI  
RFIN, RFIP  
EP  
I-Channel and Q-Channel Mixer Baseband Outputs. These outputs have a 50 Ω differential output  
impedance (25 Ω per pin). The bias level on these pins is equal to VPOS − 2.8 V. Each output pair can  
swing 2 V p-p (differential) into a load of 200 Ω. Output 3 dB bandwidth is 240 MHz.  
RF Input. A single-ended 50 Ω signal can be applied to the RF inputs through a 1:1 balun (recommended  
balun is M/A-COM ETC1-1-13). Ground-referenced inductors must also be connected to RFIP and  
RFIN (recommended values = 120 nH).  
Exposed Paddle. Connect to a low impedance ground plane.  
Rev. A | Page 6 of 28  
 
Data Sheet  
ADL5387  
TYPICAL PERFORMANCE CHARACTERISTICS  
VS = 5 V, TA = 25°C, LO drive level = 0 dBm, RBIAS = open, unless otherwise noted.  
20  
15  
10  
5
5
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
NORMALIZED TO 1MHz  
0
–5  
INPUT P1dB  
–10  
–15  
–20  
–25  
–30  
GAIN  
0
0
200 400 600 800 1000 1200 1400 1600 1800 2000  
RF FREQUENCY (MHz)  
1
10  
100  
1000  
BB FREQUENCY (MHz)  
Figure 3. Conversion Gain and Input 1 dB Compression Point (IP1dB) vs.  
RF Frequency  
Figure 6. Normalized I/Q Baseband Frequency Response  
80  
19  
17  
15  
13  
11  
9
I CHANNEL  
Q CHANNEL  
T
T
T
= –40°C  
= +25°C  
= +85°C  
T
T
T
= +85°C  
= +25°C  
= –40°C  
A
A
A
A
A
A
70  
60  
50  
40  
30  
20  
10  
INPUT IP2  
INPUT IP3  
(I AND Q CHANNELS)  
7
0
200 400 600 800 1000 1200 1400 1600 1800 2000  
RF FREQUENCY (MHz)  
0
200 400 600 800 1000 1200 1400 1600 1800 2000  
RF FREQUENCY (MHz)  
Figure 4. Input Third-Order Intercept (IIP3) and  
Figure 7. Noise Figure vs. RF Frequency  
Input Second-Order Intercept Point (IIP2) vs. RF Frequency  
2.0  
1.5  
4
3
T
T
T
= –40°C  
= +25°C  
= +85°C  
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
A
A
A
1.0  
2
0.5  
1
0
0
–0.5  
–1.0  
–1.5  
–2.0  
–1  
–2  
–3  
–4  
0
200 400 600 800 1000 1200 1400 1600 1800 2000  
RF FREQUENCY (MHz)  
0
200 400 600 800 1000 1200 1400 1600 1800 2000  
RF FREQUENCY (MHz)  
Figure 5. I/Q Gain Mismatch vs. RF Frequency  
Figure 8. I/Q Quadrature Phase Error vs. RF Frequency  
Rev. A | Page 7 of 28  
 
ADL5387  
Data Sheet  
20  
80  
65  
50  
35  
20  
20  
15  
10  
5
80  
INPUT IP2, Q CHANNEL  
INPUT IP2, I CHANNEL  
NOISE FIGURE  
15  
65  
50  
35  
20  
INPUT IP2, I CHANNEL  
INPUT P1dB  
INPUT P1dB  
INPUT IP2, Q CHANNEL  
10  
5
NOISE FIGURE  
GAIN  
GAIN  
INPUT IP3  
INPUT IP3  
0
0
–6 –5 –4 –3 –2 –1  
0
1
2
3
4
5
6
–6 –5 –4 –3 –2 –1  
0
1
2
3
4
5
6
LO LEVEL (dBm)  
LO LEVEL (dBm)  
Figure 9. Conversion Gain, Noise Figure, IIP3, IIP2, and IP1dB vs.  
LO Level, fRF = 140 MHz  
Figure 12. Conversion Gain, Noise Figure, IIP3, IIP2, and IP1dB vs.  
LO Level, fRF = 900 MHz  
32  
195  
185  
175  
165  
155  
145  
135  
32  
T
T
T
= –40°C  
= +25°C  
= +85°C  
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
A
A
A
28  
24  
20  
16  
12  
8
28  
24  
20  
16  
12  
8
INPUT IP3  
INPUT IP3  
SUPPLY  
CURRENT  
NOISE FIGURE  
NOISE FIGURE  
1
10  
(k)  
100  
1
10  
(k)  
100  
R
R
BIAS  
BIAS  
Figure 10. Noise Figure, IIP3, and Supply Current vs. RBIAS, fRF = 140 MHz  
Figure 13. IIP3 and Noise Figure vs. RBIAS, fRF = 900 MHz  
25  
80  
70  
60  
50  
40  
30  
20  
10  
0
20  
R
= 100k  
BIAS  
140MHz: GAIN  
R
= 10kΩ  
BIAS  
140MHz: IP1dB  
15  
10  
5
140MHz: IIP2, I CHANNEL  
140MHz: IIP2, Q CHANNEL  
450MHz: GAIN  
R
= 4kΩ  
BIAS  
450MHz: IP1dB  
R
= 1.4kΩ  
BIAS  
450MHz: IIP2, I CHANNEL  
450MHz: IIP2, Q CHANNEL  
0
–30  
–25  
–20  
–15  
–10  
–5  
0
5
1
10  
100  
RF BLOCKER INPUT POWER (dBm)  
R
(k)  
BIAS  
Figure 11. Noise Figure vs. Input Blocker Level, fRF = 900 MHz  
(RF Blocker 5 MHz Offset)  
Figure 14. Conversion Gain, IP1dB, IIP2 I Channel, and IIP2 Q Channel vs. RBIAS  
Rev. A | Page 8 of 28  
 
