ADG3246BRUZ [ADI]

10-BIT DRIVER, TRUE OUTPUT, PDSO24, MS-153AD, TSSOP-24;
ADG3246BRUZ
型号: ADG3246BRUZ
厂家: ADI    ADI
描述:

10-BIT DRIVER, TRUE OUTPUT, PDSO24, MS-153AD, TSSOP-24

驱动 光电二极管 输出元件 逻辑集成电路
文件: 总13页 (文件大小:789K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
2.5 V/3.3 V, 10-Bit, 2-Port  
Level Translating, Bus Switch  
ADG3246  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
225 ps Propagation Delay through the Switch  
4.5 Switch Connection between Ports  
Data Rate 1.244 Gbps  
A0  
B0  
2.5 V/3.3 V Supply Operation  
Selectable Level Shifting/Translation  
Small Signal Bandwidth 610 MHz  
Level Translation  
3.3 V to 2.5 V  
B9  
A9  
3.3 V to 1.8 V  
2.5 V to 1.8 V  
24-Lead LFCSP Package  
APPLICATIONS  
BE  
3.3 V to 1.8 V Voltage Translation  
3.3 V to 2.5 V Voltage Translation  
2.5 V to 1.8 V Voltage Translation  
Bus Switching  
Bus Isolation  
Hot Swap  
Hot Plug  
Analog Signal Switching  
GENERAL DESCRIPTION  
PRODUCT HIGHLIGHTS  
The ADG3246 is a 2.5 V or 3.3 V, 10-bit, 2-port digital switch.  
It is designed on Analog Devices’ low voltage CMOS process,  
which provides low power dissipation yet gives high switching  
speed and very low on resistance, allowing inputs to be connected  
to outputs without additional propagation delay or generating  
additional ground bounce noise.  
1. 3.3 V or 2.5 V supply operation  
2. Extremely low propagation delay through switch  
3. 4.5 W switches connect inputs to outputs  
4. Level/voltage translation  
5.  
24-lead 4 mm ¥ 4 mm LFCSP package  
The switches are enabled by means of the bus enable (BE)  
input signal. These digital switches allow bidirectional signals to  
be switched when ON. In the OFF condition, signal levels up to  
the supplies are blocked.  
This device is ideal for applications requiring level translation.  
When operated from a 3.3 V supply, level translation from 3.3 V  
inputs to 2.5 V outputs occurs. Similarly, if the device is oper-  
ated from a 2.5 V supply and 2.5 V inputs are applied, the device  
will translate the outputs to 1.8 V. In addition to this, the ADG3246  
has a level translating select pin (SEL). When SEL is low, VCC is  
reduced internally, allowing for level translation between 3.3 V  
inputs and 1.8 V outputs. This makes the device suited to appli-  
cations requiring level translation between different supplies,  
such as converter to DSP/microcontroller interfacing.  
REV. A  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, norforanyinfringementsofpatentsorotherrightsofthirdpartiesthat  
may result from its use. No license is granted by implication or otherwise  
under any patent or patent rights of Analog Devices. Trademarks and  
registered trademarks are the property of their respective companies.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700 www.analog.com  
Fax: 781/326-8703 © 2003-2016 Analog Devices, Inc. All rights reserved.  
ADG3246* PRODUCT PAGE QUICK LINKS  
Last Content Update: 02/23/2017  
COMPARABLE PARTS  
View a parametric search of comparable parts.  
DESIGN RESOURCES  
ADG3246 Material Declaration  
PCN-PDN Information  
EVALUATION KITS  
Evaluation Board for 24-Lead TSSOP Devices in the  
Switches and Multiplexers Portfolio  
Quality And Reliability  
Symbols and Footprints  
DISCUSSIONS  
View all ADG3246 EngineerZone Discussions.  
DOCUMENTATION  
Data Sheet  
ADG3246: 2.5 V/3.3 V, 10 Bit, 2 Port Level Translator, Bus  
Switch Data Sheet  
SAMPLE AND BUY  
Visit the product page to see pricing options.  
User Guides  
UG-1036: Evaluation Board for 24-Lead TSSOP Devices in  
the Switches and Multiplexers Portfolio  
TECHNICAL SUPPORT  
Submit a technical question or find your regional support  
