AD9261BCPZRL7-10 [ADI]

16-Bit, 10 MHz Bandwidth, 30 MSPS to 160 MSPS Continuous Time Sigma-Delta ADC;
AD9261BCPZRL7-10
型号: AD9261BCPZRL7-10
厂家: ADI    ADI
描述:

16-Bit, 10 MHz Bandwidth, 30 MSPS to 160 MSPS Continuous Time Sigma-Delta ADC

转换器
文件: 总29页 (文件大小:610K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
16-Bit, 10 MHz Bandwidth, 30 MSPS to  
160 MSPS Continuous Time Sigma-Delta ADC  
AD9261  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
AVDD  
DRVDD  
SNR: 83 dB (85 dBFS) to 10 MHz input  
SFDR: 87 dBc to 10 MHz input  
Noise figure: 15 dB  
OR  
VIN+  
VIN–  
D15  
SAMPLE  
RATE  
CONVERTER  
LOW-PASS  
Σ-Δ  
CMOS  
BUFFER  
DECIMATION  
FILTER  
MODULATOR  
Input impedance: 1 kΩ  
D0  
Power: 340 mW  
PLL_  
LOCKED  
1.8 V analog supply operation  
1.8 V to 3.3 V output supply  
Selectable bandwidth  
PHASE  
LOCKED  
LOOP  
CLK+  
CLK–  
AD9261  
VREF  
CFILT  
2.5 MHz/5 MHz/10 MHz  
SERIAL  
INTERFACE  
DCO  
Output data rate: 30 MSPS to 160 MSPS  
Integrated decimation filters  
Integrated sample rate converter  
On-chip PLL clock multiplier  
On-chip voltage reference  
AGND  
SDIO SCLK CSB DGND  
Figure 1.  
Offset binary, Gray code, or twos complement data format  
Serial control interface (SPI)  
APPLICATIONS  
Data acquisition  
Automated test equipment  
Instrumentation  
Medical imaging  
GENERAL DESCRIPTION  
The AD9261 is a single 16-bit analog-to-digital converter  
(ADC) based on a continuous time (CT) sigma-delta (Σ-Δ)  
architecture that achieves 87 dBc of dynamic range over a 10 MHz  
input bandwidth. The integrated features and characteristics  
unique to the continuous time Σ-Δ architecture significantly  
simplify its use and minimize the need for external components.  
The digital output data is presented in offset binary, Gray code,  
or twos complement format. A data clock output (DCO) is  
provided to ensure proper timing with the receiving logic.  
The AD9261 operates on a 1.8 V analog supply and a 1.8 V  
to 3.3 V digital supply, consuming 340 mW. The AD9261 is  
available in a 48-lead LFCSP and is specified over the industrial  
temperature range (−40°C to +85°C).  
The AD9261 has a resistive input impedance that relaxes the  
requirements of the driver amplifier. In addition, a 32× oversam-  
pled fifth-order continuous time loop filter significantly attenuates  
out-of-band signals and aliases, reducing the need for external  
filters at the input.  
PRODUCT HIGHLIGHTS  
1. Continuous time Σ-Δ architecture efficiently achieves high  
dynamic range and wide bandwidth.  
2. Passive input structure reduces or eliminates the require-  
ments for a driver amplifier.  
3. An oversampling ratio of 32× and high order loop filter  
provide excellent alias rejection reducing or eliminating the  
need for antialiasing filters.  
4. An integrated decimation filter, sample rate converter, PLL  
clock multiplier, and voltage reference provide ease of use.  
5. This part operates from a single 1.8 V analog power supply  
and 1.8 V to 3.3 V output supply.  
An external clock input or the integrated integer-N PLL provides  
the 640 MHz internal clock needed for the oversampled conti-  
nuous time Σ-Δ modulator. On-chip decimation filters and sample  
rate converters reduce the modulator data rate from 640 MSPS to a  
user-defined output data rate from 30 MSPS to 160 MSPS,  
enabling a more efficient and direct interface.  
Rev. 0  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2010 Analog Devices, Inc. All rights reserved.  
 
 
 
 
 
AD9261* PRODUCT PAGE QUICK LINKS  
Last Content Update: 09/27/2017  
COMPARABLE PARTS  
View a parametric search of comparable parts.  
REFERENCE MATERIALS  
Technical Articles  
MS-2210: Designing Power Supplies for High Speed ADC  
EVALUATION KITS  
AD9261 Evaluation Board  
Understanding Continuous-Time, Discrete-Time Sigma-  
Delta ADCs And Nyquist ADCs  
DESIGN RESOURCES  
AD9261 Material Declaration  
PCN-PDN Information  
Quality And Reliability  
Symbols and Footprints  
DOCUMENTATION  
Application Notes  
AN-1142: Techniques for High Speed ADC PCB Layout  
AN-282: Fundamentals of Sampled Data Systems  
AN-283: Sigma-Delta ADCs and DACs  
AN-807: Multicarrier WCDMA Feasibility  
AN-808: Multicarrier CDMA2000 Feasibility  
DISCUSSIONS  
View all AD9261 EngineerZone Discussions.  
AN-812: MicroController-Based Serial Port Interface (SPI)  
Boot Circuit  
SAMPLE AND BUY  
AN-835: Understanding High Speed ADC Testing and  
Evaluation  
Visit the product page to see pricing options.  
AN-878: High Speed ADC SPI Control Software  
TECHNICAL SUPPORT  
Submit a technical question or find your regional support  
number.  
AN-905: Visual Analog Converter Evaluation Tool Version  
1.0 User Manual  
Data Sheet  
AD9261: 16-Bit, 10 MHz Bandwidth, 30 MSPS to 160 MSPS  
Continuous Time Sigma-Delta ADC Preliminary Data  
Sheet  
DOCUMENT FEEDBACK  
Submit feedback for this data sheet.  
This page is dynamically generated by Analog Devices, Inc., and inserted into this data sheet. A dynamic change to the content on this page will not  
trigger a change to either the revision number or the content of the product data sheet. This dynamic page may be frequently modified.  
AD9261  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Typical Performance Characteristics ..............................................9  
Equivalent Circuits......................................................................... 13  
Theory of Operation ...................................................................... 14  
Analog Input Considerations ................................................... 14  
Clock Input Considerations...................................................... 16  
Power Dissipation and Standby Mode .................................... 18  
Digital Engine............................................................................. 19  
Digital Outputs ........................................................................... 21  
Timing ......................................................................................... 21  
Serial Port Interface (SPI).............................................................. 23  
Configuration Using the SPI..................................................... 23  
Hardware Interface..................................................................... 24  
Memory Map .................................................................................. 25  
Memory Map Definitions ......................................................... 25  
Outline Dimensions....................................................................... 27  
Ordering Guide .......................................................................... 27  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description......................................................................... 1  
Product Highlights ........................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
DC Specifications ......................................................................... 3  
AC Specifications.......................................................................... 4  
Digital Decimation Filtering Characteristics............................ 4  
Digital Specifications ................................................................... 5  
Switching Specifications .............................................................. 6  
Absolute Maximum Ratings............................................................ 7  
Thermal Resistance ...................................................................... 7  
ESD Caution.................................................................................. 7  
Pin Configuration and Function Descriptions............................. 8  
REVISION HISTORY  
4/10—Revision 0: Initial Version  
Rev. 0 | Page 2 of 28  
 
