ADF4207 [ADI]

Dual RF PLL Frequency Synthesizers; 双射频锁相环频率合成器
ADF4207
型号: ADF4207
厂家: ADI    ADI
描述:

Dual RF PLL Frequency Synthesizers
双射频锁相环频率合成器

射频
文件: 总20页 (文件大小:207K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
a
Dual RF PLL Frequency Synthesizers  
ADF4206/ADF4207/ADF4208  
GENERAL DESCRIPTION  
FEATURES  
The ADF4206 family of dual frequency synthesizers can be  
used to implement local oscillators in the upconversion and  
downconversion sections of wireless receivers and transmitters.  
Each synthesizer consists of a low-noise digital PFD (Phase  
Frequency Detector), a precision charge pump, a programmable  
reference divider, programmable A and B counters and a dual-  
modulus prescaler (P/P + 1). The A (6-bit) and B (11-bit)  
counters, in conjunction with the dual modulus prescaler (P/P + 1),  
implement an N divider (N = BP + A). In addition, the 14-bit  
reference counter (R Counter), allows selectable REFIN frequen-  
cies at the PFD input. The on-chip oscillator circuitry allows  
the reference input to be derived from crystal oscillators.  
ADF4206: 550 MHz/550 MHz  
ADF4207: 1.1 GHz/1.1 GHz  
ADF4208: 2.0 GHz/1.1 GHz  
2.7 V to 5.5 V Power Supply  
Selectable Charge Pump Supply (VP) Allows Extended  
Tuning Voltage in 3 V Systems  
Selectable Charge Pump Currents  
On-Chip Oscillator Circuit  
Selectable Dual Modulus Prescaler  
RF2: 32/33 or 64/65  
RF1: 32/33 or 64/65  
3-Wire Serial Interface  
Power-Down Mode  
A complete PLL (Phase-Locked Loop) can be implemented if  
the synthesizers are used with an external loop filter and VCOs  
(Voltage Controlled Oscillators).  
APPLICATIONS  
Wireless Handsets (GSM, PCS, DCS, CDMA, WCDMA)  
Base Stations for Wireless Radio (GSM, PCS, DCS,  
CDMA, WCDMA)  
Wireless LANS  
Communications Test Equipment  
CATV Equipment  
Control of all the on-chip registers is via a simple 3-wire interface.  
The devices operate with a power supply ranging from 2.7 V  
to 5.5 V and can be powered down when not in use.  
FUNCTIONAL BLOCK DIAGRAM  
V
1
V
2
V 1  
V 2  
P
DD  
DD  
P
N = BP + A  
ADF4206/ADF4207/ADF4208  
11-BIT RF2  
B-COUNTER  
PHASE  
COMPARATOR  
RF2  
A
B
IN  
RF2  
PRESCALER  
RF2  
CHARGE  
PUMP  
IN  
CP  
RF2  
6-BIT RF2  
A-COUNTER  
RF2  
LOCK  
DETECT  
OSC  
IN  
OSCILLATOR  
OSC  
OUT  
14-BIT RF2  
R-COUNTER  
OUTPUT  
MUX  
MUXOUT  
CLOCK  
DATA  
LE  
22-BIT  
DATA  
REGISTER  
SDOUT  
RF1  
14-BIT RF1  
R-COUNTER  
LOCK  
DETECT  
N = BP + A  
CHARGE  
PUMP  
CP  
RF1  
11-BIT RF1  
B-COUNTER  
PHASE  
COMPARATOR  
RF1  
A
B
IN  
RF1  
PRESCALER  
RF1  
IN  
6-BIT RF1  
A-COUNTER  
AGND  
RF1  
DGND  
RF2  
AGND  
RF2  
DGND  
RF1  
REV. 0  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, nor for any infringements of patents or other rights of third parties  
which may result from its use. No license is granted by implication or  
otherwise under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
Fax: 781/326-8703  
World Wide Web Site: http://www.analog.com  
© Analog Devices, Inc., 2001  
ADF4206/ADF4207/ADF4208–SPECIFICATIONS1  
(VDD1 = VDD2 = 3 V ؎ 10%, 5 V ؎ 10%;  
VDD1, VDD2 Յ VP1, VP2 Յ 6.0 V; AGNDRF1 = DGNDRF1 = AGNDRF2 = DGNDRF2 = 0 V; TA = TMIN to TMAX unless otherwise noted, dBm referred to 50 .)  
Parameter  
B Version  
B Chips2 Unit  
Test Conditions/Comments  
RF/IF CHARACTERISTICS (3 V)  
See Figure 2 for input circuit.  
RF1 Input Frequency (RF1IN  
)
Use a square wave for frequencies lower than fMIN.  
ADF4206  
ADF4207  
ADF4208  
RF Input Sensitivity  
0.05/0.55  
0.08/1.1  
0.08/2.0  
–15/+4  
0.05/0.55 GHz min/max  
0.08/1.1  
0.08/2.0  
–15/+4  
GHz min/max  
GHz min/max  
dBm min/max  
IF Input Frequency (RF2IN  
ADF4206  
ADF4207/ADF4208  
IF Input Sensitivity  
)
0.05/0.55  
0.08/1.1  
–15/+4  
165  
0.05/0.55 GHz min/max  
0.08/1.1  
–15/+4  
165  
GHz min/max  
dBm min/max  
MHz max  
Maximum Allowable Prescaler Output  
Frequency3  
RF CHARACTERISTICS (5 V)  
RF1 Input Frequency (RF1IN  
)
Use a square wave for frequencies lower than fMIN.  
ADF4206  
ADF4207  
ADF4208  
RF Input Sensitivity  
0.05/0.55  
0.08/1.1  
0.08/2.0  
–10/+4  
0.05/0.55 GHz min/max  
0.08/1.1  
0.08/2.0  
–10/+4  
GHz min/max  
GHz min/max  
dBm min/max  
MHz min/max  
IF Input Frequency (RF2IN  
)
ADF4206  
ADF4207/ADF4208  
IF Input Sensitivity  
0.05/0.55  
0.08/1.1  
–10/+4  
200  
0.05/0.55 GHz min/max  
0.08/1.1  
–10/+4  
200  
GHz min/max  
dBm min/max  
MHz max  
Maximum Allowable Prescaler Output  
Frequency3  
REFIN CHARACTERISTICS  
REFIN Input Frequency  
REFIN Input Sensitivity4  
5/40  
–2  
5/40  
–2  
MHz min/max For f < 5 MHz Use Square Wave 0 to VDD  
dBm min  
AC-Coupled. When DC-Coupled,  
0 to VDD Max (CMOS-Compatible)  
REFIN Input Capacitance  
REFIN Input Current  
10  
100  
10  
100  
pF max  
µA max  
PHASE DETECTOR  
Phase Detector Frequency5  
55  
55  
MHz max  
CHARGE PUMP  
ICP Sink/Source  
High Value  
Low Value  
Absolute Accuracy  
ICP Three-State Leakage Current  
5
5
mA typ  
mA typ  
% typ  
1.25  
2.5  
1
1.25  
2.5  
1
nA typ  
LOGIC INPUTS  
VINH, Input High Voltage  
VINL, Input Low Voltage  
IINH/IINL, Input Current  
CIN, Input Capacitance  
0.8 × VDD  
0.8 × VDD V min  
0.2 × VDD V max  
0.2 × VDD  
1
10  
1
µA max  
10  
pF max  
LOGIC OUTPUTS  
VOH, Output High Voltage  
VOL, Output Low Voltage  
VDD – 0.4  
0.4  
VDD – 0.4 V min  
IOH = 500 µA  
IOL = 500 µA  
0.4  
V max  
POWER SUPPLIES  
VDD  
VDD  
VP  
1
2
2.7/5.5  
2.7/5.5  
VDD1  
VDD1/6.0  
V min/V max  
V min/V max  
VDD1  
VDD1/6.0  
VDD1, VDD2 Յ VP1, VP2 Յ 6.0 V  
IDD (IDD1 + IDD2)6  
ADF4206  
14  
16.5  
21  
14  
16.5  
21  
mA max  
mA max  
mA max  
9.5 mA Typical at VDD = 3 V, TA = 25°C  
11 mA Typical at VDD = 3 V, TA = 25°C  
14 mA Typical at VDD = 3 V, TA = 25°C  
ADF4207  
ADF4208  
IDD  
1
ADF4206  
ADF4207  
ADF4208  
8
9
14  
8
9
14  
mA max  
mA max  
mA max  
5.5 mA Typical at VDD = 3 V, TA = 25°C  
6 mA Typical at VDD = 3 V, TA = 25°C  
9 mA Typical at VDD = 3 V, TA = 25°C  
IDD  
2
ADF4206  
ADF4207  
ADF4208  
IP (IP1 + IP2)  
Low-Power Sleep Mode  
7.5  
8.5  
9
1
0.5  
7.5  
8.5  
9
1
0.5  
mA max  
mA max  
mA max  
mA max  
µA typ  
5 mA Typical at VDD = 3 V, TA = 25°C  
5.5 mA Typical at VDD = 3 V, TA = 25°C  
5.5 mA Typical at VDD = 3 V, TA = 25°C  
TA = 25°C  
–2–  
REV. 0  
ADF4206/ADF4207/ADF4208  
Parameter  
B Version  
B Chips2 Unit  
Test Conditions/Comments  
NOISE CHARACTERISTICS  
Phase Noise Floor (RF1)7  
ADF4206  
–169  
–171  
–173  
–160  
–162  
–164  
–169  
–171  
–173  
–160  
–162  
–164  
dBc/Hz typ  
@ 25 kHz PFD Frequency  
@ 25 kHz PFD Frequency  