 
 
Data Sheet  
ADL5387  
35  
30  
25  
20  
15  
80  
75  
70  
65  
60  
55  
50  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
IIP3  
INPUT IP2,  
I CHANNEL  
INPUT IP2,  
Q CHANNEL  
1xLO  
10  
5
T
T
T
= –40°C  
= +25°C  
= +85°C  
IP1dB  
25  
A
A
A
2xLO  
0
5
10  
15  
20  
30  
35  
40  
45  
50  
0
200 400 600 800 1000 1200 1400 1600 1800 2000  
INTERNAL 1xLO FREQUENCY (MHz)  
BB FREQUENCY (MHz)  
Figure 15. IIIP3, IIP2, IP1dB vs. Baseband Frequency  
Figure 18. LO-to-RF Leakage vs. Internal 1xLO Frequency  
0
–20  
–40  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–60  
1xLO (INTERNAL)  
–80  
2xLO (EXTERNAL)  
–100  
–120  
0
200 400 600 800 1000 1200 1400 1600 1800 2000  
INTERNAL 1xLO FREQUENCY (MHz)  
0
200 400 600 800 1000 1200 1400 1600 1800 2000  
RF FREQUENCY (MHz)  
Figure 16. LO-to-BB Feedthrough vs. 1xLO Frequency (Internal LO Frequency)  
Figure 19. RF-to-LO Leakage vs. RF Frequency  
0
0
–5  
–5  
–10  
–15  
–20  
–25  
–10  
–15  
–20  
–25  
–30  
0
200 400 600 800 1000 1200 1400 1600 1800 2000  
RF FREQUENCY (MHz)  
0
500  
1000  
1500  
2000  
2500  
3000  
3500  
4000  
FREQUENCY (MHz)  
Figure 17. RF Port Return Loss vs. RF Frequency, Measured on  
Characterization Board through ETC1-1-13 Balun with 120 nH Bias Inductors  
Figure 20. Single-Ended LO Port Return Loss vs.  
LO Frequency, LOIN AC-Coupled to Ground  
Rev. A | Page 9 of 28  
 
ADL5387  
Data Sheet  
DISTRIBUTIONS FOR fRF = 140 MHz  
100  
100  
80  
60  
40  
20  
0
T
T
T
= –40°C  
= +25°C  
= +85°C  
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
A
A
A
80  
60  
40  
20  
0
I CHANNEL  
Q CHANNEL  
28  
29  
30  
31  
32  
33  
60  
65  
70  
75  
INPUT IP3 (dBm)  
INPUT IP2 (dBm)  
Figure 21. IIP3 Distributions  
Figure 24. IIP2 Distributions for I Channel and Q Channel  
100  
80  
60  
40  
20  
0
100  
80  
60  
40  
20  
0
T
T
T
= –40°C  
= +25°C  
= +85°C  
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
A
A
A
10  
11  
12  
13  
14  
15  
10.5  
11.0  
11.5  
12.0  
12.5  
13.0  
13.5  
INPUT P1dB (dBm)  
NOISE FIGURE (dB)  
Figure 22. IP1dB Distributions  
Figure 25. Noise Figure Distributions  
100  
80  
60  
40  
20  
0
100  
80  
60  
40  
20  
0
T
T
T
= –40°C  
= +25°C  
= +85°C  
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
A
A
A
–0.2  
–0.1  
0
0.1  
0.2  
–1.0  
–0.5  
0
0.5  
1.0  
I/Q GAIN MISMATCH (dB)  
QUADRATURE PHASE ERROR (Degrees)  
Figure 23. I/Q Gain Mismatch Distributions  
Figure 26. I/Q Quadrature Error Distributions  
Rev. A | Page 10 of 28  
 
Data Sheet  
ADL5387  
DISTRIBUTIONS FOR fRF = 450 MHz  
100  
100  
80  
60  
40  
20  
0
T
T
T
= –40°C  
= +25°C  
= +85°C  
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
A
A
A
80  
60  
40  
20  
0
I CHANNEL  
Q CHANNEL  
30  
31  
32  
33  
34  
35  
60  
65  
70  
75  
INPUT IP3 (dBm)  
INPUT IP2 (dBm)  
Figure 27. IIP3 Distributions  
Figure 30. IIP2 Distributions for I Channel and Q Channel  
100  
80  
60  
40  
20  
0
100  
80  
60  
40  
20  
0
T
T
T
= –40°C  
= +25°C  
= +85°C  
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
A
A
A
10  
11  
12  
13  
14  
15  
12.0  
12.5  
13.0  
13.5  
14.0  
14.5  
15.0  
INPUT P1dB (dBm)  
NOISE FIGURE (dB)  
Figure 28. IP1dB Distributions  
Figure 31. Noise Figure Distributions  
100  
80  
60  
40  
20  
0
100  
80  
60  
40  
20  
0
T
T
T
= –40°C  
= +25°C  
= +85°C  
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
A
A
A
–0.2  
–0.1  
0
0.1  
0.2  
–1.0  
–0.5  
0
0.5  
1.0  
I/Q GAIN MISMATCH (dB)  
QUADRATURE PHASE ERROR (Degrees)  
Figure 29. I/Q Gain Mismatch Distributions  
Figure 32. I/Q Quadrature Error Distributions  
Rev. A | Page 11 of 28  
 
