ADL5382 [ADI]

700 MHz to 2.7 GHz Quadrature Demodulator; 700 MHz至2.7 GHz的正交解调器
ADL5382
型号: ADL5382
厂家: ADI    ADI
描述:

700 MHz to 2.7 GHz Quadrature Demodulator
700 MHz至2.7 GHz的正交解调器

文件: 总28页 (文件大小:728K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
700 MHz to 2.7 GHz  
Quadrature Demodulator  
ADL5382  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
CMRF CMRF RFIP RFIN CMRF VPX  
Operating RF and LO frequency: 700 MHz to 2.7 GHz  
Input IP3  
24  
23  
22  
21  
20  
19  
33.5 dBm @ 900 MHz  
30.5 dBm @1900 MHz  
Input IP2: >70 dBm @ 900 MHz  
Input P1dB: 14.7 dBm @ 900 MHz  
Noise figure (NF)  
14.0 dB @ 900 MHz  
15.6 dB @ 1900 MHz  
Voltage conversion gain: ~4 dB  
Quadrature demodulation accuracy  
Phase accuracy: ~0.2°  
VPA  
COM  
BIAS  
VPL  
1
2
3
4
5
6
18 VPB  
17 VPB  
16 QHI  
15 QLO  
14 IHI  
ADL5382  
BIAS  
GEN  
0°  
90°  
VPL  
VPL  
13 ILO  
Amplitude balance: ~0.05 dB  
Demodulation bandwidth: ~370 MHz  
Baseband I/Q drive: 2 V p-p into 200 Ω  
Single 5 V supply  
7
8
9
10  
11  
12  
CML LOIP LOIN CML CML COM  
Figure 1.  
APPLICATIONS  
Cellular W-CDMA/CDMA/CDMA2000/GSM  
Microwave point-to-(multi)point radios  
Broadband wireless and WiMAX  
GENERAL DESCRIPTION  
The ADL5382 is a broadband quadrature I-Q demodulator that  
covers an RF input frequency range from 700 MHz to 2.7 GHz.  
With a NF = 14 dB, IP1dB = 14.7 dBm, and IIP3 = 33.5 dBm at  
900 MHz, the ADL5382 demodulator offers outstanding dynamic  
range suitable for the demanding infrastructure direct-conversion  
requirements. The differential RF inputs provide a well-behaved  
broadband input impedance of 50 Ω and are best driven from a  
1:1 balun for optimum performance.  
The fully balanced design minimizes effects from second-order  
distortion. The leakage from the LO port to the RF port is  
<−65 dBc. Differential dc offsets at the I and Q outputs are typically  
<10 mV. Both of these factors contribute to the excellent IIP2  
specifications which is >60 dBm.  
The ADL5382 operates off a single 4.75 V to 5.25 V supply. The  
supply current is adjustable with an external resistor from the  
BIAS pin to ground.  
Excellent demodulation accuracy is achieved with amplitude and  
phase balances ~0.05 dB and ~0.2°, respectively. The demodulated  
in-phase (I) and quadrature (Q) differential outputs are fully  
buffered and provide a voltage conversion gain of ~4 dB. The  
buffered baseband outputs are capable of driving a 2 V p-p  
differential signal into 200 Ω.  
The ADL5382 is fabricated using the Analog Devices, Inc.,  
advanced Silicon-Germanium bipolar process and is available  
in a 24-lead exposed paddle LFCSP.  
Rev. 0  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2008 Analog Devices, Inc. All rights reserved.  
 
ADL5382  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Emitter Follower Buffers ........................................................... 13  
Bias Circuit.................................................................................. 13  
Applications Information.............................................................. 14  
Basic Connections...................................................................... 14  
Power Supply............................................................................... 14  
Local Oscillator (LO) Input ...................................................... 14  
RF Input....................................................................................... 15  
Baseband Outputs ...................................................................... 15  
Error Vector Magnitude (EVM) Performance........................... 16  
Low IF Image Rejection............................................................. 17  
Example Baseband Interface..................................................... 17  
Characterization Setups................................................................. 21  
Evaluation Board ............................................................................ 23  
Outline Dimensions....................................................................... 27  
Ordering Guide .......................................................................... 27  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Absolute Maximum Ratings............................................................ 5  
ESD Caution.................................................................................. 5  
Pin Configuration and Function Descriptions............................. 6  
Typical Performance Characteristics ............................................. 7  
Distributions for fRF = 900 MHz............................................... 10  
Distributions for fRF = 1900 MHz............................................. 11  
Distributions for fRF = 2700 MHz............................................. 12  
Circuit Description......................................................................... 13  
LO Interface................................................................................. 13  
V-to-I Converter......................................................................... 13  
Mixers .......................................................................................... 13  
REVISION HISTORY  
3/08—Revision 0: Initial Version  
Rev. 0 | Page 2 of 28  
 
ADL5382  
SPECIFICATIONS  
VS = 5 V, TA = 25°C, fLO = 900 MHz, fIF = 4.5 MHz, PLO = 0 dBm, BIAS pin open, ZO = 50 ꢀ, unless otherwise noted. Baseband outputs  
differentially loaded with 450 ꢀ. Loss of the balun used to drive the RF port was de-embedded from these measurements.  
Table 1.  
Parameter  
Condition  
Min Typ  
0.7  
Max Unit  
OPERATING CONDITIONS  
LO and RF Frequency Range  
LO INPUT  
Input Return Loss  
LO Input Level  
2.7  
+6  
GHz  
LOIP, LOIN  
LO driven differentially through a balun at 900 MHz  
−11  
dB  
dBm  
−6  
0
I/Q BASEBAND OUTPUTS  
Voltage Conversion Gain  
QHI, QLO, IHI, ILO  
450 Ω differential load on I and Q outputs at 900 MHz  
200 Ω differential load on I and Q outputs at 900 MHz  
1 V p-p signal, 3 dB bandwidth  
At 900 MHz  
3.9  
3.0  
370  
0.2  
0.05  
5
VPOS − 2.8  
50  
2
dB  
dB  
MHz  
Degrees  
dB  
mV  
V
MHz  
V p-p  
mA  
Demodulation Bandwidth  
Quadrature Phase Error  
I/Q Amplitude Imbalance  
Output DC Offset (Differential)  
Output Common Mode  
0.1 dB Gain Flatness  
Output Swing  
0 dBm LO input at 900 MHz  
Differential 200 Ω load  
Each pin  
Peak Output Current  
POWER SUPPLIES  
12  
VPA, VPL, VPB, VPX  
Voltage  
4.75  
5.25  
V
Current  
BIAS pin open  
RBIAS = 4 kΩ  
220  
196  
mA  
mA  
DYNAMIC PERFORMANCE at RF = 900 MHz  
Conversion Gain  
3.9  
dB  
Input P1dB  
14.7  
73  
dBm  
dBm  
dBm  
dBm  
dBc  
Second-Order Input Intercept (IIP2)  
Third-Order Input Intercept (IIP3)  
LO to RF  
RF to LO  
IQ Magnitude Imbalance  
IQ Phase Imbalance  
LO to IQ  
Noise Figure  
Noise Figure under Blocking Conditions  
DYNAMIC PERFORMANCE at RF = 1900 MHz  
Conversion Gain  
−5 dBm each input tone  
−5 dBm each input tone  
RFIN, RFIP terminated in 50 Ω  
LOIN, LOIP terminated in 50 Ω  
33.5  
−92  
−89  
0.05  
0.2  
−43  
14.0  
19.9  
dB  
Degrees  
dBm  
dB  
RFIN, RFIP terminated in 50 Ω  
With a −5 dBm interferer 5 MHz away  
dB  
3.9  
dB  
Input P1dB  
14.4  
65  
dBm  
dBm  
dBm  
dBm  
dBc  
Second-Order Input Intercept (IIP2)  
Third-Order Input Intercept (IIP3)  
LO to RF  
RF to LO  
IQ Magnitude Imbalance  
IQ Phase Imbalance  
LO to IQ  
Noise Figure  
Noise Figure under Blocking Conditions  
−5 dBm each input tone  
−5 dBm each input tone  
RFIN, RFIP terminated in 50 Ω  
LOIN, LOIP terminated in 50 Ω  
30.5  
−71  
−78  
0.05  
0.2  
−41  
15.6  
20.5  
dB  
Degrees  
dBm  
dB  
RFIN, RFIP terminated in 50 Ω  
With a −5 dBm interferer 5 MHz away  
dB  
Rev. 0 | Page 3 of 28  
 