@ 25 kHz PFD Frequency  
@ 200 kHz PFD Frequency  
@ 200 kHz PFD Frequency  
@ 200 kHz PFD Frequency  
@ VCO Output  
@ 540 MHz Output, 200 kHz at PFD  
@ 900 MHz Output, 200 kHz at PFD  
@ 836 MHz, 30 kHz at PFD  
@ 1750 MHz Output, 200 kHz at PFD  
@ 900 MHz Output, 200 kHz at PFD  
@ 1750 MHz Output, 200 kHz at PFD  
@ 900 MHz Output, 200 kHz at PFD  
ADF4207  
ADF4208  
ADF4206  
ADF4207  
dBc/Hz typ  
dBc/Hz typ  
dBc/Hz typ  
dBc/Hz typ  
dBc/Hz typ  
ADF4208  
Phase Noise Performance8  
ADF4206 (RF1, RF2)  
ADF4207 (RF1, RF2)  
ADF4207 (RF1, RF2)9  
ADF4208 (RF1)  
–92  
–90  
–81  
–85  
–91  
–66  
–89  
–92  
–90  
–81  
–85  
–91  
–66  
–89  
dBc/Hz typ  
dBc/Hz typ  
dBc/Hz typ  
dBc/Hz typ  
dBc/Hz typ  
dBc/Hz typ  
dBc/Hz typ  
ADF4208 (RF1)  
ADF4208 (RF1)10  
ADF4208 (RF2)  
Spurious Signals  
RF1, RF2 (20 kHz Loop B/W)  
RF1, RF2 (1 kHz Loop B/W)  
–80/–84  
–65/–73  
–80/–84  
–65/–73  
dB typ  
dB typ  
@ 200 kHz/400 kHz and 200 kHz PFD  
@10 kHz/20 kHz and 10 kHz PFD  
NOTES  
1Operating temperature range is as follows: B Version: –40°C to +85°C.  
2The B Chip specifications are given as typical values.  
3This is the maximum operating frequency of the CMOS counters. The prescaler value should be chosen to ensure that the RF input is divided down to a frequency that is  
less than this value.  
4VDD1 = VDD2 = 3 V; For VDD1 = VDD2 = 5 V, use CMOS-compatible levels.  
5Guaranteed by design. Sample tested to ensure compliance.  
6Typical values apply for VDD = 3 V; P = 32; RF1IN1/RF2IN2 for ADF4206 = 540 MHz; RF1IN1/RF2IN2 for ADF4207 = 900 MHz; RF1IN1/RF2IN2 for ADF4208 = 900 MHz.  
7The synthesizer phase noise floor is estimated by measuring the in-band phase noise at the output of the VCO and subtracting 20 logN (where N is the N divider value).  
8The phase noise is measured at a 1 kHz unless otherwise noted. The phase noise is measured with the EVAL-ADF4206/ADF4207EB or the EVAL-AD4208EB Evaluation  
Board and the HP8562E Spectrum Analyzer. The spectrum analyzer provides the REFIN for the synthesizer (fREFOUT = 10 MHz @ 0 dBm).  
9fREFIN = 10 MHz; fPFD = 30 kHz; Offset Frequency = 300 Hz; fRF/IF = 836 MHz; N = 27866; Loop B/W = 3 kHz.  
10  
f
= 10 MHz; fPFD = 10 kHz; Offset Frequency = 200 Hz; fRF = 1750 MHz; N = 175000; Loop B/W = 1 kHz.  
REFIN  
Specifications subject to change without notice.  
–3–  
REV. 0  
ADF4206/ADF4207/ADF4208  
(VDD1 = VDD2 = 3 V ؎ 10%, 5 V ؎ 10%; VDD1, VDD2 VP1, VP2 6.0 V; AGNDRF1 = DGNDRF1  
=
TIMING CHARACTERISTICS  
AGNDRF2 = DGNDRF2 = 0 V; TA = TMIN to TMAX unless otherwise noted, dBm referred to 50 .)  
Limit at  
TMIN to TMAX  
(B Version)  
Parameter  
Unit  
Test Conditions/Comments  
t1  
t2  
t3  
t4  
t5  
t6  
10  
10  
25  
25  
10  
20  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
DATA to CLOCK Setup Time  
DATA to CLOCK Hold Time  
CLOCK High Duration  
CLOCK Low Duration  
CLOCK to LE Setup Time  
LE Pulsewidth  
NOTES  
Guaranteed by design but not production tested.  
Specification subject to change without notice.  
t4  
t3  
CLOCK  
t1  
t2  
DB1  
(CONTROL BIT C2)  
DB0 (LSB)  
(CONTROL BIT C1)  
DB21 (MSB)  
DATA  
DB20  
DB2  
t6  
LE  
LE  
t5  
Figure 1. Timing Diagram  
ABSOLUTE MAXIMUM RATINGS1, 2  
CSP θJA (Paddle Soldered) . . . . . . . . . . . . . . . . . . . 122°C/W  
CSP θJA (Paddle Not Soldered) . . . . . . . . . . . . . . . . 216°C/W  
Lead Temperature, Soldering  
Vapor Phase (60 sec) . . . . . . . . . . . . . . . . . . . . . . . . 215°C  
Infrared (15 sec) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220°C  
(TA = 25°C unless otherwise noted.)  
VDD1 to GND3 . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to +7 V  
DD1 to VDD2 . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to +0.3 V  
VP1, VP2 to GND . . . . . . . . . . . . . . . . . . . . . . –0.3 V to +7 V  
VP1, VP2 to VDD . . . . . . . . . . . . . . . . . . . . –0.3 V to +5.5 V  
V
1
NOTES  
1Stresses above those listed under Absolute Maximum Ratings may cause perma-  
nent damage to the device. This is a stress rating only; functional operation of the  
device at these or any other conditions above those listed in the operational  
sections of this specification is not implied. Exposure to absolute maximum rating  
conditions for extended periods may affect device reliability.  
2This device is a high-performance RF integrated circuit with an ESD rating of  
< 2 kV and it is ESD sensitive. Proper precautions should be taken for handling  
and assembly.  
Digital I/O Voltage to GND . . . . . . –0.3 V to DVDD + 0.3 V  
Analog I/O Voltage to GND . . . . . . . . . –0.3 V to VP + 0.3 V  
OSCIN, OSCOUT, RF1IN (A, B),  
RF2IN (A, B) to GND . . . . . . . . . . . . –0.3 V to VDD + 0.3 V  
RFINA to RFINB (RF1, RF2) . . . . . . . . . . . . . . . . . . 320 mV  
Operating Temperature Range  
Industrial (B Version) . . . . . . . . . . . . . . . . –40°C to +85°C  
Storage Temperature Range . . . . . . . . . . . . –65°C to +150°C  
Maximum Junction Temperature . . . . . . . . . . . . . . . . 150°C  
TSSOP θJA Thermal Impedance . . . . . . . . . . . . . 150.4°C/W  
3GND = AGND = DGND = 0 V.  
TRANSISTOR COUNT  
11749 (CMOS) and 522 (Bipolar).  
ORDERING GUIDE  
Model  
Temperature Range  
Package Description  
Package Option*  
ADF4206BRU  
ADF4207BRU  
ADF4208BRU  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
Thin Shrink Small Outline Package (TSSOP)  
Thin Shrink Small Outline Package (TSSOP)  
Thin Shrink Small Outline Package (TSSOP)  
RU-16  
RU-16  
RU-20  
*Contact the factory for chip availability.  
CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection. Although  
the ADF4206/ADF4207/ADF4208 features proprietary ESD protection circuitry, permanent  
damage may occur on devices subjected to high-energy electrostatic discharges. Therefore, proper  
ESD precautions are recommended to avoid performance degradation or loss of functionality.  
WARNING!  
ESD SENSITIVE DEVICE  
–4–  
REV. 0  
ADF4206/ADF4207/ADF4208  
PIN FUNCTION DESCRIPTIONS  
Mnemonic  
ADF4206/  
ADF4207  
Pin  
No.  
ADF4208  
Function  
1
VDD  
1
VDD  
1
Positive Power Supply for the RF1 Section. A 0.1 µF capacitor should be connected between  
this pin and the RF1 ground pin, DGNDRF1. VDD1 should have a value of between 2.7 V and  
5.5 V. VDD1 must have the same potential as VDD2.  
2
3
VP1  
CPRF1  
VP1  
CPRF1  
Power Supply for the RF1 Charge Pump. This should be greater than or equal to VDD.  
Output from the RF1 Charge Pump. This is normally connected to a loop filter which, in  
turn, drives the input to an external VCO.  
4
5
6
DGNDRF1  
RF1IN  
OSCIN  
DGNDRF1  
RF1INA  
