ADIS16000 [ADI]

Digital MEMS Vibration Sensor w/ Embedded RF Transceiver; 数字MEMS振动传感器瓦特/嵌入式射频收发器
ADIS16000
型号: ADIS16000
厂家: ADI    ADI
描述:

Digital MEMS Vibration Sensor w/ Embedded RF Transceiver
数字MEMS振动传感器瓦特/嵌入式射频收发器

传感器 射频
文件: 总37页 (文件大小:567K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Digital MEMS Vibration Sensor  
w/ Embedded RF Transceiver  
Preliminary Technical Data  
ADIS16000/ADIS16229  
FEATURES  
GENERAL DESCRIPTION  
Wireless vibration system, 862MHz – 928MHz  
Clear Channel Assessment/Packet collision avoidance  
Error Detection and Correction in RF protocol  
Programmable RF Output power  
Gateway node (ADIS16000)  
SPI to RF function  
The ADIS16000 and ADIS16229 enable creation of a simple  
wireless vibration-sensing network for a wide variety of  
industrial-equipment applications. . The ADIS16000 provides  
the gateway function, which manages the network, while the  
ADIS16229 provides the remote sensing function.  
The ADIS16229 iSesnor is a complete wireless vibration sensor  
node that combines dual-axis acceleration sensing with advanced  
time domain and frequency domain signal processing. Time  
domain signal processing includes a programmable decimation  
filter and selectable windowing function. Frequency domain  
processing includes a 512-point, real-valued FFT, FFT  
magnitude averaging, and programmable spectral alarms. The  
FFT record storage system offers users the ability to track  
changes over time and capture FFTs with multiple decimation  
filter settings.  
Manage up to 6 sensor nodes  
Sensor Node (ADIS16229)  
Dual-axis, 18g MEMS accelerometer  
5.5kHz Resonant frequency  
Digital range settings: 0 g to 1 g/5 g/10 g/20 g  
Sample rate up to 20kSPS  
Programmable wake-up capture, update cycle times  
FFT, 512-point, real valued  
Rectangular, Hanning, flat top window options  
Programmable decimation filter, 11 rate settings  
Multi-record capture for selected filter settings  
Manual capture mode for time domain data collection  
Programmable FFT averaging: up to 255 averages  
Record Storage: 14 FFT records on all three axes (x, y)  
Programmable alarms, 6 spectral bands, 2 levels  
Adjustable response delay to reduce false alarms  
Internal self-test with status flags  
Digital temperature and power supply measurements  
Identification registers: serial number, device ID, user ID  
47mm x 38mm PCB package with SMA antenna interface  
Single-supply operation: 3.0 V to 3.6 V  
Operating temperature range: −40°C to +85°C  
The ADIS16229s dynamic range, bandwidth, sample rate and  
noise performance are well suited for a wide variety of machine  
health and production equipment monitoring systems. This  
devices also provides a number of wireless configuration  
parameters enable a wide level of flexibility in managing the  
trade-off between battery life and communication frequency.  
The ADIS16000 SPI interface provides simple connectivity with  
most embedded processor platforms and the SMA connector  
interface enables the use of many different antennas. This  
module supports up to six ADIS16229 devices at one time,  
using a proprietary wireless protocol.  
Both ADIS16000 and ADIS16229 modules are in in  
APPLICATIONS  
47.0x37.6x22.6mm PCB structures, have an SMA connector for  
simple antenna connection, have two mounting holes for simple  
installation and support operation over a temperature range of -  
40°C to +85°C. The ADIS16000 also includes a standard 1mm,  
14-pin connector for connecting to an embedded processor  
system. The ADIS16229 provides a lead structure that enables  
simple connection with standard batteries.  
Vibration analysis  
Condition monitoring  
Machine health  
Instrumentation, diagnostics  
Safety shutoff sensing  
FUNCTIONAL BLOCK DIAGRAM  
Figure 1.  
Rev. PrA  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2013 Analog Devices, Inc. All rights reserved.  
ADIS16000/ADIS16229  
Preliminary Technical Data  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Alarm Definition........................................................................ 23  
Alarm Indicator Signals............................................................. 24  
Alarm Flags and Conditions..................................................... 24  
Alarm Status................................................................................ 25  
Worst-Case Condition Monitoring.......................................... 25  
Reading Output Data..................................................................... 26  
Reading Data from the Data Buffer......................................... 26  
Accessing FFT Record Data...................................................... 26  
Data Format ................................................................................ 27  
Real-Time Data Collection ....................................................... 27  
Power Supply/Temperature....................................................... 27  
FFT Event Header ...................................................................... 29  
System Tools.................................................................................... 30  
Global Commands ..................................................................... 30  
Status/Error Flags............................................................................  
Power-Down ....................................................................................  
Operation Managment ...................................................................  
Input/Output Functions .................................................................  
Self-Test ....................................................................................... 31  
Flash Memory Management..................................................... 31  
Device Identification.......................................................................  
Applications Information.............................................................. 32  
Interface Board ........................................................................... 32  
Mating Connector...................................................................... 32  
Outline Dimensions....................................................................... 33  
Ordering Guide .......................................................................... 36  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Functional Block Diagram .............................................................. 1  
Specifications..................................................................................... 3  
Timing Specifications .................................................................. 5  
Absolute Maximum Ratings............................................................ 6  
ESD Caution.................................................................................. 6  
Pin Configuration and Function Descriptions............................. 7  
Theory of Operation ........................................................................ 8  
Sensing Element ........................................................................... 8  
Signal Processing.......................................................................... 8  
Basic Operation............................................................................... 10  
SPI Write Commands ................................................................ 10  
SPI Read Commands ................................................................. 10  
Data Recording and Signal Processing........................................ 13  
Recording Mode .............................................................................  
Spectral Record Production...................................................... 17  
Sample Rate/Filtering................................................................. 17  
Dynamic Range/Sensitivity....................................................... 19  
Pre-FFT Windowing.................................................................. 20  
FFT ............................................................................................... 21  
Recording Times......................................................................... 21  
Data Records ............................................................................... 21  
FFT Record Flash Endurance ................................................... 21  
Spectral Alarms............................................................................... 23  
Rev. PrA | Page 2 of 37  
Preliminary Technical Data  
ADIS16000/ADIS16229  
SPECIFICATIONS  
TA = −40°C to +125°C, VDD = 3.3 V, unless otherwise noted.  
Table 1.  
Parameter  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
ACCELEROMETERS (ADIS16229)  
Measurement Range1  
Sensitivity, FFT  
Sensitivity, Time Domain  
Sensitivity Error  
TA = 25°C  
TA = 25°C, 0 g to 20 g range setting  
TA = 25°C  
1ꢀ  
g
0.3052  
0.6104  
0.3  
mg/LSB  
mg/LSB  
%
TA = 25°C  
6
Nonlinearity  
With respect to full scale  
0.2  
1.25  
%
Cross-Axis Sensitivity  
Alignment Error  
Offset Error  
Offset Temperature Coefficient  
Output Noise  
Output Noise Density  
Bandwidth  
Sensor Resonant Frequency  
LOGIC INPUTS3 (ADIS16000)  
Input High Voltage, VINH  
Input Low Voltage, VINL  
Input Leakage Current  
All Except RST  
4
2.3  
0.01  
2
11  
0.24ꢀ  
ꢀ40  
5.5  
%
With respect to package mounting holes  
TA = 25°C  
Degrees  
g
mg/°C  
mg rms  
mg/√Hz  
Hz  
1
TA = 25°C, 20.4ꢀ kHz sample rate, time domain  
TA = 25°C, 10 Hz to 1 kHz  
5% flatness,2, see Figure 19  
kHz  
0.7 x VDD  
V
V
0.2xVDD  
TBD  
−1  
μA  
mA  
pF  
RST  
Input Capacitance, CIN  
DIGITAL OUTPUTS3  
Output High Voltage, VOH  
Output Low Voltage, VOL  
FLASH MEMORY  
Endurance4  
Data Retention5  
10  
ISOURCE = 1 mA  
ISINK = 1 mA  
VDD-0.4  
V
V
0.36  
20,000  
20  
Cycles  
Years  
TJ = ꢀ5°C, see Figure 23  
START-UP TIME6  
Initial Startup  
ADIS16000  
ADIS16229  
ADIS16000  
ADIS16229  
200  
100  
200  
50  
2.3  
20  
ms  
ms  
ms  
ms  
ms  
kSPS  
%
Reset Recovery7  
Sleep Mode Recovery  
CONVERSION RATE  
Clock Accuracy  
ADIS16229  
REC_CTRL1[11:ꢀ] = 0x1 (SR0 sample rate selection)  
3
POWER SUPPLY  
Power Supply Current, ADIS16229  
Operating voltage range, VDD  
Transmission mode, 10dBm, +25C  
Transmission mode, 10dBm, -40C to +ꢀ5C  
Transmission mode, -1dBm, +25C  
Transmission mode, -1dBm, -40C to +ꢀ5C  
Receive mode, +25C  
3.0  
3.3  
39  
TBD  
1ꢀ  
TBD  
20  
3.6  
41  
V
mA  
TBD  