number.  
REFERENCE MATERIALS  
Product Selection Guide  
DOCUMENT FEEDBACK  
Submit feedback for this data sheet.  
Switches and Multiplexers Product Selection Guide  
Technical Articles  
CMOS Switches Offer High Performance in Low Power,  
Wideband Applications  
Data-acquisition system uses fault protection  
Enhanced Multiplexing for MEMS Optical Cross Connects  
This page is dynamically generated by Analog Devices, Inc., and inserted into this data sheet. A dynamic change to the content on this page will not  
trigger a change to either the revision number or the content of the product data sheet. This dynamic page may be frequently modified.  
(VCC = 2.3 V to 3.6 V, GND = 0 V, all specifications TMIN to TMAX, unless  
ADG3246–SPECIFICATIONS1 otherwise noted.)  
B Version  
Typ2  
Parameter  
Symbol  
Conditions  
Min  
Max  
Unit  
DC ELECTRICAL CHARACTERISTICS  
Input High Voltage  
VINH  
VINH  
VINL  
VINL  
II  
VCC = 2.7 V to 3.6 V  
VCC = 2.3 V to 2.7 V  
VCC = 2.7 V to 3.6 V  
VCC = 2.3 V to 2.7 V  
2.0  
1.7  
V
V
V
V
mA  
mA  
mA  
V
V
V
Input Low Voltage  
0.8  
0.7  
±1  
±1  
±1  
2.9  
2.1  
2.1  
Input Leakage Current  
±0.01  
±0.01  
±0.01  
2.5  
1.8  
1.8  
OFF State Leakage Current  
ON State Leakage Current  
Maximum Pass Voltage  
IOZ  
0 £ A, B £ VCC  
0 £ A, B £ VCC  
VA/VB = VCC = SEL = 3.3 V, IO = –5 mA  
VA/VB = VCC = SEL = 2.5 V, IO = –5 mA  
VA/VB = VCC = 3.3 V, SEL = 0 V, IO = –5 mA  
VP  
2.0  
1.5  
1.5  
CAPACITANCE3  
A Port Off Capacitance  
B Port Off Capacitance  
A, B Port On Capacitance  
Control Input Capacitance  
CA OFF  
f = 1 MHz  
f = 1 MHz  
f = 1 MHz  
f = 1 MHz  
5
5
10  
6
pF  
pF  
pF  
pF  
C
B OFF  
CA, CB ON  
CIN  
SWITCHING CHARACTERISTICS3  
Propagation Delay A to B or B to A, tPD  
4
tPHL, tPLH  
CL = 50 pF, VCC = SEL = 3 V  
0.225 ns  
Propagation Delay Matching5  
Bus Enable Time BE to A or B6  
Bus Disable Time BE to A or B6  
Bus Enable Time BE to A or B6  
Bus Disable Time BE to A or B6  
Bus Enable Time BE to A or B6  
Bus Disable Time BE to A or B6  
Maximum Data Rate  
22.5  
4.8  
4.8  
3.3  
2.9  
3
ps  
ns  
ns  
ns  
ns  
ns  
tPZH, tPZL  
tPHZ, tPLZ  
tPZH, tPZL  
tPHZ, tPLZ  
tPZH, tPZL  
tPHZ, tPLZ  
VCC = 3.0 V to 3.6 V; SEL = VCC  
VCC = 3.0 V to 3.6 V; SEL = VCC  
VCC = 3.0 V to 3.6 V; SEL = 0 V  
VCC = 3.0 V tp 3.6 V; SEL = 0 V  
VCC = 2.3 V to 2.7 V; SEL = VCC  
VCC = 2.3 V to 2.7 V; SEL = VCC  
1
1
0.5  
0.5  
0.5  
0.5  
3.2  
3.2  
2.2  
1.7  
2.2  
1.75  
1.244  
50  
2.6  
ns  
V
CC = SEL = 3.3 V; VA/VB = 2 V  
Gbps  
ps p-p  
MHz  
Channel Jitter  
Operating Frequency—Bus Enable  
VCC = SEL = 3.3 V; VA/VB = 2 V  
fBE  
10  
DIGITAL SWITCH  
On Resistance  
RON  
VCC = 3 V, SEL = VCC, VA = 0 V, IBA = 8 mA  
4.5  
15  
5
11  
5
14  
0.45  
0.65  
8
28  
9
18  
8
W
W
W
W
W
W
W
W
V
V
CC = 3 V, SEL = VCC, VA = 1.7 V, IBA = 8 mA  
CC = 2.3 V, SEL = VCC, VA = 0 V, IBA = 8 mA  
VCC = 2.3 V, SEL = VCC, VA = 1 V, IBA = 8 mA  
V
V
CC = 3 V, SEL = 0 V, VA = 0 V, IBA = 8 mA  
CC = 3 V, SEL = 0 V, VA = 1 V, IBA = 8 mA  
On Resistance Matching  
RON  
VCC = 3 V, SEL = VCC, VA = 0 V, IBA = 8 mA  
VCC = 3 V, SEL = VCC, VA = 1 V, IBA = 8 mA  
POWER REQUIREMENTS  
VCC  
Quiescent Power Supply Current  
2.3  
3.6  
1
1.2  
130  
V
ICC  
ICC  
ICC  
Digital Inputs = 0 V or VCC; SEL = VCC  
Digital Inputs = 0 V or VCC; SEL = 0 V  
VCC = 3.6 V, BE = 3.0 V; SEL = VCC  
0.001  
0.65  
mA  
mA  
mA  
Increase in ICC per Input7  
NOTES  
1Temperature range is as follows: B Version: –40C to +85C.  
2Typical values are at 25C, unless otherwise stated.  
3Guaranteed by design, not subject to production test.  