AD9261  
SPECIFICATIONS  
DC SPECIFICATIONS  
All power supplies set to 1.8 V, 640 MHz sample rate, 0.5 V internal reference, PLL disabled, 40 MSPS output data rate, AIN1 = −2.0 dBFS,  
unless otherwise noted.  
Table 1.  
Parameter  
Temp  
Min  
Typ  
Max  
Unit  
Bits  
RESOLUTION  
Full  
16  
ANALOG INPUT BANDWIDTH  
ACCURACY  
10  
MHz  
No Missing Codes  
Offset Error  
Gain Error  
Integral Nonlinearity (INL)2  
TEMPERATURE DRIFT  
Offset Error  
Full  
Full  
Full  
Full  
Guaranteed  
0.02  
0.ꢁ  
0.1ꢀ  
3.0  
% FSR  
% FSR  
LSB  
1.ꢀ  
Full  
Full  
1.ꢀ  
ꢀ0  
ppm/°C  
ppm/°C  
mV  
Gain Error  
INTERNAL VOLTAGE REFERENCE  
ANALOG INPUT  
Input Span, VREF = 0.ꢀ V  
Common-Mode Voltage  
Input Resistance  
POWER SUPPLIES  
Supply Voltage  
AVDD  
490  
1.ꢁ  
ꢀ00  
ꢀ10  
1.9  
Full  
Full  
Full  
2
1.8  
1
V p-p diff  
V
kΩ  
Full  
Full  
Full  
Full  
1.ꢁ  
1.ꢁ  
1.ꢁ  
1.ꢁ  
1.8  
1.8  
1.8  
1.8  
1.9  
1.9  
1.9  
3.6  
V
V
V
V
CVDD  
DVDD  
DRVDD  
Supply Current  
2
IAVDD  
Full  
Full  
Full  
Full  
Full  
Full  
ꢁ4  
ꢀꢁ  
8.0  
100  
ꢀ.ꢀ  
10  
83  
mA  
mA  
mA  
mA  
mA  
mA  
ICVDD2 PLL Enabled  
ICVDD2 PLL Disabled  
6ꢀ4  
8.8  
108  
ꢀ.8  
2
IDVDD  
IDRVDD2 (1.8 V)  
IDRVDD2 (3.3 V)  
POWER CONSUMPTION  
Sine Wave Input2 PLL Disabled  
Sine Wave Input2 PLL Enabled  
Power-Down Power  
Standby Power2  
Full  
Full  
Full  
Full  
Full  
340  
42ꢀ  
20  
3ꢁ0  
46ꢀ  
mW  
mW  
mW  
mW  
mW  
Sleep Power  
3
4
1 Input power is referenced to full scale. Therefore, all measurements were taken with a 2 dB signal below full scale, unless otherwise noted.  
2 Measured with a low input frequency, full-scale sine wave.  
Rev. 0 | Page 3 of 28  
 
 
 
 
AD9261  
AC SPECIFICATIONS  
All power supplies set to 1.8 V, 640 MHz sample rate, 0.5 V internal reference, PLL disabled, 40 MSPS output data rate, AIN = −2.0 dBFS,  
unless otherwise noted.  
Table 2.  
Parameter1  
Temp  
Min  
Typ  
Max  
Unit  
SIGNAL-TO-NOISE RATIO (SNR)  
fIN = 2.4 MHz  
fIN = 4.2 MHz  
Full  
2ꢀ°C  
2ꢀ°C  
81  
83  
83  
83  
dB  
dB  
dB  
fIN = 8.4 MHz  
EFFECTIVE NUMBER OF BITS (ENOB)  
fIN = 2.4 MHz  
fIN = 4.2 MHz  
2ꢀ°C  
2ꢀ°C  
2ꢀ°C  
13.ꢀ  
13.ꢀ  
13.ꢀ  
Bits  
Bits  
Bits  
fIN = 8.4 MHz  
SPURIOUS-FREE DYNAMIC RANGE (SFDR)  
fIN = 2.4 MHz  
fIN = 4.2 MHz  
Full  
2ꢀ°C  
2ꢀ°C  
8ꢁ  
8ꢁ  
<120  
80  
dBc  
dBc  
dBc  
fIN = 8.4 MHz  
NOISE SPECTRAL DENSITY (NSD)  
AIN= −2 dBFS  
AIN = −40 dBFS  
Full  
Full  
−1ꢀꢀ  
−1ꢀ6  
1ꢀ  
−1ꢀ3  
−1ꢀ4.ꢀ  
dB/Hz  
dB/Hz  
dB  
NOISE FIGURE2  
2ꢀ°C  
TWO-TONE SFDR  
fIN1 = 2.1 MHz at −8 dBFS, fIN2 = 2.4 MHz at −8 dBFS  
fIN1 = 3.6 MHz at −8 dBFS, fIN2 = 4.2 MHz at −8 dBFS  
fIN1 = ꢁ.2 MHz at −8 dBFS, fIN2 = 8.4 MHz at −8 dBFS  
ANALOG INPUT BANDWIDTH  
APERTURE JITTER  
2ꢀ°C  
2ꢀ°C  
2ꢀ°C  
2ꢀ°C  
2ꢀ°C  
93  
92.ꢀ  
92.ꢀ  
dBc  
dBc  
dBc  
10  
1
MHz  
ps rms  
1 See the AN-83ꢀ Application Note, Understanding High Speed ADC Testing and Evaluation, for a complete set of definitions.  
2 Noise figure with respect to ꢀ0 Ω. AD9261 internal impedance is 1000 Ω differential. See the AN-83ꢀ Application Note for a definition.  
DIGITAL DECIMATION FILTERING CHARACTERISTICS  
All power supplies set to 1.8 V, 640 MHz sample rate, 0.5 V internal reference, PLL disabled, AIN = −2.0 dBFS, unless otherwise noted.  
Table 3.  
2.5 MHz BW  
Typ  
5 MHZ BW  
Typ  
10 MHz BW  
Typ  
Parameter1  
Min  
Max  
Min  
Max  
Min  
Max  
Unit  
MHz  
dB  
MHz  
dB  
Pass-Band Transition  
Pass-Band Ripple  
Stop Band  
2.ꢀ  
3.ꢁꢀ  
6.ꢀ  
10  
13  
<0.1  
3.ꢁꢀ MHz − fS/2  
>8ꢀ  
<0.1  
6.ꢀ MHz − fS/2  
>8ꢀ  
<0.1  
13 MHz − fS/2  
>8ꢀ  
Stop Band Attenuation  
1 See the AN-83ꢀ Application Note, Understanding High Speed ADC Testing and Evaluation, for a complete set of definitions.  
Rev. 0 | Page 4 of 28  
 