ADL5382  
Parameter  
Condition  
Min Typ  
Max Unit  
DYNAMIC PERFORMANCE at RF = 2700 MHz RFIP, RFIN  
Conversion Gain  
Input P1dB  
Second-Order Input Intercept (IIP2)  
Third-Order Input Intercept (IIP3)  
LO to RF  
3.3  
14.5  
52  
28.3  
−70  
−55  
0.16  
0.1  
dB  
dBm  
dBm  
dBm  
dBm  
dBc  
dB  
Degrees  
dBm  
dB  
−5 dBm each input tone  
−5 dBm each input tone  
RFIN, RFIP terminated in 50 Ω, 1xLO appearing at RF port  
LOIN, LOIP terminated in 50 Ω  
RF to LO  
IQ Magnitude Imbalance  
IQ Phase Imbalance  
LO to IQ  
RFIN, RFIP terminated in 50 Ω, 1xLO appearing at BB port  
−42  
17.6  
Noise Figure  
Rev. 0 | Page 4 of 28  
ADL5382  
ABSOLUTE MAXIMUM RATINGS  
Table 2.  
Parameter  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Rating  
Supply Voltage (VPA, VPL, VPB, VPX)  
LO Input Power  
5.5 V  
13 dBm (re: 50 Ω)  
15 dBm (re: 50 Ω)  
1230 mW  
RF Input Power  
Internal Maximum Power Dissipation  
θJA  
54°C/W  
Maximum Junction Temperature  
Operating Temperature Range  
Storage Temperature Range  
150°C  
−40°C to +85°C  
−65°C to +125°C  
ESD CAUTION  
Rev. 0 | Page 5 of 28  
 
ADL5382  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
24  
CMRF CMRF RFIP RFIN CMRF VPX  
VPB  
23  
22  
21  
20  
19  
1
2
3
4
5
6
18  
VPA  
COM  
BIAS  
VPL  
VPL  
VPL  
VPB 17  
QHI 16  
QLO 15  
IHI 14  
ADL5382  
TOP VIEW  
(Not to Scale)  
ILO 13  
CML LOIP LOIN CML CML COM  
10 11 12  
7
8
9
Figure 2. Pin Configuration  
Table 3. Pin Function Descriptions  
Pin No.  
Mnemonic  
Description  
1, 4 to 6,  
17 to 19  
VPA, VPL, VPB, VPX Supply. Positive supply for LO, IF, biasing, and baseband sections. These pins should be decoupled  
to the board ground using appropriate-sized capacitors.  
2, 7, 10 to 12, COM, CML, CMRF  
20, 23, 24  
Ground. Connect to a low impedance ground plane.  
3
BIAS  
Bias Control. A resistor (RBIAS) can be connected between BIAS and COM to reduce the mixer core  
current. The default setting for this pin is open.  
8, 9  
LOIP, LOIN  
ILO, IHI, QLO, QHI  
Local Oscillator Input. Pins must be ac-coupled. A differential drive through a balun (recommended  
balun is the M/A-COM ETC1-1-13) is necessary to achieve optimal performance.  
I Channel and Q Channel Mixer Baseband Outputs. These outputs have a 50 Ω differential output  
impedance (25 Ω per pin). The bias level on these pins is equal to VPOS − 2.8 V. Each output pair can  
swing 2 V p-p (differential) into a load of 200 Ω. Output 3 dB bandwidth is 370 MHz.  
13 to 16  
21, 22  
RFIN, RFIP  
EP  
RF Input. A single-ended 50 Ω signal can be applied to the RF inputs through a 1:1 balun (recommended  
balun is the M/A-COM ETC1-1-13). Ground-referenced inductors must also be connected to RFIP and  
RFIN (recommended values = 33 nH).  
Exposed Paddle. Connect to a low impedance thermal and electrical ground plane.  
Rev. 0 | Page 6 of 28  
 
ADL5382  
TYPICAL PERFORMANCE CHARACTERISTICS  
VS = 5 V, TA = 25°C, LO drive level = 0 dBm, RBIAS = open, RF input balun loss is de-embedded, unless otherwise noted.  
20  
15  
10  
5
2
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
1
INPUT P1dB  
0
–1  
–2  
–3  
–4  
–5  
–6  
–7  
–8  
GAIN  
0
700 900 1100 1300 1500 1700 1900 2100 2300 2500 2700  
10  
100  
1000  
RF FREQUENCY (MHz)  
BASEBAND FREQUENCY (MHz)  
Figure 3. Conversion Gain and Input IP1 dB Compression Point (IP1dB) vs.  
RF Frequency  
Figure 6. Normalized IQ Baseband Frequency Response  
80  
19  
18  
17  
16  
15  
14  
13  
12  
I CHANNEL  
Q CHANNEL  
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
70  
INPUT IP2  
60  
50  
INPUT IP3 (I AND Q CHANNELS)  
40  
30  
20  
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
10  
700 900 1100 1300 1500 1700 1900 2100 2300 2500 2700  
RF FREQUENCY (MHz)  
700 900 1100 1300 1500 1700 1900 2100 2300 2500 2700  
RF FREQUENCY (MHz)  
Figure 4. Input Third-Order Intercept (IIP3) and  
Figure 7. Noise Figure vs. RF Frequency  
Input Second-Order Intercept Point (IIP2) vs. RF Frequency  
4
3
2.0  
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
1.5  
1.0  
2
1
0.5  
0
0
–1  
–2  
–3  
–4  
–0.5  
–1.0  
–1.5  
–2.0  
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
700 900 1100 1300 1500 1700 1900 2100 2300 2500 2700  
700 900 1100 1300 1500 1700 1900 2100 2300 2500 2700  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
Figure 8. IQ Quadrature Phase Error vs. RF Frequency  
Figure 5. IQ Gain Mismatch vs. RF Frequency  
Rev. 0 | Page 7 of 28  
 