RFINB  
Ground Pin for the RF1 Digital Circuitry.  
Input to the RF1 Prescaler. This low-level input signal is normally taken from the RF1 VCO.  
Complementary Input to the RF1 Prescaler of the ADF4208. This point should be decoupled to  
the ground plane with a small bypass capacitor.  
7
8
OSCOUT  
MUXOUT  
AGNDRF1  
OSCIN  
Ground Pin for the RF1 Analog Circuitry.  
Oscillator Input. It has a VDD/2 threshold and can be driven from an external CMOS or TTL  
logic gate.  
9
CLK  
OSCOUT  
Oscillator Output.  
10  
DATA  
MUXOUT  
This multiplexer output allows either the IF/RF lock detect, the scaled RF, or the scaled  
Reference Frequency to be accessed externally. See Table V.  
11  
LE  
CLK  
Serial Clock Input. This serial clock is used to clock in the serial data to the registers. The  
data is latched into the 22-bit shift register on the CLK rising edge. This input is a high  
impedance CMOS input.  
12  
13  
RF2IN  
DATA  
LE  
Serial Data Input. The serial data is loaded MSB first with the two LSBs being the control  
bits. This input is a high impedance CMOS input.  
Load Enable, CMOS Input. When LE goes high, the data stored in the shift registers is  
loaded into one of the four latches, the latch being selected using the control bits.  
DGNDRF2  
14  
15  
CPRF2  
VP2  
AGNDRF2  
RF2INB  
Ground Pin for the RF2 Analog Circuitry.  
Complementary Input to the RF2 Prescaler. This point should be decoupled to the ground  
plane with a small bypass capacitor.  
16  
V
DD2  
RF2INA  
Input to the RF2 Prescaler. This low-level input signal is normally ac-coupled to the  
external VCO.  
17  
18  
DGNDRF2  
CPRF2  
Ground Pin for the RF2, Digital, Interface, and Control Circuitry.  
Output from the RF2 Charge Pump. This is normally connected to a loop filter that drives  
the input to an external VCO.  
19  
20  
VP2  
Power Supply for the RF2 Charge Pump. This should be greater than or equal to VDD.  
VDD2  
Positive Power Supply for the RF2, Interface, and Oscillator Sections. A 0.1 µF capacitor  
should be connected between this pin and the RF2 ground Pin, DGNDRF2. VDD2 should  
have a value between 2.7 V and 5.5 V. VDD2 must have the same potential as VDD1.  
PIN CONFIGURATIONS  
TSSOP  
TSSOP  
V
1
1
2
V
2
20  
1
1
DD  
16  
15  
14  
13  
12  
11  
10  
9
V
2
V
DD  
DD  
DD  
19 V 2  
P
2
3
4
5
6
7
8
V 1  
P
V 2  
P
V 1  
P
ADF4206/  
ADF4207  
3
18  
CP  
CP  
CP  
CP  
RF1  
RF2  
RF2  
RF1  
4
17  
16  
15  
14  
DGND  
DGND  
DGND  
DGND  
RF2  
RF1  
RF2  
RF1  
ADF4208  
5
RF2  
RF2  
A
B
RF1  
I
A
N
RF1  
RF2  
IN  
N
N
I
I
N
I
TOP VIEW  
(Not to Scale)  
6
OSC  
RF1  
I
B
N
LE  
IN  
7
TOP VIEW  
(Not to Scale)  
AGND  
DATA  
CLK  
AGND  
OSC  
RF2  
RF1  
OUT  
8
13 LE  
12  
OSC  
MUXOUT  
IN  
9
OSC  
DATA  
OUT  
10  
MUXOUT  
11  
CLK  
–5–  
REV. 0  
Typical Performance Characteristics  
ADF4206/ADF4207/ADF4208  
0
V
I
= 3V, V = 5V  
P
FREQ-UNIT PARAM-TYPE DATA-FORMAT KEYWORD IMPEDANCE – OHMS  
DD  
= 5mA  
GHz  
S
MA  
R
50  
10  
CP  
PFD FREQUENCY = 200kHz  
LOOP BANDWIDTH = 20kHz  
RES. BANDWIDTH = 1kHz  
VIDEO BANDWIDTH = 1kHz  
SWEEP = 2.5 SECONDS  
AVERAGES = 30  
REFERENCE LEVEL =  
4.2dBm  
FREQ MAGS11  
ANGS11  
FREQ MAGS11  
ANGS11  
20  
30  
40  
50  
60  
0.0  
0.957111193 3.130429321 1.35  
0.963546793 6.686426265 1.45  
0.953621785 11.19913586 1.55  
0.953757706 15.35637483 1.65  
0.816886959 51.80711782  
0.825983016 56.20373378  
0.791737125 61.21554647  
0.770543186 61.88187496  
0.793897072 65.39516615  
0.745765233 69.24884474  
0.15  
0.25  
0.35  
0.45  
0.55  
0.65  
0.75  
0.85  
0.95  
1.05  
1.15  
1.25  
0.929831379 20.3793432  
1.75  
0.908459709 22.69144845 1.85  
0.897303634 27.07001443 1.95  
0.876862863 31.32240763 2.05  
0.849338092 33.68058163 2.15  
0.858403269 38.57674885 2.25  
0.841888714 41.48606772 2.35  
0.840354983 45.97597958 2.45  
0.822165839 49.19163116 2.55  
0.7517547  
71.21608147  
0.745594889 75.93169947  
0.713387801 78.8391674  
0.711578577 81.71934806  
0.698487131 85.49067481  
0.669871818 88.41958754  
0.668353367 91.70921678  
70  
90.2dBc/Hz  
80  
90  
100  
200k  
900M  
FREQUENCY Hz  
200k  
400k  
400k  
TPC 1. S-Parameter Data for the AD4208 RF1 Input  
(Up to 2.5 GHz)  
TPC 4. ADF4208 RF1 Reference Spurs (900 MHz,  
200 kHz, 20 kHz)  
0
40  
V
V
= 5V  
DD  
= 5V  
10dB/DIVISION  
P
50  
5  
10  
15  
20  
25  
30  
35  
R
= 40dBc/Hz  
L
rms NOISE = 0.52؇  
60  
70  
80  
T
= +85؇C  
A
0.52؇ rms  
90  
100  
110  
120  
T
= 40؇C  
A
T
= +25؇C  
130  
140  
A
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
100Hz  
1kHz  
10kHz  
100kHz  
1MHz  
RF INPUT SENSITIVITY GHz  
FREQUENCY OFFSET FROM 900MHz CARRIER  
TPC 2. Input Sensitivity for the ADF4208 (RF1)  
TPC 5. ADF4208 RF1 Integrated Phase Noise (900 MHz,  
200 kHz, 20 kHz)  
0
40  
V
I
= 3V, V = 5V  
P
DD  
= 5mA  
10dB/DIVISION  
10  
50  
CP  
R
= 40dBc/Hz  
L
PFD FREQUENCY = 200kHz  
LOOP BANDWIDTH = 20kHz  
RES. BANDWIDTH = 10Hz  
VIDEO BANDWIDTH = 10Hz  
SWEEP = 1.9 SECONDS  
AVERAGES = 19  
REFERENCE LEVEL =  
4.2dBm  
rms NOISE = 0.62؇  
20  
30  
40  
50  
60  
60  
70  
80  
0.62؇ rms  
90  
100  
110  
120  
70  
90.5dBc/Hz  
80  
90  
130  
140  
100  
2k  
1k  
900M  
FREQUENCY Hz  
1k  
2k  
100Hz  
1kHz  
10kHz  
100kHz  
1MHz  
FREQUENCY OFFSET FROM 900MHz CARRIER  
TPC 3. ADF4208 RF1 Phase Noise (900 MHz, 200 kHz,  
20 kHz)  
TPC 6. ADF4208 RF1 Integrated Phase Noise (900 MHz,  
200 kHz, 35 kHz)  
–6–  
REV. 0  
ADF4206/ADF4207/ADF4208  
0
0
V
I
= 3V, V = 5V  
P
DD  
= 5mA  
V
I
= 3V, V = 5V  
P
DD  
= 5mA  
10  
10  
CP  
CP  
PFD FREQUENCY = 200kHz  
LOOP BANDWIDTH = 35kHz  
RES. BANDWIDTH = 1kHz  
VIDEO BANDWIDTH = 1kHz  
SWEEP = 2.5 SECONDS  
AVERAGES = 30  
REFERENCE LEVEL =  
4.2dBm  
REFERENCE LEVEL =  
5.7dBm  
PFD FREQUENCY = 30kHz  
LOOP BANDWIDTH = 3kHz  
RES. BANDWIDTH = 3Hz  
VIDEO BANDWIDTH = 3Hz  
SWEEP = 255 SECONDS  
POSITIVE PEAK  
20  
30  
40  
50  
60  
20  
30  
40  
50  
60  
DETECT MODE  
79.6dBc  
70  
70  
89.3dBc  
80  
90  
80  
90  
100  
100  
200k  
1750M  
FREQUENCY Hz  
40k  
80k  
400k  
200k  
200k  
400k  
400k  
900M  
FREQUENCY Hz  
TPC 7. ADF4208 RF1 Reference Spurs (900 MHz,  
200 kHz, 35 kHz)  
TPC 10. ADF4208 RF1 Reference Spurs (1750 MHz,  
30 kHz, 3 kHz)  
120  
0
V
V
= 3V  
V
I
= 3V, V = 5V  
P
= 5mA  
DD  
P
DD  
= 5V  
10  
CP  
130  
140  
150  
160  
170  
180  
PFD FREQUENCY = 30kHz  
LOOP BANDWIDTH = 3kHz  
RES. BANDWIDTH = 10kHz  
VIDEO BANDWIDTH = 10kHz  
SWEEP = 477ms  
REFERENCE LEVEL =  
8.0dBm  
20  
30  
40  
50  
60  
AVERAGES = 10  
ADF4206  
ADF4207  
ADF4208  
70  
75.2dBc/Hz  
80  
90  
