ADF4208BRUZ [ADI]

Dual, Integer-N 1.1 GHz / 2.0 GHz PLL;
ADF4208BRUZ
型号: ADF4208BRUZ
厂家: ADI    ADI
描述:

Dual, Integer-N 1.1 GHz / 2.0 GHz PLL

光电二极管
文件: 总24页 (文件大小:336K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Dual RF PLL Frequency Synthesizers  
ADF4206/ADF4208  
GENERAL DESCRIPTION  
FEATURES  
ADF4206: 550 MHz/550 MHz  
ADF4208: 2.0 GHz/1.1 GHz  
2.7 V to 5.5 V power supply  
Selectable charge pump supply (VP) allows extended  
tuning voltage in 3 V systems  
Selectable charge pump currents  
On-chip oscillator circuit  
Selectable dual modulus prescaler  
RF2: 32/33 or 64/65  
The ADF420x family of dual frequency synthesizers are used  
to implement local oscillators in the upconversion and down-  
conversion sections of wireless receivers and transmitters. Each  
synthesizer consists of a low noise, digital, phase frequency detector  
(PFD); a precision charge pump; a programmable reference  
divider; programmable A and B counters; and a dual modulus  
prescaler (P/P + 1). The A (6-bit) and B (11-bit) counters, in  
conjunction with the dual modulus prescaler (P/P + 1), implement  
an N divider (N = BP + A). In addition, the 14-bit reference  
counter (R counter) allows selectable REFIN frequencies at the  
PFD input. The on-chip oscillator circuitry allows the reference  
input to be derived from crystal oscillators.  
RF1: 32/33 or 64/65  
3-wire serial interface  
Power-down mode  
APPLICATIONS  
Wireless handsets (GSM, PCS, DCS, CDMA, WCDMA)  
Base stations for wireless radio (GSM, PCS, DCS,  
CDMA, WCDMA)  
A complete phase-locked loop (PLL) can be implemented if the  
synthesizers are used with an external loop filter and voltage  
controlled oscillators (VCOs).  
Wireless LANS  
Communications test equipment  
CATV equipment  
Control of all the on-chip registers is via a simple 3-wire  
interface. The devices operate with a power supply ranging  
from 2.7 V to 5.5 V and can be powered down when not in use.  
FUNCTIONAL BLOCK DIAGRAM  
V
1
V
2
V
1
V 2  
P
DD  
DD  
P
N = BP + A  
ADF4206/ADF4208  
11-BIT RF2  
B-COUNTER  
PHASE  
COMPARATOR  
RF2  
A
B
IN  
RF2  
PRESCALER  
RF2  
CHARGE  
PUMP  
IN  
CP  
RF2  
6-BIT RF2  
A-COUNTER  
RF2  
LOCK  
DETECT  
OSC  
IN  
OSCILLATOR  
OSC  
OUT  
14-BIT RF2  
R-COUNTER  
OUTPUT  
MUX  
MUXOUT  
CLK  
DATA  
LE  
22-BIT  
DATA  
REGISTER  
SDOUT  
RF1  
14-BIT RF1  
R-COUNTER  
LOCK  
DETECT  
N = BP + A  
CHARGE  
PUMP  
CP  
RF1  
11-BIT RF1  
B-COUNTER  
PHASE  
COMPARATOR  
RF1  
A
B
IN  
RF1  
PRESCALER  
RF1  
IN  
6-BIT RF1  
A-COUNTER  
AGND  
RF1  
DGND  
AGND  
RF2  
DGND  
RF1  
RF2  
Figure 1.  
Rev. A  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2006 Analog Devices, Inc. All rights reserved.  
 
 
ADF4206/ADF4208  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Pulse Swallow Function............................................................. 11  
R Counter .................................................................................... 11  
Phase Frequency Detector (PFD) and Charge Pump............ 12  
MUXOUT and Lock Detect...................................................... 12  
Lock Detect ................................................................................. 12  
Input Shift Register .................................................................... 12  
Program Modes .............................................................................. 18  
Power-Down ............................................................................... 18  
IF Section (RF2) ......................................................................... 18  
RF Section (RF1) ........................................................................ 19  
Applications Section....................................................................... 20  
Local Oscillator for GSM Handset Receiver........................... 20  
Local Oscillator for WCDMA Receiver .................................. 21  
Interfacing ....................................................................................... 22  
ADuC812 Interface.................................................................... 22  
ADSP-2181 Interface ................................................................. 22  
Outline Dimensions....................................................................... 23  
Ordering Guide .......................................................................... 24  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Functional Block Diagram .............................................................. 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Timing Specifications .................................................................. 5  
Timing Diagram ........................................................................... 5  
Absolute Maximum Ratings............................................................ 6  
Transistor Count........................................................................... 6  
ESD Caution.................................................................................. 6  
Pin Configuration and Function Descriptions............................. 7  
Typical Performance Characteristics ............................................. 8  
Circuit Description......................................................................... 11  
Reference Input Section............................................................. 11  
RF Input Stage............................................................................. 11  
Prescaler....................................................................................... 11  
A and B Counters ....................................................................... 11  
REVISION HISTORY  
2/06—Rev. 0 to Rev. A  
Updated Format..................................................................Universal  
Deleted ADF4207 ...............................................................Universal  
Changes to Table 3............................................................................ 6  
Changes to Function Description .................................................. 7  
Changes to Table 4............................................................................ 7  
Changes to Figure 22 Caption....................................................... 12  
Changes to Pulse Swallow Function ............................................ 13  
Changes to Figure 29...................................................................... 15  
Changes to Figure 31...................................................................... 17  
Updated Outline Dimensions....................................................... 25  
Changes to Ordering Guide .......................................................... 25  
3/01—Revision 0: Initial Version  
Rev. A | Page 2 of 24  
 
ADF4206/ADF4208  
SPECIFICATIONS  
VDD1 = VDD2 = 3 V 10ꢀ, 5 V 10ꢀ; VDD1, VDD2 ≤ VP1, VP2 ≤ 6.0 V; AGNDRF1 = DGNDRF1 = AGNDRF2 = DGNDRF2 = 0 V;  
TA = TMIN to TMAX, unless otherwise noted; dBm referred to 50 Ω.  
Table 1.  
Parameter  
B Version1  
B Chips2  
Unit  
Test Conditions/Comments  
RF/IF CHARACTERISTICS (3 V)  
RF1 Input Frequency (RF1IN)  
ADF4206  
See Figure 22 for input circuit  
0.05/0.55  
0.08/2.0  
–15/+4  
0.05/0.55  
0.08/2.0  
−15/+4  
GHz min/max  
GHz min/max  
dBm min/max  
For f < 50 MHz ensure SR > 23 V/μs  
For f < 50 MHz ensure SR > 37 V/μs  
ADF4208  
RF Input Sensitivity  
IF Input Frequency (RF2IN)  
ADF4206  
0.05/0.55  
0.08/1.1  
−15/+4  
165  
0.05/0.55  
0.08/1.1  
−15/+4  
165  
GHz min/max  
GHz min/max  
dBm min/max  
MHz max  
For f < 50 MHz ensure SR > 23 V/μs  
For f < 50 MHz ensure SR > 37 V/μs  
ADF4208  
IF Input Sensitivity  
Maximum Allowable Prescaler  
Output Frequency3  
RF CHARACTERISTICS (5 V)  
RF1 Input Frequency (RF1IN)  
ADF4206  
0.05/0.55  
0.08/2.0  
−10/+4  
0.05/0.55  
0.08/2.0  
−10/+4  
GHz min/max  
GHz min/max  
dBm min/max  
MHz min/max  
GHz min/max  
GHz min/max  
dBm min/max  
MHz max  
For f < 50 MHz ensure SR > 32 V/μs  
For f < 50 MHz ensure SR > 51 V/μs  
ADF4208  
RF Input Sensitivity  
IF Input Frequency (RF2IN)  
ADF4206  
0.05/0.55  
0.08/1.1  
−10/+4  
200  
0.05/0.55  
0.08/1.1  
–10/+4  
200  
For f < 50 MHz ensure SR > 32 V/μs  
For f < 50 MHz ensure SR > 51 V/μs  
ADF4208  
IF Input Sensitivity  
Maximum Allowable Prescaler  
Output Frequency3  
REFIN CHARACTERISTICS  
REFIN Input Frequency  
REFIN Input Sensitivity4  
REFIN Input Capacitance  
REFIN Input Current  
PHASE DETECTOR  
Phase Detector Frequency5  
CHARGE PUMP  
5/40  
−2  
10  
5/40  
−2  
10  
MHz min/max  
dBm min  
pF max  
For f < 5 MHz ensure SR > 9 V/μs  
100  
100  
ꢀA max  
55  
55  
MHz max  
ICP Sink/Source  
High Value  
Low Value  
Absolute Accuracy  
ICP Three-State Leakage Current  
LOGIC INPUTS  
5
5
mA typ  
mA typ  
% typ  
1.25  
2.5  
1
1.25  
2.5  
1
nA typ  
VINH, Input High Voltage  
VINL, Input Low Voltage  
IINH/IINL, Input Current  
CIN, Input Capacitance  
LOGIC OUTPUTS  
0.8 × VDD  
0.2 × VDD  
1
10  
0.8 × VDD  
0.2 × VDD  
1
10  
V min  
V max  
ꢀA max  
pF max  
VOH, Output High Voltage  
VOL, Output Low Voltage  
VDD − 0.4  
0.4  
VDD − 0.4  
0.4  
V min  
V max  
IOH = 500 ꢀA  
IOL = 500 ꢀA  
Rev. A | Page 3 of 24  
 