ADL5387  
Data Sheet  
DISTRIBUTIONS FOR fRF = 900 MHz  
100  
100  
80  
60  
40  
20  
0
T
T
T
= –40°C  
= +25°C  
= +85°C  
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
A
A
A
80  
60  
40  
20  
0
I CHANNEL  
Q CHANNEL  
30  
31  
32  
33  
34  
35  
55  
60  
65  
70  
75  
INPUT IP3 (dBm)  
INPUT IP2 (dBm)  
Figure 33. IIP3 Distributions  
Figure 36. IIP2 Distributions for I Channel and Q Channel  
100  
80  
60  
40  
20  
0
100  
80  
60  
40  
20  
0
T
T
T
= –40°C  
= +25°C  
= +85°C  
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
A
A
A
10  
11  
12  
13  
14  
15  
13.0  
13.5  
14.0  
14.5  
15.0  
15.5  
16.0  
INPUT P1dB (dBm)  
NOISE FIGURE (dB)  
Figure 34. IP1dB Distributions  
Figure 37. Noise Figure Distributions  
100  
80  
60  
40  
20  
0
100  
80  
60  
40  
20  
0
T
T
T
= –40°C  
= +25°C  
= +85°C  
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
A
A
A
–0.2  
–0.1  
0
0.1  
0.2  
–1.0  
–0.5  
0
0.5  
1.0  
I/Q GAIN MISMATCH (dB)  
QUADRATURE PHASE ERROR (Degrees)  
Figure 35. I/Q Gain Mismatch Distributions  
Figure 38. I/Q Quadrature Error Distributions  
Rev. A | Page 12 of 28  
 
Data Sheet  
ADL5387  
DISTRIBUTIONS FOR fRF = 1900 MHz  
100  
100  
80  
60  
40  
20  
0
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
80  
60  
40  
20  
0
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
I CHANNEL  
Q CHANNEL  
26  
27  
28  
29  
30  
31  
52  
54  
56  
58  
60  
62  
64  
66  
68  
18.0  
1.0  
INPUT IP3 (dBm)  
INPUT IP2 (dBm)  
Figure 39. IIP3 Distributions  
Figure 42. IIP2 Distributions for I Channel and Q Channel  
100  
80  
60  
40  
20  
0
100  
80  
60  
40  
20  
0
T
T
T
= –40°C  
= +25°C  
= +85°C  
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
A
A
A
10  
11  
12  
13  
14  
15  
15.0  
15.5  
16.0  
16.5  
17.0  
17.5  
INPUT P1dB (dBm)  
NOISE FIGURE (dB)  
Figure 40. IP1dB Distributions  
Figure 43. Noise Figure Distributions  
100  
80  
60  
40  
20  
0
100  
80  
60  
40  
20  
0
T
T
T
= –40°C  
= +25°C  
= +85°C  
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
A
A
A
–0.2  
–0.1  
0
0.1  
0.2  
–1.0  
–0.5  
0
0.5  
I/Q GAIN MISMATCH (dB)  
QUADRATURE PHASE ERROR (Degrees)  
Figure 41. I/Q Gain Mismatch Distributions  
Figure 44. I/Q Quadrature Error Distributions  
Rev. A | Page 13 of 28  
 
ADL5387  
Data Sheet  
CIRCUIT DESCRIPTION  
The ADL5387 can be divided into five sections: the local  
oscillator (LO) interface, the RF voltage-to-current (V-to-I)  
converter, the mixers, the differential emitter follower outputs,  
and the bias circuit. A detailed block diagram of the device is  
shown in Figure 45.  
V-TO-I CONVERTER  
The differential RF input signal is applied to a resistively  
degenerated common base stage, which converts the differential  
input voltage to output currents. The output currents then  
modulate the two half-frequency LO carriers in the mixer stage.  
BIAS  
MIXERS  
The ADL5387 has two double-balanced mixers: one for the  
in-phase channel (I channel) and one for the quadrature channel  
(Q channel). These mixers are based on the Gilbert cell design  
of four cross-connected transistors. The output currents from  
the two mixers are summed together in the resistive loads that  
then feed into the subsequent emitter follower buffers.  
IHI  
ILO  
LOIP  
RFIP  
DIVIDE-BY-TWO  
EMITTER FOLLOWER BUFFERS  
QUADRATURE  
PHASE SPLITTER  
RFIN  
The output emitter followers drive the differential I and Q  
signals off-chip. The output impedance is set by on-chip 25 Ω  
series resistors that yield a 50 Ω differential output impedance  
for each baseband port. The fixed output impedance forms a  
voltage divider with the load impedance that reduces the effective  
gain. For example, a 500 Ω differential load has 1 dB lower  
effective gain than a high (10 kΩ) differential load impedance.  
LOIN  
QHI  
QLO  
Figure 45. Block Diagram  
BIAS CIRCUIT  
The LO interface generates two LO signals at 90° of phase  
difference to drive two mixers in quadrature. RF signals are  
converted into currents by the V-to-I converters that feed into  
the two mixers. The differential I and Q outputs of the mixers  
are buffered via emitter followers. Reference currents to each  
section are generated by the bias circuit. A detailed description  
of each section follows.  
A band gap reference circuit generates the proportional-to-  
absolute temperature (PTAT) as well as temperature-independent  
reference currents used by different sections. The mixer current  
can be reduced via an external resistor between the BIAS pin  
and ground. When the BIAS pin is open, the mixer runs at  
maximum current and hence the greatest dynamic range. The  
mixer current can be reduced by placing a resistance to ground;  
therefore, reducing overall power consumption, noise figure,  
and IIP3. The effect on each of these parameters is shown in  
Figure 10, Figure 13, and Figure 14.  
LO INTERFACE  
The LO interface consists of a buffer amplifier followed by a  
frequency divider that generate two carriers at half the input  
frequency and in quadrature with each other. Each carrier is  
then amplified and amplitude-limited to drive the double-  
balanced mixers.  
Rev. A | Page 14 of 28  
 