4The digital switch contributes no propagation delay other than the RC delay of the typical RON of the switch and the load capacitance when driven by an ideal voltage  
source. Since the time constant is much smaller than the rise/fall times of typical driving signals, it adds very little propagation delay to the system. Propagation delay  
of the digital switch when used in a system is determined by the driving circuit on the driving side of the switch and its interaction with the load on the driven side.  
5Propagation delay matching between channels is calculated from the on resistance matching and load capacitance of 50 pF.  
6See Timing Measurement Information section.  
7This current applies to the control pin (BE) only. The A and B ports contribute no significant ac or dc currents as they transition.  
Specifications subject to change without notice.  
–2–  
REV. A  
ADG3246  
ABSOLUTE MAXIMUM RATINGS*  
(TA = 25°C, unless otherwise noted.)  
LFCSP Package  
JA Thermal Impedance . . . . . . . . . . . . . . . . . . . . . . . 35°C/W  
VCC to GND . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to +4.6 V  
Digital Inputs to GND . . . . . . . . . . . . . . . . . –0.5 V to +4.6 V  
DC Input Voltage . . . . . . . . . . . . . . . . . . . . . –0.5 V to +4.6 V  
DC Output Current . . . . . . . . . . . . . . . . . . 25 mA per channel  
Operating Temperature Range  
Industrial (B Version) . . . . . . . . . . . . . . . . . –40°C to +85°C  
Storage Temperature Range . . . . . . . . . . . . –65°C to +150°C  
Junction Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . 150°C  
Lead Temperature, Soldering (10 seconds) . . . . . . . . . . 300°C  
IR Reflow, Peak Temperature (<20 seconds) . . . . . . . . 235°C  
*Stresses above those listed under Absolute Maximum Ratings may cause perma-  
nent damage to the device. This is a stress rating only; functional operation of the  
device at these or any other conditions above those listed in the operational  
sections of this specification is not implied. Exposure to absolute maximum rating  
conditions for extended periods may affect device reliability. Only one absolute  
maximum rating may be applied at any one time.  
ORDERING GUIDE  
Temperature  
Range  
Model1  
Package Description  
24-Lead Lead Frame Chip Scale Package [LFCSP]  
24-Lead Lead Frame Chip Scale Package [LFCSP]  
Package Option  
CP-24-10  
CP-24-10  
ADG3246BCPZ  
ADG3246BCPZ-REEL7  
1 Z = RoHS Compliant Part.  
−40°C to +85°C  
−40°C to +85°C  
Table I. Pin Description  
Table II. Truth Table  
BE SEL* Function  
Mnemonic  
Description  
Bus Enable (Active Low)  
Level Translation Select  
Port A, Inputs or Outputs  
Port B, Inputs or Outputs  
Exposed Pad. It is  
recommended that the  
exposed pad be thermally  
connected to a copper plane  
for enhanced thermal  
performance. The pad  
should be grounded as well.  
BE  
SEL  
Ax  
Bx  
EPAD  
L
L
H
L
H
X
A = B, 3.3 V to 1.8 V Level Shifting  
A = B, 3.3 V to 2.5 V/2.5 V to 1.8 V Level Shifting  
Disconnect  
*SEL = 0 only when VDD = 3.3 V 10%  
PIN CONFIGURATION  
24-Lead LFCSP  
1
2
3
18  
17  
16  
15  
14  
13  
SEL  
A5  
BE  
B0  
B1  
B2  
B3  
B4  
A6  
ADG3246  
TOP VIEW  
(Not to Scale)  
A7 4  
5
6
A8  
A9  
NOTES  
1. IT IS RECOMMENDED THAT THE EXPOSED PAD BE THERMALLY CONNECTED  
TO A COPPER PLANE FOR ENHANCED THERMAL PERFORMANCE.  
THE PAD SHOULD BE GROUNDED AS WELL.  
CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection. Although the  
ADG3246 features proprietary ESD protection circuitry, permanent damage may occur on devices  
subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended  
to avoid performance degradation or loss of functionality.  
–3–  
REV. A  
ADG3246  
TERMINOLOGY  