ADF4206/ADF4208  
Parameter  
POWER SUPPLIES  
VDD1  
VDD2  
VP  
IDD (IDD1 + IDD2)6  
B Version1  
B Chips2  
Unit  
Test Conditions/Comments  
2.7/5.5  
VDD1  
VDD1/6.0  
2.7/5.5  
VDD1  
VDD1/6.0  
V min/V max  
V min/V max  
VDD1, VDD2 ≤ VP1, VP2 ≤ 6.0 V  
ADF4206  
ADF4208  
14  
21  
14  
21  
mA max  
mA max  
9.5 mA typical at VDD = 3 V, TA = 25°C  
14 mA typical at VDD = 3 V, TA = 25°C  
IDD1  
ADF4206  
ADF4208  
8
14  
8
14  
mA max  
mA max  
5.5 mA typical at VDD = 3 V, TA = 25°C  
9 mA typical at VDD = 3 V, TA = 25°C  
IDD2  
ADF4206  
ADF4208  
IP (IP1 + IP2)  
Low Power Sleep Mode  
NOISE CHARACTERISTICS  
7.5  
9
1
7.5  
9
1
mA max  
mA max  
mA max  
ꢀA typ  
5 mA typical at VDD = 3 V, TA = 25°C  
5.5 mA typical at VDD = 3 V, TA = 25°C  
TA = 25°C  
0.5  
0.5  
Normalized Phase Noise Floor  
(RF1)7  
ADF4206  
ADF4208  
−213  
−217  
−213  
−217  
dBc/Hz typ  
dBc/Hz typ  
Phase Noise Performance8  
ADF4206 (RF1, RF2)  
ADF4208 (RF1)  
@ VCO output  
−92  
−85  
−91  
−92  
−85  
−91  
dBc/Hz typ  
dBc/Hz typ  
dBc/Hz typ  
@ 540 MHz output, 200 kHz at PFD  
@ 1750 MHz output, 200 kHz at PFD  
@ 900 MHz output, 200 kHz at PFD  
ADF4208 (RF1)  
Spurious Signals  
RF1, RF2 (20 kHz Loop B/W)  
−80/−84  
−80/−84  
dB typ  
@ 200 kHz/400 kHz offsets and  
200 kHz PFD  
1 Operating temperature range for B version: −40°C to +85°C.  
2 The B chip specifications are given as typical values.  
3 This is the maximum operating frequency of the CMOS counters. The prescaler value should be chosen to ensure that the RF input is divided down to a frequency that  
is less than this value.  
4 AC coupling ensures AVDD/2 bias. VDD1 = VDD2 = 3 V; For VDD1 = VDD2 = 5 V, use CMOS-compatible levels.  
5 Guaranteed by design. Sample tested to ensure compliance.  
6 Typical values apply for VDD = 3 V; P = 32; RF1IN1/RF2IN2 for ADF4206 = 540 MHz; RF1IN1/RF2IN2 for ADF4208 = 900 MHz.  
7 The synthesizer phase noise floor is estimated by measuring the in-band phase noise at the output of the VCO and subtracting 20 log N (where N is the N divider  
value) and 10 log FPFD. PNSYNTH = PNTOT − 10 log FPFD − 20 log N.  
8 The phase noise is measured at 1 kHz, unless otherwise noted. The phase noise is measured with the EVAL-ADF4206EB or the EVAL-ADF4208EB evaluation board and  
the HP8562E spectrum analyzer. The spectrum analyzer provides the REFIN for the synthesizer (fREFOUT = 10 MHz @ 0 dBm).  
Rev. A | Page 4 of 24  
 
 
 
ADF4206/ADF4208  
TIMING SPECIFICATIONS  
VDD1 = VDD2 = 3 V 10ꢀ, 5 V 10ꢀ; VDD1, VDD2 ≤ VP1, VP2 ≤ 6.0 V; AGNDRF1 = DGNDRF1 = AGNDRF2 = DGNDRF2 = 0 V;  
TA = TMIN to TMAX, unless otherwise noted; dBm referred to 50 Ω.  
Table 2.  
Parameter1  
Limit at TMIN to TMAX (B Version)  
Unit  
Test Conditions/Comments  
DATA to CLK setup time  
DATA to CLK hold time  
CLK high duration  
CLK low duration  
CLK to LE setup time  
LE pulse width  
t1  
t2  
t3  
t4  
t5  
t6  
10  
10  
25  
25  
10  
20  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
1 Guaranteed by design but not production tested.  
TIMING DIAGRAM  
t4  
t3  
CLK  
t1  
t2  
DB1  
DB0 (LSB)  
(CONTROL BIT C1)  
DB21 (MSB)  
DATA  
DB20  
DB2  
(CONTROL BIT C2)  
t6  
LE  
LE  
t5  
Figure 2. Timing Diagram  
Rev. A | Page 5 of 24  
 
 
 
ADF4206/ADF4208  
ABSOLUTE MAXIMUM RATINGS  
TA = 25°C unless otherwise noted.1  
Table 3.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Parameter  
Ratings  
VDD1 to GND2  
−0.3 V to +7 V  
VDD1 to VDD2  
−0.3 V to +0.3 V  
−0.3 V to +7 V  
VP1, VP2 to GND  
VP1, VP2 to VDD1  
−0.3 V to +5.5 V  
−0.3 V to DVDD + 0.3 V  
−0.3 V to VP + 0.3 V  
Digital I/O Voltage to GND  
Analog I/O Voltage to GND  
OSCIN, OSCOUT, RF1IN (A, B),  
RF2IN (A, B) to GND  
−0.3 V to VDD + 0.3 V  
320 mV  
TRANSISTOR COUNT  
RFINA to RFINB (RF1, RF2)  
Operating Temperature Range  
Industrial (B Version)  
Storage Temperature Range  
Maximum Junction Temperature  
TSSOP θJA Thermal Impedance  
11,749 (CMOS) and 522 (Bipolar).  
−40°C to +85°C  
−65°C to +150°C  
150°C  
112°C/W  
LFCSP θJA Thermal Impedance  
(Paddle Soldered)  
30.4°C/W  
Reflow Soldering  
Peak Temperature (40 sec)  
260°C  
1 This device is a high performance RF integrated circuit with an ESD rating of  
<2 kΩ and it is ESD sensitive. Proper precautions should be taken for  
handling and assembly.  
2 GND = AGND = DGND = 0 V.  
ESD CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on  
the human body and test equipment and can discharge without detection. Although this product features  
proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy  
electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance  
degradation or loss of functionality.  
Rev. A | Page 6 of 24  
 
 
 