100  
1
10  
100  
1000  
10000  
200  
1750M  
200  
400  
400  
PHASE DETECTOR FREQUENCY kHz  
FREQUENCY Hz  
TPC 11. ADF4208 RF1 Phase Noise vs. PFD Frequency  
TPC 8. ADF4208 RF1 Phase Noise (1750 MHz, 30 kHz, 3 kHz)  
60  
40  
10dB/DIVISION  
50  
V
V
= 3V  
= 3V  
DD  
R
= 40dBc/Hz  
L
P
60  
70  
80  
70  
80  
90  
1.6؇ rms  
100  
110  
120  
90  
130  
140  
100  
40  
20  
0
20  
40  
60  
80  
100  
100Hz  
1kHz  
10kHz  
100kHz  
1MHz  
TEMPERATURE ؇C  
FREQUENCY OFFSET FROM 1750MHz CARRIER  
TPC 12. ADF4208 RF1 Phase Noise vs. Temperature  
(900 MHz, 200 kHz, 20 kHz)  
TPC 9. ADF4208 RF1 Integrated Phase Noise (1750 MHz,  
30 kHz, 3 kHz)  
–7–  
REV. 0  
ADF4206/ADF4207/ADF4208  
60  
3.0  
2.5  
V
V
= 3V  
= 3V  
DD  
P
V
V
= 3V  
= 5V  
DD  
P
70  
80  
2.0  
1.5  
1.0  
0.5  
0
90  
100  
40  
20  
0
20  
40  
60  
80  
100  
0
50  
100  
150  
200  
TEMPERATURE ؇C  
PRESCALER OUTPUT FREQUENCY MHz  
TPC 13. ADF4208 RF1 Reference Spurs vs. Temperature  
(900 MHz, 200 kHz, 20 kHz)  
TPC 16 DIDD vs. Prescaler Output Frequency (All Models,  
RF1 and RF2)  
10  
5  
15  
9
V
V
= 3V  
ADF4208  
DD  
= 5V  
P
8
7
6
25  
35  
45  
55  
65  
75  
85  
95  
105  
ADF4207  
5
4
ADF4206  
3
2
1
0
32/33  
64/65  
0
1
2
3
4
5
TUNING VOLTAGE V  
PRESCALER VALUE  
TPC 14. ADF4208 RF1 Reference Spurs vs. VTUNE  
(900 MHz, 200 kHz, 20 kHz)  
TPC 17. ADF4206/ADF4207/ADF4208 AIDD vs. Prescaler  
Value (RFI)  
120  
V
V
= 3V  
DD  
= 5V  
P
130  
140  
150  
160  
170  
180  
ADF4206  
ADF4207  
ADF4208  
1
10  
100  
1000  
10000  
PHASE DETECTOR FREQUENCY kHz  
TPC 15. ADF4208 RF2 Phase Noise vs. PFD Frequency  
–8–  
REV. 0  
ADF4206/ADF4207/ADF4208  
CIRCUIT DESCRIPTION  
REFERENCE INPUT SECTION  
The reference input stage is shown in Figure 2. SW1 and SW2  
are normally closed switches. SW3 is normally open. When  
power-down is initiated, SW3 is closed and SW1 and SW2  
are opened. Typical recommended external components are  
shown in Figure 2.  
A AND B COUNTERS  
The A and B CMOS counters combine with the dual modulus  
prescaler to allow a wide ranging division ratio in the PLL feed-  
back counter. The devices are guaranteed to work when the  
prescaler output is 200 MHz or less.  
Pulse Swallow Function  
The A and B counters, in conjunction with the dual modulus  
prescaler, make it possible to generate output frequencies that  
are spaced only by the Reference Frequency divided by R. The  
equation for the VCO frequency is as follows:  
POWER-DOWN  
CONTROL  
f
VCO = [(P × B) + A] × fREFIN/R  
NC  
100k  
SW2  
fVCO = Output frequency of external voltage controlled  
TO R  
COUNTER  
OSC  
OSC  
NC  
IN  
oscillator (VCO).  
BUFFER  
30pF  
30pF  
SW1  
P
= Preset modulus of dual modulus prescaler  
(32/33, 64/65).  
SW3  
NO  
B
A
= Preset Divide Ratio of binary 11-bit counter  
(1 to 2047).  
OUT  
18k⍀  
= Preset Divide Ratio of binary 6-bit A counter  
(0 to 63).  
Figure 2. RF Input Stage  
RF INPUT STAGE  
The RF input stage is shown in Figure 3. It is followed by a  
2-stage limiting amplifier to generate the CML clock levels needed  
for the prescaler.  
fREFIN = Output frequency of the external reference frequency  
oscillator.  
R
= Preset divide ratio of binary 14-bit programmable  
reference counter (1 to 16383).  
1.6V  
R COUNTER  
BIAS  
GENERATOR  
AV  
DD  
The 14-bit R counter allows the input reference frequency to  
be divided down to produce the reference clock to the phase  
frequency detector (PFD). Division ratios from 1 to 16,383  
are allowed.  
2k  
2k⍀  
RF  
A
B
IN  
N = BP + A  
RF  
11-BIT B  
TO PFD  
IN  
COUNTER  
LOAD  
FROM RF  
INPUT STAGE  
PRESCALER  
P/P + 1  
LOAD  
AGND  
MODULUS  
CONTROL  
6-BIT A  
COUNTER  
Figure 3. RF Input Stage  
N DIVIDER  
PRESCALER  
The dual modulus prescaler (P/P + 1), along with the A and  
B counters, enables the large division ratio, N, to be realized  
(N = BP + A). This prescaler, operating at CML levels, takes  
the clock from the RF input stage and divides it down to a man-  
ageable frequency for the CMOS A and B counters. It is based  
on a synchronous 4/5 core.  
Figure 4. A and B Counters  
PHASE FREQUENCY DETECTOR (PFD) AND CHARGE  
PUMP  
The PFD takes inputs from the R counter and N counter (N =  
BP + A) and produces an output proportional to the phase and  
frequency difference between them. Figure 5 is a simplified  
schematic.  
The prescaler is selectable. Both RF1 and RF2 can be set to  
either 32/33 or 64/65. DB20 of the AB counter latch selects  
the value. See Tables IV and VI.  
–9–  
REV. 0  
ADF4206/ADF4207/ADF4208  
DV  
DD  
V
P
CHARGE  
PUMP  
UP  
HI  
RF2 ANALOG LOCK DETECT  
RF2 R COUNTER OUTPUT  
RF2 N COUNTER OUTPUT  
RF2/RF1 ANALOG LOCK DETECT  
RF1 R COUNTER OUTPUT  
RF1 N COUNTER OUTPUT  
D1  
Q1  
U1  
MUXOUT  
MUX  
CONTROL  
R DIVIDER  
CLR1  
RF1 ANALOG LOCK DETECT  
DELAY  
ELEMENT  
CP  
U3  
DGND  
Figure 6. MUXOUT Circuit  
Lock Detect  
CLR2  
U2  
DOWN  
MUXOUT can be programmed for analog lock detect. The  
N-channel open-drain analog lock detect should be operated  
with an external pull-up resistor of 10 knominal. When lock  
has been detected it is high with narrow low-going pulses.  
HI  
D2  
Q2  
N DIVIDER  
CPGND  
INPUT SHIFT REGISTER  
The functional block diagram for the ADF4206 family is shown  
on Page 1. The main blocks include a 22-bit input shift register,  
a 14-bit R counter, and an 17-bit N counter, comprising a 6-bit  
A counter and an 11-bit B counter. Data is clocked into the 22-bit  
shift register on each rising edge of CLK. The data is clocked  
in MSB first. Data is transferred from the shift register to one of  
four latches on the rising edge of LE. The destination latch is  
determined by the state of the two control bits (C2, C1) in the  
shift register. These are the two LSBs DB1, DB0, as shown in  
the timing diagram of Figure 1. The truth table for these bits is  
shown in Table I.  
R DIVIDER  
N DIVIDER  
CP OUTPUT  
Figure 5. PFD Simplified Schematic and Timing (In Lock)  
The PFD includes a delay element which sets the width of the  
antibacklash phase. The typical value for this is in the ADF4206  
family is 3 ns. The pulse ensures that there is no deadzone in  
the PFD transfer function and minimizes phase noise and refer-  
ence spurs.  
Table I. C2, C1 Truth Table  
Control Bits  
MUXOUT AND LOCK DETECT  
C2  
C1  
Data Latch  
The output multiplexer on the ADF4206 family allows the  
user to access various internal points on the chip. The state  
of MUXOUT is controlled by P3, P4, P11, and P12. See  
Tables III and V. Figure 6 shows the MUXOUT section in  