 
 
 
 
 
 
Data Sheet  
ADL5387  
APPLICATIONS INFORMATION  
BASIC CONNECTIONS  
Figure 47 shows the basic connections schematic for the ADL5387.  
8
9
LOIP  
LOIN  
LO INPUT  
1000pF  
POWER SUPPLY  
1000pF  
The nominal voltage supply for the ADL5387 is 5 V and is  
applied to the VPA, VPB, VPL, and VPX pins. Ground should  
be connected to the COM, CML, and CMRF pins. Each of  
the supply pins should be decoupled using two capacitors;  
recommended capacitor values are 100 pF and 0.1 µF.  
Figure 46. Single-Ended LO Drive  
The recommended LO drive level is between −6 dBm and  
+6 dBm. For operation below 50 MHz, a minimum LO drive  
level of 0 dBm should be used. The LO frequency at the input to  
the device should be twice that of the desired LO frequency at  
the mixer core. The applied LO frequency range is between  
60 MHz and 4 GHz.  
LOCAL OSCILLATOR (LO) INPUT  
The LO port is driven in a single-ended manner. The LO signal  
must be ac-coupled via a 1000 pF capacitor directly into LOIP,  
and LOIN is ac-coupled to ground also using a 1000 pF capacitor.  
The LO port is designed for a broadband 50 Ω match and  
therefore exhibits excellent return loss from 60 MHz to 4 GHz.  
The LO return loss can be seen in Figure 20. Figure 46 shows  
the LO input configuration.  
ETC1-1-13  
RFC  
120nH  
120nH  
1000pF 1000pF  
V
POS  
24  
23  
22  
21  
20  
19  
V
1 VPA  
VPB 18  
POS  
0.1µF  
100pF  
100pF  
0.1µF  
2 COM  
3 BIAS  
4 VPL  
5 VPL  
6 VPL  
VPB 17  
QHI 16  
QLO15  
IHI 14  
QHI  
QLO  
ADL5387  
V
POS  
0.1µF  
IHI  
ILO  
100pF  
ILO13  
7
8
9
10  
11  
12  
1000pF  
LO  
1000pF  
Figure 47. Basic Connections Schematic for ADL5387  
Rev. A | Page 15 of 28  
 
 
 
 
 
 
ADL5387  
Data Sheet  
The differential RF port return loss has been characterized as  
shown in Figure 49.  
RF INPUT  
The RF inputs have a differential input impedance of  
–10  
approximately 50 Ω. For optimum performance, the RF port  
should be driven differentially through a balun. The recommended  
balun is M/A-COM ETC1-1-13. The RF inputs to the device  
should be ac-coupled with 1000 pF capacitors. Ground-referenced  
choke inductors must also be connected to RFIP and RFIN  
(recommended value = 120 nH, Coilcraft 0402CS-R12XJL) for  
appropriate biasing. Several important aspects must be taken  
into account when selecting an appropriate choke inductor for  
this application. First, the inductor must be able to handle the  
approximately 40 mA of standing dc current being delivered  
from each of the RF input pins (RFIP, RFIN). (The suggested  
0402 inductor has a 50 mA current rating). The purpose of the  
choke inductors is to provide a very low resistance dc path to  
ground and high ac impedance at the RF frequency so as not to  
affect the RF input impedance. A choke inductor that has a self-  
resonant frequency greater than the RF input frequency ensures  
that the choke is still looking inductive and therefore has a more  
predictable ac impedance (jωL) at the RF frequency. Figure 48  
shows the RF input configuration.  
–12  
–14  
–16  
–18  
–20  
–22  
–24  
–26  
–28  
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
1.8  
2.0  
FREQUENCY (GHz)  
Figure 49. Differential RF Port Return Loss  
BASEBAND OUTPUTS  
The baseband outputs QHI, QLO, IHI, and ILO are fixed  
impedance ports. Each baseband pair has a 50 Ω differential  
output impedance. The outputs can be presented with differential  
loads as low as 200 Ω (with some degradation in linearity and  
gain) or high impedance differential loads (500 Ω or greater  
impedance yields the same excellent linearity) that is typical of  
an ADC. The TCM9-1 9:1 balun converts the differential IF  
output to single-ended. When loaded with 50 Ω, this balun  
presents a 450 Ω load to the device. The typical maximum  
linear voltage swing for these outputs is 2 V p-p differential.  
The bias level on these pins is equal to VPOS − 2.8 V. The  
output 3 dB bandwidth is 240 MHz. Figure 50 shows the  
baseband output configuration.  
120nH  
21  
22  
RFIN  
RFIP  
1000pF  
1000pF  
ETC1-1-13  
RF INPUT  
120nH  
Figure 48. RF Input  
16  
QHI  
QLO  
IHI  
QHI  
QLO  
IHI  
15  
14  
13  
ILO  
ILO  
Figure 50. Baseband Output Configuration  
Rev. A | Page 16 of 28  
 