TBD  
mA  
mA  
Receive mode, +40C to +ꢀ5C  
Data capture mode, no transceiver activity, +25C  
Sleep mode, TA = 25°C  
Transmission mode, 10dBm, +25C  
Transmission mode, -1dBm, +25C  
Receive mode, +25C  
TBD  
7.2  
2.5  
37  
1ꢀ  
20  
ꢁA  
Power Supply Current, ADIS16000  
mA  
mA  
mA  
Rev. PrA | Page 3 of 37  
ADIS16000/ADIS16229  
Preliminary Technical Data  
1 The maximum range depends on the frequency of vibration.  
2 Assumes that frequency flatness calibration is enabled.  
3 The digital I/O signals are 5 V tolerant.  
4 Endurance is qualified as per JEDEC Standard 22, Method A117 and measured at −40°C, +25°C, +ꢀ5°C, and +125°C.  
5 Retention lifetime equivalent at junction temperature (TJ) = ꢀ5°C as per JEDEC Standard 22, Method A117. Retention lifetime depends on junction temperature.  
6 The start-up times presented reflect the time it takes for data collection to begin.  
7
RST  
RST  
pin must be held low for at least 10 ꢁs.  
Applies to the reset line (  
= 0) and the software reset command (GLOB_CMD[7] = 1). The  
Rev. PrA | Page 4 of 37  
Preliminary Technical Data  
ADIS16000/ADIS16229  
TIMING SPECIFICATIONS  
TA = 25°C, VDD = 3.3 V, unless otherwise noted.  
Table 2.  
Parameter  
Description  
Min1  
0.01  
25  
Typ  
Max  
Unit  
MHz  
μs  
fSCLK  
tSTALL  
tCS  
tDAV  
tDSU  
SCLK frequency  
2.5  
Stall period between data, between 16th and 17th SCLK  
Chip select to SCLK edge  
DOUT valid after SCLK edge  
DIN setup time before SCLK rising edge  
DIN hold time after SCLK rising edge  
SCLK rise time  
4ꢀ.ꢀ  
ns  
100  
ns  
24.4  
4ꢀ.ꢀ  
ns  
ns  
tDHD  
tSR  
12.5  
12.5  
12.5  
ns  
ns  
ns  
ns  
tSF  
tDF, tDR  
tSFS  
SCLK fall time  
DOUT rise/fall times  
CS high after SCLK edge  
5
5
1 Guaranteed by design, not tested.  
Timing Diagrams  
tSR  
CS  
tSF  
tCS  
tSFS  
1
2
3
4
5
6
15  
16  
SCLK  
tDAV  
DOUT  
DIN  
MSB  
DB14  
tDSU  
DB13  
A5  
DB12  
DB11  
A3  
DB10  
DB2  
DB1  
LSB  
LSB  
tDHD  
R/W  
A6  
A4  
A2  
D2  
D1  
Figure 2. SPI Timing and Sequence  
tSTALL  
CS  
SCLK  
Figure 3. DIN Bit Sequence  
Rev. PrA | Page 5 of 37  
ADIS16000/ADIS16229  
Preliminary Technical Data  
ABSOLUTE MAXIMUM RATINGS  
Table 3.  
Table 4. Package Characteristics  
Parameter  
Rating  
Package Type  
θJA  
θJC  
Device Weight  
Acceleration  
15-Lead Module  
31°C/W  
11°C/W  
6.5 grams  
Any Axis, Unpowered  
Any Axis, Powered  
VDD to GND  
Digital Input Voltage to GND  
Digital Output Voltage to GND  
Temperature  
2000 g  
2000 g  
−0.3 V to +3.96 V  
−0.3 V to +3.96 V  
−0.3 V to +3.96 V  
ESD CAUTION  
Operating Temperature Range  
Storage Temperature Range  
−40°C to +ꢀ5°C  
−65°C to +150°C  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Rev. PrA | Page 6 of 37  
Preliminary Technical Data  
ADIS16000/ADIS16229  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
Figure 4. ADIS16000 Pin Assignments  
Figure 5. Pin Configuration  
Table 5. Pin Function Descriptions  
Pin No.  
Mnemonic  
Type1  
S
Description  
1, 2  
3, 4  
VDD  
GND  
Power Supply, 3.3 V.  
Ground.  
S
5
DO2  
DNC  
DOUT  
I/O  
I/O  
O
Digital Input/Output Line 2.  
Do not connect  
SPI, Data Output. DOUT is an output when CS is low. When CS is high, DOUT is in a three-  
6, ꢀ, 9 , 10  
7
state, high impedance mode.  
SPI, Serial Clock.  
SPI, Chip Select.  
9
SCLK  
CS  
I
I
11  
12  
13  
14  
DIN/RXD  
DO1  
RST  
I
SPI, Data Input.  
Digital Input/Output Line 1.  
Reset, Active Low.  
I/O  
I
1 S is supply, O is output, I is input, and I/O is input/output.  
Rev. PrA | Page 7 of 37  
ADIS16000/ADIS16229  
Preliminary Technical Data  
THEORY OF OPERATION  
The ADIS16000 is the “Gateway Node” and the ADIS16229 serves  
as the remote “Sensor Node” in a wireless vibration monitoring  
system. Using a proprietary wireless protocol, one ADIS16000 can  
support up to six ADIS16229 nodes at one time in local star  
network configuration (see Figure 8). As the gateway node, the  
ADIS16000s SPI interface provides access to an addressable  
register map that manages configuration parameters (gateway and  
sensor node), remote alarm flags and remote vibration data. The  
ADIS16000s SPI interface enables simple connection to most  
embedded processors and its standard SMA connector supports  
direct connection to a wide variety of antennas. The ADIS16229  
only requires an antenna and battery to start-up, connect with the  
ADIS16000 and begin operation.  
averaging, and record storage. See Figure 16 for more details  
on the signal processing operation.  
SENSOR COMMUNICATION  
The ADIS16000 provides access to the ADIS16229 through  
dedicated pages in the register structure. When the ADIS16000  
communicates with a remote ADIS16229, it copies all  
configuration information in these registers to their respective  
locations in the ADIS16229 and acquires all of the data in the  
ADIS16229s output registers/data records.  
GATEWAY COMMUNICATION  
SPI Interface  
The data collection and configuration command uses the SPI,  
SENSING ELEMENT  
CS  
which consists of four wires. The chip select ( ) signal  
activates the SPI interface, and the serial clock (SCLK)  
synchronizes the serial data lines. Input commands clock into  
the DIN pin, one bit at a time, on the SCLK rising edge. Output  
data clocks out of the DOUT pin on the SCLK falling edge.  
Since the ADIS16000 serves only as a SPI slave, the DOUT  
contents reflect the information requested using a DIN  
command.  
Digital vibration sensing in the ADIS16229 starts with a MEMS  
accelerometer core on two different axes. Accelerometers  
translate linear changes in velocity into a representative  
electrical signal, using a micromechanical system like the one  
shown in Figure 6. The mechanical part of this system includes  
two different frames (one fixed, one moving) that have a series  
of plates to form a variable, differential capacitive network.  
When experiencing the force associated with gravity or  
acceleration, the moving frame changes its physical position  
with respect to the fixed frame, which results in a change in  
capacitance. Tiny springs tether the moving frame to the fixed  
frame and govern the relationship between acceleration and  
physical displacement. A modulation signal on the moving plate  
feeds through each capacitive path into the fixed frame plates and  
into a demodulation circuit, which produces the electrical signal  
that is proportional to the acceleration acting on the device.  
Register organization  
The ADIS16000s memory map contains 7 pages of user  
accessible registers, which enable simple organization of both  
local (gateway) and remote (sensor) functions. Each page has a  
page control register (PAGE_ID) address 0x00. Before  
accessing a register within a particular page, write that page’s  
identification number to this register. For example, write “2” to  
the PAGE_ID register to access sensor node #2. Once a  
particular page has been “accessed,” there is no need to write the  
same value to PAGE_ID, in order to access the rest of the  
registers within that page  
ANCHOR  
MOVABLE  
FRAME  
PLATE  
CAPACITORS  
Each 16-bit register has its own unique bit assignment and two  
addresses: one for its upper byte and one for its lower byte.  
Table 9 and Table 10 provide more details on these memory  
maps, which list each register, along with its function and lower  
byte address.  
FIXED  
PLATES  
UNIT SENSING  
CELL  
UNIT  
FORCING  
CELL  
Table 6. ADIS16000 Register Map Page Organization  
MOVING  
PLATE  
PAGE_ID  
0x0000  
0x0001  
0x0002  
0x0003  
0x0004  
0x0005  
0x0006  
Function  
Reference  
Gateway configuration  
Sensor Node #1  
Sensor Node #2  
Sensor Node #3  
Sensor Node #4  
Sensor Node #5  
Sensor Node #6  
Table 9  
Table 10  
Table 10  
Table 10  
Table 10  
Table 10  
Table 10  
ANCHOR  
Figure 6. MEMS Sensor Diagram  
SIGNAL PROCESSING  
Figure 9 offers a simplified block diagram for the ADIS16229.  
The signal processing stage includes time-domain data capture,  
digital decimation/filtering, windowing, FFT analysis, FFT  
Dual-Memory Structure  
The user registers provide addressing for all input/output  
operations in the SPI interface. The control registers use a dual-  
Rev. PrA | Page ꢀ of 37  
Preliminary Technical Data  
ADIS16000/ADIS16229  
memory structure. The controller uses SRAM registers for  
normal operation, including user-configuration commands.  
The flash memory provides nonvolatile storage for control  
registers that have flash backup (see Table 9 and Table 10).  
When the device powers on or resets, the flash memory  
contents load into the SRAM, and the device starts producing  
data according to the configuration in the control registers.  
Storing configuration data in the flash memory requires a  
manual flash update command. For the ADIS16000, set DIN =  
0x8000 (access page 0), then set DIN = 0x9240 (set  
MANUAL  
FLASH  
BACKUP  
NONVOLATILE  
FLASH MEMORY  
(NO SPI ACCESS)  
VOLATILE  
SRAM  
SPI ACCESS  
START-UP  
RESET  
Figure 7. SRAM and Flash Memory Diagram  
GLOB_CMD[6] = 1). For a remote ADIS16229, using the  
following steps to update its flash: (1) turn to its page (DIN =  
0x8001, to access note, for example), (2) set DIN = 0xB640  
(GLOB_CMD[6] = 1), (3) set DIN = 0x8000 (turn to page 0)  
and (4) set DIN = 0x9202 (GLOB_CMD[8] = 1).  
Figure 8. Star Wireless Network Example  
Figure 9. ADIS16229 Simplified Block Diagram  
Rev. PrA | Page 9 of 37  
ADIS16000/ADIS16229  
Preliminary Technical Data  
ADIS16000 BASIC OPERATION  
Once it has appropriate power on the VDD pin, the ADIS16000  
will automatically begin a self-initialization process. Once this  
process is complete, the SPI interface activates and provides  
access to its register structure. The SPI interface supports  
connectivity with most embedded processor platforms, using  
the connection diagram in Figure 10. The factory default  
configuration for DO1 provides a busy indicator signal that  
indicates when to avoid SPI communication requests.  
Table 9 and Table 10 provide lists of user registers with their  
lower byte addresses. Each register consists of two bytes that  
each has its own unique 7-bit address. Figure 11 relates the bits  
of each register to their upper and lower addresses.  
15 14 13 12 11 10  
UPPER BYTE  
9
8
7
6
5
4
3
2
1
0
LOWER BYTE  
Figure 11. Generic Register Bit Definitions  
SPI WRITE COMMANDS  
User control registers govern many internal operations. The  
DIN bit sequence in Figure 14 provides the ability to write to  