block diagram form.  
0
0
1
1
0
1
0
1
RF2 R Counter  
RF2 AB Counter (and Prescaler Select)  
RF1 R Counter  
RF1 AB Counter (and Prescaler Select)  
–10–  
REV. 0  
ADF4206/ADF4207/ADF4208  
Table II. ADF4206 Family Latch Summary  
RF2 REFERENCE COUNTER LATCH  
CONTROL  
BITS  
14-BIT REFERENCE COUNTER, R  
DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9  
P1 R14 R13 R12 R11 R10 R9 R8  
DB8  
R7  
DB7  
R6  
DB6 DB5 DB4 DB3 DB2  
R5 R4 R3 R2 R1  
DB1  
DB0  
C2 (0) C1 (0)  
P4  
P3  
P2  
P5  
RF2 AB COUNTER LATCH  
CONTROL  
BITS  
6-BIT A COUNTER  
11-BIT B COUNTER  
DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9  
P7 P6 B11 B10 B9 B8 B7 B6 B5 B4 B3 B2 B1  
DB8  
DB7  
A6  
DB6 DB5 DB4 DB3 DB2  
A5 A4 A3 A2 A1  
DB1  
DB0  
C2 (0) C1 (0)  
RF1 REFERENCE COUNTER LATCH  
CONTROL  
BITS  
14-BIT REFERENCE COUNTER, R  
DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9  
R14 R13 R12 R11 R10 R9 R8  
DB8  
R7  
DB7  
R6  
DB6 DB5 DB4 DB3 DB2  
R5 R4 R3 R2 R1  
DB1  
DB0  
C1 (0)  
P11 P10  
P13  
P9  
P12  
C2 (1)  
RF1 AB COUNTER LATCH  
CONTROL  
BITS  
11-BIT B COUNTER  
6-BIT A COUNTER  
DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9  
DB8  
DB7  
A6  
DB6 DB5 DB4 DB3 DB2  
A5 A4 A3 A2 A1  
DB1  
DB0  
P16  
P14  
B11 B10  
B9  
B8  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
C2 (1) C1 (1)  
–11–  
REV. 0  
ADF4206/ADF4207/ADF4208  
Table III. RF2 Reference Counter Latch Map  
RF2 REFERENCE COUNTER LATCH  
CONTROL  
BITS  
14-BIT REFERENCE COUNTER, R  
DB21 DB20 DB19 DB18 DB17  
DB15 DB14 DB13 DB12 DB11 DB10 DB9  
DB8  
R7  
DB7  
R6  
DB6 DB5 DB4 DB3 DB2  
R5 R4 R3 R2 R1  
DB1  
DB0  
DB16  
P4  
R13  
R12  
R11  
R10  
R9  
R8  
C2 (0) C1 (0)  
P3  
P2  
R14  
P5  
P1  
R14  
R13  
R12  
..........  
R3  
R2  
0
1
1
0
.
R1  
DIVIDE RATIO  
0
0
0
0
.
0
0
0
0
.
0
0
0
0
.
..........  
..........  
..........  
..........  
..........  
..........  
..........  
..........  
0
0
0
1
.
1
0
1
0
.
1
2
3
4
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
1
1
1
1
0
0
16380  
1
1
1
1
1
1
1
1
1
..........  
..........  
..........  
1
1
1
0
1
1
1
0
1
16381  
16382  
16383  
P1  
0
PD POLARITY  
NEGATIVE  
POSITIVE  
1
P5  
I
CP  
0
1
1.25 mA  
4.375 mA  
P2  
CHARGE PUMP  
OUTPUT  
0
1
NORMAL  
THREE-STATE  
P12  
P11  
FROM RF1 R LATCH  
P4  
0
0
1
1
0
0
0
0
P3  
0
1
0
1
0
1
0
1
MUXOUT  
LOGIC LOW STATE  
RF2 ANALOG LOCK DETECT  
RF2 REFERENCE DIVIDER OUTPUT  
RF2 N DIVIDER OUTPUT  
RF1 ANALOG LOCK DETECT  
RF1/RF2 ANALOG LOCK DETECT  
RF1 REFERENCE DIVIDER  
RF1 N DIVIDER  
FAST LOCK OUTPUT SWITCH ON  
AND CONNECTED TO MUXOUT  
RF2 COUNTER RESET  
RF1 COUNTER RESET  
RF2 AND RF1 COUNTER RESET  
0
0
0
0
0
0
1
1
1
0
0
X
X
1
1
X
X
0
1
0
1
1
1
0
1
1
1
1
1
1
0
1
–12–  
REV. 0  
ADF4206/ADF4207/ADF4208  
Table IV. RF2 AB Counter Latch Map  
RF2 AB COUNTER LATCH  
CONTROL  
BITS  
6-BIT A COUNTER  
11-BIT B COUNTER  
DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9  
DB8  
DB7  
A6  
DB6 DB5 DB4 DB3 DB2  
DB1  
C2 (0)  
DB0  
A5  
A4  
A3  
A2  
A1  
P7  
P6  
B11 B10  
B9  
B8  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
C1 (1)  
A COUNTER  
DIVIDE RATIO  
A6  
A5  
X
X
X
X
.
A4  
0
0
0
0
.
A3  
A2  
0
0
1
1
.
A1  
X
X
X
X
.
0
0
0
0
.
0
1
0
1
.
0
1
2
3
.
.
.
.
.
.
.
.
.
.
.
.
X
X
X
X
1
1
1
1
1
1
0
1
14  
15  
B11  
B10  
B9  
0
0
0
0
.
B3  
B2  
B1  
B COUNTER DIVIDE RATIO  
0
0
0
0
.
0
0
0
0
.
..........  
..........  
..........  
..........  
..........  
..........  
..........  
..........  
0
0
0
0
.
0
0
1
1
.
0
1
0
1
.
NOT ALLOWED  
NOT ALLOWED  
NOT ALLOWED  
3
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
1
1
1
1
0
0
2044  
1
1
1
1
1
1
1
1
1
..........  
..........  
..........  
1
1
1
0
1
1
1
0
1
2045  
2046  
2047  
P6  
0
RF2 PRESCALER  
64/65  
1
32/33  
P7  
RF2 SECTION  
0
1
NORMAL OPERATION  
POWER-DOWN  
N = BP + A, P IS PRESCALER VALUE SET BY P6. B MUST BE GREATER  
THAN OR EQUAL TO A. TO ENSURE CONTINUOUSLY ADJACENT VALUES  
2
OF Nx F  
, N  
IS (P P).  
REF  
MIN  
–13–  
REV. 0  
ADF4206/ADF4207/ADF4208  
Table V. RF1 Reference Counter Latch Map  
RF1 REFERENCE COUNTER LATCH  
14-BIT REFERENCE COUNTER, R  
CONTROL  
BITS  
DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9  
DB8  
R7  
DB7  
R6  
DB6 DB5 DB4 DB3 DB2  
R5 R4 R3 R2 R1  
DB1  
C2 (1)  
DB0  
P12  
P9  
R14  
R13  
R12  
R11  
R10  
R9  
R8  
C1 (0)  
P11 P10  
P13  
R14  
R13  
R12  
..........  
R3  
R2  
0
1
1
0
.
R1  
DIVIDE RATIO  
0
0
0
0
.
0
0
0
0
.
0
0
0
0
.
..........  
..........  
..........  
..........  
..........  
..........  
..........  
..........  
0
0
0
1
.
1
0
1
0
.
1
2
3
4
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
1
1
1
1
0
0
16380  
1
1
1
1
1
1
1
1
1
..........  
..........  
..........  
1
1
1
0
1
1
1
0
1
16381  
16382  
16383  
P9  
0
PD POLARITY  
NEGATIVE  
POSITIVE  
1
P13  
0
I
CP  
1.25 mA  
1
4.375 mA  
P10  
0
CHARGE PUMP OUTPUT  
NORMAL  
1
THREE-STATE  
P4  
P3  
P12  
P11  
0
0
X
X
1
FROM RF2 R LATCH  
MUXOUT  
LOGIC LOW STATE  
RF2 ANALOG LOCK DETECT  
RF2 REFERENCE DIVIDER OUTPUT  
RF2 N DIVIDER OUTPUT  
RF1 ANALOG LOCK DETECT  
RF1/RF2 ANALOG LOCK DETECT  
RF1 REFERENCE DIVIDER  
RF1 N DIVIDER  
FAST LOCK OUTPUT SWITCH ON  
AND CONNECTED TO MUXOUT  
RF2 COUNTER RESET  
RF1 COUNTER RESET  
RF2 AND RF1 COUNTER RESET  
0
0
0
0
0
0
1
1
1
0
0
1
1
0
0
0
0
1
0
1
0
1
0
1
0
1
0
1
X
X
0
1
1
1
0
1
1
1
1
1
1
0
1
–14–  
REV. 0  
ADF4206/ADF4207/ADF4208  
Table VI. RF1 AB Counter Latch Map  
RF1 AB COUNTER LATCH  
CONTROL  
BITS  
11-BIT B COUNTER  
6-BIT A COUNTER  
DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8  
DB7  
A6  
DB6 DB5 DB4 DB3 DB2  
DB1  
DB0  
DB21  
P16  
P14 B11 B10  
B9  
B8  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
A5  
A4  
A3  
A2  
A1  
C2 (1) C1 (1)  
A COUNTER  
A6  
0
0
0
0
.
A5  
A4  
0
0
0
0
.
A3  
A2  
A1  
DIVIDE RATIO  
0
0
0
0
.
0
0
0
0
.
0
0
1
1
.
0
1
0
1
.
0
1
2
3
.
.
.
.
.
.
.
.
.
.
.
.
1
1
1
1
1
1
1
1
1
1
0
1
62  
63  
B11  
B10  
B9  
B3  
B2  
B1  
B COUNTER DIVIDE RATIO  
0
0
0
0
.
.
.
1
0
0
0
0
.
.
.
1
0
0
0
0
.
.
.
1
..........  
..........  
..........  
..........  
..........  
..........  
..........  
..........  
0
0
0
1
.
.
.
1
0
1
1
0
.
.
.
0
1
0
1
0
.
1
2
3
3
.
.
.
.
.
0
2044  
1
1
1
1
1
1
1
1
1
..........  
..........  
..........  
1
1
1
0
1
1
1
0
1
2045  
2046  
2047  
P14  
RF1 PRESCALER  
0
1
64/65  
32/33  
P16  
RF1 SECTION  
0
1
NORMAL OPERATION  
POWER-DOWN  
N = BP + A, P IS PRESCALER VALUE SET BY P6. B MUST BE GREATER  
THAN OR EQUAL TO A. FOR CONTINUOUSLY ADJACENT VALUES OF  
2
N, N  
MIN  
IS (P P).  
–15–  
REV. 0  
ADF4206/ADF4207/ADF4208  