ADL5382  
20  
80  
65  
50  
35  
20  
20  
18  
16  
14  
12  
10  
8
75  
65  
55  
45  
35  
25  
15  
IIP2, Q CHANNEL  
IIP2, Q CHANNEL  
IIP2, I CHANNEL  
NOISE FIGURE  
IIP2, I CHANNEL  
IP1dB  
15  
NOISE FIGURE  
IP1dB  
10  
5
IIP3  
6
IIP3  
4
GAIN  
GAIN  
2
0
0
–6 –5 –4 –3 –2 –1  
0
1
2
3
4
5
6
–6 –5 –4 –3 –2 –1  
0
1
2
3
4
5
6
LO LEVEL (dBm)  
LO LEVEL (dBm)  
Figure 9. Conversion Gain, IP1dB, Noise Figure, IIP3, and IIP2 vs.  
LO Level, fRF = 900 MHz  
Figure 12. Conversion Gain, IP1dB, Noise Figure, IIP3, and IIP2 vs.  
LO Level, fRF = 1900 MHz  
34  
32  
250  
240  
230  
220  
210  
200  
190  
180  
170  
160  
T
T
T
= –40°C  
= +25°C  
= +85°C  
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
A
A
A
INPUT IP3  
30  
26  
22  
18  
14  
10  
28  
24  
20  
16  
12  
8
SUPPLY CURRENT  
INPUT IP3  
NOISE FIGURE  
NOISE FIGURE  
1
10  
(k)  
100  
1
10  
100  
R
R
(k)  
BIAS  
BIAS  
Figure 10. IIP3, Noise Figure, and Supply Current vs. RBIAS, fRF = 900 MHz  
Figure 13. IIP3 and Noise Figure vs. RBIAS, fRF = 1900 MHz  
29  
27  
25  
23  
21  
19  
80  
70  
60  
50  
40  
30  
20  
10  
0
900MHz: GAIN  
900MHz: IP1dB  
900MHz: IIP2, I CHANNEL  
900MHz: IIP2, Q CHANNEL  
1900MHz: GAIN  
1900MHz: IP1dB  
1900MHz: IIP2, I CHANNEL  
1900MHz: IIP2, Q CHANNEL  
1900MHz  
900MHz  
17  
15  
13  
–30  
–25  
–20  
–15  
–10  
–5  
0
5
1
10  
(k)  
100  
RF BLOCKER INPUT POWER (dBm)  
R
BIAS  
Figure 11. Noise Figure vs. Input Blocker Level, fRF = 900 MHz, 1900 MHz  
(RF Blocker 5 MHz Offset)  
Figure 14. Conversion Gain, IP1dB, IIP2_I, and IIP2_Q vs.  
RBIAS, fRF = 900 MHz, 1900MHz  
Rev. 0 | Page 8 of 28  
 
 
ADL5382  
40  
35  
30  
25  
20  
15  
10  
5
85  
80  
75  
70  
65  
60  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
I CHANNEL  
Q CHANNEL  
IIP3  
IIP2  
IP1dB  
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
0
0
10  
20  
30  
40  
50  
700 900 1100 1300 1500 1700 1900 2100 2300 2500 2700  
BASEBAND FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
Figure 15. IP1dB, IIP3, and IIP2 vs. Baseband Frequency  
Figure 18. LO-to-RF Leakage vs. LO Frequency  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
700 900 1100 1300 1500 1700 1900 2100 2300 2500 2700  
700 900 1100 1300 1500 1700 1900 2100 2300 2500 2700  
RF FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
Figure 19. RF-to-LO Leakage vs. RF Frequency  
Figure 16. LO-to-BB Leakage vs. LO Frequency  
0
0
–5  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–45  
–50  
–5  
–10  
–15  
–20  
–25  
–30  
700 900 1100 1300 1500 1700 1900 2100 2300 2500 2700  
700 900 1100 1300 1500 1700 1900 2100 2300 2500 2700  
LO FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
Figure 17. RF Port Return Loss vs. RF Frequency Measured on a Characterization  
Board through an ETC1-1-13 Balun with 33 nH Bias Inductors  
Figure 20. LO Port Return Loss vs. LO Frequency Measured on  
Characterization Board through an ETC1-1-13 Balun  
Rev. 0 | Page 9 of 28  
 
ADL5382  
DISTRIBUTIONS FOR fRF = 900 MHz  
100  
100  
80  
60  
40  
20  
0
T
T
T
= –40°C  
= +25°C  
= +85°C  
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
A
A
A
80  
60  
40  
20  
0
I CHANNEL  
Q CHANNEL  
31  
32  
33  
34  
35  
36  
37  
45  
50  
55  
60  
65  
70  
75  
80  
85  
INPUT IP3 (dBm)  
INPUT IP2 (dBm)  
Figure 21. IIP3 Distributions, fRF = 900 MHz  
Figure 24. IIP2 Distributions for I Channel and Q Channel, fRF = 900 MHz  
100  
80  
60  
40  
20  
0
100  
T
T
T
= –40°C  
= +25°C  
= +85°C  
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
A
T
A
A
T
80  
60  
40  
20  
0
12  
13  
14  
15  
16  
17  
12.5  
13.0  
13.5  
14.0  
14.5  
15.0  
15.5  
INPUT P1dB (dBm)  
NOISE FIGURE (dB)  
Figure 22. IP1dB Distributions, fRF = 900 MHz  
Figure 25. Noise Figure Distributions, fRF = 900 MHz  
100  
80  
60  
40  
20  
0
100  
80  
60  
40  
20  
0
T
T
T
= –40°C  
= +25°C  
A
= +85°C  
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
A
A
–0.2  
–0.1  
0
0.1  
0.2  
–1.00 –0.75 –0.50 –0.25  
0
0.25  
0.50  
0.75  
1.00  
GAIN MISMATCH (dB)  
QUADRATURE PHASE ERROR (Degrees)  
Figure 23. IQ Gain Mismatch Distributions, fRF = 900 MHz  
Figure 26. IQ Quadrature Phase Error Distributions, fRF = 900 MHz  
Rev. 0 | Page 10 of 28  
 