these registers, one byte at a time. Some configuration changes  
and functions require only one write cycle. For example, set  
PAGE_ID[7:0] = 1 (DIN = 0x8001) to select Page 1 of the  
register map.  
Figure 10. Electrical Hook-Up Diagram  
Figure 12. SPI Sequence for Selecting Page 1 for Access (DIN = 0x8001)  
Table 7. Generic Master Processor Pin Names and Functions  
SPI READ COMMANDS  
Pin Name  
Function  
A single register read requires two 16-bit SPI cycles that also  
use the bit assignments that are shown in Figure 14. The first  
SS  
Slave select  
SCLK  
MOSI  
MISO  
IRQ1, IRQ2  
Serial clock  
R
sequence sets /W = 0 and communicates the target address  
Master output, slave input  
Master input, slave output  
Interrupt request inputs (optional)  
(Bits[A6:A0]). Bits[D7:D0] are don’t care bits for a read DIN  
sequence. DOUT clocks out the requested register contents  
during the second sequence. The second sequence can also use  
DIN to set up the next read. Figure 13 provides a signal diagram  
for all four SPI signals while reading the PROD_ID. In this  
diagram, DIN = 0x1600 and DOUT reflects the decimal  
equivalent of 16,000.  
The ADIS16000 SPI interface supports full duplex serial  
communication (simultaneous transmit and receive) and uses  
the bit sequence shown in Figure 14. Table 8 provides a list of  
the most common settings that require attention to initialize  
a processor serial port for the ADIS16000 SPI interface.  
Table 8. Generic Master Processor SPI Settings  
Processor Setting  
Description  
Master  
SCLK Rate ≤ 2.5 MHz  
SPI Mode 3  
The ADIS16000 operates as a slave.  
Bit rate setting.  
Clock polarity/phase  
(CPOL = 1, CPHA = 1).  
Bit sequence.  
MSB First  
16-Bit  
Figure 13. Example SPI Read, PROD_ID (Page 0), Second Sequence  
Shift register/data length.  
CS  
SCLK  
DIN  
R/W A6  
A5  
A4  
A3  
A2  
A1  
A0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
R/W A6  
DB14 DB13  
DB15  
A5  
DOUT  
DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
NOTES  
1. DOUT BITS ARE BASED ON THE PREVIOUS 16-BIT SEQUENCE (R/W = 0).  
Figure 14. Example SPI Read Sequence  
Rev. PrA | Page 10 of 37  
Preliminary Technical Data  
ADIS16000/ADIS16229  
Table 9. User Register Memory Map, PAGE_ID = 0x0000  
Register  
Name  
Flash  
Backup  
Access  
Address  
0x00  
0x02  
Default Function  
Reference  
PAGE_ID  
NETWORK_ID  
FLASH_CNT  
Read/write N/A  
Read/write Yes  
0x0000  
1234  
N/A  
Page Identifier  
Network Identifier, unique to a network  
Flash update counter  
Read  
Read  
Yes  
No  
0x04  
NW_ERROR_STAT  
TX_PWR_CTRL_G  
RSSI_G  
TEMP_OUT_G  
SUPPLY_OUT_G  
BEACON_SETUP  
GLOB_CMD  
CMD_DATA  
PROD_ID  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
LOT_ID1  
LOT_ID2  
Reserved  
GPO_CTRL  
0x06  
0x0ꢀ  
0x0A  
0x0C  
0x0E  
0x10  
0x12  
0x14  
0x16  
0x1ꢀ  
0x1A  
0x1C  
0x1E  
0x20  
0x22  
0x24  
0x26  
0x2ꢀ  
0x2A  
0x0000  
0x0000  
0x0000  
0xꢀ000  
0xꢀ000  
0x0000  
0x0000  
0x0000  
0x3Eꢀ0  
N/A  
Network error indicators  
Transmission power control, Gateway  
Received signal strength  
Output, temperature  
Output, supply voltage  
Beacon frequency  
System commands  
Data to sensor nodes  
Product identifier, 16000  
Reserved  
Read/write Yes  
Read  
Read  
Read  
No  
No  
No  
Read/write Yes  
Read/write No  
Read/write No  
Read only  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
Read only  
Read only  
N/A  
Yes  
No  
No  
No  
No  
No  
No  
No  
No  
No  
N/A  
Reserved  
N/A  
Reserved  
N/A  
Reserved  
N/A  
Reserved  
N/A  
Reserved  
N/A  
Lot identifier 1  
N/A  
Lot identifier 2  
N/A  
Reserved  
Read/write Yes  
N/A  
General-purpose output control  
Rev. PrA | Page 11 of 37  
ADIS16000/ADIS16229  
Preliminary Technical Data  
Table 10. User Register Memory Map, PAGE_ID ≥ 0x0001  
Register  
Name  
Flash  
Backup  
Access  
Address  
0x00  
0x02  
0x04  
0x06  
0x0ꢀ  
0x0A  
0x0C  
0x0E  
0x10  
0x12  
0x14  
0x16  
0x1ꢀ  
0x1A  
0x1C  
0x1E  
0x20  
0x22  
0x24  
0x26  
0x2ꢀ  
0x2A  
0x2C  
0x2E  
0x30  
0x32  
0x34  
0x36  
0x3ꢀ  
0x3A  
0x3C  
0x3E  
0x40  
0x42  
0x44  
0x46  
0x4ꢀ  
0x4A  
0x4C  
0x4E  
0x50  
0x52  
0x54  
0x56  
0x5ꢀ  
0x5A  
0x5C  
0x5E  
0x60  
0x62  
0x64  
Default1  
N/A  
N/A  
N/A  
0xꢀ000  
0xꢀ000  
0xꢀ000  
0xꢀ000  
0xꢀ000  
0x010ꢀ  
0x0101  
0x0000  
Function  
Reference  
PAGE_ID  
SENS_ID  
FLASH_CNT  
X_BUF  
Y_BUF  
TEMP_OUT  
SUPPLY_OUT  
FFT_AVG1  
FFT_AVG2  
BUF_PNTR  
REC_PNTR  
X_SENS  
Y_SENS  
REC_CTRL1  
REC_CTRL2  
Read/write  
Read only  
Read only  
Read only  
Read only  
Read only  
Read only  
Read/write  
Read/write  
Read/write  
Read/write  
Read/write  
Read/write  
Read/write  
Read/write  
N/A  
Yes  
Yes  
No  
No  
No  
No  
Yes  
Yes  
No  
No  
No  
No  
Yes  
Yes  
Page Identifier  
Sensor Identifier  
Status, flash memory write count  
Output, buffer for x-axis acceleration data  
Output, buffer for y-axis acceleration data  
Output, temperature during capture  
Output, power supply during capture  
Control, FFT average size of 1, SR0 and SR1  
Control, FFT average size of 2, SR2 and SR3  
Control, buffer address pointer  
Table 59  
Table 60  
Table 34  
Table 35  
Table 57  
Table 5ꢀ  
Table 32  
Table 33  
Table 27  
Table 30  
Control, record address pointer  
Control, x-axis acceleration scale adjustment  
Control, y-axis acceleration scale adjustment  
Record Control Register  
0x0002  
0x000F  
Record Control Register  
ALM_F_LOW  
ALM_F_HIGH  
ALM_X_MAG1  
ALM_Y_MAG1  
ALM_X_MAG2  
ALM_Y_MAG2  
ALM_PNTR  
ALM_S_MAG  
ALM_CTRL  
AVG_CNT  
Read/write  
Read/write  
Read/write  
Read/write  
Read/write  
Read/write  
Read/write  
Read/write  
Read/write  
Read/write  
Read only  
Write only  
Read only  
Read only  
Read only  
Read only  
Read only  
Read only  
Read only  
Read only  
Read only  
Read only  
Read only  
Read only  
Read only  
Read only  
Read only  
Read only  
Read/write  
Read only  
Read/write  
Read/write  
Read/write  
Read/write  
Read only  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
No  
Yes  
Yes  
Yes  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
Yes  
No  
No  
No  
No  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
No  
Yes  
Yes  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x9630  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
Spectral Alarm Band, Low Frequency  
Spectral Alarm Band, High Frequency  
Spectral Alarm Band, X-axis, Alarm 1 Magnitude  
Spectral Alarm Band, Y-axis, Alarm 1 Magnitude  
Spectral Alarm Band, X-axis, Alarm 2 Magnitude  
Spectral Alarm Band, Y-axis, Alarm 2 Magnitude  
Spectral Alarm Band Pointer  
Alarm, system alarm threshold  
Alarm, control register  
Sample rate control (average count)  
System status register  
Global command register  
Alarm, X-axis status register  
Alarm, Y-axis status register  
Alarm, X-axis peak level  
Alarm, Y-axis peak level  
Time stamp, low integer  
Time stamp, high integer  
Table 43  
Table 44  
Table 45  
Table 46  
Table 47  
Table 4ꢀ  
Table 42  
Table 49  
Table 41  
Table 2ꢀ  
DIAG_STAT  
GLOB_CMD  
ALM_X_STAT  
ALM_Y_STAT  
ALM_X_PEAK  
ALM_Y_PEAK  
TIME_STAMP_L  
TIME_STAMP_H  
ALM_X_FREQ  
ALM_Y_FREQ  
PROD_ID  
Table 74  
Table 50  
Table 51  
Table 52  
Table 53  
Table 72  
Table 73  
Table 54  
Table 55  
Alarm, x-axis, frequency of ALM_X_PEAK  
Alarm, y-axis, frequency of ALM_Y_PEAK  
Product identification register  
REC_FLSH_CNT  
REC_INFO1  
REC_INFO2  
Table 39  
Table 70  
Table 71  
Table 37  
Record settings 1  
Record settings 2  
Record counter  
Received packet time stamp, low integer  
Received packet time stamp, high integer  
Missed packets/Error indicator  
Transmission power control  
Received signal strength indicator  
Wireless communication configuration  
Update interval  
REC_CNTR  
PKT_TIME_L  
PKT_TIME_H  
PKT_ERR_STAT  
TX_PWR_CTRL_S  
RSSI_S  
RF_MODE  
UPDAT_INT  
INT_SCL  
0x0000  
0x0000  
0x0000  
0x0000  
Update interval scale  
Beacon interval  
User scratch register  
BEACON_INT  
USER_SCR  
Rev. PrA | Page 12 of 37  
Preliminary Technical Data  
ADIS16000/ADIS16229  
Reserved  
LOT_ID1  
LOT_ID2  
Reserved  
Reserved  
X_ANULL  
Y_ANULL  
UPDT_FLAG  
N/A  
N/A  
Yes  
Yes  
N/A  
N/A  
Yes  
Yes  
Yes  
0x66  
0x6ꢀ  
0x6A  
0x6C  
0x6E  
0x70  
0x72  
0x74  
N/A  
N/A  
N/A  
N/A  
N/A  
0x0000  
0x0000  
Reserved  
Read only  
Read only  
N/A  
Lot identification 1  
Lot identification 2  
Reserved  
Reserved  
Automatic null value, x-axis  
Automatic null value, y-axis  
N/A  
Read only  
Read only  
Read/write  
Register update tracking register  
1 All registers in pages 1, 2, 3, 4, 5 and 6 will read 0x0000, prior to connecting with the ADIS16229  
NETWORK MANAGEMENT  
Once they have an appropriate supply voltage across their VDD  
and GND pins, both ADIS16000 and ADIS16229 will self-initialize  
and prepare themselves for connecting. After completing this  
process, the ADIS16229 will start sending “connection requests” to  
any available ADIS16000 devices that are within range. The system  
microcontroller manages the ADIS16000s response to these  
requests, using the CMD_DATA (See Table 11) and GLOB_CMD  
registers (See Table 12), which are both in Page 0 of the  
4
3
Clear DIAG_STAT register  
Restore factory register settings,  
including capture buffer and  
alarm registers  
2
1
Self-test, result in DIAG_STAT[5]  
Update sensor node in  
CMD_DATA register, in one of the  
manual modes  
Add sensor node in CMD_DATA to  
the network  
0
ADIS16000. Adding an ADIS16229 network requires two steps:  
(1) write the node number (between 0 and 6) to the CMD_DATA  
register and then (2) set GLOB_CMD[0] = 1 (DIN = 0x9201, in  
page 0). After this second step, the connection process can take up  
to 3 minutes after writing this code. Removing a sensor from the  
network uses a similar two-step process: (1) write the sensor node  
number to the CMD_DATA register and then (2) Set  
After connecting with an ADIS16229, the ADIS16000 will  
automatically copy the contents from its own NETWORK_ID[7:0]  
location (see Table 13) to the SENS_ID[7:0] location in the  
ADIS16229s page. (see Table 14).  
GLOB_CMD[8] = 1 (DIN = 0x9301, page 0).  
Set GLOB_CMD[1] = 1 (DIN = 0x9202) to initial an update of all  
of the registers, except those associated with the spectral alarms. Set  
GLOB_CMD[12] = 1 (DIN = 0x9310) to update all of the alarm  
registers, after configuring them. Separating this function will help  
manage the flash memory endurance.  
Table 13. NETWORK_ID  