ADF4206/ADF4208  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
V
1
1
2
V
2
DD  
20  
DD  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
V
1
V
2
19  
V 1  
V 2  
P
DD  
DD  
P
V 1  
V 2  
P
3
18  
P
CP  
CP  
RF2  
RF1  
ADF4208  
TOP VIEW  
(Not to Scale)  
CP  
CP  
4
17  
DGND  
RF1  
RF1  
RF2  
DGND  
RF1  
RF2  
RF1  
A
ADF4206  
TOP VIEW  
(Not to Scale)  
DGND  
5
DGND  
16  
RF2  
IN  
A
RF2  
IN  
RF1  
RF2  
IN  
6
15  
RF2  
IN  
B
IN  
IN  
RF1  
B
IN  
OSC  
LE  
7
14  
AGND  
AGND  
RF2  
RF1  
OSC  
DATA  
CLK  
8
13 LE  
12  
OUT  
OSC  
IN  
MUXOUT  
9
DATA  
OSC  
OUT  
10  
11  
CLK  
MUXOUT  
Figure 3. 16-Lead TSSOP Pin Configuration  
Figure 4. 20-Lead TSSOP Pin Configuration  
Table 4. Pin Function Descriptions  
ADF4206 ADF4208  
Pin No.  
Pin No.  
Mnemonic  
Description  
1
1
VDD1  
Positive Power Supply for the RF1 Section. A 0.1 ꢀF capacitor is connected between this pin  
and DGNDRF1 (the RF1 ground pin). VDD1 should have a value of between 2.7 V and 5.5 V. VDD1  
must have the same potential as VDD2.  
2
3
2
3
VP1  
CPRF1  
Power Supply for the RF1 Charge Pump. This is greater than or equal to VDD.  
Output from the RF1 Charge Pump. This is normally connected to a loop filter that drives the  
input to an external VCO.  
4
5
6
7
8
4
5
8
9
DGNDRF1  
RF1IN/RF1INA  
OSCIN  
OSCOUT  
MUXOUT  
Ground Pin for the RF1 Digital Circuitry.  
Input to the RF1 Prescaler. This low level input signal is taken from the RF1 VCO.  
Oscillator Input. It has a VDD/2 threshold and is driven from an external CMOS or TTL logic gate.  
Oscillator Output.  
This multiplexer output allows the IF/RF lock detect, the scaled RF, or the scaled reference  
frequency external access. See Figure 30.  
10  
9
11  
CLK  
Serial Clock Input. This serial clock is used to clock in the serial data to the registers. The data is  
latched into the 22-bit shift register on the CLK rising edge. This input is a high impedance  
CMOS input.  
10  
11  
12  
12  
13  
16  
DATA  
Serial Data Input. The serial data is loaded MSB first with the two LSBs as the control bits. This  
input is a high impedance CMOS input.  
Load Enable, CMOS Input. When LE goes high, the data stored in the shift registers is loaded  
into one of the four latches, the latch being selected using the control bits.  
Input to the RF2 Prescaler. This low level input signal is normally ac-coupled to the external  
VCO.  
LE  
RF2IN/RF2INA  
13  
14  
17  
18  
DGNDRF2  
CPRF2  
Ground Pin for the RF2, Digital, Interface, and Control Circuitry.  
Output from the RF2 Charge Pump. This is normally connected to a loop filter that drives the  
input to an external VCO.  
15  
16  
19  
20  
VP2  
VDD2  
Power Supply for the RF2 Charge Pump. This is greater than or equal to VDD.  
Positive Power Supply for the RF2, Interface, and Oscillator Sections. A 0.1 ꢀF capacitor is  
connected between this pin and DGNDRF2 (the RF2 ground pin). VDD2 has a value between 2.7 V  
and 5.5 V. VDD2 must have the same potential as VDD1.  
N/A  
6
RF1INB  
Complementary Input to the RF1 Prescaler of the ADF4208. This point is decoupled to the  
ground plane with a small bypass capacitor.  
N/A  
N/A  
N/A  
7
14  
15  
AGNDRF1  
AGNDRF2  
RF2INB  
Ground Pin for the RF1 Analog Circuitry.  
Ground Pin for the RF2 Analog Circuitry.  
Complementary Input to the RF2 Prescaler. This point is decoupled to the ground plane with a  
small bypass capacitor.  
Rev. A | Page 7 of 24  
 
ADF4206/ADF4208  
TYPICAL PERFORMANCE CHARACTERISTICS  
0
FREQ-UNIT PARAM-TYPE DATA-FORMAT KEYWORD IMPEDANCE ()  
V
= 3V, V = 5V  
DD P  
= 5mA  
GHz  
S
MA  
R
50  
I
–10  
CP  
PFD FREQUENCY = 200kHz  
LOOP BANDWIDTH = 20kHz  
RES. BANDWIDTH = 1kHz  
VIDEO BANDWIDTH = 1kHz  
SWEEP = 2.5 SECONDS  
AVERAGES = 30  
REFERENCE LEVEL =  
–4.2dBm  
FREQ MAGS11  
ANGS11  
FREQ MAGS11  
ANGS11  
–20  
–30  
–40  
–50  
–60  
0.0  
0.957111193 –3.130429321 1.35  
0.963546793 –6.686426265 1.45  
0.953621785 –11.19913586 1.55  
0.953757706 –15.35637483 1.65  
0.816886959 –51.80711782  
0.825983016 –56.20373378  
0.791737125 –61.21554647  
0.770543186 –61.88187496  
0.793897072 –65.39516615  
0.745765233 –69.24884474  
0.15  
0.25  
0.35  
0.45  
0.55  
0.65  
0.75  
0.85  
0.95  
1.05  
1.15  
1.25  
0.929831379 –20.3793432  
1.75  
0.908459709 –22.69144845 1.85  
0.897303634 –27.07001443 1.95  
0.876862863 –31.32240763 2.05  
0.849338092 –33.68058163 2.15  
0.858403269 –38.57674885 2.25  
0.841888714 –41.48606772 2.35  
0.840354983 –45.97597958 2.45  
0.822165839 –49.19163116 2.55  
0.7517547  
–71.21608147  
0.745594889 –75.93169947  
0.713387801 –78.8391674  
0.711578577 –81.71934806  
0.698487131 –85.49067481  
0.669871818 –88.41958754  
0.668353367 –91.70921678  
–70  
–90.2dBc/Hz  
–80  
–90  
–100  
–200k  
900M  
FREQUENCY (Hz)  
200k  
400k  
–400k  
Figure 8. ADF4208 RF1 Reference Spurs (900 MHz, 200 kHz, 20 kHz)  
Figure 5. S-Parameter Data for the ADF4208 RF1 Input (Up to 2.5 GHz)  
0
–40  
V
V
= 5V  
10dB/DIVISION  
DD  
= 5V  
–50  
P
R
= –40dBc/Hz  
L
–5  
–10  
–15  
–20  
–25  
–30  
–35  
rms NOISE = 0.52°  
–60  
–70  
–80  
T
= +85°C  
A
0.52° rms  
–90  
–100  
–110  
–120  
T
= –40°C  
A
–130  
–140  
T
= +25°C  
1.5  
A
0
0.5  
1.0  
2.0  
2.5  
3.0  
3.5  
100Hz  
1kHz  
10kHz  
100kHz  
1MHz  
FREQUENCY OFFSET FROM 900MHz CARRIER  
RF INPUT SENSITIVITY (GHz)  
Figure 9. ADF4208 RF1 Integrated Phase Noise (900 MHz, 200 kHz, 20 kHz)  
Figure 6. ADF4208 RF1 Phase Noise (900 MHz, 200 kHz, 20 kHz)  
–40  
0
10dB/DIVISION  
V
I
= 3V, V = 5V  
P
DD  
= 5mA  
–50  
–60  
R = –40dBc/Hz  
–10  
L
CP  
rms NOISE = 0.62°  
PFD FREQUENCY = 200kHz  
LOOP BANDWIDTH = 20kHz  
RES. BANDWIDTH = 10Hz  
VIDEO BANDWIDTH = 10Hz  
SWEEP = 1.9 SECONDS  
AVERAGES = 19  
REFERENCE LEVEL =  
–4.2dBm  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
0.62° rms  
–90  
–100  
–110  
–120  
–70  
–90.5dBc/Hz  
–80  
–90  
–130  
–140  
–100  
–2k  
–1k  
900M  
FREQUENCY (Hz)  
1k  
2k  
100Hz  
1kHz  
10kHz  
100kHz  
1MHz  
FREQUENCY OFFSET FROM 900MHz CARRIER  
Figure 10. ADF4208 RF1 Integrated Phase Noise (900 MHz, 200 kHz, 35 kHz)  
Figure 7. ADF4208 RF1 Phase Noise (900 MHz, 200 kHz, 20 kHz)  
Rev. A | Page 8 of 24  
 