 
 
 
 
Data Sheet  
ADL5387  
Figure 52 shows the EVM performance of the ADL5387 when  
ac-coupled, with an IEEE 802.16e WiMAX signal.  
ERROR VECTOR MAGNITUDE (EVM)  
PERFORMANCE  
0
EVM is a measure used to quantify the performance of a digital  
radio transmitter or receiver. A signal received by a receiver  
would have all constellation points at the ideal locations; however,  
various imperfections in the implementation (such as carrier  
leakage, phase noise, and quadrature error) cause the actual  
constellation points to deviate from the ideal locations.  
–5  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–45  
–50  
The ADL5387 shows excellent EVM performance for various  
modulation schemes. Figure 51 shows typical EVM performance  
over input power range for a point-to-point application with  
16 QAM modulation schemes and zero-IF baseband. The  
differential dc offsets on the ADL5387 are in the order of a  
few mV. However, ac coupling the baseband outputs with 10 µF  
capacitors helps to eliminate dc offsets and enhances EVM  
performance. With a 10 MHz BW signal, 10 µF ac coupling  
capacitors with the 500 Ω differential load results in a high-pass  
corner frequency of ~64 Hz which absorbs an insignificant  
amount of modulated signal energy from the baseband signal.  
By using ac coupling capacitors at the baseband outputs, the dc  
offset effects, which can limit dynamic range at low input power  
levels, can be eliminated.  
–50  
–40  
–30  
–20  
–10  
0
10  
20  
INPUT POWER (dBm)  
Figure 52. RF = 750 MHz MHz, IF = 0 Hz, EVM vs. Input Power for a 16 QAM  
10 MHz Bandwidth Mobile WiMAX Signal (AC-Coupled Baseband Outputs)  
Figure 53 exhibits the zero IF EVM performance of a WCDMA  
signal over a wide RF input power range.  
0
–5  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–45  
0
–5  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–45  
–50  
–70  
–60  
–50  
–40  
–30  
–20  
–10  
0
10  
INPUT POWER (dBm)  
Figure 53. RF = 1950 MHz, IF = 0 Hz, EVM vs. Input Power for a WCDMA  
(AC-Coupled Baseband Outputs)  
–70  
–60  
–50  
–40  
–30  
–20  
–10  
0
10  
INPUT POWER (dBm)  
Figure 51. RF = 140 MHz, IF = 0 Hz, EVM vs. Input Power for a 16 QAM  
10 Msym/s Signal (AC-Coupled Baseband Outputs)  
Rev. A | Page 17 of 28  
 
 
 
 
ADL5387  
Data Sheet  
COSωLOt  
0°  
ωIF  
ωIF  
0
0
+
+
ωIF  
ωIF  
0
+ωIF  
–90°  
+90°  
ωLSB ωLO ωUSB  
0°  
ωIF  
ωIF  
0
+ωIF  
SINωLO  
t
Figure 54. Illustration of the Image Problem  
LOW IF IMAGE REJECTION  
EXAMPLE BASEBAND INTERFACE  
The image rejection ratio is the ratio of the intermediate  
frequency (IF) signal level produced by the desired input  
frequency to that produced by the image frequency. The image  
rejection ratio is expressed in decibels. Appropriate image  
rejection is critical because the image power can be much  
higher than that of the desired signal, thereby plaguing the  
down conversion process. Figure 54 illustrates the image  
problem. If the upper sideband (lower sideband) is the desired  
band, a 90° shift to the Q channel (I channel) cancels the image  
at the lower sideband (upper sideband).  
In most direct conversion receiver designs, it is desirable to  
select a wanted carrier within a specified band. The desired  
channel can be demodulated by tuning the LO to the appropriate  
carrier frequency. If the desired RF band contains multiple  
carriers of interest, the adjacent carriers would also be down  
converted to a lower IF frequency. These adjacent carriers can  
be problematic if they are large relative to the wanted carrier as  
they can overdrive the baseband signal detection circuitry. As a  
result, it is often necessary to insert a filter to provide sufficient  
rejection of the adjacent carriers.  
Figure 55 shows the excellent image rejection capabilities of the  
ADL5387 for low IF applications, such as CDMA2000. The  
ADL5387 exhibits image rejection greater than 45 dB over the  
broad frequency range for an IF = 1.23 MHz.  
0
It is necessary to consider the overall source and load impedance  
presented by the ADL5387 and ADC input to design the filter  
network. The differential baseband output impedance of the  
ADL5387 is 50 Ω. The ADL5387 is designed to drive a high  
impedance ADC input. It may be desirable to terminate the  
ADC input down to lower impedance by using a terminating  
resistor, such as 500 Ω. The terminating resistor helps to better  
define the input impedance at the ADC input. The order and  
type of filter network depends on the desired high frequency  
rejection required, pass-band ripple, and group delay. Filter  
design tables provide outlines for various filter types and orders,  
illustrating the normalized inductor and capacitor values for a  
1 Hz cutoff frequency and 1 Ω load. After scaling the normalized  
prototype element values by the actual desired cut-off frequency  
and load impedance, the series reactance elements are halved to  
realize the final balanced filter network component values.  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
50  
250 450 650 850 1050 1250 1450 1650 1850  
RF INPUT FREQUENCY (MHz)  
Figure 55. Image Rejection vs.  
RF Input Frequency for a CDMA2000 Signal, IF = 1.23 MHz  
Rev. A | Page 18 of 28  
 