Page 0, Low-Byte Address = 0x02, Read/Write  
Bits  
Description (Default = 0x1234)  
[15:0]  
Network identification number  
Table 11. CMD_DATA,  
Page 0, Low-Byte Address = 0x14, Read/Write  
The SENS_ID register will contain the value 0x0000 when not  
connected to a network. When connected to the network, as node  
1, it will contain 0xAD34.  
Bits  
Description (Default = 0x0000)  
[15:4]  
[3:0]  
Not used  
Table 14. SENS_ID  
Page 1-6, Low-Byte Address = 0x02, Read Only  
Sensor node for GLOB_CMD[1] and GLOB_CMD[0]  
commands. Range = 000 (0) to 110 (6)  
Bits  
Description (Default = 0xAAAA)  
[15:0]  
Sensor identification  
Table 12. GLOB_CMD  
Page 0, Low-Byte Address = 0x12, Write Only  
Receiver Signal Strength  
Bits  
[15:ꢀ]  
Description  
Execution Time  
The RSSI_G (see Table 15) and RSSI_S (see Table 16) provide  
tools for tuning the transmission power control at each location.  
In order to maintain effective communication, keep the  
transmission power high enough to maintain at least -94dBm in  
these registers.  
Not used  
Remove sensor node in  
CMD_DATA from the network  
7
6
5
Software reset  
Save registers to flash memory  
Flash test, compare sum of flash  
memory with factory value  
Rev. PrA | Page 13 of 37  
ADIS16000/ADIS16229  
Preliminary Technical Data  
Table 15. RSSI_G  
Page 0, Low Byte Address = 0x0A, Read Only  
Table 19. RF_MODE  
Page 0, Low Byte Address = 0x58, Read/Write  
Bits  
Description (Default = 0x)  
Bits  
[15:9]  
[ꢀ]  
Description (Default = 0x)  
[15:0]  
Received signal strength  
Twos complement format, 1 LSB = 1dBm  
0x0000 = 0dBm  
Not used (do not care)  
Complete register dump during update cycle  
(0 = enable, 1 = disable)  
Periodic wake-up/beacon synchronization  
(0 = disable, 1 = enable)  
Frequency hoping  
(0 = disable, 1 = enable)  
Complete synchronization after missing 2 beacons  
(0 = disable, 1 = enable)  
Not used (do not care)  
Update gateway on Alarm only  
(0 = disable, 1 = enable)  
0xFFA2 = -94dBm  
[7]  
[6]  
[5]  
Table 16. RSSI_S  
Page 1-6, Low Byte Address = 0x5A, Read Only  
Bits  
Description (Default = 0x1100)  
[15:0]  
Received signal strength  
Twos complement format, 1 LSB = 1dBm  
0x0000 = 0dBm  
[4:2]  
[1]  
0xFFA2 = -94dBm  
[0]  
Update gateway on beacon synchronization  
(0 = disable, 1 = enable)  
Transmission Power Control  
The UPDAT_INT (See Table 20) and INT_SCL (See Table 21)  
registers establish the time between wake-up events, where the  
remote ADIS16229 captures data, analyzes it and communicates  
the information.  
Both ADIS16000 and ADIS16229 units provide controls for  
transmission power in a registers called, TX_PWR_CTRL_G (see  
Table 17) and TX_PWR_CTRL_S. The registers provide users  
with the ability to optimize the transmission power for battery  
optimization and to manage interference influence on other  
networks. Note that compliance with FCC Part 15.249 involves  
limiting the transmission power to -1dBm.  
Table 20. UPDAT_INT  
Page 1-6, Low Byte Address = 0x5E, Read/Write  
Table 17. TX_PWR_CTRL_G  
Page 0, Low Byte Address = 0x08, Read/Write  
Bits  
Description (Default = 0x)  
[15:0]  
Offset binary number, scale factor set by INT_SCL  
register  
Bits  
Description (Default = 0x)  
[15:5]  
[40]  
Not used (do not care)  
Transmission power, offset binary format  
1LSB = 1.6dBm (25.5/15)  
Table 21. INT_SCL  
Page 1-6, Low Byte Address = 0x60, Read/Write  
0 = -15.5dBm (minimum)  
F = +10dBm (maximum)  
Bits  
Description (Default = 0x)  
[15:2]  
[1:0]  
Not used (do not care)  
Scale factor  
00 = 30.52ꢁsec/LSB, maximum = 2 seconds  
01 = 0.4ꢀꢀmsc/LSB, maximum = 31.9ꢀ seconds  
10 = 1/12ꢀ sec/LSB, maximum = 512 seconds  
11 = 1 sec/LSB, maximum = 1ꢀ.2 hours  
Table 18. TX_PWR_CTRL_S  
Page 1-6, Low Byte Address = 0x58, Read/Write  
Bits  
Description (Default = 0x)  
[15:5]  
[40]  
Not used (do not care)  
Transmission power, offset binary format  
1LSB = 1.6dBm (25.5/15)  
0 = -15.5dBm (minimum)  
F = +10dBm (maximum)  
The beacon synchronization function uses periodic monitoring  
for drift in sensor node clocks and limits their sleep time to 30  
minutes (or less) in order to maintain consistent  
synchronization. The BEACON_SETUP (See Table 22) register  
provides a user control for this function. When operating in  
real-time mode (REC_CTRL1 register, See Table 27) this mode  
is not necessary and automatically turns off.  
Wireless Configuration  
The RF_MODE (see Table 19) register provides a number of  
important wireless configuration parameters. Note that when the  
transmission power exceeds -1dBm, FCC Part 15.247 requires the  
use of “frequency-hopping.”  
Table 22. BEACON_SETUP  
Page 0, Low Byte Address = 0x10, Read/Write  
Bits  
[15:1]  
0
Description (Default = 0x)  
Not used  
1 = Beacon synchronization enable  
Rev. PrA | Page 14 of 37  
Preliminary Technical Data  
ADIS16000/ADIS16229  
0 = Beacon synchronization disable  
The NW_ERROR_STAT (see Table 26) register provides all of the  
error flags associated with the wireless communication.  
The BEACON_INT (See Table 23) register sets the interval time  
between re-synchronizing events with the ADIS16000 (gateway).  
Table 26. NW_ERROR_STAT  
Page 0, Low Byte Address = 0x06), Read/Write  
Table 23. BEACON_INT  
Page 1-6, Low Byte Address = 0x62, Read/Write  
Bits  
Description (Default = 0x1100)  
[15:12] Sensor node associated present error flags in this  
register  
[11:10] Not used  
Bits  
Description (Default = 0x)  
[15:0]  
Offset binary number, scale factor set by INT_SCL  
register  
9
Received packet from an unknown device.  
Packet synchronization failure, from the most recent  
received packet  
7
No response from one or more sensor nodes during  
beacon synchronization  
Communication Tools  
The PKT_TIME_H (upper word) and PKT_TIME_L (lower word)  
registers provide a 32-bit timer for tracking the relative times  
associated with packet transmission times. This maximum value  
for this number is 49.71 days. At this point, the registers start over  
at 0x0000.  
6
5
4
3
2
Failed to receive a packet from the sensor node  
Packet length mismatch  
Missing packet  
Packets received out of SYNC  
Failure to receive acknowledgement from a sensor  
node  
Low signal strength from a sensor node, read RSSI_S  
register for power level of this signal. See Table 16  
CRC mismatch error associated with the most recent  
packet from the Sensor Node Packet  
Table 24. PKT_TIME_H  
Page 1-6, Low Byte Address = 0x54, Read/Write  
1
0
Bits  
Description (Default = N/A))  
[15:0]  
Offset binary number, upper word  
Table 25. PKT_TIME_L  
Page 1-6, Low Byte Address = 0x52, Read/Write  
Bits  
Description (Default = N/A)  
[15:0]  
Offset binary number, lower word, 1 LSB = 1msec  
Rev. PrA | Page 15 of 37  
ADIS16000/ADIS16229  
Preliminary Technical Data  
SENSOR NODE RECORDING MODE/SIGNAL PROCESSING  
The ADIS16229 provides a complete sensing system for recording  
Manual FFT Mode  
and monitoring vibration data. Figure 15 provides a simplified  
block diagram for the signal processing associated with spectral  
record acquisition on both axes (x and y). User registers provide  
controls for data type (time or frequency), trigger mode (manual  
or automatic), collection mode (real time or capture), sample  
rates/filtering, windowing, FFT averaging, spectral alarms, and I/O  
management.  
Set REC_CTRL1[1:0] = 00 to place the device in manual FFT  
mode, which will result in triggering a single FFT cycle. When  
the spectral record is complete, the device will transmit the data  
to the ADIS16000 and wait for another start command.  
Automatic FFT Mode  
Set REC_CTRL1[1:0] = 01 to place the device in automatic FFT  
mode. Use the UPDAT_INT and INT_SCL registers to establish  
the period between “wake-up times,” which triggers data  
capture, FFT computation and analysis.  
RECORDING MODE  
The recording mode selection establishes the data type (time or  
frequency domain), trigger type (manual or automatic), and  
data collection (captured or real time). The REC_CTRL1[1:0]  
bits (see Table 27) provide four operating modes: manual FFT,  
automatic FFT, manual time capture, and real time. After setting  
REC_CTRL1, the manual FFT, automatic FFT, and manual time  
capture modes require a start command to start acquiring a  
spectral or time domain record. All of these modes automatically  
trigger when the sensor receives the configuration packet from  
the gateway. Set GLOB_CMD[11] = 1 to halt the operation and  
wait for further instructions from the ADIS16000..  
Manual Time Capture Mode  
Set REC_CTRL1[1:0] = 10 to place the device into manual time  
capture mode, which will result in triggering a single time  
domain data capture. When the device is operating in this  
mode, 512 samples of time domain data are loaded into the  
buffer for each axis. This data goes through all time domain  
signal processing, except the pre-FFT windowing, prior to  
loading into the data buffer for user access. When the data  
record is complete, the device will transmit the data to the  
ADIS16000 and wait for another start command.  
Table 27. REC_CTRL1  
Page 1-6, Low Byte Address = 0x1A, Read/Write  
Bits  
Description (Default = 0x1100)  
[15:14] Not used (don’t care).  
[13:12] Window setting.  
00 = rectangular, 01 = Hanning, 10 = flat top, 11 = N/A.  
11  
10  
9
SR3, 1 = enabled for FFT, 0 = disable.  
Sample rate = 20,000 ÷ 2AVG_CNT[15:12] (see Table 2ꢀ).  
SR2, 1 = enabled for FFT, 0 = disable.  
Sample rate = 20,000 ÷ 2AVG_CNT[11:ꢀ] (see Table 2ꢀ).  
SR1, 1 = enabled for FFT, 0 = disable.  
Sample rate = 20,000 ÷ 2AVG_CNT[7:4] (see Table 2ꢀ).  
SR0, 1 = enabled for FFT, 0 = disable.  
Sample rate = 20,000 ÷ 2AVG_CNT[3:0] (see Table 2ꢀ).  
Power-down between each recording. 1 = enabled.  
Not used (don’t care).  
7
[6:4]  
[3:2]  
Storage method.  
00 = none, 01 = alarm trigger, 10 = all, 11 = N/A.  
[1:0]  
Recording mode.  
00 = manual FFT, 01 = automatic FFT,  
10 = manual time capture, 11 = real-time sampling/data  
access.  
DATA  
BUFFER  
SPI AND  
REGISTERS  
MEMS  
ADC  
PROCESSING  
RECORDS  
Figure 15. Simplified Block Diagram  
Rev. PrA | Page 16 of 37  
Preliminary Technical Data  
ADIS16000/ADIS16229  
Real-Time Mode  
more than one sample rate option is enabled while the device is in  
the automatic FFT mode, the device produces a spectral record  
for one SRx option, and then waits for the next automatic trigger,  
which occurs based on the UPDAT_INT and INT_SCL registers.  