ADF4206/ADF4208  
0
0
V
I
= 3V, V = 5V  
P
= 5mA  
V
I
= 3V, V = 5V  
P
= 5mA  
DD  
DD  
–10  
CP  
–10  
CP  
PFD FREQUENCY = 30kHz  
LOOP BANDWIDTH = 3kHz  
RES. BANDWIDTH = 3Hz  
VIDEO BANDWIDTH = 3Hz  
SWEEP = 255 SECONDS  
POSITIVE PEAK  
PFD FREQUENCY = 200kHz  
LOOP BANDWIDTH = 35kHz  
RES. BANDWIDTH = 1kHz  
VIDEO BANDWIDTH = 1kHz  
SWEEP = 2.5 SECONDS  
AVERAGES = 30  
REFERENCE LEVEL =  
–4.2dBm  
REFERENCE LEVEL =  
–5.7dBm  
–20  
–30  
–40  
–50  
–60  
–20  
–30  
–40  
–50  
–60  
DETECT MODE  
–70  
–79.6dBc  
–70  
–89.3dBc  
–80  
–90  
–80  
–90  
–100  
–100  
–400k  
–200k  
200k  
400k  
900M  
–200k  
1750M  
FREQUENCY (Hz)  
40k  
80k  
–400k  
FREQUENCY (Hz)  
Figure 11. ADF4208 RF1 Reference Spurs (900 MHz, 200 kHz, 35 kHz)  
Figure 14. ADF4208 RF1 Reference Spurs (1750 MHz, 30 kHz, 3 kHz)  
0
–120  
V
V
= 3V  
V
I
= 3V, V = 5V  
P
= 5mA  
DD  
P
DD  
= 5V  
–10  
CP  
PFD FREQUENCY = 30kHz  
LOOP BANDWIDTH = 3kHz  
RES. BANDWIDTH = 10kHz  
VIDEO BANDWIDTH = 10kHz  
SWEEP = 477ms  
REFERENCE LEVEL =  
–8.0dBm  
–130  
–140  
–150  
–160  
–170  
–180  
–20  
–30  
–40  
–50  
–60  
AVERAGES = 10  
ADF4206  
–70  
ADF4208  
–75.2dBc/Hz  
–80  
–90  
–100  
–200  
1750M  
200  
400  
–400  
1
10  
100  
1000  
10000  
FREQUENCY (Hz)  
PHASE DETECTOR FREQUENCY (kHz)  
Figure 12. ADF4208 RF1 Phase Noise (1750 MHz, 30 kHz, 3 kHz)  
Figure 15. ADF4208 RF1 Phase Noise vs. PFD Frequency  
–40  
–60  
V
V
= 3V  
10dB/DIVISION  
DD  
= 3V  
P
R
= –40dBc/Hz  
–50  
–60  
L
–70  
–70  
–80  
–90  
1.6 rms  
–80  
–100  
–110  
–120  
–90  
–130  
–140  
–100  
–40  
–20  
0
20  
40  
60  
80  
100  
100Hz  
1kHz  
10kHz  
100kHz  
1MHz  
TEMPERATURE (°C)  
FREQUENCY OFFSET FROM 1750MHz CARRIER  
Figure 16. ADF4208 RF1 Phase Noise vs. Temperature  
(900 MHz, 200 kHz, 20 kHz)  
Figure 13. ADF4208 RF1 Integrated Phase Noise (1750 MHz, 30 kHz, 3 kHz)  
Rev. A | Page 9 of 24  
ADF4206/ADF4208  
3.0  
2.5  
–60  
V
V
= 3V  
= 5V  
V
V
= 3V  
DD  
DD  
= 3V  
P
P
–70  
–80  
2.0  
1.5  
1.0  
0.5  
0
–90  
–100  
0
50  
100  
150  
200  
–40  
–20  
0
20  
40  
60  
80  
100  
PRESCALER OUTPUT FREQUENCY (MHz)  
TEMPERATURE (°C)  
Figure 17. ADF4208 RF1 Reference Spurs vs. Temperature  
(900 MHz, 200 kHz, 20 kHz)  
Figure 20. DIDD vs. Prescaler Output Frequency RF1 and RF2 (All Models)  
–5  
10  
V
V
= 3V  
DD  
= 5V  
–15  
P
9
ADF4208  
–25  
–35  
8
7
6
5
4
–45  
–55  
–65  
–75  
–85  
–95  
–105  
ADF4206  
3
2
1
0
0
1
2
3
4
5
TUNING VOLTAGE (V)  
32/33  
64/65  
PRESCALER VALUE  
Figure 21. ADF4206/ADF4208 AIDD vs. Prescaler Value (RFI)  
Figure 18. ADF4208 RF1 Reference Spurs vs. VTUNE  
(900 MHz, 200 kHz, 20 kHz)  
–120  
V
V
= 3V  
= 5V  
DD  
P
–130  
–140  
–150  
–160  
–170  
–180  
ADF4206  
ADF4208  
1
10  
100  
1000  
10000  
PHASE DETECTOR FREQUENCY (kHz)  
Figure 19. ADF4208 RF2 Phase Noise vs. PFD Frequency  
Rev. A | Page 10 of 24  
ADF4206/ADF4208  
A AND B COUNTERS  
CIRCUIT DESCRIPTION  
The A and B CMOS counters combine with the dual modulus  
prescaler to allow a wide ranging division ratio in the PLL  
feedback counter. The devices are guaranteed to work when the  
prescaler output is 200 MHz or less.  
REFERENCE INPUT SECTION  
The reference input stage is shown in Figure 22. SW1 and SW2  
are normally closed switches. SW3 is normally open. When  
power-down is initiated, SW3 is closed and SW1 and SW2 are  
opened. Typical recommended external components are shown  
in Figure 22.  
PULSE SWALLOW FUNCTION  
The A and B counters, in conjunction with the dual modulus  
prescaler, make it possible to generate output frequencies that  
are spaced only by the reference frequency divided by R. The  
equation for the VCO frequency is  
POWER-DOWN  
CONTROL  
NC  
100k  
SW2  
fVCO = [(P × B) + A] × fREFIN/R  
TO R  
COUNTER  
OSC  
OSC  
NC  
IN  
where:  
BUFFER  
30pF  
30pF  
SW1  
f
VCO is the output frequency of the external voltage controlled  
oscillator (VCO).  
SW3  
NO  
OUT  
P is the preset modulus of the dual modulus prescaler  
(32/33, 64/65).  
18kΩ  
B is the preset divide ratio of the binary 11-bit counter  
(2 to 2047).  
Figure 22. Reference Input Stage  
A is the preset divide ratio of the binary 6-bit A counter  
(0 to 63).  
RF INPUT STAGE  
The RF input stage is shown in Figure 23. It is followed by a  
2-stage limiting amplifier to generate the CML clock levels  
needed for the prescaler.  
f
REFIN is the output frequency of the external reference frequency  
oscillator.  
R is the preset divide ratio of the binary 14-bit programmable  
reference counter (1 to 16,383).  
1.6V  
BIAS  
GENERATOR  
AV  
DD  
R COUNTER  
2k  
2kΩ  
The 14-bit R counter allows the input reference frequency to be  
divided down to produce the reference clock to the phase  
frequency detector (PFD). Division ratios from 1 to 16,383 are  
allowed.  
RF  
RF  
A
B
IN  
IN  
N = BP + A  
11-BIT B  
TO PFD  
COUNTER  
AGND  
LOAD  
FROM RF  
INPUT STAGE  
PRESCALER  
P/P + 1  
Figure 23. RF Input Stage  
LOAD  
MODULUS  
CONTROL  
6-BIT A  
COUNTER  
PRESCALER  
The dual modulus prescaler (P/P + 1), along with the A and  
B counters, enables the large division ratio, N, to be realized  
(N = BP + A). This prescaler, operating at CML levels, takes  
the clock from the RF input stage and divides it down to a  
manageable frequency for the CMOS A and B counters. It is  
based on a synchronous 4/5 core.  
N DIVIDER  
Figure 24. A and B Counters  
The prescaler is selectable. Both RF1 and RF2 can be set to  
either 32/33 or 64/65. DB20 of the AB counter latch selects the  
value. See Figure 29 and Figure 31.  
Rev. A | Page 11 of 24  
 