PROGRAM MODES  
Asynchronous RF1 Power-Down  
Table III and Table V show how to set up the Program Modes  
in the ADF420x family. The following should be noted:  
If P10 of the ADF420x family has been set to “1” (three-state  
the RF1 charge pump), and P16 is subsequently set to “1,” an  
asynchronous power-down is conducted. The device will go into  
power-down on the rising edge of LE, which latches the “1” to  
the RF1 power-down bit (P16).  
1. RF2 and RF1 Analog Lock Detect indicate when the PLL  
is in lock. When the loop is locked and either RF2 or RF1  
Analog Lock Detect is selected, the MUXOUT pin will show a  
logic high with narrow low-going pulses. When the RF2/RF1  
Analog Lock Detect is chosen, the locked condition is indi-  
cated only when both RF2 and RF1 loops are locked.  
Activation of either synchronous or asynchronous power-down  
forces the RF2/RF1 loop’s R and N dividers to their load  
state conditions and the RF2/RF1 input section is debiased to  
a high impedance state.  
2. The RF2 Counter Reset mode resets the R and AB counters  
in the RF2 section and also puts the RF2 charge pump into  
three-state. The RF1 Counter Reset mode resets the R and AB  
counters in the RF1 section and also puts the RF1 charge  
pump into three-state. The RF2 and RF1 Counter Reset  
mode does both of the above.  
The reference oscillator circuit is only disabled if both the RF2  
and RF1 power-downs are set.  
The input register and latches remain active and are capable of  
loading and latching data during all the power-down modes.  
The RF2/RF1 section of the devices will return to normal pow-  
ered up operation immediately upon LE latching a “0” to the  
appropriate power-down bit.  
Upon removal of the reset bits, the AB counter resumes count-  
ing in close alignment with the R counter (maximum error is  
one prescaler output cycle).  
3. The Fastlock mode uses MUXOUT to switch a second loop  
filter damping resistor to ground during Fastlock operation.  
Activation of Fastlock occurs whenever RF1 CP Gain in the  
RF1 Reference counter is set to one.  
IF SECTION (RF2)  
Programmable RF2 Reference (R) Counter  
If control bits (C2, C1) are (0, 0), the data is transferred from  
the input shift register to the 14-bit RF2 R counter. Table III  
shows the input shift register data format for the RF2 R counter  
and the divide ratios possible.  
POWER-DOWN  
It is possible to program the ADF420x family for either syn-  
chronous or asynchronous power-down on either the RF2 or  
RF1 side.  
RF2 Phase Detector Polarity  
P1 sets the RF2 Phase Detector Polarity. When the RF2 VCO  
characteristics are positive, this should be set to “1.” When they  
are negative, it should be set to “0.” See Table III.  
Synchronous RF2 Power-Down  
Programming a “1” to P7 of the ADF420x family will initiate a  
power-down. If P2 of the ADF420x family has been set to “0”  
(normal operation), a synchronous power-down is conducted.  
The device will automatically put the charge pump into three-  
state and then complete the power-down.  
RF2 Charge Pump Three-State  
P2 puts the RF2 charge pump into three-state mode when pro-  
grammed to a “1.” It should be set to “0” for normal operation.  
See Table III.  
RF2 Program Modes  
Table III and Table V show how to set up the Program Modes  
in the ADF420x family.  
Asynchronous RF2 Power-Down  
If P2 of the ADF420x family has been set to “1” (three-state  
the RF2 charge pump), and P7 is subsequently set to “1,” an  
asynchronous power-down is conducted. The device will go into  
power-down on the rising edge of LE, which latches the “1” to  
the RF2 power-down bit (P7).  
RF2 Charge Pump Currents  
Bit P5 programs the current setting for the RF2 charge pump.  
See Table III.  
Programmable RF2 AB Counter  
Synchronous RF1 Power-Down  
If control bits (C2, C1) are (0, 1), the data in the input register is  
used to program the RF2 AB counter. The AB counter consists of  
a 6-bit swallow counter (A counter) and 11-bit programmable  
counter (B counter). Table IV shows the input register data  
format for programming the RF2 AB counter and the divide  
ratios possible.  
Programming a “1” to P16 of the ADF420x family will initiate  
a power-down. If P10 of the ADF420x family has been set to  
“0” (normal operation), a synchronous power-down is conducted.  
The device will automatically put the charge pump into three-  
state and then complete the power-down.  
RF2 Prescaler Value  
P6 in the RF2 AB counter latch sets the RF2 prescaler value. See  
Table IV.  
RF2 Power-Down  
P7 in Table IV is the power-down bit for the RF2 side.  
–16–  
REV. 0  
ADF4206/ADF4207/ADF4208  
RF SECTION (RF1)  
Programmable RF1 AB Counter  
Programmable RF1 Reference (R) Counter  
If control bits (C2, C1) are (1, 0), the data is transferred from  
the input shift register to the 14 Bit RF1 R counter. Table V  
shows the input shift register data format for the RF1 R counter  
and the divide ratios possible.  
If control bits (C2, C1) are (1, 1), then the data in the input  
register is used to program the RF1 AB counter. The AB  
counter consists of a 6-bit swallow counter (A counter) and  
11-bit programmable counter (B counter). Table VI shows  
the input register data format for programming the RF1 AB  
counter and the divide ratios possible. See Table VI.  
RF1 Phase Detector Polarity  
P9 sets the RF1 Phase Detector Polarity. When the RF1 VCO  
characteristics are positive this should be set to “1.” When they  
are negative it should be set to “0.” See Table V.  
RF1 Prescaler Value  
P14 in the RF1 A, B counter latch set the RF1 prescaler value.  
See Table VI.  
RF1 Charge Pump Three-State  
RF1 Power-Down  
P10 puts the RF1 charge pump into three-state mode when  
programmed to a “1.” It should be set to “0” for normal opera-  
tion. See Table V.  
Setting P16 in the RF1 AB counter high powers down RF1 side.  
RF Fastlock  
The fastlock feature can improve the lock time of the PLL. It  
increases charge pump current to a maximum for a period of  
time. Fastlock of the ADF420x family is activated by setting  
P13 in the reference counter high and setting the fastlock switch  
on using MUXOUT. Switching in an external resistor using  
MUXOUT compensates the loop dynamics for the effect of  
increasing charge pump current. Setting P13 low removes the  
PLL from fastlock mode.  
RF1 Program Modes  
Table III and Table V show how to set up the Program Modes  
in the ADF420x family.  
RF1 Charge Pump Currents  
Replaced with a P13 programs the current setting for the RF1  
charge pump. See Table V.  