See Figure 17 for more details on how multiple SRx options  
influence data collection and spectral record production. When  
in real-time mode, the output data rate reflects the SR0 setting.  
Set REC_CTRL1[1:0] = 11 to place the device into real-time mode.  
In this mode, the device samples only one axis, at a rate of  
5 kSPS, and provides data on its output register at the SR0  
sample rate setting in AVG_CNT[3:0] (see Table 28). Select the  
axis of measurement in this mode by reading its assigned register.  
For example, select the x-axis by reading X_BUF, using DIN =  
0x1400. See Table 59 or Table 60 for more information on the  
x_BUF registers. No other ADIS16229 nodes will be able to  
communicate with the ADIS16000 when one of them is in real-  
time mode.  
Table 29 provides a list of SRx settings available in the AVG_CNT  
register (see Table 28), along with the resulting sample rates, FFT  
bin widths, bandwidth, and estimated total noise. Note that each  
SRx setting also has associated range settings in the REC_CTRL2  
register (see Table 30) and the FFT averaging settings that are  
shown in the FFT_AVG1 and FFT_AVG2 registers (see Table 34  
and Table 35, respectively).  
SPECTRAL RECORD PRODUCTION  
The ADIS16229 produces a spectral record by taking a time  
record of data on both axes, then scaling, windowing, and  
performing an FFT process on each time record. This process  
repeats for a programmable number of FFT averages, with the FFT  
result of each cycle accumulating in the data buffer. After com-  
pleting the selected number of cycles, the FFT averaging process  
completes by scaling the data buffer contents. Then the data  
buffer contents are available to the SPI and output data registers.  
Table 28. AVG_CNT  
Page 1-6, Low Byte Address = 0x32, Read/Write  
Bits  
Description (Default = 0x9630)  
[15:12]  
Sample Rate Option 3, binary (0 to 10),  
SR3 option sample rate = 20,000 ÷ 2AVG_CNT[15:12]  
[11:ꢀ]  
[7:4]  
[3:0]  
Sample Rate Option 2, binary (0 to 10),  
SR2 option sample rate = 20,000 ÷ 2AVG_CNT[11:ꢀ]  
Sample Rate Option 1, binary (0 to 10),  
SR1 option sample rate = 20,000 ÷ 2AVG_CNT[7:4]  
Sample Rate Option 0, binary (0 to 10),  
SR0 option sample rate = 20,000 ÷ 2AVG_CNT[3:0]  
SAMPLE RATE/FILTERING  
The sample rate for each axis is 20 kSPS. The internal ADC  
samples both axes in a time-interleaving pattern (x1, y1, x2,  
y2…) that provides even distribution of data across the data  
record. The averaging/decimating filter provides a control for  
the final sample rate in the time record. By averaging and  
decimating the time domain data, this filter provides the ability  
to focus the spectral record on lower bandwidths, which produces  
finer frequency resolution in each FFT frequency bin. AVG_CNT  
(see Table 28) provides the setting for the four different sample  
rate options in REC_CTRL1[11:8] (SRx, see Table 27). All four  
options are available when using the manual FFT, automatic  
FFT, and manual time capture modes. When more than one  
sample rate option is enabled while the device is in one of the  
manual modes, the device produces a spectral record for one  
SRx at a time, starting with the lowest number. After completing  
the spectral record for one SRx option, the device waits for  
another start command before producing a spectral record for  
the next SRx option that is enabled in REC_CTRL1[11:8]. When  
Table 29. Sample Rate Settings and Filter Performance  
Sample  
Rate, fS  
(SPS)  
Bin  
Width  
(Hz)  
Peak Noise  
per Bin  
(mg)  
SRx  
Option  
Bandwidth  
(Hz)  
0
1
2
3
4
5
6
7
9
10  
20,000  
10,000  
5,000  
2,500  
1,250  
625  
313  
156  
7ꢀ  
39  
39.1  
19.5  
9.ꢀ  
4.9  
2.4  
1.2  
0.6  
0.3  
0.2  
0.1  
0.0  
10,000  
5,000  
2,500  
1,250  
625  
313  
156  
7ꢀ  
5.1ꢀ  
3.66  
2.59  
1.ꢀ3  
1.29  
0.91  
0.65  
0.46  
0.32  
0.23  
0.16  
39  
20  
10  
20  
Figure 16. Signal Flow Diagram, REC_CTRL1[1:0] = 00 or 01, FFT Analysis Modes  
Rev. PrA | Page 17 of 37  
ADIS16000/ADIS16229  
Preliminary Technical Data  
Figure 17. Spectral Record Production, with All SRx Settings Enabled  
Rev. PrA | Page 1ꢀ of 37  
Preliminary Technical Data  
ADIS16000/ADIS16229  
Dynamic Range Settings  
DYNAMIC RANGE/SENSITIVITY  
REC_CTRL2 (see Table 30) provides four range settings that  
are associated with each sample rate option, SRx. The range options  
that are referenced in REC_CTRL2 reflect the maximum dynamic  
range, which occurs at the lower part of the frequency range and  
does not account for the decrease in range (see Figure 18). For  
example, set REC_CTRL2[5:4] = 10 (DIN = 0x9C20) to set the  
peak acceleration (AMAX) to 10 g on the SR2 sample rate option.  
These settings help optimize FFT precision and sensitivity when  
monitoring lower magnitude vibrations. For each range setting  
in Table 30, this stage scales the time domain data so that the  
maximum value equates to 215 LSBs for time domain data and  
216 LSBs for frequency domain data.  
The range of the ADIS16229 accelerometers depends on the  
frequency of the vibration. The accelerometers have a self-  
resonant frequency of 5.5 kHz, and the signal conditioning  
circuit applies a single-pole, low-pass filter (2.5 kHz) to the  
response. The self-resonant behavior of the accelerometer  
influences the relationship between vibration frequency and  
dynamic range, as shown in Figure 18, which displays the  
response to peak input amplitudes, assuming a sinusoidal  
vibration signature at each frequency. The accelerometer  
resonance and low-pass filter also influence the magnitude  
response, as shown in Figure 19.  
20  
18g PEAK RESPONSE  
Note that the maximum range for each setting is 1 LSB smaller  
than the listed maximum. For example, the maximum number  
of codes in the frequency domain analysis is 216 − 1, or 65,535.  
For example, when using a range setting of 1 g in one of the FFT  
modes, the maximum measurement is equal to 1 g times 216 − 1,  
divided by 216. See Table 31 for the resolution associated with  
each setting and Figure 16 for the location of this operation in  
the signal flow diagram. The real-time mode automatically uses  
the 20 g range setting.  
18  
16g PEAK RESPONSE  
16  
14g PEAK RESPONSE  
14  
12  
10  
8
6
4
Table 30. REC_CTRL2  
Page 1-6, Low Byte Address = 0x1C, Read/Write  
2g PEAK RESPONSE  
2
Bits  
Description (Default = 0x00FF)  
0
1000  
2000  
4000  
5000  
6000  
[15:ꢀ]  
[7:6]  
Not used (don’t care)  
Measurement range, SR3  
00 = 1 g, 01 = 5 g, 10 = 10 g, 11 = 20 g  
Measurement range, SR2  
00 = 1 g, 01 = 5 g, 10 = 10 g, 11 = 20 g  
Measurement range, SR1  
00 = 1 g, 01 = 5 g, 10 = 10 g, 11 = 20 g  
Measurement range, SR0  
00 = 1 g, 01 = 5 g, 10 = 10 g, 11 = 20 g  
FREQUENCY (Hz)  
Figure 18. Peak Magnitude vs. Frequency  
[5:4]  
[3:2]  
[1:0]  
1.4  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
Table 31. Range Settings and LSB Weights  
Range Setting (g)  
(REC_CTRL2[5:4])  
0 to 1  
0 to 5  
0 to 10  
Time Mode  
(mg/LSB)  
0.0305  
0.1526  
0.3052  
FFT Mode  
(mg/LSB)  
0.0153  
0.0763  
0.1526  
+3σ  
MEAN  
0 to 20  
0.6104  
0.3052  
–3σ  
100  
1000  
FREQUENCY (Hz)  
5000  
Figure 19. Magnitude/Frequency Response (CAL_ENABLE[4] = 0)  
Rev. PrA | Page 19 of 37  
ADIS16000/ADIS16229  
Preliminary Technical Data  
Scale Adjustment  
The x_SENS registers (see Table 32 and Table 33) provide a  
fine-scale adjustment function for each axis. The following  
equation describes how to use measured and ideal values to  
calculate the scale factor for each register in LSBs:  
18  
a
× 2  
SCFx =  
XI  
1  
aXM  
where:  
is the ideal x-axis value.  
aXI  
is the actual x-axis measurement.  
aXM  
These registers contain correction factors, which come from the  
factory calibration process. The calibration process records  
accelerometer output in four different orientations and  
computes the correction factors for each register.  
These registers also provide write access for in-system adjust-  
ment. Gravity provides a common stimulus for this type of  
correction process. Use both +1 g and −1 g orientations to reduce  
the effect of offset on this measurement. In this case, the ideal  
measurement is 2 g, and the measured value is the difference of  
the accelerometer measurements at +1 g and −1 g orientations.  
The factory-programmed values are stored in flash memory and  
are restored by setting GLOB_CMD[3] = 1 (DIN = 0xB604)  
(see Table 74).  
Table 32. X_SENS  
Pages 1-6, Low Byte Address = 0x16, Read/Write  
Bits  
Description (Default = N/A)  
[15:0] X-axis scale correction factor (SCFx), twos complement  
Table 33. Y_SENS  
Pages 1-6, Low Byte Address = 0x18, Read/Write  
Bits  
Description (Default = N/A)  
[15:0] Y-axis scale correction factor (SCFy), twos complement  
PRE-FFT WINDOWING  
REC_CTRL1[13:12] provide three options for pre-FFT windowing  
of time data. For example, set REC_CTRL1[13:12] = 01 to use  
the Hanning window, which offers the best amplitude resolution  
of the peaks between frequency bins and minimal broadening  
of peak amplitudes. The rectangular and flat top windows are  
also available because they are common windowing options for  
vibration monitoring. The flat top window provides accurate  
amplitude resolution with a trade-off of broadening the peak  
amplitudes.  
Rev. PrA | Page 20 of 37  
Preliminary Technical Data  
ADIS16000/ADIS16229  
FFT  
The storage time (tST) applies only when a storage method is  
selected in REC_CTRL1[3:2] (see Table 27 for more details  
The FFT process converts each 512-sample time record into  
a 256-point spectral record that provides magnitude vs.  
frequency data.  
about the record storage settings). The alarm scan time (tAST  
)
applies only when the alarms are enabled in ALM_CTRL[4:0]  
(see Table 41 for more information). Understanding the  
recording time helps predict when data is available, for systems  
that cannot use DO1 to monitor the status of these operations.  
Note that when using automatic FFT mode, the automatic  
recording period (REC_PRD) must be greater than the total  
recording time.  
FFT Averaging  
The FFT averaging function combines multiple FFT records to  
reduce the variation of the FFT noise floor, which enables detection  
of lower vibration levels. Each SRx option in the REC_CTRL1  
register has its own FFT average control, which establishes the  
number of FFT records to average into the final FFT record.  
To enable this function, write the number of averages for each  