VCC  
GND  
VINH  
VINL  
II  
Positive Power Supply Voltage.  
Ground (0 V) Reference.  
Minimum Input Voltage for Logic 1.  
Maximum Input Voltage for Logic 0.  
Input Leakage Current at the Control Inputs.  
IOZ  
OFF State Leakage Current. It is the maximum leakage current at the switch pin in the OFF state.  
ON State Leakage Current. It is the maximum leakage current at the switch pin in the ON state.  
IOL  
VP  
Maximum Pass Voltage. The maximum pass voltage relates to the clipped output voltage of an NMOS device  
when the switch input voltage is equal to the supply voltage.  
RON  
Ohmic Resistance Offered by a Switch in the ON State. It is measured at a given voltage by forcing a specified  
amount of current through the switch.  
RON  
CX OFF  
CX ON  
CIN  
On Resistance Match between Any Two Channels, i.e., RON Max – RON Min.  
OFF Switch Capacitance.  
ON Switch Capacitance.  
Control Input Capacitance. This consists of BE and SEL.  
ICC  
Quiescent Power Supply Current. It is measured when all control inputs are at a logic HIGH or LOW level and  
the switches are OFF.  
ICC  
Extra power supply current component for the BE control input when the input is not criven at the supplies.  
tPLH, tPHL  
Data Propagation Delay through the Switch in the ON State. Propagation delay is related to the RC time constant  
RON ¥ CL, where CL is the load capacitance.  
tPZH, tPZL  
tPHZ, tPLZ  
Bus Enable Times. These are times taken to cross the VT voltage at the switch output when the switch turns on in  
response to the control signal, BE.  
Bus Disable Times. This is the time taken to place the switch in the high impedance OFF state in response to the control  
signal. It is measured as the time taken for the output voltage to change by Vfrom the original quiescent level,  
with reference to the logic level transition at the control input. (Refer to Figure 3 for enable and disable times.)  
Max Data Rate Maximum Rate at which Data Can Be Passed through the Switch.  
Channel Jitter  
fBE  
Peak-to-Peak Value of the Sum of the Deterministic and Random Jitter of the Switch Channel.  
Operating Frequency of Bus Enable. This is the maximum frequency at which bus enable (BE) can be toggled.  
–4–  
REV. A  
Typical Performance Characteristics–ADG3246  
40  
35  
30  
25  
40  
35  
30  
25  
20  
15  
10  
5
40  
V
= 3V  
V
= 3V  
V
= 2.3V  
CC  
CC  
T
= 25C  
CC  
T
= 25C  
A
T
= 25C  
35  
30  
25  
20  
15  
10  
5
A
A
SEL = 0V  
SEL = V  
SEL = V  
CC  
CC  
V
= 3.3V  
= 3.6V  
V
= 3.3V  
V
= 2.5V  
= 2.7V  
CC  
CC  
CC  
20  
15  
10  
5
V
CC  
V
CC  
V
= 3.6V  
CC  
0
0
0
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0 3.5  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
V
/V – V  
V
/V – V  
A
B
V
/V – V  
A
B
A
B
TPC 3. On Resistance vs.  
Input Voltage  
TPC 1. On Resistance vs.  
Input Voltage  
TPC 2. On Resistance vs.  
Input Voltage  
3.0  
2.5  
20  
15  
10  
5
15  
10  
5
V
= 3.6V  
T
= 25C  
CC  
A
V
= 3.3V  
V
= 2.5V  
CC  
CC  
SEL = V  
CC  
= –5A  
SEL = V  
SEL = V  
CC  
I
CC  
O
2.0  
1.5  
V
= 3.3V  
CC  
85C  
V
= 3V  
CC  
85C  
1.0  
0.5  
0
40C  
25C  
25C  
40C  
0
0
0
0.5  
1.0  
1.5  
V
2.0 2.5  
– V  
3.0 3.5  
1.0  
/V – V  
2.0  
0
0.5  
1.5  
0
0.5  
V
1.0  
1.2  
CC  
V
A
B
/V – V  
A B  
TPC 5. On Resistance vs. Input  
Voltage for Different Temperatures  
TPC 6. Pass Voltage vs. VCC  
TPC 4. On Resistance vs. Input  
Voltage for Different Temperatures  
1800  
1600  
1400  
1200  
1000  
800  
2.5  
2.5  
T
= 25C  
A
T
= 25C  
T
= 25C  
A
V
= 2.7V  
= 2.5V  
A
V
= 3.6V  
CC  
CC  
SEL = V  
SEL = 0V  
I = –5A  
O
CC  
= –5A  
2.0  
1.5  
1.0  
0.5  
I
2.0  
1.5  
1.0  
0.5  
O
V