 
 
AD9261  
DIGITAL SPECIFICATIONS  
All power supplies set to 1.8 V, 640 MHz sample rate, 0.5 V internal reference, PLL disabled, 40 MSPS output data rate, AIN = −2.0 dBFS,  
unless otherwise noted.  
Table 4.  
Parameter1  
Temp  
Min  
Typ  
Max  
Unit  
DIFFERENTIAL CLOCK INPUTS (CLK+, CLK−)  
Logic Compliance  
Differential Input Voltage  
Input Common-Mode Range  
High Level Input Current  
Low Level Input Current  
Input Resistance  
Input Capacitance  
CMOS/LVPECL  
2
Full  
Full  
Full  
Full  
Full  
Full  
0.4  
0.3  
−60  
−60  
0.8  
V p-p  
V
μA  
μA  
kΩ  
pF  
0.4ꢀ0  
0.ꢀ  
+60  
+60  
20  
1
LOGIC INPUTS (SCLK)  
High Level Input Voltage  
Low Level Input Voltage  
High Level Input Current  
Low Level Input Current  
Input Resistance  
Input Capacitance  
Full  
Full  
Full  
Full  
Full  
Full  
1.2  
0
−ꢀ0  
−10  
DRVDD + 0.3  
0.8  
−ꢁꢀ  
+10  
V
V
μA  
μA  
kΩ  
pF  
30  
2
LOGIC INPUTS (SDIO, CSB, RESET)  
High Level Input Voltage  
Low Level Input Voltage  
High Level Input Current  
Low Level Input Current  
Full  
Full  
Full  
Full  
Full  
Full  
1.2  
0
−10  
+40  
DRVDD + 0.3  
0.8  
+10  
V
V
μA  
μA  
kΩ  
pF  
+13ꢀ  
Input Resistance  
Input Capacitance  
26  
DIGITAL OUTPUTS  
DRVDD = 3.3 V  
High Level Output Voltage (VOH, IOH = ꢀ0 μA)  
High Level Output Voltage (VOH, IOH = 0.ꢀ mA)  
Low Level Output Voltage (VOL, IOL = 1.6 mA)  
Low Level Output Voltage (VOL, IOL = ꢀ0 μA)  
DRVDD = 1.8 V  
Full  
Full  
Full  
Full  
3.29  
3.2ꢀ  
V
V
V
V
0.2  
0.0ꢀ  
High Level Output Voltage (VOH, IOH = ꢀ0 μA)  
High Level Output Voltage (VOH, IOH = 0.ꢀ mA)  
Low Level Output Voltage (VOL, IOL = 1.6 mA)  
Low Level Output Voltage (VOL, IOL = ꢀ0 μA)  
Full  
Full  
Full  
Full  
1.ꢁ9  
1.ꢁꢀ  
V
V
V
V
0.2  
0.0ꢀ  
1 See the AN-83ꢀ Application Note, Understanding High Speed ADC Testing and Evaluation, for a complete set of definitions.  
Rev. 0 | Page ꢀ of 28  
 
AD9261  
SWITCHING SPECIFICATIONS  
All power supplies set to 1.8 V, 640 MHz sample rate, 0.5 V internal reference, PLL disabled, 40 MSPS output data rate, AIN = −2.0 dBFS,  
unless otherwise noted.  
Table 5.  
Parameter1  
Temp  
Min  
Typ  
Max  
Unit  
CLOCK INPUT (USING CLOCK MULTIPLIER)  
Conversion Rate  
Full  
Full  
Full  
30  
160  
33  
60  
MSPS  
ns  
%
CLK Period  
CLK Duty Cycle  
6.2ꢀ  
40  
ꢀ0  
CLOCK INPUT (DIRECT CLOCKING)  
Conversion Rate  
CLK Period  
Full  
Full  
Full  
608  
1.49  
40  
640  
1.ꢀ62ꢀ  
ꢀ0  
6ꢁ2  
1.64  
60  
MSPS  
ns  
%
CLK Duty Cycle  
DATA OUTPUT PARAMETERS  
Output Data Rate  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
20  
3
168  
MSPS  
ns  
Cycles  
2
DCO to Data Skew (tSKEW  
Sample Latency  
WAKE-UP TIME3  
Power Down Power  
Standby Power  
)
960  
3
9
1ꢀ  
960  
ꢂs  
ꢂs  
ꢂs  
Sleep Power  
OUT-OF-RANGE RECOVERY TIME  
SERIAL PORT INTERFACE4  
SCLK Period  
Cycles  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
40  
16  
16  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SCLK Pulse Width High Time (tSHIGH  
)
SCLK Pulse Width Low Time (tSLOW  
SDIO to SCLK Setup Time (tSDS  
SDIO to SCLK Hold Time (tSDH  
CSB to SCLK Setup Time (tSS)  
CSB to SCLK Hold Time (tSH)  
)
)
)
2
2
1 See the AN-83 ꢀ Application Note, Understanding High Speed ADC Testing and Evaluation, for a complete set of definitions.  
2 Data skew is measured from DCO ꢀ0% transition to data (D0 to D1ꢀ) ꢀ0% transition, with ꢀ pF load.  
3 Wake-up time is dependent on the value of the decoupling capacitors. Values are shown with 10 μF capacitor on VREF and CFILT.  
4 See Figure ꢀ0 and the Serial Port Interface (SPI) section.  
Timing Diagram  
DCO  
tSKEW  
D0 TO D15  
Figure 2. Timing Diagram  
Rev. 0 | Page 6 of 28  
 
 
AD9261  
ABSOLUTE MAXIMUM RATINGS  
THERMAL RESISTANCE  
Table 6.  
The exposed paddle must be soldered to the ground plane for  
the LFCSP package. Soldering the exposed paddle to the PCB  
increases the reliability of the solder joints, maximizing the  
thermal capability of the package.  
Parameter  
Rating  
Electrical  
AVDD to AGND  
DVDD to DGND  
DRVDD to DGND  
AGND to DGND  
AVDD to DRVDD  
CVDD to CGND  
CGND to DGND  
D0 to D1ꢀ to DGND  
DCO to DGND  
OR to DGND  
PDWN to GND  
PLLMULTx to DGND  
SDIO to DGND  
CSB to AGND  
−0.3 V to +2.0 V  
−0.3 V to +2.0 V  
−0.3 V to +3.9 V  
−0.3 V to +0.3 V  
−3.9 V to +2.0 V  
−0.3 V to +2.0 V  
−0.3 V to +0.3 V  
−0.3 V to +2.0 V  
−0.3 V to +2.0 V  
−0.3 V to +2.0 V  
−0.3 V to +2.0 V  
−0.3 V to +2.0 V  
−0.3 V to +3.9 V  
−0.3 V to +3.9 V  
−0.3 V to +3.9 V  
−0.3 V to +2.ꢀ V  
−0.3 V to +2.0 V  
Table 7. Thermal Resistance  
Package Type  
θJA  
θJB  
θJC  
Unit  
48-Lead LFCSP (CP-48-1)  
2ꢁ.ꢁ  
11.8  
1.1  
°C/W  
Typical θJA and θJC are specified for a 4-layer board in still air.  
Airflow increases heat dissipation, effectively reducing θJA. In  
addition, metal in direct contact with the package leads from  
metal traces, through holes, ground, and power planes reduces  
the θJA.  
ESD CAUTION  
SCLK to AGND  
VIN+, VIN− to AGND  
CLK+, CLK− to CGND  
Environmental  
Storage Temperature Range  
Operating Temperature Range  
−6ꢀ°C to +12ꢀ°C  
−40°C to +8ꢀ°C  
Lead Temperature (Soldering, 10 Sec) 300°C  
Junction Temperature 1ꢀ0°C  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Rev. 0 | Page ꢁ of 28  
 