SRx option that is enabled in the REC_CTRL1 register to the  
FFT_AVGx registers. For example, set FFT_AVG2[8:0] = 0x4A  
(DIN = 0x904A) to set the number of FFT averages to 16 for the  
SR2 sample rate option and 1024 for the SR3 sample rate option.  
DATA RECORDS  
After the ADIS16229 finishes processing FFT data, it stores the  
data into the data buffer, where it is available for external access  
using the SPI and x_BUF registers (see Table 59 and Table 60).  
REC_CTRL1[3:2] (see Table 27) provides programmable  
conditions for writing buffer data into the FFT records, which  
are in nonvolatile flash memory locations. Set  
Table 34. FFT_AVG1  
Page 0, Low Byte Address = 0x0E, Read/Write  
REC_CTRL1[3:2] = 01 to store data buffer data into the flash  
memory records only when an alarm condition is met. Set  
REC_CTRL1[3:2] = 10 to store every set of FFT data into the  
flash memory locations. The flash memory record provides space  
for a total of 14 records. Each record stored in flash memory  
contains a header and frequency domain (FFT) data from all  
axes (x, and y). When all 14 records are full, new records do not  
load into the flash memory. The REC_CNTR register (see Table  
37) provides a running count for the number of records that are  
stored. Set GLOB_CMD[8] = 1 (DIN = 0xBF01) to clear all of the  
records in flash memory.  
Bits  
Description (Default = 0x0108)  
[15:ꢀ] FFT averages for a single record, SR1 sample rate,  
NF in Figure 16; range = 1 to 255, binary  
[7:0]  
FFT averages for a single record, SR0 sample rate,  
NF in Figure 16; range = 1 to 255, binary  
Table 35. FFT_AVG2  
Page 0, Low Byte Address = 0x10, Read/Write  
Bits  
[15:ꢀ] FFT averages for a single record, SR3 sample rate,  
NF in Figure 16; range = 1 to 255, binary  
[7:0]  
Description (Default = 0x0101)  
FFT averages for a single record, SR2 sample rate,  
NF in Figure 16; range = 1 to 255, binary  
Table 37. REC_CNTR  
Page 0, Low Byte Address = 0x50), Read Only  
RECORDING TIMES  
Bits  
Description (Default = 0x0000)  
When using automatic FFT mode, the automatic recording period  
(REC_PRD) must be greater than the total recording time. Use  
the following equations to calculate the recording time:  
[15:5]  
[4:0]  
Not used  
Total number of records taken; range = 0 to 14, binary  
When used in conjunction with automatic trigger mode and record  
storage, FFT analysis for each sample rate option requires no addi-  
tional inputs. Depending on the number of FFT averages, the time  
between each sample rate selection may be quite large. Note that  
selecting multiple sample rates reduces the number of records  
available for each sample rate setting, as shown in Table 38.  
Manual time mode  
tR = tS + tPT + tST + tAST  
FFT modes  
tR = NF × (tS + tPT + tFFT) + tST + tAST  
Table 36 provides a list of the processing times and settings that  
are used in these equations.  
Table 38. Available Records per Sample Rate Selected  
Number of Sample Rates Selected  
Available Records  
1
2
3
4
14  
7
4
Table 36. Typical Processing Times  
Function  
Time (ms)  
Sample Time, tS  
1 ÷ fS, per AVG_CNT  
3
Processing Time, tPT  
FFT Time, tFFT  
1ꢀ.7  
32.7  
FFT RECORD FLASH ENDURANCE  
Number of FFT Averages, NF  
Storage Time, tST  
Alarm Scan Time, tAST  
Per FFT_AVG1, FFT_AVG2  
120.0  
2.21  
The REC_FLSH_CNT register (see Table 39) increments when  
all 14 records contain FFT data.  
Rev. PrA | Page 21 of 37  
ADIS16000/ADIS16229  
Preliminary Technical Data  
Table 39. REC_FLSH_CNT  
Page 1-6, Low Byte Address = 0x4A, Read Only  
Bits  
Description  
[15:0]  
Flash write cycle count; record data only, binary  
Rev. PrA | Page 22 of 37  
Preliminary Technical Data  
ADIS16000/ADIS16229  
SENSOR NODE SPECTRAL ALARMS  
The alarm function offers six spectral bands for alarm detection.  
Each spectral band has high and low frequency definitions,  
along with two different trigger thresholds (Alarm 1 and Alarm 2)  
for each accelerometer axis. Table 40 provides a summary of  
each register used to configure the alarm function.  
(SRx). It also has two independent trigger level settings, which  
are useful for systems that value warning and fault condition  
indicators.  
ALM_F_HIGH  
ALM_F_LOW  
Table 40. Alarm Function Register Summary  
ALM_x_MAG2  
ALM_x_MAG1  
Register  
Address Description  
ALM_F_LOW  
ALM_F_HIGH  
ALM_X_MAG1 0x24  
ALM_Y_MAG1 0x26  
ALM_X_MAG2 0x2A  
ALM_Y_MAG2 0x2C  
ALM_PNTR  
ALM_S_MAG  
ALM_CTRL  
0x20  
0x22  
Alarm frequency band, lower limit  
Alarm frequency band, upper limit  
X-Axis AlarmTrigger Level 1 (warning)  
Y-Axis AlarmTrigger Level 1 (warning)  
X-Axis Alarm Trigger Level 2 (fault)  
Y-Axis Alarm Trigger Level 2 (fault)  
Alarm pointer  
System alarm trigger level  
Alarm configuration  
Alarm status  
X-axis alarm status  
Y-axis alarm status  
X-axis alarm peak  
Y-axis alarm peak  
0x2C  
0x2E  
0x30  
0x34  
0x3ꢀ  
0x3A  
0x3C  
0x3E  
0x44  
0x46  
1
2
3
4
5
6
DIAG_STAT  
FREQUENCY  
ALM_X_STAT  
ALM_Y_STAT  
ALM_X_PEAK  
ALM_Y_PEAK  
ALM_X_FREQ  
ALM_Y_FREQ  
Figure 20. Spectral Band Alarm Setting Example, ALM_PNTR = 0x03  
Select the spectral band for configuration by writing its number  
(1 to 6) to ALM_PNTR[2:0] (see Table 42). Then select the sample  
rate option using ALM_PNTR[9:8]. This number represents a  
binary number, which corresponds to the x in the SRx sample  
rates option associated with REC_CTRL1[11:8] (see ). For  
example, set ALM_PNTR[7:0] = 0x05 (DIN = 0xAC05) to select  
Alarm Spectral Band 5, and set ALM_PNTR[15:8] = 0x02 (DIN  
= 0xB102) to select the SR2 sample rate option.  
X-axis alarm frequency of peak alarm  
Y-axis alarm frequency of peak alarm  
The ALM_CTRL register (see Table 41) provides control bits  
that enable the spectral alarms of each axis, configures the system  
alarm, sets the record delay for the spectral alarms, and configures  
the clearing function for the DIAG_STAT error flags (see Table 84).  
Table 42. ALM_PNTR  
Page 1-6, Low Byte Address = 0x2C, Read/Write  
Table 41. ALM_CTRL  
Page 1-6, Low Byte Address = 0x30, Read/Write  
Bits  
Description (Default = 0x0000)  
[15:10] Not used  
Bits  
Description (Default = 0x0000)  
[9:ꢀ]  
[7:3]  
[2:0]  
Sample rate option; range = 0 to 3 for SR0 to SR3  
Not used  
Spectral band number; range = 1 to 6  
[15:12] Not used.  
[11:ꢀ]  
7
Response delay; range = 0 to 15. Represents the number  
of spectral records for each spectral alarm before a  
spectral alarm flag is set high.  
Latch DIAG_STAT error flags. Requires a clear status  
command (GLOB_CMD[4]) to reset the flags to 0.  
1 = enabled, 0 = disabled.  
Alarm Band Frequency Definitions  
After the spectral band and sample rate settings are set, program  
the lower and upper frequency boundaries by writing their bin  
numbers to the ALM_F_LOW register (see Table 43) and  
ALM_F_HIGH register (see Table 44). Use the bin width  
definitions listed in Table 29 to convert a frequency into a bin  
number for this definition. Calculate the bin number by dividing  
the frequency by the bin width that is associated with the sample  
rate setting. For example, if the sample rate is 5000 Hz and the  
lower band frequency is 400 Hz, divide that number by the bin  
width of 10 Hz to arrive at the 40th bin as the lower band setting.  
Then set ALM_F_LOW[7:0] = 0x28 (DIN = 0xA028) to establish  
400 Hz as the lower frequency for the 5000 SPS sample rate setting.  
6
5
Enable DO1 as an Alarm 1 output indicator and enable  
DO2 as an Alarm 2 output indicator. 1 = enabled.  
System alarm comparison polarity.  
1 = trigger when less than ALM_S_MAG[11:0].  
0 = trigger when greater than ALM_S_MAG[11:0].  
System alarm. 1 = temperature, 0 = power supply.  
Alarm S enable (ALM_S_MAG). 1 = enabled, 0 = disabled.  
Not used  
4
3
2
1
0
Alarm Y enable (ALM_Y_MAG). 1 = enabled, 0 = disabled.  
Alarm X enable (ALM_X_MAG). 1 = enabled, 0 = disabled.  
ALARM DEFINITION  
Table 43. ALM_F_LOW  
Page 1-6, Low Byte Address = 0x20, Read/Write  
Bits  
The alarm function provides six programmable spectral bands,  
as shown in Figure 20. Each spectral alarm band has lower and  
upper frequency definitions for all of the sample rate options  
Description (Default = 0x0000)  
Rev. PrA | Page 23 of 37  
ADIS16000/ADIS16229  
Preliminary Technical Data  
Table 47. ALM_X_MAG2  
Page 1-6, Low Byte Address = 0x2A, Read/Write  
Bits Description (Default = 0x0000)  
[15:0] X-axis Alarm Trigger Level 2, 16-bit unsigned (see Table 30  
and Table 31 for the scale factor)  
[15:ꢀ] Not used  
[7:0]  
Lower frequency, bin number; range = 0 to 255  
Table 44. ALM_F_HIGH  
Page 1-6, Low Byte Address = 0x22, Read/Write  
Bits  
Description (Default = 0x0000)  
Table 48. ALM_Y_MAG2  
[15:ꢀ] Not used  
Page 1-6, Low Byte Address = 0x2C, Read/Write  
[7:0]  
Upper frequency, bin number; range = 0 to 255  
Bits  
Description (Default = 0x0000)  
Alarm Trigger Settings  
[15:0] Y-axis Alarm Trigger Level 2, 16-bit unsigned (see Table 30  
and Table 31 for the scale factor)  
The ALM_x_MAG1 and ALM_x_MAG2 registers (see Table 45  
to Table 48) provide two independent trigger settings for both  
axes of acceleration data. They use the data format established  
by the range settings in the REC_CTRL2 register (see Table 30)  
and recording mode in REC_CTRL1[1:0] (see Table 27). For  
example, when using the 0 g to 1 g mode for FFT analysis,  
32,768 LSB is the closest setting to 500 mg. Therefore, set  
ALM_Y_MAG2 = 0x8000 (DIN = 0xAB80, 0xAA00) to set the  
critical alarm to 500 mg, when using the 0 g to 1 g range option  
in REC_CTRL2 for FFT records. See Table 30 and Table 31 for  
more information about formatting each trigger level. Note that  
trigger settings that are associated with Alarm 2 should be  
greater than the trigger settings for Alarm 1. In other words, the  
alarm magnitude settings should meet the following criteria:  
Table 49. ALM_S_MAG  
Page 1-6, Low Byte Address = 0x2E, Read/Write  
Bits  
Description (Default = 0x0000)  
[15:0] System alarm trigger level, data format matches target  
from ALM_CTRL[4]  
Enable Alarm Settings  
Before configuring the spectral alarm registers, clear their  
current contents by setting GLOB_CMD[9] = 1 (DIN = 0xB702).  
After completing the spectral alarm band definitions, save  
the settings by setting GLOB_CMD[12] = 1 (DIN = 0xB710).  
The device ignores the save command if any of these locations  
has already been written to.  
ALM_X_MAG2 > ALM_X_MAG1  
ALM_Y_MAG2 > ALM_Y_MAG1  
ALARM INDICATOR SIGNALS  