 
 
 
Data Sheet  
ADL5387  
As an example, a second-order, Butterworth, low-pass filter  
design is shown in Figure 56 where the differential load impedance  
is 500 Ω, and the source impedance of the ADL5387 is 50 Ω.  
The normalized series inductor value for the 10-to-1, load-to-  
source impedance ratio is 0.074 H, and the normalized shunt  
capacitor is 14.814 F. For a 10.9 MHz cutoff frequency, the  
single-ended equivalent circuit consists of a 0.54 µH series  
inductor followed by a 433 pF shunt capacitor.  
Figure 57 and Figure 58 show the measured frequency response  
and group delay of the filter.  
10  
5
0
–5  
The balanced configuration is realized as the 0.54 µH inductor  
is split in half to realize the network shown in Figure 56.  
–10  
–15  
–20  
R
= 50Ω  
L
= 0.074H  
S
N
NORMALIZED  
SINGLE-ENDED  
CONFIGURATION  
V
C
14.814F  
R = 500Ω  
S
N
L
R
R
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
S
L
fC = 1Hz  
= 0.1  
FREQUENCY (MHz)  
R
= 50Ω  
0.54µH  
S
Figure 57. Baseband Filter Response  
DENORMALIZED  
SINGLE-ENDED  
EQUIVALENT  
900  
800  
700  
600  
500  
400  
300  
200  
100  
V
V
433pF  
433pF  
R = 500Ω  
S
L
fC = 10.9MHz  
R
2
S
= 25Ω  
= 25Ω  
0.27µH  
R
2
L
= 250Ω  
= 250Ω  
BALANCED  
CONFIGURATION  
S
R
L
2
R
0.27µH  
S
2
Figure 56. Second-Order, Butterworth, Low-Pass Filter Design Example  
A complete design example is shown in Figure 59. A sixth-order  
Butterworth differential filter having a 1.9 MHz corner frequency  
interfaces the output of the ADL5387 to that of an ADC input.  
The 500 Ω load resistor defines the input impedance of the  
ADC. The filter adheres to typical direct conversion WCDMA  
applications, where 1.92 MHz away from the carrier IF frequency,  
1 dB of rejection is desired and 2.7 MHz away 10 dB of rejection  
is desired.  
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
1.8  
FREQUENCY (MHz)  
Figure 58. Baseband Filter Group Delay  
Rev. A | Page 19 of 28  
 
 
 
ADL5387  
Data Sheet  
ETC1-1-13  
RFC  
120nH  
120nH  
1000pF 1000pF  
C
AC  
10µF  
27µH  
27µH  
10µH  
V
POS  
24  
23  
22  
21  
20  
19  
C
AC  
10µF  
V
1 VPA  
VPB 18  
VPB 17  
QHI 16  
QLO15  
IHI 14  
POS  
0.1µF  
100pF  
100pF  
0.1µF  
27µH  
27µH  
10µH  
2 COM  
3 BIAS  
4 VPL  
5 VPL  
6 VPL  
ADL5387  
V
POS  
0.1µF  
100pF  
ILO13  
C
AC  
10µF  
27µH  
27µH  
10µH  
7
8
9
10  
11  
12  
C
AC  
10µF  
1000pF  
LO  
1000pF  
27µH  
27µH  
10µH  
Figure 59. Sixth Order Low-Pass Butterworth Baseband Filter Schematic  
Rev. A | Page 20 of 28  
 
Data Sheet  
ADL5387  
CHARACTERIZATION SETUPS  
Figure 60 to Figure 62 show the general characterization bench  
setups used extensively for the ADL5387. The setup shown in  
Figure 62 was used to do the bulk of the testing and used sinusoidal  
signals on both the LO and RF inputs. An automated Agilent-  
VEE program was used to control the equipment over the IEEE  
bus. This setup was used to measure gain, IP1dB, IIP2, IIP3, I/Q  
gain match, and quadrature error. The ADL5387 characterization  
board had a 9-to-1 impedance transformer on each of the  
differential baseband ports to do the differential-to-single-  
ended conversion.  
10 MHz. For the case where a blocker was applied, the output  
blocker was at 15 MHz baseband frequency. Note that great care  
must be taken when measuring NF in the presence of a blocker.  
The RF blocker generator must be filtered to prevent its noise  
(which increases with increasing generator output power) from  
swamping the noise contribution of the ADL5387. At least  
30 dB of attention at the RF and image frequencies is desired.  
For example, with a 2xLO of 1848 MHz applied to the ADL5387,  
the internal 1xLO is 924 MHz. To obtain a 15 MHz output  
blocker signal, the RF blocker generator is set to 939 MHz and  
the filters tuned such that there is at least 30 dB of attenuation  
from the generator at both the desired RF frequency (934 MHz)  
and the image RF frequency (914 MHz). Finally, the blocker  
must be removed from the output (by the 10 MHz low-pass  
filter) to prevent the blocker from swamping the analyzer.  
The two setups shown in Figure 60 and Figure 61 were used  
for making NF measurements. Figure 60 shows the setup for  
measuring NF with no blocker signal applied while Figure 61  
was used to measure NF in the presence of a blocker. For both  
setups, the noise was measured at a baseband frequency of  
SNS  
CONTROL  
AGILENT N8974A  
NOISE FIGURE ANALYZER  
OUTPUT  
R1  
50Ω  
RF  
Q
GND  
ADL5387  
CHAR BOARD  
V
POS  
I
LO  
HP 6235A  
POWER SUPPLY  
INPUT  
LOW-PASS  
FILTER  
AGILENT 8665B  
SIGNAL GENERATOR  
IEEE  
PC CONTROLLER  
Figure 60. General Noise Figure Measurement Setup  
Rev. A | Page 21 of 28  
 