 
 
AD9261  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
CLK–  
CVDD  
1
2
3
4
5
6
7
8
9
36 PLLMULT0/SCLK  
35 PLLMULT1/SDIO  
34 PLLMULT2  
PIN 1  
INDICATOR  
PDWN  
33 PLLMULT3  
DVDD  
DGND  
32 PLLMULT4  
AD9261  
DRVDD  
PLL_LOCKED  
DCO  
DVDD  
31  
30 DGND  
29 DRVDD  
28 OR  
TOP VIEW  
(Not to Scale)  
D0  
D1 10  
D2 11  
D3 12  
27 D15  
26 D14  
25 D13  
NOTES  
1. THE EXPOSED PAD MUST BE SOLDERED TO THE GROUND PLANE FOR  
THE LFCSP PACKAGE. SOLDERING THE EXPOSED PADDLE TO THE PCB  
INCREASES THE RELIABILITY OF THE SOLDER JOINTS, MAXIMIZING  
THE THERMAL CAPACITY OF THE PACKAGE.  
Figure 3. Pin Configuration  
Table 8. Pin Function Descriptions  
Pin No.  
Mnemonic  
Description  
1
CLK−  
Clock Input (−).  
2
CVDD  
Clock Supply (1.8 V).  
3
PDWN  
DVDD  
External Power-Down Pin.  
Digital Supply (1.8 V).  
4, 19, 31  
ꢀ, 18, 30  
DGND  
Digital Ground.  
6, 1ꢁ, 29  
8
DRVDD  
PLL_LOCKED  
DCO  
Digital Output Driver Supply (1.8 V to 3.3 V).  
PLL Lock Indicator.  
Data Clock Output.  
9 to 16, 20 to 2ꢁ  
28  
D0 to D1ꢀ  
OR  
Data Output Bits. D0 is the LSB and D1ꢀ is the MSB.  
Overrange Indicator.  
32, 33, 34  
PLLMULT4, PLLMULT3, PLLMULT2 PLL Mode Selection Pins.  
3ꢀ  
36  
3ꢁ  
38, 46  
39, 42, 4ꢀ  
40  
41  
43  
PLLMULT1/SDIO  
PLLMULT0/SCLK  
CSB  
AGND  
AVDD  
VREF  
CFILT  
VIN+  
PLL Mode Selection Pin/Serial Port Interface Data Input/Output.  
PLL Mode Selection Pin/Serial Port Interface Clock.  
Serial Port Interface Chip Select. Active low.  
Analog Ground.  
Analog Supply (1.8 V).  
Voltage Reference Input/Output.  
Noise Limiting Filter Capacitor.  
Analog Input (+).  
44  
VIN–  
Analog Input (−).  
4ꢁ  
CGND  
Clock Ground.  
48  
CLK+  
Clock Input (+).  
49  
EPAD  
Analog Ground. Pin 49 is the exposed thermal pad on the bottom of the package.  
Rev. 0 | Page 8 of 28  
 
AD9261  
TYPICAL PERFORMANCE CHARACTERISTICS  
All power supplies set to 1.8 V, 640 MHz sample rate, 2 V p-p differential input, 0.5 V internal reference, PLL disabled, AIN = −2.0 dBFS,  
TA = 25°C, unless otherwise noted.  
0
0
BANDWIDTH: 2.5MHz  
DATA RATE: 40MSPS  
BANDWIDTH: 2.5MHz  
DATA RATE: 40MSPS  
–20  
–20  
f
f
: 2.1MHz AT –8dBFS  
: 2.5MHz AT –8dBFS  
f
: 600kHz AT –2dBFS  
IN1  
IN2  
IN  
SNR: 88.8dB  
SFDR: 90dBc  
–40  
–40  
SFDR: 90.6dBc  
–60  
–60  
–80  
–80  
–100  
–120  
–140  
–160  
–100  
–120  
–140  
–160  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 6. Two-Tone FFT with fIN1 = 2.1 MHz, fIN2 = 2.5 MHz, and BW = 2.5 MHz  
Figure 4. Single-Tone FFT with fIN = 600 kHz and BW = 2.5 MHz  
0
0
BANDWIDTH: 5MHz  
DATA RATE: 40MSPS  
BANDWIDTH: 5MHz  
DATA RATE: 40MSPS  
–20  
–20  
f
f
: 2.1MHz AT –8dBFS  
: 2.4MHz AT –8dBFS  
f
: 1.2MHz AT –2dBFS  
IN1  
IN2  
IN  
SNR: 86dB  
SFDR: 90.3dBc  
–40  
–60  
–40  
–60  
SFDR: 91.9dBc  
–80  
–80  
–100  
–120  
–140  
–160  
–100  
–120  
–140  
–160  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 5. Single-Tone FFT with fIN = 1.2 MHz and BW = 5 MHz  
Figure 7. Two-Tone FFT with fIN1 = 2.1 MHz, fIN2 = 2.4 MHz and BW = 5 MHz  
Rev. 0 | Page 9 of 28  
 