= 3.3V, SEL = 0V  
CC  
V
CC  
V
= 3.3V  
CC  
V
= 2.3V  
V
= 3V  
CC  
CC  
600  
V
= SEL = 3.3V  
CC  
400  
200  
V
= SEL = 2.5V  
CC  
0
0
0
0
0.5  
1.0  
1.5  
– V  
2.0  
2.5  
3.0  
0
2
4
6
8
10 12 14 16 18 20  
0
0.5  
1.0  
1.5  
V
2.0  
– V  
2.5  
3.0 3.5  
V
ENABLE FREQUENCY – MHz  
CC  
CC  
TPC 9. ICC vs. Enable Frequency  
TPC 7. Pass Voltage vs. VCC  
TPC 8. Pass Voltage vs. VCC  
–5–  
REV. A  
ADG3246  
3.0  
3.0  
2.5  
2.0  
1.5  
0
T
= 25C  
A
T
= 25C  
T
V
= 25C  
A
A
–0.2  
SEL = V  
V
= 0V  
= V  
CC  
A
A CC  
2.5  
2.0  
1.5  
1.0  
ON OFF  
= InF  
–0.4  
–0.6  
–0.8  
–1.0  
–1.2  
BE = 0  
BE = 0  
C
L
V
= SEL = 3.3V  
CC  
V
= 3.3V; SEL = 0V  
CC  
V
= 2.5V  
CC  
V
= SEL = 3.3V  
CC  
1.0  
V
= SEL = 2.5V  
CC  
–1.4  
–1.6  
V
= 3.3V  
1.5  
CC  
0.5  
0
0.5  
0
–1.8  
–2.0  
V
= 3.3V; SEL = 0V  
CC  
V
= SEL = 2.5V  
CC  
0
0.02  
0.04  
0.06  
– A  
0.08  
0.10  
0
0.5  
1.0  
2.0  
/V – V  
2.5  
3.0  
–0.10 –0.08  
–0.06  
–0.04  
I – A  
O
–0.02  
0
V
I
A
B
O
TPC 10. Output Low Characteristic  
TPC 11. Output High Characteristic  
TPC 12. Charge Injection vs.  
Source Voltage  
–20  
–30  
0
–20  
T
V
= 25C  
T
= 25C  
A
A
= 3.3V/2.5V  
V = 3.3V/2.5V  
SEL =V  
–30  
–40  
–50  
–60  
–70  
–80  
T
V
= 25C  
CC  
CC  
–2  
–4  
A
SEL =V  
= 3.3V/2.5V  
CC  
ADJACENT CHANNELS  
= 0dBm  
CC  
= 0dBm  
CC  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
V
SEL =V  
V
N/W ANALYZER:  
R
IN  
N/W ANALYZER:  
= R = 50ꢀ  
CC  
V
= 0dBm  
IN  
N/W ANALYZER:  
= R = 50ꢀ  
IN  
R
L
S
R
–6  
–8  
L
= R = 50ꢀ  
S
L
S
–10  
–12  
–14  
–90  
–100  
0.03 0.1  
1
10  
100  
1000  
0.03 0.1  
1
10  
100  
1000  
0.03 0.1  
1
10  
100  
1000  
FREQUENCY – MHz  
FREQUENCY – MHz  
FREQUENCY – MHz  
TPC 13. Bandwidth vs. Frequency  
TPC 15. Off Isolation vs.  
Frequency  
TPC 14. Crosstalk vs. Frequency  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
3.5  
2.5  
V
= SEL = 3.3V  
= 2V p-p  
CC  
ENABLE  
3.0  
V
IN  
ENABLE  
2.0  
V
= SEL = 3.3V  
CC  
20dB ATTENUATION  
DISABLE  
ENABLE  
V
= SEL = 2.5V  
2.5  
2.0  
1.5  
1.0  
CC  
DISABLE  
1.5  
1.0  
V
= 3.3V, SEL = 0V  
CC  
DISABLE  
0.5  
0
0.5  
0
0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5  
DATA RATE – Gbps  
–40 –20  
0
20  
40  
60  
80 100  
–40 –20  
0
20  
40  
60  
80  
100  
TEMPERATURE – C  
TEMPERATURE – C  
TPC 16. Enable/Disable Time  
vs. Temperature  
TPC 17. Enable/Disable Time  
vs. Temperature  
TPC 18. Jitter vs. Data Rate;  
PRBS 31  
–6–  
REV. A  
ADG3246  
100  
95  
90  
85  
80  
75  
V
= SEL = 3.3V  
= 2V p-p  
CC  
V
IN  
20dB ATTENUATION  
70  
65  
60  
55  
50  
V
= 2.5V  
20dB  
ATTENUATION  
CC  
V
= 3.3V  
37mV/DIV  
200ps/DIV  
20dB  
ATTENUATION  
CC  
SEL = 2.5V  
= 2V p-p  
35mV/DIV  
100ps/DIV  
SEL = 3.3V  
V
T
= 25C  
IN  
A
V
= 2V p-p  
T
= 25C  
IN  
A
% EYE WIDTH = ((CLOCK PERIOD –  
JITTER p-p)/CLOCK PERIOD) 100%  
0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5  
DATA RATE – Gbps  
TPC 19. Eye Width vs. Data  
Rate; PRBS 31  
TPC 20. Eye Pattern; 1.244  
Gbps, VCC = 3.3 V, PRBS 31  
TPC 21. Eye Pattern; 1 Gbps,  
VCC = 2.5 V, PRBS 31  
20dB  
ATTENUATION  
= 3.3V  
50.1mV/DIV  
50ps/DIV  
V
CC  
T
= 25C  
SEL = 3.3V  
= 2V p-p  
A
V
IN  
TPC 22. Jitter @ 1.244 Gbps,  
PRBS 31  
–7–  
REV. A  
ADG3246  
TIMING MEASUREMENT INFORMATION  
For the following load circuit and waveforms, the notation that is used is VIN and VOUT where  
VIN = VA and VOUT = VB or VIN = VB and VOUT = VA  
V
IH  
V
CC  
CONTROL  
INPUT BE  
2 V  
CC  
V
T
SW1  
0V  
tPLH  
tPHL  
GND  
V
H
R
L
V
V
V
T
V
OUT  
IN  
OUT  
PULSE  
GENERATOR  
V
L
D.U.T.  
R
R
C
L
Figure 2. Propagation Delay  
L
T
NOTES  