GPO_CTRL[5:0] (see Table 83) and ALM_CTRL[6] (see Table  
41) provide controls for establishing DO1 and DO2 as dedicated  
alarm output indicator signals. Use GPO_CTRL[5:0] to select the  
alarm function for DO1 and/or DO2; then set ALM_CTRL[6] = 1  
to enable DO1 to serve as an Alarm 1 indi-cator and DO2 as an  
Alarm 2 indicator. This setting establishes DO1 to indicate  
Alarm 1 (warning) conditions and DO2 to indicate Alarm 2  
(critical) conditions.  
Table 45. ALM_X_MAG1  
Page 1-6, Low Byte Address = 0x24, Read/Write  
Bits  
Description (Default = 0x0000)  
[15:0] X-axis Alarm Trigger Level 1, 16-bit unsigned (see Table 30  
and Table 31 for the scale factor)  
Table 46. ALM_Y_MAG1  
Page 1-6, Low Byte Address = 0x26, Read/Write  
Bits  
Description (Default = 0x0000)  
ALARM FLAGS AND CONDITIONS  
[15:0] Y-axis Alarm Trigger Level 1, 16-bit unsigned (see Table 30  
and Table 31 for the scale factor)  
The FFT header (see Table 69) contains both generic alarm flags  
(DIAG_STAT[13:8]; seeTable 84) and spectral band-specific  
alarm flags (ALM_x_STAT; see Table 50, Table 51). The FFT  
header also contains magnitude (ALM_x_PEAK; see Table 52,  
Table 53) and frequency information (ALM_x_FREQ; see Table  
54, Table 55) associated with the highest magnitude of vibration  
content in the record.  
Rev. PrA | Page 24 of 37  
Preliminary Technical Data  
ADIS16000/ADIS16229  
ALARM STATUS  
WORST-CASE CONDITION MONITORING  
The ALM_x_STAT registers (see Table 50, Table 51) provide  
alarm bits for each spectral band on the current sample rate  
option.  
The ALM_x_PEAK registers (see Table 52, Table 53) contain the  
peak magnitude for the worst-case alarm condition in each axis.  
The ALM_x_FREQ registers (see Table 54, Table 55) contain the  
frequency bin number for the worst-case alarm condition.  
Table 50. ALM_X_STAT  
Low Byte Address = 0x38, Read Only  
Table 52. ALM_X_PEAK  
Page 1-6, Low Byte Address = 0x3C, Read Only  
Bits  
15  
14  
13  
12  
11  
10  
9
7
6
5
Description (Default = 0x0000)  
Alarm 2 on Band 6; 1 = alarm set, 0 = no alarm  
Alarm 1 on Band 6; 1 = alarm set, 0 = no alarm  
Alarm 2 on Band 5; 1 = alarm set, 0 = no alarm  
Alarm 1 on Band 5; 1 = alarm set, 0 = no alarm  
Alarm 2 on Band 4; 1 = alarm set, 0 = no alarm  
Alarm 1 on Band 4; 1 = alarm set, 0 = no alarm  
Alarm 2 on Band 3; 1 = alarm set, 0 = no alarm  
Alarm 1 on Band 3; 1 = alarm set, 0 = no alarm  
Alarm 2 on Band 2; 1 = alarm set, 0 = no alarm  
Alarm 1 on Band 2; 1 = alarm set, 0 = no alarm  
Alarm 2 on Band 1; 1 = alarm set, 0 = no alarm  
Alarm 1 on Band 1; 1 = alarm set, 0 = no alarm  
Not used  
Bits  
Description (Default = 0x0000)  
[15:0]  
Alarm peak, x-axis, accelerometer data format  
Table 53. ALM_Y_PEAK  
Page 1-6, Low Byte Address = 0x3E, Read Only  
Bits  
Description (Default = 0x0000)  
[15:0]  
Alarm peak, y-axis, accelerometer data format  
Table 54. ALM_X_FREQ  
Page 1-6, Low Byte Address = 0x44, Read Only  
Bits  
Description (Default = 0x0000)  
[15:ꢀ]  
[7:0]  
Not used  
4
3
Alarm frequency for x-axis peak alarm level,  
FFT bin number; range = 0 to 255  
[2:0]  
Most critical alarm condition, spectral band; range = 1 to 6  
Table 55. ALM_Y_FREQ  
Page 1-6, Low Byte Address = 0x46, Read Only  
Table 51. ALM_Y_STAT  
Low Byte Address = 0x3C, Read Only  
Bits  
Description (Default = 0x0000)  
Bits  
15  
14  
13  
12  
11  
10  
9
7
6
5
Description (Default = 0x0000)  
[15:ꢀ]  
[7:0]  
Not used  
Alarm 2 on Band 6; 1 = alarm set, 0 = no alarm  
Alarm 1 on Band 6; 1 = alarm set, 0 = no alarm  
Alarm 2 on Band 5; 1 = alarm set, 0 = no alarm  
Alarm 1 on Band 5; 1 = alarm set, 0 = no alarm  
Alarm 2 on Band 4; 1 = alarm set, 0 = no alarm  
Alarm 1 on Band 4; 1 = alarm set, 0 = no alarm  
Alarm 2 on Band 3; 1 = alarm set, 0 = no alarm  
Alarm 1 on Band 3; 1 = alarm set, 0 = no alarm  
Alarm 2 on Band 2; 1 = alarm set, 0 = no alarm  
Alarm 1 on Band 2; 1 = alarm set, 0 = no alarm  
Alarm 2 on Band 1; 1 = alarm set, 0 = no alarm  
Alarm 1 on Band 1; 1 = alarm set, 0 = no alarm  
Not used  
Alarm frequency for y-axis peak alarm level,  
FFT bin number; range = 0 to 255  
4
3
[2:0]  
Most critical alarm condition, spectral band; range = 1 to 6  
Rev. PrA | Page 25 of 37  
ADIS16000/ADIS16229  
Preliminary Technical Data  
READING OUTPUT DATA  
After the ADIS16229 updates the ADIS16000 with its data, it is  
available in the data buffer and FFT records (if selected). In  
manual time capture mode, the record for each axis contains 512  
samples. In manual and automatic FFT mode, each record  
contains the 256-point FFT result for each accelerometer axis.  
Table 56 provides a summary of registers that provide access to  
processed sensor data.  
Table 57. BUF_PNTR  
Page 1-6, Low Byte Address =10, Read/Write  
Bits  
Description (Default = 0x0000)  
[15:9]  
[ꢀ:0]  
Not used  
Data bits; range = 0 to 255 (FFT), 0 to 511 (time)  
ACCESSING FFT RECORD DATA  
The FFT records can be stored in flash memory. The REC_PNTR  
register (see Table 58) and GLOB_CMD[13] (see Table 74)  
provide access to the FFT records, as shown in Figure 22. For  
example, set REC_PNTR[7:0] = 0x0A (DIN = 0x940A) and  
GLOB_CMD[13] = 1 (DIN = 0xB720) to load FFT Record 10 in  
the FFT buffer for SPI/register access.  
Table 56. Output Data Registers  
Register  
Address Description  
TEMP_OUT  
SUPPLY_OUT  
BUF_PNTR  
REC_PNTR  
X_BUF  
Y_BUF  
GLOB_CMD  
TIME_STAMP_L 0x40  
TIME_STAMP_H 0x42  
0x0A  
0x0C  
0x12  
0x14  
0x06  
0x0ꢀ  
0x36  
Internal temperature  
Internal power supply  
Data buffer index pointer  
FFT record index pointer  
X-axis accelerometer buffer  
Y- axis accelerometer buffer  
FFT record retrieve command  
Time stamp, lower word  
Table 58. REC_PNTR  
Page 1-6, Low Byte Address = 0x14, Read/Write  
Bits  
Description (Default = 0x0000)  
[15:4]  
[3:0]  
Not used  
Data bits  
Time stamp, upper word  
REC_INFO1  
REC_INFO2  
0x4C  
0x4E  
FFT record header information  
FFT record header information  
READING DATA FROM THE DATA BUFFER  
After completing a spectral record and updating each data  
buffer, the ADIS16000 loads the first data sample from each  
data buffer into the x_BUF registers (see Table 59 and Table 60)  
and sets the buffer index pointer in the BUF_PNTR register  
(see Table 57) to 0x0000. The index pointer determines which  
data samples load into the x_BUF registers. For example, writing  
0x009F to the BUF_PNTR register (DIN = 0x9300, DIN =  
0x929F) causes the 160th sample in each data buffer location to  
load into the x_BUF registers. The index pointer increments  
with every x_BUF read command, which causes the next set of  
capture data to load into each capture buffer register  
Figure 22. FFT Record Access  
automatically. This enables an efficient method for reading all  
256 samples in a record, using sequential read commands,  
without having to manipulate the BUF_PNTR register.  
Figure 21. Data Buffer Structure and Operation  
Rev. PrA | Page 26 of 37  
Preliminary Technical Data  
ADIS16000/ADIS16229  
DATA FORMAT  
REAL-TIME DATA COLLECTION  
Table 59 and Table 60 list the bit assignments for the x_BUF  
registers. The acceleration data format depends on the range  
scale setting in REC_CTRL2 (see Table 30) and the recording  
mode settings in REC_CTRL1 (see Table 27). Table 61 provides  
some data formatting examples for the FFT mode, and Table 62  
offers some data formatting examples for the16-bit, twos  
complement format used in manual time mode.  
When using real-time mode, select the output channel by  
reading the associated x_BUF register. For example, set DIN =  
0x1600 to select the y-axis sensor for sampling. After selecting  
the channel, use the data-ready signal to trigger subsequent data  
reading of the Y_BUF register. In this mode, use the time domain  
data formatting for a range setting of 20 g, as shown in Table 31.  
POWER SUPPLY/TEMPERATURE  
Table 59. X_BUF  
Low Byte Address = 0x06, Read Only  
At the end of each spectral record, the ADIS16229 also  
measures power supply and internal temperature. It  
accumulates a 5.12 ms record of power supply measurements at  
a sample rate of 50 kHz and takes 64 samples of internal  
temperature data over a period of 1.7 ms. The average of the  
power supply and internal tempera-ture loads into the  
SUPPLY_OUT register (see  
Bits  
Description (Default = 0x8000)  
[15:0]  
X-acceleration data buffer register.  
See Table 31 for scale sensitivity.  
Format = twos complement (time), binary (FFT).  
Table 60. Y_BUF  
Low Byte Address = 0x08, Read Only  
Table 64 and Table 65) and the TEMP_OUT registers (See  
Table 66 and Table 67), respectively. When using real-time  
mode, these registers update only when this mode starts.  
Bits  
Description (Default = 0x8000)  
[15:0]  
Y-acceleration data buffer register.  
See Table 31 for scale sensitivity.  
Table 63. SUPPLY_OUT  
Page 0, Low Byte Address = 0x0C, Read Only  
Format = twos complement (time), binary (FFT).  
Bits  
Description (Default = 0x8000)  
Table 61. FFT Mode, 5 g Range, Data Format Examples  
[15:12] Not used  
[11:0]  
Acceleration (mg) LSB  
Hex  
Binary  
Power supply, binary, 3.3 V = 0xAꢀF, 1.22 mV/LSB  
4,999.9237  
100 × 5 ÷ 65,536  
2 × 5 ÷ 65,536  
1 × 5 ÷ 65,536  
0
65,535  
100  
2
1
0
0xFFFF  
1111 1111 1111 1111  
0x0064 0000 0000 0110 0100  
0x0002 0000 0000 0000 0010  
0x0001 0000 0000 0000 0001  
0x0000 0000 0000 0000 0000  
Table 64. SUPPLY_OUT  
Page 1- 6, Low Byte Address = 0x0A, Read Only  
Bits  
Description (Default = 0x8000)  
[15:12] Not used  
Table 62. Manual Time Mode, 5 g Range, Data Format  
Examples  
[11:0]  
Power supply, binary, 3.3 V = 0xAꢀF, 1.22 mV/LSB  
Acceleration (mg) LSB  
Hex  
Binary  
Table 65. Power Supply Data Format Examples  
+4999.ꢀ47  
~1000  
+2 × 5 ÷ 32,76ꢀ  
+1 × 5 ÷ 32,76ꢀ  
0
+32,767 0x7FFF  
+6,554  
+2  
+1  
0
1111 1111 1111 1111  
Supply Level (V) LSB  
Hex  
Binary  
0x199A 0001 0001 10011010  
0x0002 0000 0000 0000 0010  
0x0001 0000 0000 0000 0001  
0x0000 0000 0000 0000 0000  
0xFFFF  
0xFFFE  
3.6  
2949  
2704  
2703  
2702  
25ꢀ0  
0xBꢀ5  
0xA90  
0xAꢀF  
0xAꢀE  
0xA14  
1011 1000 0101  
1010 1001 0000  
1010 1000 1111  
1010 1000 1110  
1010 0001 0100  
3.3 + 0.0012207  
3.3  
3.3 − 0.0012207  
3.15  
−1 × 5 ÷ 32,76ꢀ  
−2 × 5 ÷ 32,76ꢀ  
~−1000  
−1  
−2  
−6554  
1111 1111 1111 1111  
1111 1111 1111 1110  
0xE666 1110 0110 0110 0110  
−5000  
−32,76ꢀ 0xꢀ000 1000 0000 0000 0000  
Table 66. TEMP_OUT  
Page 0, Low Byte Address = 0x0E, Read Only  
Bits Description (Default = 0x8000)  