AD9261  
All power supplies set to 1.8 V, 640 MHz sample rate, 2 V p-p differential input, 0.5 V internal reference, PLL disabled, AIN = −2.0 dBFS,  
10 MHz bandwidth, output data rate 40 MSPS, TA = 25°C, unless otherwise noted.  
0
0
BANDWIDTH: 10MHz  
DATA RATE: 40MSPS  
BANDWIDTH: 10MHz  
DATA RATE: 40MSPS  
–20  
–20  
f
: 2.4MHz AT –2dBFS  
f
f
: 2.1MHz AT –8dBFS  
: 2.4MHz AT –8dBFS  
IN  
IN1  
IN2  
SNR: 83.2dB  
SFDR: 92.6dBc  
–40  
–40  
SFDR: 91.2dBc  
–60  
–60  
–80  
–80  
–100  
–120  
–140  
–160  
–100  
–120  
–140  
–160  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 8. Single-Tone FFT with fIN = 2.4 MHz  
Figure 11. Two-Tone FFT with fIN1 = 2.1 MHz and fIN2 = 2.4 MHz  
0
–20  
0
BANDWIDTH: 10MHz  
DATA RATE: 40MSPS  
BANDWIDTH: 10MHz  
DATA RATE: 40MSPS  
–20  
f
f
: 3.6MHz AT –8dBFS  
: 4.2MHz AT –8dBFS  
f
: 4.2MHz AT –2dBFS  
IN1  
IN2  
IN  
SNR: 83.1dB  
SFDR: 91.5dBc  
–40  
–40  
–60  
SFDR: 92.2dBc  
–60  
–80  
–80  
–100  
–120  
–140  
–160  
–100  
–120  
–140  
–160  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 9. Single-Tone FFT with fIN = 4.2 MHz  
Figure 12. Two-Tone FFT with fIN1 = 3.6 MHz and fIN2 = 4.2 MHz  
0
–20  
0
BANDWIDTH: 10MHz  
DATA RATE: 40MSPS  
BANDWIDTH: 10MHz  
DATA RATE: 40MSPS  
–20  
f
: 8.4MHz AT –2dBFS  
f
f
: 7.2MHz AT –8dBFS  
: 8.4MHz AT –8dBFS  
IN  
IN1  
IN2  
SNR: 83dB  
SFDR: 105.7dBc  
–40  
–40  
–60  
SFDR: 93dBc  
–60  
–80  
–80  
–100  
–120  
–140  
–160  
–100  
–120  
–140  
–160  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 10. Single-Tone FFT with fIN = 8.4 MHz  
Figure 13. Two-Tone FFT with fIN1 = 7.2 MHz and fIN2 = 8.4 MHz  
Rev. 0 | Page 10 of 28  
AD9261  
110  
105  
100  
95  
120  
100  
80  
SFDR (dBFS)  
SNR (dBFS)  
60  
SFDR (dBc)  
SNR (dB)  
SFDR (dB)  
90  
40  
SNR (dB)  
85  
80  
20  
0
0
1
2
3
4
5
6
7
8
9
10  
–100 –90 –80 –70 –60 –50 –40 –30 –20 –10  
0
FREQUENCY (MHz)  
INPUT AMPLITUDE (dBFS)  
Figure 14. Single-Tone SNR and SFDR vs. Input Amplitude with fIN = 2.4 MHz  
Figure 17. SNR/SFDR vs. Input Frequency  
–40  
92  
91  
1.9V  
–50  
–60  
SFDR  
90  
89  
1.8V  
1.7V  
SFDR (dBc)  
–70  
88  
87  
86  
85  
84  
83  
82  
81  
–80  
–90  
SNR  
–100  
1.9V  
1.8V  
SFDR (dB)  
–110  
1.7V  
–120  
–60  
–50  
–40  
–30  
–20  
–10  
–60  
–40  
–20  
0
20  
40  
60  
80  
100  
INPUT AMPLITUDE (dBFS)  
TEMPERATURE (°C)  
Figure 18. SFDR/SNR vs. Temperature with fIN = 2.4 MHz  
Figure 15. Two-Tone SFDR/IMD3 vs. Input Amplitude  
with fIN1 = 2.1 MHz and fIN2 = 2.4 MHz  
94  
92  
84.0  
SFDR (dBc)  
83.8  
83.6  
83.4  
83.2  
83.0  
82.8  
82.6  
82.4  
82.2  
82.0  
90  
88  
86  
84  
82  
80  
SNR (dBc)  
20  
40  
60  
80  
100  
120  
140  
160  
1.700 1.725 1.750 1.775 1.800 1.825 1.850 1.875 1.900  
OUTPUT DATA RATE (MSPS)  
COMMON-MODE VOLTAGE (V)  
Figure 16: SNR/SFDR vs. Output Data Rate with fIN = 2.4 MHz  
Figure 19. SNR vs. Input Common Mode Voltage with fIN = 2.4 MHz  
Rev. 0 | Page 11 of 28  
AD9261  
1.0  
0.5  
84  
83  
82  
81  
2.4MHz  
8.4MHz  
0
–0.5  
–1.0  
–1.5  
–2.0  
80  
79  
78  
77  
0
8192 16,384 24,576 32,768 40,960 49,152 57,344 65,536  
OUTPUT CODE  
1
8
9
10 12 14 15 16 17 18 20 21 24 25 28 30 32 34 42  
PLL DIVIDE RATIO  
Figure 21. INL with fIN = 2.4 MHz  
Figure 20. Single-Tone SNR vs. PLL Divide Ratio  
Rev. 0 | Page 12 of 28  
 
AD9261  
EQUIVALENT CIRCUITS  
AVDD  
26k  
1kΩ  
CSB  
500  
2V p-p DIFFERENTIAL  
1.8V CM  
500Ω  
Figure 22. Equivalent Analog Input Circuit  
Figure 26. Equivalent CSB Input Circuit  
CVDD  
DRVDD  
CLK+  
CLK–  
10k  
90kΩ  
10kΩ  
30kΩ  
CVDD  
DRGND  
Figure 27. Equivalent Digital Output Circuit  
Figure 23. Equivalent Clock Input Circuit  
DRVDD  
2.85k  
8.5kΩ  
10kΩ  
0.5V  
1k  
SDIO  
3.5kΩ  
10µF  
TO CURRENT  
GENERATOR  
Figure 28. Equivalent VREF Circuit  
Figure 24. Equivalent SDIO Input Circuit  
1kΩ  
SCLK  
30kΩ  
Figure 25. Equivalent SCLK Input Circuit  
Rev. 0 | Page 13 of 28  
 