 
 
ADF4206/ADF4208  
DV  
DD  
PHASE FREQUENCY DETECTOR (PFD) AND  
CHARGE PUMP  
RF2 ANALOG LOCK DETECT  
RF2 R COUNTER OUTPUT  
RF2 N COUNTER OUTPUT  
RF2/RF1 ANALOG LOCK DETECT  
RF1 R COUNTER OUTPUT  
RF1 N COUNTER OUTPUT  
The PFD takes inputs from the R counter and N counter (N =  
BP + A) and produces an output proportional to the phase and  
frequency difference between them. Figure 25 is a simplified  
schematic.  
MUXOUT  
MUX  
CONTROL  
RF1 ANALOG LOCK DETECT  
V
P
CHARGE  
PUMP  
DGND  
UP  
HI  
D1  
Q1  
Figure 26. MUXOUT Circuit  
U1  
LOCK DETECT  
R DIVIDER  
CLR1  
MUXOUT can be programmed for analog lock detect. The  
N-channel open-drain analog lock detect is operated with an  
external pull-up resistor of 10 kΩ nominal. When lock is  
detected, it is high with narrow, low going pulses.  
DELAY  
ELEMENT  
CP  
U3  
INPUT SHIFT REGISTER  
CLR2  
U2  
DOWN  
The functional block diagram for the ADF420x family is shown  
in Figure 1. The main blocks include a 22-bit input shift register,  
a 14-bit R counter, and a 17-bit N counter, comprising a 6-bit  
A counter and an 11-bit B counter. Data is clocked into the  
22-bit shift register on each rising edge of CLK. The data is  
clocked in MSB first. Data is transferred from the shift register  
to one of four latches on the rising edge of LE. The destination  
latch is determined by the state of the two control bits (C2, C1)  
in the shift register. These are the two LSBs (DB1, DB0) as  
shown in the timing diagram of Figure 2.  
HI  
D2  
Q2  
N DIVIDER  
CPGND  
R DIVIDER  
N DIVIDER  
CP OUTPUT  
Table 5 is the truth table for these bits.  
Figure 25. PFD Simplified Schematic and Timing (In Lock)  
Table 5. C2, C1 Truth Table  
Control Bits  
The PFD includes a delay element that sets the width of the  
antibacklash phase. The typical value for this in the ADF420x  
family is 3 ns. The pulse ensures that there is no dead zone in  
the PFD transfer function and minimizes phase noise and  
reference spurs.  
C2  
0
C1  
0
Data Latch  
RF2 R counter  
0
1
1
0
RF2 AB counter (and prescaler select)  
RF1 R counter  
1
1
RF1 AB counter (and prescaler select)  
MUXOUT AND LOCK DETECT  
The output multiplexer on the ADF4206 family allows the user  
to access various internal points on the chip. The state of  
MUXOUT is controlled by P3, P4, P11, and P12. See Figure 28  
and Figure 30. Figure 26 shows the MUXOUT circuit in block  
diagram form.  
Rev. A | Page 12 of 24  
 
 
 
 
 
ADF4206/ADF4208  
RF2 REFERENCE COUNTER LATCH  
CONTROL  
BITS  
14-BIT REFERENCE COUNTER, R  
DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9  
P1 R14 R13 R12 R11 R10 R9 R8  
DB8  
R7  
DB7  
R6  
DB6 DB5 DB4 DB3 DB2  
DB1  
DB0  
R5  
R4  
R3  
R2  
R1  
C2 (0) C1 (0)  
P4  
P3  
P2  
P5  
RF2 AB COUNTER LATCH  
CONTROL  
BITS  
6-BIT A COUNTER  
11-BIT B COUNTER  
DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9  
P7 P6 B11 B10 B9 B8 B7 B6 B5 B4 B3 B2 B1  
DB8  
DB7  
A6  
DB6  
A5  
DB5  
A4  
DB4 DB3 DB2  
A3 A2 A1  
DB1  
DB0  
C2 (0) C1 (0)  
RF1 REFERENCE COUNTER LATCH  
CONTROL  
BITS  
14-BIT REFERENCE COUNTER, R  
DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9  
R14 R13 R12 R11 R10 R9 R8  
DB8  
R7  
DB7  
R6  
DB6 DB5  
R5 R4  
DB4 DB3 DB2  
R3 R2 R1  
DB1  
DB0  
C1 (0)  
P11 P10  
P13  
P9  
P12  
C2 (1)  
RF1 AB COUNTER LATCH  
CONTROL  
BITS  
11-BIT B COUNTER  
6-BIT A COUNTER  
DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9  
P16 P14  
DB8  
DB7  
A6  
DB6 DB5 DB4 DB3 DB2  
A5 A4 A3 A2 A1  
DB1  
DB0  
B11 B10  
B9  
B8  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
C2 (1) C1 (1)  
Figure 27. ADF4206 Family Latch Summary  
Rev. A | Page 13 of 24  
ADF4206/ADF4208  
RF2 REFERENCE COUNTER LATCH  
CONTROL  
BITS  
14-BIT REFERENCE COUNTER, R  
DB21 DB20 DB19 DB18 DB17  
DB15 DB14 DB13 DB12 DB11 DB10 DB9  
DB8  
R7  
DB7  
R6  
DB6 DB5 DB4 DB3 DB2  
R5 R4 R3 R2 R1  
DB1  
DB0  
DB16  
P4  
R13  
R12  
R11  
R10  
R9  
R8  
C2 (0) C1 (0)  
P3  
P2  
R14  
P5  
P1  
R14  
R13  
R12  
..........  
R3  
R2  
0
1
1
0
.
R1  
DIVIDE RATIO  
0
0
0
0
.
0
0
0
0
.
0
0
0
0
.
..........  
..........  
..........  
..........  
..........  
..........  
..........  
..........  
0
0
0
1
.
1
0
1
0
.
1
2
3
4
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
1
1
1
1
0
0
16380  
1
1
1
1
1
1
1
1
1
..........  
..........  
..........  
1
1
1
0
1
1
1
0
1
16381  
16382  
16383  
P1  
0
PD POLARITY  
NEGATIVE  
POSITIVE  
1
P5  
I
CP  
0
1
1.25mA  
4.375mA  
P2  
CHARGE PUMP  
OUTPUT  
0
1
NORMAL  
THREE-STATE  
P12  
P11  
FROM RF1 R LATCH  
P4  
0
P3  
0
MUXOUT  
0
0
0
0
0
0
1
1
1
0
0
X
X
1
1
X
X
0
LOGIC LOW STATE  
RF2 ANALOG LOCK DETECT  
0
1
1
0
RF2 REFERENCE DIVIDER OUTPUT  
RF2 N DIVIDER OUTPUT  
1
1
0
0
RF1 ANALOG LOCK DETECT  
RF1/RF2 ANALOG LOCK DETECT  
RF1 REFERENCE DIVIDER  
RF1 N DIVIDER  
0
1
0
0
0
1
1
0
FAST LOCK OUTPUT SWITCH ON  
AND CONNECTED TO MUXOUT  
RF2 COUNTER RESET  
1
1
1
0
1
1
1
1
1
1
0
1
RF1 COUNTER RESET  
RF2 AND RF1 COUNTER RESET  
Figure 28. RF2 Reference Counter Latch Map  
Rev. A | Page 14 of 24  
 
 
 
 
 