[15:12] Not used  
[11:0]  
Temperature data, offset binary, 127ꢀ LSB = +25°C,  
−0.47°C/LSB  
Table 67. TEMP_OUT  
Page 1-6, Low Byte Address = 0x0C8, Read Only  
Bits  
[15:12] Not used  
[11:0]  
Temperature data, offset binary, 127ꢀ LSB = +25°C,  
Description (Default = 0x8000)  
Rev. PrA | Page 27 of 37  
ADIS16000/ADIS16229  
Preliminary Technical Data  
−0.47°C/LSB  
Table 68. Internal Temperature Data Format Examples  
Temperature (°C) LSB  
Hex  
Binary  
125  
25 + 0.47  
25  
25 − 0.47  
0
−40  
1065  
1277  
127ꢀ  
1279  
1331  
1416  
0x429  
0x4FD  
0x4FE  
0x4FF  
0x533  
0x5ꢀꢀ  
0100 0010 1001  
0100 1111 1101  
0100 1111 1110  
0100 1111 1111  
0101 0011 0011  
0101 1000 1000  
Rev. PrA | Page 2ꢀ of 37  
Preliminary Technical Data  
ADIS16000/ADIS16229  
Table 71. REC_INFO2  
Page 1-6, Low Byte Address = 0x4E, Read Only  
FFT EVENT HEADER  
Each FFT record has an FFT header that contains information  
that fills all of the registers listed in Table 69. The information  
in these registers contains recording time, record configuration  
settings, status/error flags, and several alarm outputs. The registers  
listed in Table 69 update with every record event and also update  
with record-specific information when using GLOB_CMD[13]  
(see Table 74) to retrieve a data set from the FFT record in flash  
memory.  
Bits  
Description  
[15:4]  
[3:0]  
Not used (don’t care)  
AVG_CNT setting  
The TIME_STMP_x registers (see Table 72 and Table 73)  
provide a relative time stamp that identifies the time for the  
current FFT record.  
Table 72. TIME_STMP_L  
Page 1-6, Low Byte Address = 0x40, Read Only  
Table 69. FFT Header Register Information  
Bits  
Description (Default = 0x0000)  
Register  
Address  
Description  
[15:0]  
Record time stamp, low integer, binary, seconds  
DIAG_STAT  
0x34  
Alarm status  
ALM_X_STAT  
ALM_Y_STAT  
ALM_X_PEAK  
ALM_Y_PEAK  
TIME_STMP_L  
0x3ꢀ  
X-axis alarm status  
Y-axis alarm status  
X-axis alarm peak  
Y-axis alarm peak  
Time stamp, lower word  
Time stamp, upper word  
X-axis alarm frequency of peak alarm  
Y-axis alarm frequency of peak alarm  
FFT record header information  
FFT record header information  
Table 73. TIME_STMP_H  
Page 1-6, Low Byte Address = 0x42, Read Only  
0x3A  
0x3C  
0x3E  
Bits  
Description (Default = 0x0000)  
[15:0]  
Record time stamp, high integer, binary, seconds  
0x40  
TIME_STMP_H 0x42  
ALM_X_FREQ  
ALM_Y_FREQ  
REC_INFO1  
0x44  
0x46  
0x4C  
0x4E  
REC_INFO2  
The REC_INFO1 register (see Table 70) and the REC_INFO2  
register (see Table 71) capture the settings associated with the  
current FFT record.  
Table 70. REC_INFO1  
Page 1-6, Low Byte Address = 0x4E), Read Only  
Bits  
[15:14] Sample rate option  
00 = SR0, 01 = SR1, 10 = SR2, 11 = SR3  
[13:12] Window setting  
00 = rectangular, 01 = Hanning, 10 = flat top, 11 = N/A  
[11:10] Signal range  
00 = 1 g, 01 = 5 g, 10 = 10 g, 11 = 20 g  
Description  
[9:ꢀ]  
[7:0]  
Not used (don’t care)  
FFT averages; range = 1 to 255  
Rev. PrA | Page 29 of 37  
ADIS16000/ADIS16229  
Preliminary Technical Data  
SYSTEM TOOLS  
GLOBAL COMMANDS  
Table 77. LOT_ID2  
Page 0, Low Byte Address = 0x1C, Read Only  
The GLOB_CMD register (see Table 74) provides an array of  
single-write commands for convenience. Setting the assigned bit  
to 1 activates each function. When the function completes, the  
bit restores itself to 0. For example, clear the capture buffers by  
setting GLOB_CMD[8] = 1 (DIN = 0xB701). All of the commands  
in the GLOB_CMD register require that the power supply be  
within normal limits for the execution times listed in Table 74.  
Bits  
Description  
[15:0]  
Lot identification code  
Table 78. LOT_ID2  
Page 1-6, Low Byte Address = 0x6A, Read Only  
Bits  
Description  
Table 74. GLOB_CMD  
Page 1-6, Low Byte Address = 0x36, Write Only  
[15:0]  
Lot identification code  
Bits  
Description  
Execution Time  
15  
Clear autonull correction  
35 μs  
14  
Retrieve spectral alarm band infor-  
mation from the ALM_PNTR setting  
40 μs  
Table 79. PROD_ID  
Page 0, Low Byte Address = 0x16), Read Only  
13  
12  
Retrieve record data from flash  
memory  
1.9 ms  
Bits  
Description (Default = 0x3E80  
Save spectral alarm band registers 461 μs  
to SRAM  
[15:0]  
0x3Eꢀ0 = 16,000  
11  
10  
9
Record start/stop  
Set BUF_PNTR = 0x0000  
Clear spectral alarm band  
registers from flash memory  
Clear records  
Software reset  
Save registers to flash memory  
Flash test, compare sum of flash  
memory with factory value  
Clear DIAG_STAT register  
Restore factory register settings  
and clear the capture buffers  
Self-test, result in DIAG_STAT[5]  
Power-down  
Autonull  
N/A  
36 μs  
25.ꢀ ms  
Table 80. PROD_ID  
Page 0, Low Byte Address = 0x48), Read Only  
Bits  
Description (Default = 0x3E80  
7
6
5
25.9 ms  
52 ms  
29.3 ms  
5 ms  
[15:0]  
0x3F65 = 16,229  
Table 81. SERIAL_NUM (Base Address = 0x58), Read Only  
Bits  
Description  
4
3
36 μs  
ꢀ4 ms  
[15:0]  
Serial number, lot specific  
Table 82 shows a blank register that is available for writing user-  
specific identification.  
2
1
0
32.9 ms  
N/A  
ꢀ22 ms  
Table 82. USER_ID (Base Address = 0x5C), Read/Write  
Bits  
Description (Default = 0x000)  
[15:0]  
User-written identification  
Table 83. GPO_CTRL  
Page 0, Low Byte Address = 0x2A, Read/Write  
DEVICE IDENTIFICATION  
Table 75. LOT_ID1  
Page = 0, Low Byte Address = 0x1A, Read Only  
Bits  
Description (Default = 0x)  
[15:6]  
[5:4]  
Not used  
Bits  
Description  
DO2 Function selection  
00 = General purpose  
01 = Alarm indicator  
[15:0]  
Lot identification code  
10 = Busy indicator/data-ready (real-time mode)  
11 = Not used  
DO1 Function selection  
00 = General purpose  
01 = Alarm indicator  
Table 76. LOT_ID1  
Page = 1-6, Low Byte Address = 0x68, Read Only  
[3:2]  
Bits  
Description  
[15:0]  
Lot identification code  
10 = Busy indicator/data-ready (real-time mode)  
11 = Not used  
1
DO2 Polarity  
1 = active high  
Rev. PrA | Page 30 of 37  
Preliminary Technical Data  
ADIS16000/ADIS16229  
0 = active low  
0
DO1 Polarity  
1 = active high  
0 = active low  
SELF-TEST  
Set GLOB_CMD[2] = 1 (DIN = 0xBE02) (see Table 74) to run  
an automatic self-test routine, which reports a pass/fail result to  
DIAG_STAT[5] (see Table 84).  
FLASH MEMORY MANAGEMENT  
STATUS/ERROR FLAGS  
Set GLOB_CMD[5] = 1 (DIN = 0xB620) to run an internal  
checksum test on the flash memory, which reports a pass/fail  
result to DIAG_STAT[6]. The FLASH_CNT register (see Table 85)  
provides a running count of flash memory write cycles. This is a  
tool for managing the endurance of the flash memory. Figure 23  
quantifies the relationship between data retention and junction  
temperature.  
Critical system error flags are in the DIAG_STAT register for  
each ADIS16229. These flags indicate various error or alarm  
conditions that may influence system performance. Multiple  
flags in these registers can be high at one time and the flags will  
persist (go high again, after clearing) when the error conditions  
continue to exist. The flags in bits 0 through 6 will remain in a  
latch condition, until clearing the problem or clearing (using  
Use GLOB_CMD[4]). The Alarm flags (upper byte) will latch if  
ALM_CTRL[7] = 1 (See Table 41)  
Table 85. FLASH_CNT  
Page 1-6, Low Byte Address = 0x04, Read Only  
Bits  
Description  
Table 84. DIAG_STAT  
Page 1-6, Low Byte Address = 0x34, Read/Write  
[15:0]  
Binary counter for writing to flash memory  
Bits  
15  
14  
13  
12  
11  
10  
9
7
6
[5:4]  
3
Description (Default = 0x)  
Not used  
600  
System alarm (1 = error condition exists, 0 = no error)  
Not used  
Sensor Node 6 (1 = alarm condition, 0 = no alarm)  
Sensor Node 5 (1 = alarm condition, 0 = no alarm)  
Sensor Node 4 (1 = alarm condition, 0 = no alarm)  
Sensor Node 3 (1 = alarm condition, 0 = no alarm)  
Sensor Node 2 (1 = alarm condition, 0 = no alarm)  
Sensor Node 1 (1 = alarm condition, 0 = no alarm)  
Flash memory failure, from GLOB_CMD[5] test  
Not used  
450  
300  
150  
0
SPI communication failure (SCLKs ≠ even multiple of  
16)  
30  
40  
55  
70  
85  
100  
125  
135  
150  
JUNCTION TEMPERATURE (°C)  
2
1
0
Flash update failure  
Power supply > 3.625 V  
Power supply < 3.125 V  
Figure 23. Flash®/EE Memory Data Retention  
Rev. PrA | Page 31 of 37  
ADIS16000/ADIS16229  
Preliminary Technical Data  
APPLICATIONS INFORMATION  
INTERFACE BOARD  
The ADIS16COM1/PCBZ accessory provides a direct attachment  
method for connecting the ADIS16000CMLZ directly to the  
EVAL-ADIS evaluation system.  
MATING CONNECTOR  
TBD  
Figure 25. Mating Connector Detail  
Figure 24. PCB Assembly View and Dimensions  
Figure 26. Electrical Schematic  
Rev. PrA | Page 32 of 37  
Preliminary Technical Data  
OUTLINE DIMENSIONS  
ADIS16000/ADIS16229  
Rev. PrA | Page 33 of 37  
ADIS16000/ADIS16229  
Preliminary Technical Data  
Figure 27. 14-Lead Module with Connector Interface  
(ML-14-2))  
Dimensions shown in millimeters  
Rev. PrA | Page 34 of 37  
Preliminary Technical Data  
ADIS16000/ADIS16229  
Rev. PrA | Page 35 of 37  
ADIS16000/ADIS16229  
Preliminary Technical Data  
Figure 28. Remote Sensor with SMA Antenna Interface  
(ML-1-1)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
Temperature Range  
Package Description  
Package Option  
ADIS16000AMLZ  
−40°C to +ꢀ5°C  
14-Lead Module with Connector Interface and  
ML-14-2  
SMA Antenna Interface  
ADIS16COM1/PCBZ  
ADIS16229AMLZ  
Evaluation Board  
Sensor Module with SMA Antenna Interface  
−40°C to +ꢀ5°C  
ML-1-1  
1 Z = RoHS Compliant Part.  
Rev. PrA | Page 36 of 37  
Data Sheet  
NOTES  
ADIS16000/ADIS16229  
©2013 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
PR11483-0-5/13(PrA)  
Rev. PrA | Page 37 of 37  

相关型号:

ADIS16000AMLZ

Digital MEMS Vibration Sensor w/ Embedded RF Transceiver
ADI

ADIS16003

Dual-Axis 【1.7 g Accelerometer with SPI Interface
ADI

ADIS16003/PCBZ

Evaluation Board User Guide
ADI

ADIS16003CCCZ

Dual-Axis 【1.7 g Accelerometer with SPI Interface
ADI

ADIS16003PCB

Dual-Axis 【1.7 g Accelerometer with SPI Interface
ADI

ADIS16003PCBZ

iSensor⑩ PC Evaluation System
ADI

ADIS16006

Dual-Axis +-5 Accelerometer with SPI Interface
ADI

ADIS16006/PCB

Dual-Axis +-5 Accelerometer with SPI Interface
ADI

ADIS16006/PCBZ

Evaluation Board User Guide
ADI

ADIS16006CCCZ

Dual-Axis +-5 Accelerometer with SPI Interface
ADI

ADIS16006PCBZ

iSensor⑩ PC Evaluation System
ADI

ADIS16060

Wide Bandwidth Yaw Rate Gyroscope with SPI
ADI