IF  
OUT  
V
V
V
RF  
P
P
DD  
OUT  
100pF  
100pF  
VCO190-1068U  
100pF  
V
V
CC  
CC  
18⍀  
18⍀  
V
2
V
V 2  
P
1
V 1  
P
VCO190-125T  
100pF  
DD  
3.3k⍀  
DD  
18⍀  
18⍀  
CP  
CP  
RF1  
RF2  
2.7k⍀  
18⍀  
18⍀  
1.3nF  
620pF  
13nF  
ADF4207  
MUXOUT  
LOCK DETECT  
100pF  
100pF  
RF2  
RF1  
IN  
IN  
51⍀  
OSC  
51⍀  
IN  
CLK  
DATA  
LE  
30pF  
30pF  
10MHz  
18k⍀  
OSC  
OUT  
DECOUPLING CAPACITORS (22F/10pF) ON V , V OF  
DD  
P
THE ADF4207, AND ON V OF THE VCOs HAVE BEEN  
CC  
OMITTED FROM THE DIAGRAM TO AID CLARITY.  
Figure 7. GSM Handset Receiver Local Oscillator Using the ADF4207  
–17–  
REV. 0  
ADF4206/ADF4207/ADF4208  
APPLICATIONS SECTION  
The IF output is fixed at 125 MHz. The IF loop bandwidth is  
chosen to be 20 kHz with a channel spacing of 200 kHz. Loop  
filter component values are chosen accordingly.  
Local Oscillator for GSM Handset Receiver  
Figure 7 shows the ADF4207 being used in a classic superhet-  
erodyne receiver to provide the required LOs (Local Oscillators).  
Local Oscillator for WCDMA Receiver  
In this circuit, the reference input signal is applied to the circuit  
at OSCIN and is being generated by a 10 MHz Crystal Oscillator.  
This is a low-cost solution and for better performance over tem-  
perature, a TCXO (Temperature Controlled Crystal Oscillator)  
may be used instead.  
Figure 8 shows the ADF4208 being used to generate the local  
oscillator frequencies for a Wideband CDMA (WCDMA) system.  
The RF output range needed is 1720 MHz to 1780 MHz. The  
VCO190–1750T will accomplish this. Channel spacing is  
200 kHz with a 20 kHz loop bandwidth. VCO sensitivity is  
32 MHz/V. Charge pump current of 4.375 mA is used and  
the desired phase margin for the loop is 45°.  
In order to have a channel spacing of 200 kHz (the GSM stan-  
dard), the reference input must be divided by 50, using the  
on-chip reference counter.  
The IF output is fixed at 200 MHz. The VCO190–200T is used.  
It has a sensitivity of 10 MHz/V. Channel spacing and loop  
bandwidth is chosen to be the same as the RF side.  
The RF output frequency range is 1050 MHz to 1086 MHz. Loop  
filter component values are chosen so that the loop bandwidth is  
20 kHz. The synthesizer is set up for a charge pump current of  
4.375 mA and the VCO sensitivity is 15.6 MHz/V.  
IF  
OUT  
V
V
V
RF  
OUT  
P
P
DD  
100pF  
100pF  
100pF  
V
V
CC  
CC  
18⍀  
18⍀  
V
2
V
V 2  
P
1
V 1  
P
VCO190-200T  
VCO190-1750T  
100pF  
DD  
3.3k⍀  
DD  
18⍀  
18⍀  
CP  
CP  
RF1  
RF2  
2.7k⍀  
18⍀  
18⍀  
1.3nF  
620pF  
13nF  
ADF4208  
MUXOUT  
LOCK DETECT  
100pF  
100pF  
RF2  
IN  
RF1  
IN  
51⍀  
OSC  
51⍀  
IN  
CLK  
DATA  
LE  
30pF  
30pF  
10MHz  
18k⍀  
OSC  
OUT  
DECOUPLING CAPACITORS (22F/10pF) ON V , V OF  
DD  
P
THE ADF4208, AND ON V OF THE VCOs HAVE BEEN  
CC  
OMITTED FROM THE DIAGRAM TO AID CLARITY.  
Figure 8. Local Oscillator for WCDMA Receiver Using the ADF4208  
–18–  
REV. 0  
ADF4206/ADF4207/ADF4208  
INTERFACING  
ADSP-2181 Interface  
The ADF4206/ADF4207/ADF4208 family has a simple SPI-  
compatible serial interface for writing to the device. SCLK,  
SDATA, and LE (Latch Enable) control the data transfer. When  
LE goes high, the 22 bits that have been clocked into the input  
register on each rising edge of SCLK will be transferred to the  
appropriate latch. See Figure 1 for the Timing Diagram and  
Table I for the Latch Truth Table.  
Figure 10 shows the interface between the ADF420x family and  
the ADSP-21xx Digital Signal Processor. As previously noted,  
the ADF420x family needs a 22-bit serial word for each latch  
write. The easiest way to accomplish this using the ADSP21-xx  
family is to use the Autobuffered Transmit Mode of operation  
with Alternate Framing. This provides a means for transmitting  
an entire block of serial data before an interrupt is generated.  
Set up the word length for eight bits and use three memory  
locations for each 22-bit word. To program each 22-bit latch,  
store the three 8-bit bytes, enable the Autobuffered mode and  
then write to the transmit register of the DSP. This last opera-  
tion initiates the autobuffer transfer.  
The maximum allowable serial clock rate is 20 MHz. This  
means that the maximum update rate possible for the device is  
909 kHz or one update every 1.1 ms. This is certainly more than  
adequate for systems that will have typical lock times in hun-  
dreds of microseconds.  
ADuC812 Interface  
Figure 10 shows the interface between the ADF420x family and  
the ADuC812 microconverter. Since the ADuC812 is based on  
an 8051 core, this interface can be used with any 8051-based  
microcontroller. The microconverter is set up for SPI Master  
Mode with CPHA = 0. To initiate the operation, the I/O port  
driving LE is brought low. Each latch of the ADF420x family  
needs a 22-bit word. This is accomplished by writing three 8-bit  
bytes from the microconverter to the device. When the third  
byte has been written, the LE input should be brought high to  
complete the transfer.  
SCLOCK  
DT  
SCLK  
SDATA  
ADF4206/  
ADF4207/  
ADF4208  
TFS  
LE  
ADSP-21xx  
MUXOUT  
(LOCK DETECT)  
I/O FLAG  
On first applying power to the ADF420x family, it requires four  
writes (one each to the R counter latch and the AB counter latch  
for both RF1 and RF2 side) for the output to become active.  
Figure 10. ADSP-21xx to ADF420x Family Interface  
When operating in the mode described, the maximum SCLOCK  
rate of the ADuC812 is 4 MHz. This means that the maximum  
rate at which the output frequency can be changed will be about  
180 kHz.  
SCLOCK  
MOSI  
SCLK  
SDATA  
ADF4206/  
ADF4207/  
ADF4208  
ADuC812  
LE  
I/O PORTS  
MUXOUT  
(LOCK DETECT)  
Figure 9. ADuC812 to ADF420x Family Interface  
–19–  
REV. 0  
ADF4206/ADF4207/ADF4208  
OUTLINE DIMENSIONS  
Dimensions shown in inches and (mm).  
Thin Shrink Small Outline Package (TSSOP)  
(RU-16)  
Thin Shrink Small Outline Package (TSSOP)  
(RU-20)  
0.260 (6.60)  
0.252 (6.40)  
0.201 (5.10)  
0.193 (4.90)  
20  
11  
16  
9
0.177 (4.50)  
0.169 (4.30)  
0.177 (4.50)  
0.169 (4.30)  
0.256 (6.50)  
0.256 (6.50)  
0.246 (6.25)  
0.246 (6.25)  
1
10  
1
8
PIN 1  
PIN 1  
0.006 (0.15)  
0.002 (0.05)  
0.0433 (1.10)  
MAX  
0.006 (0.15)  
0.002 (0.05)  
0.0433 (1.10)  
MAX  
8؇  
0؇  
8؇  
0؇  
0.0256 (0.65)  
BSC  
0.0118 (0.30)  
0.0075 (0.19)  
0.028 (0.70)  
0.020 (0.50)  
0.0256 (0.65) 0.0118 (0.30)  
0.028 (0.70)  
0.020 (0.50)  
SEATING  
PLANE  
0.0079 (0.20)  
0.0035 (0.090)  
0.0079 (0.20)  
0.0035 (0.090)  
SEATING  
PLANE  
BSC  
0.0075 (0.19)  
–20–  
REV. 0  