 
AD9261  
THEORY OF OPERATION  
DIGITAL FILTER CUTOFF FREQUENCY  
The AD9261 uses a continuous time Σ-Δ modulator to convert  
the analog input to a digital word. The digital word is processed  
by the decimation filter and rate-adjusted by the sample rate  
converter (see Figure 29). The modulator consists of a continuous  
fMOD/32  
fMOD/16  
time loop filter preceding a quantizer that samples at fMOD  
=
BAND OF INTEREST  
640 MSPS. This produces an oversampling ratio (OSR) of 32 for  
a 10 MHz input bandwidth. The output of the quantizer is fed  
back to a DAC that ideally cancels the input signal. The incom-  
plete input cancellation residue is filtered by the loop filter and  
is used to form the next quantizer sample.  
Figure 32. Digital Filter Cutoff Frequency  
MODULATOR  
fOUT/2  
BAND OF INTEREST  
fOUT  
fMOD/16  
DECIMATION SAMPLE RATE  
FILTER  
CONVERTER  
LOOP FILTER  
H(f)  
QUANTIZER  
ADC  
Figure 33. Sample Rate Converter  
+
SRC  
ANALOG INPUT CONSIDERATIONS  
The continuous time modulator removes the need for an anti-  
alias filter at the input to the AD9261. A discrete time converter  
aliases signals around the sample clock frequency and its multiples  
to the band of interest (see Figure 34). Therefore, an external  
antialias filter is needed to reject these signals.  
Figure 29. Σ-Δ Modulator Overview  
The quantizer produces a nine-level digital word. The quantization  
noise is spread uniformly over the Nyquist band (see Figure 30),  
but the feedback loop causes the quantization noise present in  
the nine-level output to have a nonuniform spectral shape. This  
noise-shaping technique (see Figure 31) pushes the in-band  
noise out of band; therefore, the amount of quantization noise  
in the frequency band of interest is minimal.  
DESIRED  
INPUT  
UNDESIRED  
SIGNAL  
fS  
fS/2  
ADC  
Figure 34. Discrete Time Converter  
The digital decimation filter that follows the modulator removes  
the large out-of-band quantization noise (see Figure 32), while  
also reducing the data rate from fMOD to fMOD/16. If the internal  
PLL is enabled, the sample rate converter generates samples at  
the same frequency as the input clock frequency. If the internal  
PLL is disabled, the sample rate converter can be programmed  
to give an output frequency that is a divide ratio of the modulator  
clock. The sample rate converter is designed to attenuate images  
outside the band of interest (see Figure 33).  
In contrast, the continuous time Σ-Δ modulator used within the  
AD9261 has inherent antialiasing. The antialiasing property  
results from sampling occurring at the output of the loop filter  
(see Figure 35), and thus aliasing occurs at the same point in the  
loop as quantization noise is injected; aliases are shaped by the  
same mechanism as quantization noise. The quantization noise  
transfer function, NTF(f), has zeros in the band of interest and in  
all alias bands because NTF(f) is a discrete time transfer function,  
whereas the loop filter transfer function, LF(f), is a continuous  
time transfer function, which introduces poles only in the band  
of interest. The signal transfer function, being the product of  
NTF(f) and LF(f), only has zeros in alias bands and therefore  
suppresses all aliases.  
QUANTIZATION NOISE  
fMOD/2  
BAND OF INTEREST  
LF(f)  
Figure 30. Quantization Noise  
LOOP FILTER  
INPUT  
LF(f)  
QUANTIZATION  
fMOD  
NOISE  
fMOD  
NOISE SHAPING  
OUTPUT  
H(z)  
fMOD/2  
NTF(f)  
BAND OF INTEREST  
Figure 31. Noise Shaping  
f
fMOD  
Figure 35. Continuous Time Converter  
Rev. 0 | Page 14 of 28  
 
 
 
 
 
 
 
 
 
AD9261  
Input Common Mode  
2V p-p  
VIN+  
VIN–  
50  
1:1  
The analog inputs of the AD9261 are not internally dc biased. In  
ac-coupled applications, the user must provide this bias externally.  
Setting the device such that VCM = AVDD is recommended for  
optimum performance. The analog inputs are 500 Ω resistors,  
and the internal reference loop aims to develop 0.5 V across  
each input resistor (see Figure 36). With 0 V differential input,  
the driver sources 1 mA into each analog input.  
R
T
V
AD9261  
S
50Ω  
SIGNAL  
SOURCE  
AVDD  
0.1µF  
Figure 38. Differential Transformer Configuration  
Voltage Reference  
AVDD – 0.5V  
A stable and accurate 0.5 V voltage reference is built into the  
AD9261. The reference voltage should be decoupled to minimize  
the noise bandwidth using a 10 μF capacitor. The reference is  
used to generate a bias current into a matched resistor such that,  
when used to bias the current in the feedback DAC, a voltage  
of AVDD − 0.5 V is developed at the internal side of the input  
resistors (see Figure 39). The current bias circuit should also be  
decoupled on the CFILT pin with a 10 μF capacitor. For this  
reason, the VREF voltage should always be 0.5 V.  
500  
VIN+  
V
V
= AVDD  
p-p = 2V  
TO LOOP FILTER  
STAGE 2  
CM  
IN  
VIN–  
500Ω  
DAC  
FROM QUANTIZER  
Figure 36. Input Common Mode  
Differential Input Configurations  
AVDD – 0.5V  
The AD9261 can also be configured for differential inputs. The  
ADA4937-1 differential driver provides excellent performance  
and a flexible interface to the ADC. The output common-mode  
voltage of the ADA4937-1 is easily set by connecting AVDD to  
the VOCM pin of the ADA4937-1 (see Figure 37). The noise and  
linearity of the ADA4937-1 needs important consideration because  
the system performance may be limited by the ADA4937-1.  
V
V
= AVDD  
p-p = 2V  
CM  
500Ω  
500Ω  
IN  
VIN+  
VIN–  
0.5V  
TO LOOP  
FILTER  
STAGE 2  
VREF  
10kΩ  
AVDD  
500Ω  
REF  
10µF  
AVDD – 0.5V  
+5V  
+1.8V  
0.1µF  
CFILT  
0.1µF  
10µF  
VIN–  
200Ω  
AVDD  
8
Figure 39. Voltage Reference Loop  
2V p-p  
50Ω  
200Ω  
2
9
3
11  
V
Internal Reference Connection  
OCM  
ADA4937-1  
AD9261  
V
R
T
60.4Ω  
S
To minimize thermal noise, the internal reference on the AD9261  
is an unbuffered 0.5 V. It has an internal 10 kΩ series resistor,  
which, when externally decoupled with a 10 μF capacitor, limits  
the noise (see Figure 40). The unbuffered reference should not  
be used to drive any external circuitry. The internal reference is  
used by default.  
10  
15  
SIGNAL  
SOURCE  
200Ω  
VIN+  
0.1µF  
49.9Ω  
0.1µF  
60.4Ω  
–5V  
Figure 37. Differential Input Configuration Using the ADA4937-1  
For frequencies offset from dc, where SNR is a key parameter,  
differential transformer coupling is the recommended input  
configuration. An example is shown in Figure 38. The center  
tap of the secondary winding of the transformer is connected to  
AVDD to bias the analog input.  
2.85kΩ  
8.5kΩ  
10kΩ  
0.5V  
3.5kΩ  
10µF  
The signal characteristics must be considered when selecting a  
transformer. Most RF transformers saturate at frequencies  
below a couple of megahertz (MHz), and excessive signal power  
can cause core saturation, which leads to distortion.  
TO CURRENT  
GENERATOR  
Figure 40. Internal Reference Configuration  
Rev. 0 | Page 1ꢀ of 28  
 
 
 
 
 