ADL5382  
DISTRIBUTIONS FOR fRF = 1900 MHz  
100  
100  
80  
60  
40  
20  
0
T
T
T
= –40°C  
= +25°C  
= +85°C  
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
A
A
A
80  
60  
40  
20  
0
I CHANNEL  
Q CHANNEL  
28  
29  
30  
31  
32  
33  
45  
50  
55  
60  
65  
70  
75  
80  
85  
INPUT IP3 (dBm)  
INPUT IP2 (dBm)  
Figure 27. IIP3 Distributions, fRF = 1900 MHz  
Figure 30. IIP2 Distributions for I Channel and Q Channel, fRF = 1900 MHz  
100  
80  
60  
40  
20  
0
100  
T
T
T
= –40°C  
= +25°C  
= +85°C  
T
T
T
= –40°C  
= +25°C  
A
= +85°C  
A
A
A
A
A
80  
60  
40  
20  
0
12  
13  
14  
15  
16  
17  
14.0  
14.5  
15.0  
15.5  
16.0  
16.5  
17.0  
INPUT P1dB (dBm)  
NOISE FIGURE (dB)  
Figure 28. IP1dB Distributions, fRF = 1900 MHz  
Figure 31. Noise Figure Distributions, fRF = 1900 MHz  
100  
80  
60  
40  
20  
0
100  
80  
60  
40  
20  
0
T
T
T
= –40°C  
= +25°C  
= +85°C  
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
A
A
A
–1.00 –0.75 –0.50 –0.25  
0
0.25  
0.50  
0.75  
1.00  
–0.2  
–0.1  
0
0.1  
0.2  
QUADRATURE PHASE ERROR (Degrees)  
GAIN MISMATCH (dB)  
Figure 32. IQ Quadrature Phase Error Distributions, fRF = 1900 MHz  
Figure 29. IQ Gain Mismatch Distributions, fRF = 1900 MHz  
Rev. 0 | Page 11 of 28  
 
ADL5382  
DISTRIBUTIONS FOR fRF = 2700 MHz  
100  
100  
80  
60  
40  
20  
0
T
T
T
= –40°C  
= +25°C  
= +85°C  
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
A
A
A
80  
60  
40  
20  
0
I CHANNEL  
Q CHANNEL  
26  
27  
28  
29  
30  
31  
45  
50  
55  
60  
65  
70  
75  
80  
85  
INPUT IP3 (dBm)  
INPUT IP2 (dBm)  
Figure 33. IIP3 Distributions, fRF = 2700 MHz  
Figure 36. IIP2 Distributions for I Channel and Q Channel, fRF = 2700 MHz  
100  
80  
60  
40  
20  
0
100  
T
T
T
= –40°C  
= +25°C  
= +85°C  
T
= –40°C  
= +25°C  
A
A
A
A
T
A
T = +85°C  
A
80  
60  
40  
20  
0
12  
13  
14  
15  
16  
17  
16.0  
16.5  
17.0  
17.5  
18.0  
18.5  
19.0  
INPUT P1dB (dBm)  
NOISE FIGURE (dB)  
Figure 34. IP1dB Distributions, fRF = 2700 MHz  
Figure 37. Noise Figure Distributions, fRF = 2700 MHz  
100  
80  
60  
40  
20  
0
100  
80  
60  
40  
20  
0
T
T
T
= –40°C  
= +25°C  
= +85°C  
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
A
A
A
–0.1  
0
0.1  
0.2  
0.3  
–1.00 –0.75 –0.50 –0.25  
0
0.25  
0.50  
0.75  
1.00  
GAIN MISMATCH (dB)  
QUADRATURE PHASE ERROR (Degrees)  
Figure 35. IQ Gain Mismatch Distributions, fRF = 2700 MHz  
Figure 38. IQ Quadrature Phase Error Distributions, fRF = 2700 MHz  
Rev. 0 | Page 12 of 28  
 
ADL5382  
CIRCUIT DESCRIPTION  
The ADL5382 can be divided into five sections: the local  
oscillator (LO) interface, the RF voltage-to-current (V-to-I)  
converter, the mixers, the differential emitter follower outputs,  
and the bias circuit. A detailed block diagram of the device is  
shown in Figure 39.  
V-TO-I CONVERTER  
The differential RF input signal is applied to a resistively  
degenerated common base stage, which converts the differential  
input voltage to output currents. The output currents then  
modulate the two half frequency LO carriers in the mixer stage.  
BIAS  
MIXERS  
The ADL5382 has two double-balanced mixers: one for the  
in-phase channel (I channel) and one for the quadrature channel  
(Q channel). These mixers are based on the Gilbert cell design  
of four cross-connected transistors. The output currents from  
the two mixers are summed together in the resistive loads that  
then feed into the subsequent emitter follower buffers.  
IHI  
ILO  
LOIP  
RFIP  
POLYPHASE  
EMITTER FOLLOWER BUFFERS  
QUADRATURE  
PHASE SPLITTER  
RFIN  
The output emitter followers drive the differential I and Q  
signals off-chip. The output impedance is set by on-chip 25 ꢀ  
series resistors that yield a 50 ꢀ differential output impedance  
for each baseband port. The fixed output impedance forms a  
voltage divider with the load impedance that reduces the effective  
gain. For example, a 500 ꢀ differential load has 1 dB lower  
effective gain than a high (10 kꢀ) differential load impedance.  
LOIN  
QHI  
QLO  
Figure 39. Block Diagram  
BIAS CIRCUIT  
The LO interface generates two LO signals at 90° of phase  
difference to drive two mixers in quadrature. RF signals are  
converted into currents by the V-to-I converters that feed into  
the two mixers. The differential I and Q outputs of the mixers  
are buffered via emitter followers. Reference currents to each  
section are generated by the bias circuit. A detailed description  
of each section follows.  
A band gap reference circuit generates the proportional-to-  
absolute temperature (PTAT) as well as temperature-independent  
reference currents used by different sections. The mixer current  
can be reduced via an external resistor between the BIAS pin  
and ground. When the BIAS pin is open, the mixer runs at  
maximum current and therefore the greatest dynamic range.  
The mixer current can be reduced by placing a resistance to  
ground; therefore, reducing overall power consumption, noise  
figure, and IIP3. The effect on each of these parameters is  
shown in Figure 10, Figure 13, and Figure 14.  
LO INTERFACE  
The LO interface consists of a polyphase quadrature splitter  
followed by a limiting amplifier. The LO input impedance is set  
by the polyphase, which splits the LO signal into two differential  
signals in quadrature. Each quadrature LO signal then passes  
through a limiting amplifier that provides the mixer with a  
limited drive signal. For optimal performance, the LO inputs  
must be driven differentially.  
Rev. 0 | Page 13 of 28  
 
 
 