 
ADL5387  
Data Sheet  
BAND-PASS  
TUNABLE FILTER  
BAND-REJECT  
TUNABLE FILTER  
R&S SMT03  
SIGNAL GENERATOR  
R&S FSEA30  
SPECTRUM ANALYZER  
R1  
50Ω  
RF  
Q
I
GND  
ADL5387  
LOW-PASS  
FILTER  
6dB PAD  
CHAR BOARD  
V
POS  
LO  
HP 6235A  
POWER SUPPLY  
BAND-PASS  
CAVITY FILTER  
HP87405  
LOW NOISE  
PREAMP  
AGILENT 8665B  
SIGNAL GENERATOR  
Figure 61. Measurement Setup for Noise Figure in the Presence of a Blocker  
3dB PAD  
RF  
AMPLIFIER  
IN  
OUT  
3dB PAD  
3dB PAD  
RF  
VP GND  
AGILENT  
11636A  
3dB PAD  
R&S SMT-06  
RF  
R&S SMT-06  
RF  
Q
I
6dB PAD  
GND  
SWITCH  
MATRIX  
ADL5387  
CHAR BOARD  
V
POS  
6dB PAD  
LO  
AGILENT E3631  
PWER SUPPLY  
RF  
INPUT  
AGILENT E8257D  
SIGNAL GENERATOR  
IEEE  
IEEE  
R&S FSEA30  
SPECTRUM ANALYZER  
HP 8508A  
VECTOR VOLTMETER  
PC CONTROLLER  
Figure 62. General ADL5387 Characterization Setup  
Rev. A | Page 22 of 28  
 
 
Data Sheet  
ADL5387  
EVALUATION BOARD  
The ADL5387 evaluation board is available. The board can be  
used for single-ended or differential baseband analysis. The default  
configuration of the board is for single-ended baseband analysis.  
T1  
RFC  
C11  
C10  
L2  
24  
L1  
19  
R8  
R7  
V
POS  
23  
22  
21  
20  
R1  
R6  
V
1 VPA  
VPB 18  
POS  
C1  
C2  
C8  
C9  
2 COM  
3 BIAS  
4 VPL  
5 VPL  
6 VPL  
VPB 17  
QHI 16  
QLO15  
IHI 14  
R2  
R9  
Q OUTPUT OR QHI  
R14  
R15  
T2  
ADL5387  
C12  
R3  
V
POS  
R16  
C3  
C4  
QLO  
ILO13  
R10  
R11  
7
8
9
10  
11  
12  
I OUTPUT OR IHI  
R4  
R5  
T3  
C13  
C5  
R13  
ILO  
C6  
R17  
C7  
T4  
R12  
LO  
Figure 63. Evaluation Board Schematic  
Rev. A | Page 23 of 28  
 