AD9261  
External Reference Operation  
In either case, using the on-chip clock multiplier to generate the  
Σ-Δ modulator clock rate or directly sourcing the clock, any  
deviation from 640 MHz results in a change in input bandwidth.  
The input range of the clock is limited to 640 MHz 5%.  
If an external reference is desired, the internal reference can be  
disabled by setting Register 0x18[6] high. Figure 41 shows an  
application using the ADR130B as a stable external reference.  
0.5V  
Direct Clocking  
ADR130B  
AVDD  
10k  
0.1µF  
10µF  
The default configuration of the AD9261 is for direct clocking  
where the PLL is bypassed. Figure 42 shows one preferred method  
for clocking the AD9261. A low jitter clock source is converted  
from a single-ended signal to a differential signal using an RF  
transformer. The back-to-back Schottky diodes across the  
secondary side of the transformer limits clock excursions into the  
AD9261 to approximately 0.8 V p-p differential. This helps  
prevent the large voltage swings of the clock from feeding  
through to other portions of the AD9261 while preserving the  
fast rise and fall times of the signal, which are critical to  
achieving low jitter.  
TO CURRENT  
GENERATOR  
Figure 41. External Reference Configuration  
CLOCK INPUT CONSIDERATIONS  
The AD9261 offers two modes of sourcing the ADC sample  
clock (CLK+ and CLK−). The first mode uses an on-chip clock  
multiplier that accepts a reference clock operating at the lower  
input frequency. The on-chip phase-locked loop (PLL) then  
multiplies the reference clock up to a higher frequency, which is  
then used to generate all the internal clocks required by the ADC  
®
MINI-CIRCUITS  
TC1-1-13M+, 1:1  
The clock multiplier provides a high quality clock that meets  
the performance requirements of most applications. Using the  
on-chip clock multiplier removes the burden of generating and  
distributing the high speed clock.  
0.1µF  
0.1µF  
0.1µF  
XFMR  
CLK+  
CLK–  
CLOCK  
INPUT  
ADC  
AD9261  
50Ω  
SCHOTTKY  
DIODES:  
HSM2812  
The second mode bypasses the clock multiplier circuitry and  
allows the clock to be directly sourced. This mode enables the  
user to source a very high quality clock directly to the Σ-Δ  
modulator. Sourcing the ADC clock directly may be necessary  
in demanding applications that require the lowest possible ADC  
output noise. Refer to Figure 20, which shows the degradation  
in SNR performance for the various PLL settings.  
0.1µF  
Figure 42. Transformer-Coupled Differential Clock  
If a differential clock is not available, the AD9261 can be driven  
by a single-ended signal into the CLK+ terminal with the CLK−  
terminal ac-coupled to ground. Figure 43 shows the circuit  
configuration.  
In either case, when using the on-chip clock multiplier or  
sourcing the high speed clock directly, it is necessary that the  
clock source have low jitter to maximize the ADC noise  
performance. High speed, high resolution ADCs are sensitive to  
the quality of the clock input. As jitter increases, the SNR  
performance of the AD9261 degrades from that specified in  
Table 2. The jitter inherent to the part due to the PLL root sum  
squares with any external clock jitter, thereby degrading  
performance. To prevent jitter from dominating the performance  
of the AD9261, the input clock source should be no greater than  
1 ps rms of jitter.  
0.1µF  
CLK+  
CLK–  
CLOCK  
INPUT  
ADC  
AD9261  
50Ω  
SCHOTTKY  
DIODES:  
HSM2812  
0.1µF  
Figure 43. Single-Ended Clock  
Another option is to ac couple a differential LVPECL signal to  
the sample clock input pins, as shown in Figure 44. The AD951x  
family of clock drivers is recommended because it offers excellent  
jitter performance.  
The CLK inputs are self-biased to 450 mV (see Figure 23); if  
dc-coupled, it is important to maintain the specified 450 mV  
input common-mode voltage. Each input pin can safely swing  
from 200 mV p-p to 1 V p-p single-ended about the 450 mV  
common-mode voltage. The recommended clock inputs are  
CMOS or LVPECL.  
0.1µF  
0.1µF  
CLK+  
CLK–  
CLOCK  
INPUT  
CLK  
ADC  
AD951x  
LVPECL  
DRIVER  
AD9261  
100Ω  
CLOCK  
INPUT  
CLK  
The specified clock rate of the Σ-Δ modulator, fMOD, is 640 MHz.  
The clock rate possesses a direct relationship with the available  
input bandwidth of the ADC.  
0.1µF  
0.1µF  
240Ω  
240Ω  
1
1
50Ω  
50Ω  
Bandwidth = fMOD ÷ 64  
1
50RESISTORS ARE OPTIONAL.  
Figure 44. Differential LVPECL Sample Clock  
Rev. 0 | Page 16 of 28  
 
 
 
 
 
AD9261  
Table 10. Internal PLL Multiplication Factors  
Internal PLL Clock Distribution  
0x0A[5:0]  
PLLMULT (N) 0x0A[5:0]  
PLLMULT (N)  
The alternative clocking option available on the AD9261 is to apply  
a low frequency reference clock and use the on-chip clock multip-  
lier to generate the high frequency fMOD rate. The internal clock  
architecture is shown in Figure 45.  
1
2
3
4
6
8
8
33  
34  
3ꢀ  
36  
3ꢁ  
38  
39  
40  
41  
42  
43  
44  
4ꢀ  
46  
4ꢁ  
48  
49  
ꢀ0  
ꢀ1  
ꢀ2  
ꢀ3  
ꢀ4  
ꢀꢀ  
ꢀ6  
ꢀꢁ  
ꢀ8  
ꢀ9  
60  
61  
62  
63  
64  
32  
34  
34  
34  
34  
34  
34  
34  
34  
42  
42  
42  
42  
42  
42  
42  
42  
42  
42  
42  
42  
42  
42  
42  
42  
42  
42  
42  
42  
42  
42  
42  
8
8
8
8
8
8
8
9
CLK+/CLK–  
PHASE  
DETECTOR  
LOOP  
FILTER  
1.28GHz  
VCO  
PLL  
÷2  
DIVIDER  
÷N  
9
10  
11  
12  
13  
14  
1ꢀ  
16  
1ꢁ  
18  
19  
20  
21  
22  
23  
24  
2ꢀ  
26  
2ꢁ  
28  
29  
30  
31  
32  
10  
10  
12  
12  
14  
1ꢀ  
16  
1ꢁ  
18  
18  
20  
21  
21  
21  
24  
2ꢀ  
2ꢀ  
2ꢀ  
28  
28  
30  
30  
32  
PLL MULT  
0x0A[5:0]  
MODULATOR  
CLOCK  
640MSPS  
PLLENABLE  
0x09[2]  
Figure 45. Internal Clock Architecture  
The clock multiplication circuit operates such that the VCO  
outputs a frequency, fVCO, equal to the reference clock input  
multiplied by N  
f
VCO = (CLK ) × (N)  
where N is the PLL multiplication (PLLMULT) factor.  
The Σ-Δ modulator clock frequency, fMOD, is equal to  
f
MOD = fVCO ÷ 2  
The reference clock, CLK , is limited to 30 MHz to 160 MHz  
when configured to use the on-chip clock multiplier. Given the  
input range of the reference clock and the available multiplication  
factors, the fVCO is approximately 1280 MHz. This results in the  
desired fMOD rate of 640 MHz with a 50% duty cycle.  
Before the PLL enable (PLLENABLE) register bit is set, the PLL  
multiplication factor should be programmed into Register  
0x0A[5:0]. After setting the PLLENABLE bit, the PLL locks and  
reports a locked state in Register 0x0A[7]. If the PLL multiplica-  
tion factor is changed, the PLL enable bit should be reset and set  
again. Some common clock multiplication factors are shown in  
Table 11.  
External PLL Control  
At power-up, the serial interface is disabled until the first serial  
port access. If the serial interface is disabled, the PLLMULTx  
pins control the PLL multiplication factor. The five PLLMULTx  
pins (Pin 32 to Pin 36) offer all the available multiplication  
factors. If all PLLMULTx pins are tied high, the PLL is disabled  
and the AD9261 assumes the high frequency modulator clock  
rate that is applied to the CLK pins. Table 12 shows the relation-  
ship between PLLMULTx pins and the PLL multiplication factor.  
The recommended sequence for enabling and programming the  
on-chip clock multiplier is summarized in Table 9.  
Table 9. Sequence for Enabling and Programming the PLL  
Step  
Procedure  
1
2
Apply a reference clock to the CLK pins.  
Program the PLL multiplication factor in  
Register 0x0A[ꢀ:0]. See Table 10.  
3
4
6
Enable the PLL; Register 0x09 = 04 (decimal).  
Enable the PLL autoband select.  
Initiate an SRC reset; Register 0x101[ꢀ:0] = 0.  
Set SRC to the desired value via Register 0x101[ꢀ:0].  
Rev. 0 | Page 1ꢁ of 28  
 