 
ADL5382  
APPLICATIONS INFORMATION  
BASIC CONNECTIONS  
LOCAL OSCILLATOR (LO) INPUT  
Figure 41 shows the basic connections schematic for the ADL5382.  
For optimum performance, the LO port should be driven  
differentially through a balun. The recommended balun is  
the M/A-COM ETC1-1-13. The LO inputs to the device should  
be ac-coupled with 1000 pF capacitors. The LO port is designed  
for a broadband 50 ꢀ match from 700 MHz to 2.7 GHz. The  
LO return loss can be seen in Figure 20. Figure 40 shows the LO  
input configuration.  
POWER SUPPLY  
The nominal voltage supply for the ADL5382 is 5 V and is  
applied to the VPA, VPB, VPL, and VPX pins. Ground should  
be connected to the COM, CML, and CMRF pins. The exposed  
paddle on the underside of the package should also be soldered  
to a low thermal and electrical impedance ground plane. If the  
ground plane spans multiple layers on the circuit board, these  
layers should be stitched together with nine vias under the  
exposed paddle. The Application Note AN-772 discusses the  
thermal and electrical grounding of the LFCSP in detail. Each  
of the supply pins should be decoupled using two capacitors;  
recommended capacitor values are 100 pF and 0.1 μF.  
LO INPUT  
8
LOIP  
LOIN  
1000pF  
1000pF  
ETC1-1-13  
9
Figure 40. Differential LO Drive  
The recommended LO drive level is between −6 dBm and +6 dBm.  
The applied LO frequency range is between 700 MHz and 2.7 GHz.  
ETC1-1-13  
RFC  
1000pF  
33nH  
1000pF  
33nH  
V
POS  
24  
23  
22  
21  
20  
19  
V
1 VPA  
VPB 18  
POS  
0.1µF  
100pF  
100pF  
0.1µF  
2 COM  
3 BIAS  
4 VPL  
5 VPL  
6 VPL  
VPB 17  
QHI 16  
QLO15  
IHI 14  
QHI  
QLO  
ADL5382  
V
POS  
IHI  
ILO  
0.1µF  
100pF  
ILO13  
7
8
9
10  
11  
12  
1000pF  
1000pF  
ETC1-1-13  
LO  
Figure 41. Basic Connections Schematic  
Rev. 0 | Page 14 of 28  
 
 
 
ADL5382  
The differential RF port return loss is characterized as shown in  
Figure 43.  
RF INPUT  
The RF inputs have a differential input impedance of  
–10  
approximately 50 ꢀ. For optimum performance, the RF port  
should be driven differentially through a balun. The recommended  
balun is the M/A-COM ETC1-1-13. The RF inputs to the device  
should be ac-coupled with 1000 pF capacitors. Ground-referenced  
choke inductors must also be connected to RFIP and RFIN (the  
recommended value is 33 nH, Coilcraft 0603CS-33NX) for  
appropriate biasing. Several important aspects must be taken  
into account when selecting an appropriate choke inductor for  
this application. First, the inductor must be able to handle the  
approximately 40 mA of standing dc current being delivered  
from each of the RF input pins (RFIP, RFIN). The suggested  
0603 inductor has a 600 mA current rating. The purpose of the  
choke inductors is to provide a very low resistance dc path to  
ground and high ac impedance at the RF frequency so as not to  
affect the RF input impedance. A choke inductor that has a self-  
resonant frequency greater than the RF input frequency ensures  
that the choke is still looking inductive and therefore has a more  
predictable ac impedance (jωL) at the RF frequency. Figure 42  
shows the RF input configuration.  
–12  
–14  
–16  
–18  
–20  
–22  
–24  
0.7 0.9 1.1 1.3 1.5 1.7 1.9 2.1 2.3 2.5 2.7 2.9  
FREQUENCY (GHz)  
Figure 43. Differential RF Port Return Loss  
BASEBAND OUTPUTS  
The baseband outputs QHI, QLO, IHI, and ILO are fixed  
impedance ports. Each baseband pair has a 50 ꢀ differential  
output impedance. The outputs can be presented with differential  
loads as low as 200 ꢀ (with some degradation in gain) or high  
impedance differential loads (500 ꢀ or greater impedance yields  
the same excellent linearity) that is typical of an ADC. The  
TCM9-1 9:1 balun converts the differential IF output to single-  
ended. When loaded with 50 ꢀ, this balun presents a 450 ꢀ  
load to the device. The typical maximum linear voltage swing  
for these outputs is 2 V p-p differential. The bias level on these  
pins is equal to VPOS − 2.8 V. The output 3 dB bandwidth is  
370 MHz. Figure 44 shows the baseband output configuration.  
33nH  
21  
22  
RFIN  
RFIP  
1000pF  
1000pF  
ETC1-1-13  
RF INPUT  
33nH  
16  
QHI  
QLO  
IHI  
QHI  
QLO  
IHI  
Figure 42. RF Input  
15  
14  
13  
ILO  
ILO  
Figure 44. Baseband Output Configuration  
Rev. 0 | Page 15 of 28  
 
 
 
 
ADL5382  
0
–5  
ERROR VECTOR MAGNITUDE (EVM) PERFORMANCE  
EVM is a measure used to quantify the performance of a digital  
radio transmitter or receiver. A signal received by a receiver  
would have all constellation points at the ideal locations; however,  
various imperfections in the implementation (such as magnitude  
imbalance, noise floor, and phase imbalance) cause the actual  
constellation points to deviate from the ideal locations.  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–45  
–50  
The ADL5382 shows excellent EVM performance for various  
modulation schemes. Figure 45 shows the EVM performance of  
the ADL5382 with a 16 QAM, 200 kHz low IF.  
0
–5  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–45  
–50  
–65 –60 –55 –50 –45 –40 –35 –30 –25 –20 –15 –10 –5  
0
5
10  
RF INPUT POWER (dBm)  
Figure 46. EVM, RF = 2.6 GHz, IF = 0 Hz vs. RF Input Power for a 16 QAM  
10 MHz Bandwidth Mobile WiMAX Signal (AC-Coupled Baseband Outputs)  
Figure 47 exhibits multiple W-CDMA low-IF EVM  
performance curves over a wide RF input power range into the  
ADL5382. In the case of zero-IF, the noise contribution by the  
vector signal analyzer becomes predominant at lower power  
levels, making it difficult to measure SNR accurately.  
0
–5  
–10  
–15  
–20  
–25  
–30  
–85  
–75  
–65  
–55  
–45  
–35  
–25  
–15  
–5  
RF INPUT POWER (dBm)  
Figure 45. EVM, RF = 900 MHz, IF = 200 kHz vs.  
RF Input Power for a 16 QAM 160 ksym/s Signal  
Figure 46 shows the zero-IF EVM performance of a 10 MHz  
IEEE 802.16e WiMAX signal through the ADL5382. The  
differential dc offsets on the ADL5382 are in the order of a few  
millivolts. However, ac coupling the baseband outputs with  
10 μF capacitors eliminates dc offsets and enhances EVM  
performance. With a 10 MHz BW signal, 10 μF ac coupling  
capacitors with the 500 ꢀ differential load results in a high-pass  
corner frequency of ~64 Hz, which absorbs an insignificant  
amount of modulated signal energy from the baseband signal.  
By using ac-coupling capacitors at the baseband outputs, the dc  
offset effects, which can limit dynamic range at low input power  
levels, can be eliminated.  
–35  
–40  
–45  
–50  
0Hz  
5MHz  
2.5MHz  
7.5MHz  
–75 –70 –65 –60 –55 –50 –45 –40 –35 –30 –25 –20 –15 –10 –5  
RF INPUT POWER (dBm)  
Figure 47. EVM, RF = 1900 MHz, IF = 0 Hz, 2.5 MHz, 5 MHz, and 7.5 MHz vs. RF  
Input Power for a W-CDMA Signal (AC-Coupled Baseband Outputs)  
Rev. 0 | Page 16 of 28  
 