 
ADL5387  
Data Sheet  
Table 4. Evaluation Board Configuration Options  
Component Function  
Default Condition  
VPOS, GND  
R1, R3, R6  
Power Supply and Ground Vector Pins.  
Not Applicable  
Power Supply Decoupling. Shorts or power supply decoupling resistors.  
The capacitors provide the required dc coupling up to 2 GHz.  
R1, R3, R6 = 0 Ω (0805)  
C1, C2, C3,  
C4, C8, C9  
C2, C4, C8 = 100 pF (0402)  
C1, C3, C9 = 0.1 µF (0603)  
C5, C6, C7,  
C10, C11  
AC Coupling Capacitors. These capacitors provide the required ac coupling from  
50 MHz to 2 GHz. For operation down to 30 MHz, C10 and C11 should be changed to  
0.01 µF.  
C5, C6, C10, C11 = 1000 pF (0402),  
C7 = Open  
R4, R5,  
R9 to R16  
Single-Ended Baseband Output Path. This is the default configuration of the evaluation  
board. R14 to R16 and R4, R5, and R13 are populated for appropriate balun interface.  
R9, R10 and R11, R12 are not populated. Baseband outputs are taken from QHI and IHI.  
R4, R5, R13 to R16 = 0 Ω (0402),  
R9 to R12 = Open  
The user can reconfigure the board to use full differential baseband outputs. R9 to R12  
provide a means to bypass the 9:1 TCM9-1 transformer to allow for differential baseband  
outputs. Access the differential baseband signals by populating R9 to R12 with 0 Ω and  
not populating R4, R5, R13 to R16. This way the transformer does not need to be removed.  
The baseband outputs are taken from the SMAs of Q_HI, Q_LO, I_HI, and I_LO.  
L1, L2,  
R7, R8  
Input Biasing. Inductance and resistance sets the input biasing of the common base  
input stage. Default value is 120 nH for operation above 50 MHz. For operation down to  
30 MHz, L1 and L2 should be changed to 680 nH.  
L1, L2 = 120 nH (0402)  
R7, R8 = 0 Ω (0402)  
T2, T3  
IF Output Interface. TCM9-1 converts a differential high impedance IF output to a single- T2, T3 = TCM9-1, 9:1 (Mini-Circuits)  
ended output. When loaded with 50 Ω, this balun presents a 450 Ω load to the device.  
The center tap can be decoupled through a capacitor to ground.  
C12, C13  
R17  
Decoupling Capacitors. C12 and C13 are the decoupling capacitors used to reject noise  
on the center tap of the TCM9-1.  
C12, C13 = 0.1 µF (0402)  
LO Input Interface. The LO is driven as a single-ended signal. Although, there is no  
performance change for a differential signal drive, the option is available by placing a  
transformer (T4, ETC1-1-13) on the LO input path.  
R17 = 0 Ω (0402)  
T1  
R2  
RF Input Interface. ETC1-1-13 is a 1:1 RF balun that converts the single-ended RF input  
to differential signal.  
T1 = ETC1-1-13, 1:1 (M/A COM)  
R2 = Open  
RBIAS. Optional bias setting resistor. See the Bias Circuit section to see how to use this feature.  
Rev. A | Page 24 of 28  
Data Sheet  
ADL5387  
Figure 66. Evaluation Board Bottom Layer  
Figure 64. Evaluation Board Top Layer  
Figure 67. Evaluation Board Bottom Layer Silkscreen  
Figure 65. Evaluation Board Top Layer Silkscreen  
Rev. A | Page 25 of 28  
ADL5387  
Data Sheet  
OUTLINE DIMENSIONS  
4.10  
4.00 SQ  
3.90  
0.60 MAX  
2.50 REF  
0.60 MAX  
PIN 1  
INDICATOR  
19  
18  
24  
1
0.50  
BSC  
PIN 1  
INDICATOR  
2.45  
2.30 SQ  
2.15  
3.75 BSC  
SQ  
EXPOSED  
PAD  
6
13  
12  
7
0.50  
0.40  
0.30  
0.25 MIN  
BOTTOM VIEW  
TOP VIEW  
0.80 MAX  
0.65 TYP  
12° MAX  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
1.00  
0.85  
0.80  
0.05 MAX  
0.02 NOM  
SECTION OF THIS DATA SHEET.  
COPLANARITY  
0.08  
0.30  
0.23  
0.18  
SEATING  
PLANE  
0.20 REF  
COMPLIANT TO JEDEC STANDARDS MO-220-VGGD-2  
Figure 68. 24-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
4 mm × 4 mm Body, Very Thin Quad  
(CP-24-2)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
ADL5387ACPZ-R2  
ADL5387ACPZ-R7  
ADL5387ACPZ-WP  
ADL5387-EVALZ  
Temperature Range  
–40°C to +85°C  
–40°C to +85°C  
Package Description  
Package Option  
CP-24-2  
CP-24-2  
Ordering Quantity  
24-Lead LFCSP_VQ  
250  
1,500  
64  
24-Lead LFCSP_VQ, 7”Tape and Reel  
24-Lead LFCSP_VQ, Waffle Pack  
Evaluation Board  
–40°C to +85°C  
CP-24-2  
1 Z = RoHS Compliant Part.  
Rev. A | Page 26 of 28  
 
 
 
Data Sheet  
NOTES  
ADL5387  
Rev. A | Page 27 of 28  
ADL5387  
NOTES  
Data Sheet  
©2007–2013 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D06764-0-5/13(A)  
Rev. A | Page 28 of 28  

相关型号:

ADL5387ACPZ-R7

30 MHz TO 2 GHz Quadrature Demodulator
ADI

ADL5387ACPZ-R71

50 MHz to 2 GHz Quadrature Demodulator
ADI

ADL5387ACPZ-WP1

50 MHz to 2 GHz Quadrature Demodulator
ADI

ADL5390

RF/IF Vector Multiplier
ADI

ADL5390-EVAL

RF/IF Vector Multiplier
ADI

ADL5390ACPZ-REEL7

SPECIALTY TELECOM CIRCUIT, QCC24, 4 X 4 MM, LEAD FREE, MO-220-VGGD-2, LFCSP-24
ROCHESTER

ADL5390ACPZ-REEL71

RF/IF Vector Multiplier
ADI

ADL5390ACPZ-WP

RF Vector Multiplier
ADI

ADL5390ACPZ-WP

SPECIALTY TELECOM CIRCUIT, QCC24, 4 X 4 MM, LEAD FREE, MO-220-VGGD-2, LFCSP-24
ROCHESTER

ADL5390ACPZ-WP1

RF/IF Vector Multiplier
ADI

ADL5391

DC to 2.0 GHz Multiplier
ADI

ADL5391-EVALZ

DC to 2.0 GHz Multiplier
ADI