相关型号:

ADF4207BCHIPS

IC PLL FREQUENCY SYNTHESIZER, 1100 MHz, UUC, DIE, PLL or Frequency Synthesis Circuit
ADI

ADF4207BRU

Dual RF PLL Frequency Synthesizers
ADI

ADF4207BRU-REEL7

IC PLL FREQUENCY SYNTHESIZER, 1100 MHz, PDSO16, TSSOP-16, PLL or Frequency Synthesis Circuit
ADI

ADF4208

Dual RF PLL Frequency Synthesizers
ADI

ADF4208BCHIPS

暂无描述
ADI

ADF4208BRU

Dual RF PLL Frequency Synthesizers
ADI

ADF4208BRU-REEL7

IC PLL FREQUENCY SYNTHESIZER, 2000 MHz, PDSO20, TSSOP-20, PLL or Frequency Synthesis Circuit
ADI

ADF4208BRUZ

Dual, Integer-N 1.1 GHz / 2.0 GHz PLL
ADI

ADF4208BRUZ-R7

Dual, Integer-N 1.1 GHz / 2.0 GHz PLL
ADI

ADF4208BRUZ-REEL

暂无描述
ADI

ADF4208BRUZ-RL

暂无描述
ADI

ADF4210

Dual RF/IF PLL Frequency Synthesizers
ADI