 
 
 
ADL5382  
COSωLO  
t
0°  
ωIF  
ωIF  
0
0
+
ωIF  
ωIF  
0
+ωIF  
–90°  
+90°  
ωLSB ωLO ωUSB  
0°  
+ωIF  
ωIF  
0
+ωIF  
SINωLO  
t
Figure 48. Illustration of the Image Problem  
EXAMPLE BASEBAND INTERFACE  
LOW IF IMAGE REJECTION  
In most direct conversion receiver designs, it is desirable to  
select a wanted carrier within a specified band. The desired  
channel can be demodulated by tuning the LO to the appropriate  
carrier frequency. If the desired RF band contains multiple  
carriers of interest, the adjacent carriers would also be down  
converted to a lower IF frequency. These adjacent carriers can  
be problematic if they are large relative to the wanted carrier as  
they can overdrive the baseband signal detection circuitry. As a  
result, it is often necessary to insert a filter to provide sufficient  
rejection of the adjacent carriers.  
The image rejection ratio is the ratio of the intermediate frequency  
(IF) signal level produced by the desired input frequency to that  
produced by the image frequency. The image rejection ratio is  
expressed in decibels. Appropriate image rejection is critical  
because the image power can be much higher than that of the  
desired signal, thereby plaguing the down conversion process.  
Figure 48 illustrates the image problem. If the upper sideband  
(lower sideband) is the desired band, a 90° shift to the Q channel  
(I channel) cancels the image at the lower sideband (upper  
sideband). Phase and gain balance between I and Q channels  
are critical for high levels of image rejection.  
It is necessary to consider the overall source and load impedance  
presented by the ADL5382 and ADC input to design the filter  
network. The differential baseband output impedance of the  
ADL5382 is 50 ꢀ. The ADL5382 is designed to drive a high  
impedance ADC input. It may be desirable to terminate the  
ADC input down to lower impedance by using a terminating  
resistor, such as 500 ꢀ. The terminating resistor helps to better  
define the input impedance at the ADC input at the cost of a  
slightly reduced gain (see the Circuit Description section for  
details on the emitter-follower output loading effects). The order  
and type of filter network depends on the desired high frequency  
rejection required, pass-band ripple, and group delay. Filter  
design tables provide outlines for various filter types and orders,  
illustrating the normalized inductor and capacitor values for a  
1 Hz cutoff frequency and 1 ꢀ load. After scaling the normalized  
prototype element values by the actual desired cut-off frequency  
and load impedance, the series reactance elements are halved to  
realize the final balanced filter network component values.  
Figure 49 shows the excellent image rejection capabilities of  
the ADL5382 for low IF applications, such as W-CDMA. The  
ADL5382 exhibits image rejection greater than 45 dB over a  
broad frequency range.  
70  
5MHz LOW IF  
2.5MHz LOW IF  
60  
50  
40  
30  
20  
10  
0
7.5MHz LOW IF  
700 900 1100 1300 1500 1700 1900 2100 2300 2500 2700  
RF FREQUENCY (MHz)  
Figure 49. Image Rejection vs. RF Frequency for a W-CDMA Signal,  
IF = 2.5 MHz, 5 MHz, and 7.5 MHz  
Rev. 0 | Page 17 of 28  
 
 
 
ADL5382  
As an example, a second-order Butterworth, low-pass filter  
design is shown in Figure 50 where the differential load impedance  
is 500 ꢀ and the source impedance of the ADL5382 is 50 ꢀ. The  
normalized series inductor value for the 10-to-1, load-to-source  
impedance ratio is 0.074 H, and the normalized shunt capacitor  
is 14.814 F. For a 10.9 MHz cutoff frequency, the single-ended  
equivalent circuit consists of a 0.54 μH series inductor followed  
by a 433 pF shunt capacitor.  
Figure 51 and Figure 52 show the measured frequency response  
and group delay of the filter.  
10  
5
0
–5  
The balanced configuration is realized as the 0.54 μH inductor  
is split in half to realize the network shown in Figure 50.  
–10  
–15  
–20  
R
= 50  
L
= 0.074H  
S
N
NORMALIZED  
SINGLE-ENDED  
CONFIGURATION  
V
C
14.814F  
R = 500Ω  
S
N
L
R
R
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
S
L
fC = 1Hz  
= 0.1  
FREQUENCY (MHz)  
0.54µH  
R
= 50Ω  
S
Figure 51. Sixth-Order Baseband Filter Response  
DENORMALIZED  
SINGLE-ENDED  
EQUIVALENT  
900  
V
V
433pF  
433pF  
R = 500Ω  
S
L
800  
700  
600  
500  
400  
300  
200  
100  
fC = 10.9MHz  
R
2
S
= 25Ω  
= 25Ω  
0.27µH  
R
L
2
= 250Ω  
BALANCED  
CONFIGURATION  
S
R
2
L
= 250Ω  
R
0.27µH  
S
2
Figure 50. Second-Order Butterworth, Low-Pass Filter Design Example  
A complete design example is shown in Figure 53. A sixth-order  
Butterworth differential filter having a 1.9 MHz corner frequency  
interfaces the output of the ADL5382 to that of an ADC input.  
The 500 ꢀ load resistor defines the input impedance of the  
ADC. The filter adheres to typical direct conversion W-CDMA  
applications, where 1.92 MHz away from the carrier IF frequency,  
1 dB of rejection is desired and 2.7 MHz away 10 dB of rejection  
is desired.  
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
1.8  
FREQUENCY (MHz)  
Figure 52. Sixth-Order Baseband Filter Group Delay  
Rev. 0 | Page 18 of 28  
 
 
 