ADF4206/ADF4208  
RF2 AB COUNTER LATCH  
CONTROL  
BITS  
6-BIT A COUNTER  
11-BIT B COUNTER  
DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9  
DB8  
DB7  
A6  
DB6 DB5 DB4 DB3 DB2  
A5 A4 A3 A2 A1  
DB1  
DB0  
C2 (0)  
P7  
P6  
B11 B10  
B9  
B8  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
C1 (1)  
A COUNTER  
A6  
A5  
X
X
X
X
.
A4  
0
0
0
0
.
A3  
A2  
0
0
1
1
.
A1  
DIVIDE RATIO  
X
X
X
X
.
0
0
0
0
.
0
1
0
1
.
0
1
2
3
.
.
.
.
.
.
.
.
.
.
.
.
X
X
X
X
1
1
1
1
1
1
0
1
14  
15  
B11  
B10  
B9  
0
0
0
0
.
B3  
B2  
0
0
1
1
.
B1  
B COUNTER DIVIDE RATIO  
0
0
0
0
.
0
0
0
0
.
..........  
..........  
..........  
..........  
..........  
..........  
..........  
..........  
0
0
0
0
.
0
1
0
1
.
NOT ALLOWED  
NOT ALLOWED  
2
3
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
1
1
1
1
0
0
2044  
1
1
1
1
1
1
1
1
1
..........  
..........  
..........  
1
1
1
0
1
1
1
0
1
2045  
2046  
2047  
P6  
0
RF2 PRESCALER  
64/65  
1
32/33  
P7  
RF2 SECTION  
0
1
NORMAL OPERATION  
POWER-DOWN  
N = BP + A, P IS PRESCALER VALUE SET BY P6. B MUST BE GREATER  
THAN OR EQUAL TO A. TO ENSURE CONTINUOUSLY ADJACENT VALUES  
2
OF N × F  
REF  
, N IS (P – P).  
MIN  
Figure 29. RF2 AB Counter Latch Map  
Rev. A | Page 15 of 24  
 
 
ADF4206/ADF4208  
RF1 REFERENCE COUNTER LATCH  
CONTROL  
BITS  
14-BIT REFERENCE COUNTER, R  
DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9  
DB8  
R7  
DB7  
R6  
DB6 DB5 DB4 DB3 DB2  
R5 R4 R3 R2 R1  
DB1  
C2 (1)  
DB0  
P12  
P9  
R14  
R13  
R12  
R11  
R10  
R9  
R8  
C1 (0)  
P11 P10  
P13  
R14  
R13  
R12  
..........  
R3  
R2  
0
1
1
0
.
R1  
DIVIDE RATIO  
0
0
0
0
.
0
0
0
0
.
0
0
0
0
.
..........  
..........  
..........  
..........  
..........  
..........  
..........  
..........  
0
0
0
1
.
1
0
1
0
.
1
2
3
4
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
1
1
1
1
0
0
16380  
1
1
1
1
1
1
1
1
1
..........  
..........  
..........  
1
1
1
0
1
1
1
0
1
16381  
16382  
16383  
P9  
0
PD POLARITY  
NEGATIVE  
POSITIVE  
1
P13  
0
I
CP  
1.25 mA  
1
4.375 mA  
P10  
0
CHARGE PUMP OUTPUT  
NORMAL  
1
THREE-STATE  
P4  
P3  
P12  
P11  
0
FROM RF2 R LATCH  
MUXOUT  
0
0
0
0
0
0
1
1
1
0
0
1
1
0
0
0
0
1
0
1
0
1
0
1
0
1
0
LOGIC LOW STATE  
RF2 ANALOG LOCK DETECT  
0
X
X
1
RF2 REFERENCE DIVIDER OUTPUT  
RF2 N DIVIDER OUTPUT  
RF1 ANALOG LOCK DETECT  
RF1/RF2 ANALOG LOCK DETECT  
RF1 REFERENCE DIVIDER  
RF1 N DIVIDER  
1
X
X
0
FAST LOCK OUTPUT SWITCH ON  
AND CONNECTED TO MUXOUT  
RF2 COUNTER RESET  
1
1
1
0
1
1
1
1
1
1
0
1
RF1 COUNTER RESET  
RF2 AND RF1 COUNTER RESET  
Figure 30. RF1 Reference Counter Latch Map  
Rev. A | Page 16 of 24  
 
 
 
ADF4206/ADF4208  
RF1 AB COUNTER LATCH  
CONTROL  
BITS  
11-BIT B COUNTER  
6-BIT A COUNTER  
DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9  
DB8  
DB7  
A6  
DB6  
A5  
DB5 DB4 DB3 DB2  
A4 A3 A2 A1  
DB1  
DB0  
DB21  
P16  
P14 B11 B10  
B9  
B8  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
C2 (1) C1 (1)  
A COUNTER  
DIVIDE RATIO  
0
1
2
3
A6  
0
0
0
0
.
A5  
A4  
A3  
A2  
A1  
0
0
0
0
.
0
0
0
0
.
0
0
0
0
.
0
0
1
1
.
0
1
0
1
.
.
.
.
.
.
.
.
.
.
.
.
.
1
1
1
1
1
1
1
1
1
1
0
1
62  
63  
B11  
B10  
B9  
0
0
0
0
.
B3  
B2  
0
0
1
1
.
B1  
0
1
0
1
.
B COUNTER DIVIDE RATIO  
0
0
0
0
.
0
0
0
0
.
..........  
0
0
0
0
.
NOT ALLOWED  
..........  
..........  
..........  
..........  
..........  
..........  
..........  
NOT ALLOWED  
2
3
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
1
1
1
1
0
0
2044  
1
1
1
1
1
1
1
1
1
..........  
..........  
..........  
1
1
1
0
1
1
1
0
1
2045  
2046  
2047  
P14  
RF1 PRESCALER  
0
1
64/65  
32/33  
P16  
RF1 SECTION  
0
1
NORMAL OPERATION  
POWER-DOWN  
N = BP + A, P IS PRESCALER VALUE SET BY P6. B MUST BE GREATER  
THAN OR EQUAL TO A. FOR CONTINUOUSLY ADJACENT VALUES OF  
2
N, N  
IS (P – P).  
MIN  
Figure 31. RF1 AB Counter Latch Map  
Rev. A | Page 17 of 24  
 