PULSE GENERATOR FOR ALL PULSES: tR Յ 2.5ns, tF Յ 2.5ns,  
FREQUENCY Յ 10MHz.  
C
R
INCLUDES BOARD, STRAY, AND LOAD CAPACITANCES.  
IS THE TERMINATION RESISTOR, SHOULD BE EQUAL TO Z  
L
T
OUT  
OF THE PULSE GENERATOR.  
Figure 1. Load Circuit  
Test Conditions  
Symbol  
VCC = 3.3 V ± 0.3 V (SEL = VCC  
)
VCC = 2.5 V ± 0.2 V (SEL = VCC  
)
VCC = 3.3 V ± 0.3 V (SEL = 0 V) Unit  
RL  
VD  
CL  
VT  
500  
300  
50  
500  
150  
30  
500  
150  
30  
W
mV  
pF  
V
1.5  
0.9  
0.9  
DISABLE  
ENABLE  
V
INH  
V
CONTROL INPUT BE  
T
0V  
tPZL  
tPLZ  
V
Table III. Switch Position  
CC  
V
CC  
V
OUT  
V
V
= 0V  
= V  
T
IN  
V
V
+V  
L
L
SW1 @ 2V  
CC  
TEST  
PLZ, tPZL  
tPHZ, tPZH  
S1  
tPZH  
tPHZ  
t
2 ¥ VCC  
GND  
V
V
H
H
V
OUT  
V
–V  
V
IN  
CC  
T
SW1 @ GND  
0V  
0V  
Figure 3. Enable and Disable Times  
–8–  
REV. A  
ADG3246  
BUS SWITCH APPLICATIONS  
2.5 V to 1.8 V Translation  
Mixed Voltage Operation, Level Translation  
Bus switches can be used to provide an ideal solution for interfac-  
ing between mixed voltage systems. The ADG3246 is suitable  
for applications where voltage translation from 3.3 V technology to  
a lower voltage technology is needed. This device can translate  
from 3.3 V to 1.8 V, from 2.5 V to 1.8 V, or from 3.3 V  
directly to 2.5 V.  
When VCC is 2.5 V (SEL = VCC) and the input signal range is 0 V  
to VCC, the maximum output signal will, as before, be clamped  
to within a voltage threshold below the VCC supply.  
2.5V  
Figure 4 shows a block diagram of a typical application in which  
a user needs to interface between a 3.3 V ADC and a 2.5 V micro-  
processor. The microprocessor may not have 3.3 V tolerant inputs,  
therefore placing the ADG3246 between the two devices allows  
the devices to communicate easily. The bus switch directly  
connects the two blocks, thus introducing minimal propagation  
delay, timing skew, or noise.  
ADG3246  
2.5V  
1.8V  
Figure 7. 2.5 V to 1.8 V Voltage Translation, SEL = VCC  
In this case, the output will be limited to approximately 1.8 V,  
as shown in Figure 7.  
3.3V  
3.3V  
2.5V  
V
OUT  
2.5V SUPPLY  
SEL = 2.5V  
2.5V  
3.3V ADC  
MICROPROCESSOR  
1.8V  
Figure 4. Level Translation between a 3.3 V ADC  
and a 2.5 V Microprocessor  
V
IN  
3.3 V to 2.5 V Translation  
0V  
SWITCH  
INPUT  
2.5V  
When VCC is 3.3 V (SEL = VCC) and the input signal range is 0 V  
to VCC, the maximum output signal will be clamped to within a  
voltage threshold below the VCC supply.  
Figure 8. 2.5 V to 1.8 V Voltage Translation, SEL = VCC  
3.3 V to 1.8 V Translation  
3.3V  
The ADG3246 offers the option of interfacing between a 3.3 V  
device and a 1.8 V device. This is possible through use of the  
SEL pin.  
3.3V  
2.5V  
2.5V  
2.5V  
SEL pin: An active low control pin. SEL activates internal cir-  
cuitry in the ADG3246 that allows voltage translation between  
3.3 V devices and 1.8 V devices.  
ADG3246  
3.3V  
Figure 5. 3.3 V to 2.5 V Voltage Translation, SEL = VCC  
In this case, the output will be limited to 2.5 V, as shown in  
Figure 6.  
3.3V  
ADG3246  
1.8V  
V
OUT  
3.3V SUPPLY  
SEL = 3.3V  
2.5V  
Figure 9. 3.3 V to 1.8 V Voltage Translation, SEL = 0 V  
When VCC is 3.3 V and the input signal range is 0 V to VCC, the  
maximum output signal will be clamped to 1.8 V, as shown in  
Figure 9. To do this, the SEL pin must be tied to Logic 0. If  
V
IN  
0V  
SWITCH  
INPUT  
3.3V  
SEL is unused, it should be tied directly to VCC  
.
Figure 6. 3.3 V to 2.5 V Voltage Translation, SEL = VCC  
This device can be used for translation from 2.5 V to 3.3 V  
devices and also between two 3.3 V devices.  
–9–  
REV. A  
ADG3246  
V
OUT  
3.3V SUPPLY  
SEL = 0V  
PLUG-IN  