ADL5382  
ETC1-1-13  
RFC  
1000pF  
33nH  
1000pF  
33nH  
C
AC  
27µH  
27µH  
10µH  
10µF  
V
POS  
24  
23  
22  
21  
20  
19  
C
AC  
10µF  
V
1 VPA  
VPB 18  
POS  
0.1µF  
100pF  
100pF  
0.1µF  
27µH  
27µH  
10µH  
2 COM  
3 BIAS  
4 VPL  
5 VPL  
6 VPL  
VPB 17  
QHI 16  
QLO15  
IHI 14  
ADL5382  
V
POS  
0.1µF  
100pF  
ILO13  
C
AC  
27µH  
27µH  
10µH  
10µF  
7
8
9
10  
11  
12  
C
AC  
10µF  
1000pF  
1000pF  
27µH  
27µH  
10µH  
ETC1-1-13  
LO  
Figure 53. Sixth-Order Low-Pass Butterworth, Baseband Filter Schematic  
Rev. 0 | Page 19 of 28  
 
ADL5382  
5
0
As the load impedance of the filter increases, the filter design  
becomes more challenging in terms of meeting the required  
rejection and pass band specifications. In the previous W-  
CDMA example, the 500 ꢀ load impedance resulted in the  
design of a sixth-order filter that has relatively large inductor  
values and small capacitor values. If the load impedance is 200 ꢀ,  
the filter design becomes much more manageable. As shown in  
Figure 54, the resultant inductor and capacitor values become  
much more practical.  
–5  
–10  
–15  
–20  
10µH  
8µH  
0.2  
0.6  
1.0  
1.4  
1.8  
2.2  
2.6  
3.0  
3.4  
3.8  
FREQUENCY (MHz)  
Figure 55. Fourth-Order Low-Pass W-CDMA Filter Magnitude Response  
10µH  
8µH  
900  
Figure 54. Fourth-Order Low-Pass W-CDMA Filter Schematic  
800  
700  
600  
500  
400  
300  
200  
100  
Figure 55 and Figure 56 illustrate the magnitude response and  
group delay response of the fourth-order filter, respectively.  
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
1.8  
2.0  
FREQUENCY (MHz)  
Figure 56. Fourth-Order Low-Pass W-CDMA Filter Group Delay Response  
Rev. 0 | Page 20 of 28  
 
 
 
ADL5382  
CHARACTERIZATION SETUPS  
Figure 57 to Figure 59 show the general characterization bench  
setups used extensively for the ADL5382. The setup shown in  
Figure 59 was used to do the bulk of the testing and used sinusoidal  
signals on both the LO and RF inputs. An automated Agilent  
VEE program was used to control the equipment over the IEEE  
bus. This setup was used to measure gain, IP1dB, IIP2, IIP3, I/Q  
gain match, and quadrature error. The ADL5382 characterization  
board had a 9-to-1 impedance transformer on each of the  
differential baseband ports to do the differential-to-single-  
ended conversion, which presented a 450 ꢀ differential load to  
each baseband port, when interfaced with 50 ꢀ test equipment.  
For all measurements of the ADL5382, the loss of the RF input  
balun (the M/A-COM ETC1-1-13 was used on RF input during  
characterization) was de-embedded.  
The two setups shown in Figure 57 and Figure 58 were used for  
making NF measurements. Figure 57 shows the setup for  
measuring NF with no blocker signal applied while Figure 58  
was used to measure NF in the presence of a blocker. For both  
setups, the noise was measured at a baseband frequency of  
10 MHz. For the case where a blocker was applied, the output  
blocker was at a 15 MHz baseband frequency. Note that great  
care must be taken when measuring NF in the presence of a  
blocker. The RF blocker generator must be filtered to prevent its  
noise (which increases with increasing generator output power)  
from swamping the noise contribution of the ADL5382. At least  
30 dB of attention at the RF and image frequencies is desired.  
For example, assume a 915 MHz signal applied to the LO inputs of  
the ADL5382. To obtain a 15 MHz output blocker signal, the RF  
blocker generator is set to 930 MHz and the filters tuned such  
that there is at least 30 dB of attenuation from the generator at  
both the desired RF frequency (925 MHz) and the image RF  
frequency (905 MHz). Finally, the blocker must be removed  
from the output (by the 10 MHz low-pass filter) to prevent the  
blocker from swamping the analyzer.  
SNS  
CONTROL  
AGILENT N8974A  
NOISE FIGURE ANALYZER  
OUTPUT  
R1  
50  
RF  
Q
GND  
ADL5382  
CHAR BOARD  
V
POS  
I
LO  
HP 6235A  
POWER SUPPLY  
INPUT  
LOW-PASS  
FILTER  
AGILENT 8665B  
SIGNAL GENERATOR  
IEEE  
PC CONTROLLER  
Figure 57. General Noise Figure Measurement Setup  
Rev. 0 | Page 21 of 28  
 
 
ADL5382  
BAND-PASS  
TUNABLE FILTER  
BAND-REJECT  
TUNABLE FILTER  
R&S SMT03  
SIGNAL GENERATOR  
R&S FSEA30  
SPECTRUM ANALYZER  
R1  
50  
RF  
Q
I
GND  
ADL5382  
LOW-PASS  
FILTER  
6dB PAD  
CHAR BOARD  
V
POS  
LO  
HP 6235A  
POWER SUPPLY  
BAND-PASS  
CAVITY FILTER  
HP87405  
LOW NOISE  
PREAMP  
AGILENT 8665B  
SIGNAL GENERATOR  
Figure 58. Measurement Setup for Noise Figure in the Presence of a Blocker  
3dB PAD  
RF  
AMPLIFIER  
IN  
OUT  
3dB PAD  
3dB PAD  
RF  
VP GND  
AGILENT  
11636A  
3dB PAD  
R&S SMT06  
RF  
R&S SMT06  
RF  
Q
I
6dB PAD  
GND  
SWITCH  
MATRIX  
ADL5382  
CHAR BOARD  
V
POS  
6dB PAD  
LO  
AGILENT E3631  
PWER SUPPLY  
RF  
INPUT  
AGILENT E8257D  
SIGNAL GENERATOR  
IEEE  
IEEE  
R&S FSEA30  
SPECTRUM ANALYZER  
HP 8508A  
VECTOR VOLTMETER  
PC CONTROLLER  
Figure 59. General Characterization Setup  
Rev. 0 | Page 22 of 28  
 
 
ADL5382  
EVALUATION BOARD  
The ADL5382 evaluation board is available. The board can be  
used for single-ended or differential baseband analysis. The default  
configuration of the board is for single-ended baseband analysis.  
T1  
RFC  
C11  
C10  
L2  
24  
L1  
19  
R8  
R7  
VPOS  
R1  
23  
22  
21  
20  
R6  
V
1 VPA  
VPB 18  
POS  
C1  
C2  
C8  
C9  
2 COM  
3 BIAS  
4 VPL  
5 VPL  
6 VPL  
VPB 17  
QHI 16  
QLO15  
IHI 14  
R2  
R9  
Q OUTPUT OR QHI  
R14  
R15  
T2  
ADL5382  
C12  
R3  
VPOS  
R16  
C3  
C4  
QLO  
ILO13  
R10  
R11  
7
8
9
10  
11  
12  
I OUTPUT OR IHI  
R4  
R5  
T3  
C13  
R13  
ILO  
C6  
C7  
T4  
R12  
LO  
Figure 60. Evaluation Board Schematic  
Rev. 0 | Page 23 of 28  
 