 
ADF4206/ADF4208  
PROGRAM MODES  
Asynchronous RF1 Power-Down  
Figure 28 and Figure 30 show how to set up the program modes  
in the ADF420x family. Three points should be noted:  
If P10 of the ADF420x family is set to 1 (three-state the RF1  
charge pump), and P16 is subsequently set to 1, an asynchronous  
power-down occurs. The device goes into power-down on the  
rising edge of LE latching the 1 to P16 (the RF1 power-down bit).  
1. RF2 and RF1 analog lock detect indicate when the PLL is  
in lock. When the loop is locked and either RF2 or RF1  
analog lock detect is selected, the MUXOUT pin shows a  
logic high with narrow, low going pulses. When the  
Activation of either synchronous or asynchronous power-down  
forces the R and N dividers of the RF2/RF1 loop to their load  
state conditions, and the RF2/RF1 input section is debiased to a  
high impedance state.  
RF2/RF1 analog lock detect is chosen, the locked condition  
is indicated only when both RF2 and RF1 loops are locked.  
2. The RF2 counter reset mode resets the R and AB counters  
in the RF2 section and also puts the RF2 charge pump into  
three-state. The RF1 counter reset mode resets the R and  
AB counters in the RF1 section and also puts the RF1  
charge pump into three-state. The RF2 and RF1 counter  
reset mode resets the R and AB counters on both the RF1  
and RF2 simultaneously.  
The reference oscillator circuit is only disabled if both the RF2  
and RF1 power-downs are set.  
The input register and latches remain active and are capable of  
loading and latching data during all power-down modes.  
The RF2/RF1 section of the devices returns to normal powered  
up operation immediately upon LE latching a 0 to the  
appropriate power-down bit.  
Upon removal of the reset bits, the AB counter resumes  
counting in close alignment with the R counter (maximum  
error is one prescaler output cycle).  
IF SECTION (RF2)  
3. The fast lock mode uses MUXOUT to switch a second loop  
filter damping resistor to ground during fast lock operation.  
Activation of fast lock occurs whenever the RF1 CP gain in  
the RF1 reference counter is set to one.  
Programmable RF2 Reference (R) Counter  
If Control Bit C2 and Control Bit C1 are 0 and 0, the data is  
transferred from the input shift register to the 14-bit RF2  
R counter. Figure 28 shows the input shift register data format  
for the RF2 R counter and the divide ratios that are possible.  
POWER-DOWN  
RF2 Phase Detector Polarity  
It is possible to program the ADF420x family for either  
synchronous or asynchronous power-down on either the RF2  
or RF1 side.  
P1 sets the RF2 phase detector polarity. When the RF2 VCO  
characteristics are positive, this is set to 1. When they are  
negative, it is set to 0. See Figure 28.  
Synchronous RF2 Power-Down  
RF2 Charge Pump Three-State  
Programming a 1 to P7 of the ADF420x family initiates a  
power-down. If P2 of the ADF420x family has been set to 0  
(normal operation), a synchronous power-down is conducted.  
The device automatically puts the charge pump into three-state  
and completes the power-down.  
P2 puts the RF2 charge pump into three-state mode when  
programmed to a 1. It is set to 0 for normal operation.  
See Figure 28.  
RF2 Program Modes  
Asynchronous RF2 Power-Down  
Figure 28 and Figure 30 show how to set up the program modes  
in the ADF420x family.  
If P2 of the ADF420x family has been set to 1 (three-state the  
RF2 charge pump), and P7 is subsequently set to 1, an  
asynchronous power-down is conducted. The device enters  
power-down on the rising edge of LE latching the 1 to P7 (the  
RF2 power-down bit).  
RF2 Charge Pump Currents  
Bit P5 programs the current setting for the RF2 charge pump.  
See Figure 28.  
Synchronous RF1 Power-Down  
Programmable RF2 AB Counter  
Programming a 1 to P16 of the ADF420x family initiates a  
power-down. If P10 of the ADF420x family is set to 0 (normal  
operation), a synchronous power-down is conducted. The  
device automatically puts the charge pump into three-state and  
completes the power-down.  
If Control Bit C2 and Control Bit C1 are 0 and 1, the data in the  
input register is used to program the RF2 AB counter. The AB  
counter is a 6-bit swallow counter (A counter) and an 11-bit  
programmable counter (B counter). Figure 29 shows the input  
register data format for programming the RF2 AB counter and  
the divide ratios that are possible.  
Rev. A | Page 18 of 24  
 
ADF4206/ADF4208  
RF2 Prescaler Value  
RF1 Charge Pump Currents  
P6 in the RF2 AB counter latch sets the RF2 prescaler value.  
See Figure 29.  
Bit P13 programs the current setting for the RF1 charge pump.  
See Figure 30.  
RF2 Power-Down  
Programmable RF1 AB Counter  
P7 in Figure 29 is the power-down bit for the RF2 side.  
If Control Bit C2 and Control Bit C1 are 1 and 1, then the data  
in the input register is used to program the RF1 AB counter.  
The AB counter is a 6-bit swallow counter (A counter) and  
11-bit programmable counter (B counter). Figure 31 shows the  
input register data format for programming the RF1 AB counter  
and the divide ratios that are possible.  
RF SECTION (RF1)  
Programmable RF1 Reference (R) Counter  
If Control Bit C2 and Control Bit C1 are 1 and 0, the data is  
transferred from the input shift register to the 14-bit RF1 R  
counter. Figure 30 shows the input shift register data format for  
the RF1 R counter and the divide ratios that are possible.  
RF1 Prescaler Value  
P14 in the RF1 A, B counter latch sets the RF1 prescaler value.  
See Figure 31.  
RF1 Phase Detector Polarity  
P9 sets the RF1 phase detector polarity. When the RF1 VCO  
characteristics are positive this is set to 1. When negative it is set  
to 0. See Figure 30.  
RF1 Power-Down  
Setting P16 in the RF1 AB counter high powers down RF1 side.  
RF Fast Lock  
RF1 Charge Pump Three-State  
The fast lock feature improves the lock time of the PLL. It  
increases charge pump current to a maximum for a time.  
Activate fast lock of the ADF420x family by setting P13 in the  
reference counter high and setting the fast lock switch on using  
MUXOUT. Switching in an external resistor using MUXOUT  
compensates the loop dynamics for the effect of increasing  
charge pump current. Setting P13 low removes the PLL from  
fast lock mode.  
P10 puts the RF1 charge pump into three-state mode when  
programmed to a 1. It is set to 0 for normal operation.  
See Figure 30.  
RF1 Program Modes  
Figure 28 and Figure 30 show how to set up the program modes  
in the ADF420x family.  
Rev. A | Page 19 of 24  
 
ADF4206/ADF4208  
APPLICATIONS SECTION  
To have a channel spacing of 200 kHz (the GSM standard),  
the reference input must be divided by 50 using the on-chip  
reference counter.  
LOCAL OSCILLATOR FOR GSM HANDSET  
RECEIVER  
Figure 33 shows the ADF4208 used in a classic superheterodyne  
receiver to provide the required local oscillators (LOs).  
The RF output frequency range is 1050 MHz to 1086 MHz. Loop  
filter component values are chosen so that the loop bandwidth is  
20 kHz. The synthesizer is set up for a charge pump current of  
4.375 mA and the VCO sensitivity is 15.6 MHz/V.  
In this circuit, the reference input signal is applied to the circuit  
at OSCIN and is generated by a 10 MHz crystal oscillator. This is  
a low cost solution. For better performance over temperature, a  
TCXO (temperature controlled crystal oscillator) can be used  
instead.  
The IF output is fixed at 125 MHz. The IF loop bandwidth is  
chosen to be 20 kHz with a channel spacing of 200 kHz. Loop  
filter component values are chosen accordingly.  
IF  
OUT  
V
V
V
RF  
P
P
DD  
OUT  
100pF  
100pF  
VCO190-1068U  
100pF  
V
V
CC  
CC  
18  
18Ω  
V
2
V
V
2
1
V 1  
P
VCO190-125T  
100pF  
DD  
3.3kΩ  
P
DD  
18Ω  
18Ω  
CP  
CP  
RF1  
RF2  
2.7kΩ  
18Ω  
18Ω  
1.3nF  
620pF  
13nF  
ADF4208  
MUXOUT  
LOCK DETECT  
100pF  
100pF  
RF2  
RF1  
IN  
IN  
51Ω  
OSC  
51Ω  
IN  
CLK  
DATA  
LE  
30pF  
30pF  
10MHz  
18kΩ  
OSC  
OUT  
DECOUPLING CAPACITORS (22µF/10pF) ON V , V OF  
DD  
P
THE ADF4208, AND ON V  
OF THE VCOs HAVE BEEN  
CC  
OMITTED FROM THE DIAGRAM TO AID CLARITY.  
Figure 32. GSM Handset Receiver Local Oscillator Using the ADF4208  
Rev. A | Page 20 of 24  
 
ADF4206/ADF4208  
200 kHz with a 20 kHz loop bandwidth. VCO sensitivity is  
32 MHz/V. A charge pump current of 4.375 mA is used and the  
desired phase margin for the loop is 45°.  
LOCAL OSCILLATOR FOR WCDMA RECEIVER  
Figure 33 shows the ADF4208 used to generate the local  
oscillator frequencies for a wideband CDMA (WCDMA)  
system.  
When the IF output is fixed at 200 MHz, the VCO190-200T is  
used. It has a sensitivity of 10 MHz/V. Channel spacing and  
loop bandwidth are chosen to be the same as the RF side.  
The required RF output range is 1720 MHz to 1780 MHz. The  
VCO190-1750T meets this requirement. Channel spacing is  
IF  
OUT  
V
V
V
RF  
P
P
DD  
OUT  
100pF  
100pF  
100pF  
V
V
CC  
CC  
18Ω  
18Ω  
18Ω  
V
2
V
V 2  
P
1
V 1  
P
VCO190-200T  
VCO190-1750T  
100pF  
DD  
DD  
18Ω  
3.3kΩ  
18Ω  
CP  
CP  
RF1  
RF2  
2.7k  
18Ω  
1.3nF  
620pF  
13nF  
ADF4208  
MUXOUT  
LOCK DETECT  
100pF  
100pF  
RF2  
RF1  
IN  
IN  
51Ω  
OSC  
51Ω  
IN  
CLK  
DATA  
LE  
30pF  
30pF  
10MHz  
18kΩ  
OSC  
OUT  
DECOUPLING CAPACITORS (22µF/10pF) ON V , V OF  
DD  
P
THE ADF4208, AND ON V  
OF THE VCOs HAVE BEEN  
CC  
OMITTED FROM THE DIAGRAM TO AID CLARITY.  
Figure 33. Local Oscillator for WCDMA Receiver Using the ADF4208  
Rev. A | Page 21 of 24  
 