CARD (1)  
1.8V  
CARD I/O  
CARD I/O  
CPU  
RAM  
PLUG-IN  
CARD (2)  
V
IN  
0V  
SWITCH  
INPUT  
3.3V  
Figure 10. 3.3 V to 1.8 V Voltage Translation, SEL = 0 V  
Bus Isolation  
Figure 12. ADG3246 in a Hot Plug Application  
A common requirement of bus architectures is low capacitance  
loading of the bus. Such systems require bus bridge devices that  
extend the number of loads on the bus without exceeding the  
specifications. Because the ADG3246 is designed specifically for  
applications that do not need drive yet require simple logic func-  
tions, it solves this requirement. The device isolates access to the  
bus, thus minimizing capacitance loading.  
There are many systems that require the ability to handle hot  
swapping, such as docking stations, PCI boards for servers, and  
line cards for telecommunications switches. If the bus can be  
isolated prior to insertion or removal, then there is more control  
over the hot swap event. This isolation can be achieved using a  
bus switch. The bus switches are positioned on the hot swap card  
between the connector and the devices. During hot swap, the  
ground pin of the hot swap card must connect to the ground pin  
of the back plane before any other signal or power pins.  
LOAD A  
LOAD C  
BUS/  
BACKPLANE  
Analog Switching  
Bus switches can be used in many analog switching applications;  
for example, video graphics. Bus switches can have lower on  
resistance, smaller ON and OFF channel capacitance and thus  
improved frequency performance than their analog counterparts.  
The bus switch channel itself consisting solely of an NMOS  
switch limits the operating voltage (see TPC 1 for a typical plot),  
but in many cases, this does not present an issue.  
LOAD B  
LOAD D  
BUS SWITCH  
LOCATION  
Figure 11. Location of Bus Switched in a Bus  
Isolation Application  
Hot Plug and Hot Swap Isolation  
The ADG3246 is suitable for hot swap and hot plug applications.  
The output signal of the ADG3246 is limited to a voltage that is  
below the VCC supply, as shown in Figures 6, 8, and 10. There-  
fore the switch acts like a buffer to take the impact from hot  
insertion, protecting vital and expensive chipsets from damage.  
High Impedance During Power-Up/Power-Down  
To ensure the high impedance state during power-up or power-  
down, BE should be tied to VCC through a pull-up resistor; the  
minimum value of the resistor is determined by the current-  
sinking capability of the driver.  
In hot-plug applications, the system cannot be shutdown when  
new hardware is being added. To overcome this, a bus switch  
can be positioned on the backplane between the bus devices and  
the hot plug connectors. The bus switch is turned off during hot  
plug. Figure 12 shows a typical example of this type of application.  
PACKAGE AND PINOUT  
The ADG3246 is packaged in a tiny 24-lead LFCSP package.  
The area of the LFCSP option is 16 mm2. This makes the  
LFCSP option an excellent choice for space-constrained  
applications.  
–10–  
REV. A  
ADG3246  
OUTLINE DIMENSIONS  
4.10  
4.00 SQ  
3.90  
0.30  
0.25  
0.20  
PIN 1  
INDICATOR  
PIN 1  
INDICATOR  
24  
19  
0.50  
18  
1
6
BSC  
EXPOSED  
PAD  
2.20  
2.10 SQ  
2.00  
13  
12  
7
0.50  
0.40  
0.30  
0.25 MIN  
TOP VIEW  
BOTTOM VIEW  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.80  
0.75  
0.70  
0.05 MAX  
0.02 NOM  
SECTION OF THIS DATA SHEET.  
COPLANARITY  
0.08  
0.20 REF  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MO-220-WGGD-8.  
Figure 13. 24-Lead Lead Frame Chip Scale Package [LFCSP]  
4 x 4 mm Body and 0.75 mm Package Height  
(CP-24-10)  
Dimensions shown in millimeters  
–11–  
REV. A  