ADL5382  
Table 4. Evaluation Board Configuration Options  
Component Function  
Default Condition  
Not applicable  
VPOS, GND  
R1, R3, R6  
Power Supply and Ground Vector Pins.  
Power Supply Decoupling. Shorts or power supply decoupling resistors.  
These capacitors provide the required decoupling up to 2.7 GHz.  
R1, R3, R6 = 0 Ω (0603)  
C1, C2, C3,  
C4, C8, C9  
C2, C4, C8 = 100 pF (0402)  
C1, C3, C9 = 0.1 μF (0603)  
C6, C7,  
C10, C11  
AC Coupling Capacitors. These capacitors provide the required ac coupling from  
700 MHz to 2.7 GHz.  
C6, C10, C11 = 1000 pF (0402)  
C7 = open  
R4, R5,  
R9 to R16  
Single-Ended Baseband Output Path. This is the default configuration of the evaluation  
board. R14 to R16 and R4, R5, and R13 are populated for appropriate balun interface.  
R9, R10 and R11, R12 are not populated. Baseband outputs are taken from QHI and IHI.  
R4, R5, R13 to R16 = 0 Ω (0402)  
R9 to R12 = open  
The user can reconfigure the board to use full differential baseband outputs. R9 to R12  
provide a means to bypass the 9:1 TCM9-1 transformer to allow for differential baseband  
outputs. Access the differential baseband signals by populating R9 to R12 with 0 Ω and  
not populating R4, R5, R13 to R16. This way the transformer does not need to be  
removed. The baseband outputs are taken from the SMAs of Q_HI, Q_LO, I_HI, and I_LO.  
L1, L2,  
R7, R8  
Input Biasing. Inductance and resistance sets the input biasing of the common  
base input stage. The default value is 33 nH.  
L1, L2 = 33 nH (0603CS-33NX,  
Coilcraft)  
R7, R8 = 0 Ω (0402)  
T2, T3  
IF Output Interface. TCM9-1 converts a differential high impedance IF output to a single-  
ended output. When loaded with 50 Ω, this balun presents a 450 Ω load to the device.  
The center tap can be decoupled through a capacitor to ground.  
T2, T3 = TCM9-1, 9:1  
(Mini-Circuits)  
C12, C13  
Decoupling Capacitors. C12 and C13 are the decoupling capacitors used to reject noise  
on the center tap of the TCM9-1.  
C12, C13 = 0.1 μF (0402)  
T4 = ETC1-1-13, 1:1 (M/A-COM)  
T1 = ETC1-1-13, 1:1 (M/A-COM)  
R2 = open  
T4  
T1  
R2  
LO Input Interface. The LO is driven differentially. ETC1-1-13 is a 1:1 RF balun that  
converts the single-ended RF input to differential signal.  
RF Input Interface. ETC1-1-13 is a 1:1 RF balun that converts the single-ended RF input  
to differential signal.  
RBIAS. Optional bias setting resistor. See the Bias Circuit section to see how to use this feature.  
Rev. 0 | Page 24 of 28  
ADL5382  
Figure 62. Evaluation Board Top Layer Silkscreen  
Figure 61. Evaluation Board Top Layer  
Rev. 0 | Page 25 of 28  
ADL5382  
Figure 63. Evaluation Board Bottom Layer  
Figure 64. Evaluation Board Bottom Layer Silkscreen  
Rev. 0 | Page 26 of 28  
ADL5382  
OUTLINE DIMENSIONS  
0.60 MAX  
4.00  
BSC SQ  
0.60 MAX  
PIN 1  
INDICATOR  
1
24  
19  
18  
0.50  
BSC  
PIN 1  
INDICATOR  
*
2.45  
2.30 SQ  
2.15  
TOP  
3.75  
EXPOSED  
VIEW  
BSC SQ  
PA D  
(BOTTOMVIEW)  
0.50  
0.40  
0.30  
6
13  
7
12  
0.23 MIN  
2.50 REF  
0.80 MAX  
0.65 TYP  
1.00  
0.85  
0.80  
12° MAX  
0.05 MAX  
0.02 NOM  
0.30  
0.23  
0.18  
COPLANARITY  
0.08  
0.20 REF  
SEATING  
PLANE  
*
COMPLIANT TO JEDEC STANDARDS MO-220-VGGD-2  
EXCEPT FOR EXPOSED PAD DIMENSION  
Figure 65. 24-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
4 mm × 4 mm Body, Very Thin Quad  
(CP-24-2)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model  
ADL5382ACPZ-R71  
ADL5382ACPZ-WP1  
ADL5382-EVALZ1  
Temperature Range  
–40°C to +85°C  
–40°C to +85°C  
Package Description  
Package Option  
CP-24-2  
CP-24-2  
Ordering Quantity  
24-Lead LFCSP_VQ, 7”Tape and Reel  
24-Lead LFCSP_VQ, Waffle Pack  
Evaluation Board  
1,500  
64  
1 Z = RoHS Compliant Part.  
Rev. 0 | Page 27 of 28  
 
 
ADL5382  
NOTES  
©2008 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D07208-0-3/08(0)  
Rev. 0 | Page 28 of 28  

相关型号:

ADL5382-EVALZ

700 MHz to 2.7 GHz Quadrature Demodulator
ADI

ADL5382ACPZ-R7

700 MHz to 2.7 GHz Quadrature Demodulator
ADI

ADL5382ACPZ-WP

700 MHz to 2.7 GHz Quadrature Demodulator
ADI

ADL5385

50 MHz to 2200 MHz Quadrature Modulator
ADI

ADL5385-EVALZ

50 MHz to 2200 MHz Quadrature Modulator
ADI

ADL5385ACPZ-R2

50 MHz to 2200 MHz Quadrature Modulator
ADI

ADL5385ACPZ-R7

50 MHz to 2200 MHz Quadrature Modulator
ADI

ADL5385ACPZ-WP

50 MHz to 2200 MHz Quadrature Modulator
ADI

ADL5386

Correcting Imperfections in IQ Modulators to Improve RF Signal Fidelity
ADI

ADL5386ACPZ-R2

SPECIALTY TELECOM CIRCUIT, QCC40, 6 X 6 MM, ROHS COMPLIANT, MO-220-VJJD-2, LFCSP-40
ADI

ADL5386ACPZ-R7

50 MHz TO 2200 MHz Quadrature Modulator with Integrated Detector and VVA
ADI

ADL5387

50 MHz to 2 GHz Quadrature Demodulator
ADI