 
 
ADF4206/ADF4208  
INTERFACING  
The ADF420x family has a simple SPI®-compatible serial inter-  
face for writing to the device. CLK, DATA, and LE control the  
data transfer. When LE goes high, the 22 bits clocked into the  
input register on each rising edge of CLK transfers to the  
appropriate latch. See Figure 2 for the timing diagram and  
Table 5 for the latch truth table.  
ADSP-2181 INTERFACE  
Figure 35 shows the interface between the ADF420x family and  
the ADSP-21xx digital signal processor. The ADF420x family  
needs a 22-bit serial word for each latch write. The easiest way  
to accomplish this using the ADSP21-xx family is to use the  
autobuffered transmit mode of operation with alternate  
framing. This provides a means for transmitting an entire block  
of serial data before an interrupt is generated. Set up the word  
length for eight bits and use three memory locations for each  
22-bit word. To program each 22-bit latch, store the three 8-bit  
bytes, enable the autobuffered mode and then write to the  
transmit register of the DSP. This last operation initiates the  
autobuffer transfer.  
The maximum allowable serial clock rate is 20 MHz. This  
means that the maximum update rate possible for the device is  
909 kHz or one update every 1.1 ms. This is more than adequate  
for systems that have typical lock times in hundreds of  
microseconds.  
ADuC812 INTERFACE  
Figure 34 shows the interface between the ADF420x family and  
the ADuC812 microconverter. Because the ADuC812 is based  
on an 8051 core, this interface can be used with any 8051-based  
microcontroller. The microconverter is set up for SPI master  
mode with CPHA = 0. To initiate the operation, the I/O port  
driving LE is brought low. Each latch of the ADF420x family  
needs a 22-bit word. This is accomplished by writing three 8-bit  
bytes from the microconverter to the device. When the third  
byte has been written, the LE input should be brought high to  
complete the transfer.  
SCLK  
DT  
CLK  
DATA  
ADF4206/  
ADF4208  
TFS  
LE  
ADSP-21xx  
MUXOUT  
(LOCK DETECT)  
I/O FLAG  
Figure 35. ADSP-21xx to ADF420x Family Interface  
On first applying power to the ADF420x family, it requires four  
writes (one each to the R counter latch and the AB counter latch  
for both RF1 and RF2 sides) for the output to become active.  
When operating in the mode described, the maximum  
SCLOCK rate of the ADuC812 is 4 MHz. This means that the  
maximum rate at which the output frequency can be changed  
will be about 180 kHz.  
SCLOCK  
MOSI  
CLK  
DATA  
ADF4206/  
ADF4208  
ADuC812  
LE  
I/O PORTS  
MUXOUT  
(LOCK DETECT)  
Figure 34. ADuC812 to ADF420x Family Interface  
Rev. A | Page 22 of 24  
 
 
 
ADF4206/ADF4208  
OUTLINE DIMENSIONS  
5.10  
5.00  
4.90  
16  
9
8
4.50  
4.40  
4.30  
6.40  
BSC  
1
PIN 1  
1.20  
MAX  
0.15  
0.05  
0.20  
0.09  
0.75  
0.60  
0.45  
8°  
0°  
0.30  
0.19  
0.65  
BSC  
SEATING  
PLANE  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-153-AB  
Figure 36. 16-Lead Thin Shrink Small Outline Package [TSSOP]  
(RU-16)  
Dimensions shown in millimeters  
6.60  
6.50  
6.40  
20  
11  
10  
4.50  
4.40  
4.30  
6.40 BSC  
1
PIN 1  
0.65  
BSC  
1.20 MAX  
0.15  
0.05  
0.20  
0.09  
0.75  
0.60  
0.45  
8°  
0°  
0.30  
0.19  
COPLANARITY  
0.10  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MO-153-AC  
Figure 37. 20-Lead Thin Shrink Small Outline Package [TSSOP]  
(RU-20)  
Dimensions shown in millimeters  
Rev. A | Page 23 of 24  
 
ADF4206/ADF4208  
ORDERING GUIDE  
Model  
ADF4206BRU  
ADF4206BRU-REEL  
ADF4206BRU-REEL7  
ADF4206BRUZ1  
ADF4206BRUZ-RL1  
ADF4206BRUZ-R71  
ADF4208BRU  
ADF4208BRU-REEL  
ADF4208BRU-REEL7  
ADF4208BRUZ1  
ADF4208BRUZ-RL1  
ADF4208BRUZ-R71  
EVAL-ADF4206-7EB1  
EVAL-ADF4208EB1  
Temperature Range  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
Package Description  
Package Option  
RU-16  
RU-16  
RU-16  
RU-16  
16-Lead Thin Shrink Small Outline Package [TSSOP]  
16-Lead Thin Shrink Small Outline Package [TSSOP]  
16-Lead Thin Shrink Small Outline Package [TSSOP]  
16-Lead Thin Shrink Small Outline Package [TSSOP]  
16-Lead Thin Shrink Small Outline Package [TSSOP]  
16-Lead Thin Shrink Small Outline Package [TSSOP]  
20-Lead Thin Shrink Small Outline Package [TSSOP]  
20-Lead Thin Shrink Small Outline Package [TSSOP]  
20-Lead Thin Shrink Small Outline Package [TSSOP]  
20-Lead Thin Shrink Small Outline Package [TSSOP]  
20-Lead Thin Shrink Small Outline Package [TSSOP]  
20-Lead Thin Shrink Small Outline Package [TSSOP]  
Evaluation Board  
RU-16  
RU-16  
RU-20  
RU-20  
RU-20  
RU-20  
RU-20  
RU-20  
Evaluation Board  
1 Z = Pb-free part.  
©2006 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D01036-0-2/06(A)  
Rev. A | Page 24 of 24  
 
 
 
 

相关型号:

ADF4208BRUZ-R7

Dual, Integer-N 1.1 GHz / 2.0 GHz PLL
ADI

ADF4208BRUZ-REEL

暂无描述
ADI

ADF4208BRUZ-RL

暂无描述
ADI

ADF4210

Dual RF/IF PLL Frequency Synthesizers
ADI

ADF4210BCHIPS

IC PHASE DETECTOR, 550 MHz, UUC, DIE, PLL or Frequency Synthesis Circuit
ADI

ADF4210BCP

Dual RF/IF PLL Frequency Synthesizers
ADI

ADF4210BCP-REEL

IC PLL FREQUENCY SYNTHESIZER, 1200 MHz, QCC20, CSP-20, PLL or Frequency Synthesis Circuit
ADI

ADF4210BCP-REEL7

IC PLL FREQUENCY SYNTHESIZER, 1200 MHz, QCC20, CSP-20, PLL or Frequency Synthesis Circuit
ADI

ADF4210BRU

Dual RF/IF PLL Frequency Synthesizers
ADI

ADF4210BRU-REEL

IC PLL FREQUENCY SYNTHESIZER, 1200 MHz, PDSO20, TSSOP-20, PLL or Frequency Synthesis Circuit
ADI

ADF4210BRU-REEL7

IC PLL FREQUENCY SYNTHESIZER, 1200 MHz, PDSO20, TSSOP-20, PLL or Frequency Synthesis Circuit
ADI

ADF4210_15

Dual RF/IF PLL Frequency Synthesizers
ADI