相关型号:

ADG3247

2.5 V/3.3 V, 16-Bit, 2-Port Level Translating, Bus Switch
ADI

ADG3247BCP

2.5 V/3.3 V, 16-Bit, 2-Port Level Translating, Bus Switch
ADI

ADG3247BCP-REEL

IC DUAL 8-BIT DRIVER, TRUE OUTPUT, QCC40, 6 X 6 MM, MO-220-VJJD-2, CSP-40, Bus Driver/Transceiver
ADI

ADG3247BCP-REEL7

2.5 V/3.3 V, 16-Bit, 2-Port Level Translating, Bus Switch
ADI

ADG3247BCPZ

ADG3247 SERIES, DUAL 8-BIT DRIVER, TRUE OUTPUT, QCC40, 6 X 6 MM, MO-220-VJJD-2, CSP-40
ROCHESTER

ADG3247BRU

2.5 V/3.3 V, 16-Bit, 2-Port Level Translating, Bus Switch
ADI

ADG3247BRU

ADG3247 SERIES, DUAL 8-BIT DRIVER, TRUE OUTPUT, PDSO38, MS-153BD-1, TSSOP-38
ROCHESTER

ADG3247BRU-REEL7

DUAL 8-BIT DRIVER, TRUE OUTPUT, PDSO38, MS-153BD-1, TSSOP-38
ADI

ADG3247BRU-REEL7

ADG3247 SERIES, DUAL 8-BIT DRIVER, TRUE OUTPUT, PDSO38, MS-153BD-1, TSSOP-38
ROCHESTER

ADG3247BRUZ

2.5 V/3.3 V, 16-Bit, 2-Port Level Translating, Bus Switch
ADI

ADG3248

2.5 V/ 3.3 V, 2 :1 Multiplexer/ Demultiplexer Bus Switch
ADI

ADG3248BKS-R2

2.5 V/ 3.3 V, 2 :1 Multiplexer/ Demultiplexer Bus Switch
ADI