 
 
AD9261  
Jitter Considerations  
PLL Autoband Select  
The aperture jitter requirements for continuous time Σ-Δ conver-  
ters may be more forgiving than Nyquist rate converters. The  
continuous time Σ-Δ architecture is an oversampled system,  
and to accurately represent the analog input signal to the ADC,  
a large number of output samples must be averaged together. As a  
result, the jitter contribution from each sample is root sum  
squared, resulting in a more subtle impact on noise perfor-  
mance as compared to Nyquist converters where aperture jitter  
has a direct impact on each sampled output.  
The PLL VCO has a wide operating range that is covered by  
overlapping frequency bands. For any desired VCO output  
frequency, there are multiple valid PLL band select values. The  
AD9261 possesses an automatic PLL band select feature on chip  
that determines the optimal PLL band setting. This feature can be  
enabled by writing to Register 0x0A[6] and is the recommended  
configuration with the PLL clocking option. Follow the sequence  
shown in Table 9 for enabling the autoband select and configur-  
ing the PLL.  
In the block diagram of the continuous time Σ-Δ modulator  
(see Figure 29), the two building blocks most susceptible to  
jitter are the quantizer and the DAC. The error introduced  
through the sampling process or quantizer is reduced by the  
loop gain and shaped in the same way as the quantization noise  
and, therefore, its effect can be neglected. On the contrary, the  
jitter error associated to the DAC directly adds to the input  
signal, thus increasing the in-band noise power and degrading  
the modulator performance. The SNR degradation due to jitter  
can be represented by the following equation:  
When the device is taken out of sleep or standby mode, Register  
0x0A[6] must be toggled to reinitiate the autoband detect.  
Table 11. Common Modulator Clock Multiplication Factors  
CLK  
0x0A[5:0]  
fMOD  
BW  
(MHz)  
(PLLMULT)  
fVCO (MHz) (MHz)  
(MHz)  
42  
32  
2ꢀ  
21  
1ꢁ  
1ꢁ  
16  
1ꢀ  
14  
10  
10  
8
1290.24  
12ꢀ8.29  
1300.00  
1290.24  
130ꢀ.60  
1326.00  
12ꢀ8.29  
1344.00  
1290.24  
1228.80  
1344.00  
1228.80  
12ꢀ8.29  
64ꢀ.12  
629.1ꢀ  
6ꢀ0.00  
64ꢀ.12  
6ꢀ2.80  
663.00  
629.1ꢀ  
6ꢁ2.00  
64ꢀ.12  
614.40  
6ꢁ2.00  
614.40  
629.1ꢀ  
10.08  
9.83  
30.ꢁ2  
39.3216  
ꢀ2.00  
61.44  
ꢁ6.80  
ꢁ8.00  
ꢁ8.6432  
89.60  
10.16  
10.08  
10.20  
10.36  
9.83  
SNR = −20 log (2πfanalogtjitter_rms) dB  
where fanalog is the analog input frequency and tjitter_rms is the jitter.  
10.ꢀ0  
10.08  
9.60  
The SNR performance of the AD9261 remains constant within  
the input bandwidth of the converter, from dc to 10 MHz.  
Therefore, the minimal jitter specification is determined at the  
highest input frequency. From the calculation, the aperture  
jitter of the input clock must be no greater than 1 ps to achieve  
optimal SNR performance.  
92.16  
122.88  
134.40  
1ꢀ3.60  
1ꢀꢁ.2864  
10.ꢀ0  
9.60  
8
9.83  
POWER DISSIPATION AND STANDBY MODE  
Table 12. External PLLMULTx Pins and PLL Multiplication  
Factor  
The AD9261 power consumption can be further reduced by  
configuring the chip in channel power-down, standby, or sleep  
mode. The low power modes turn off internal blocks of the chip  
including the reference. As a result, the wake-up time is depen-  
dent on the amount of circuitry that is turned off. Fewer internal  
circuits that are powered down result in proportionally shorter  
wake-up time. The different low power modes are shown in  
Table 13. In the standby mode, all clock related activity and the  
output channels are disabled. Only the references and CMOS  
outputs remain powered up to ensure a short recovery and link  
integrity. During sleep mode, all internal circuits are powered  
down, putting the device into its lowest power mode, and the  
CMOS outputs are disabled.  
PLLMULTx[4:0] Pins  
PLL Multiplication Factors (N)  
0
8
1
9
2
10  
3
12  
4
14  
1ꢀ  
6
16  
1ꢁ  
8
18  
9
20  
10  
21  
11  
24  
If the serial port interface is not available, the AD9261 can be  
configured in power-down mode by connecting Pin 3 (PDWN)  
to AVDD.  
12  
2ꢀ  
13  
28  
14  
30  
1ꢀ  
32  
16  
34  
1ꢁ to 30  
31  
42  
Direct clocking  
Rev. 0 | Page 18 of 28  
 
 
 
AD9261  
Table 13. Low Power Modes  
Table 14. DEC4 Filter Coefficients  
Mode  
0x08[1:0] Analog Circuitry  
Clock Ref  
Coefficient  
Number  
Coefficient  
Coefficient Number  
Normal  
Power-Down  
Standby  
Sleep  
0x0  
0x1  
0x2  
0x3  
On  
Off  
Off  
Off  
On  
On  
Off  
Off  
On  
On  
On  
Off  
Coefficient  
1121  
0
−2ꢁ96  
0
10,184  
16,384  
C0, C22  
C1, C21  
C2, C20  
C3, C19  
C4, C18  
Cꢀ, C1ꢁ  
−21  
0
122  
0
−418  
0
C6, C16  
Cꢁ, C1ꢀ  
C8, C14  
C9, C13  
C10, C12  
C11  
DIGITAL ENGINE  
Bandwidth Selection  
The digital engine (see Figure 46) selects the decimation signal  
bandwidth by cascading third-order sinc (sinc3) decimate-by-2  
filters. For a 10 MHz signal band, no filters are cascaded; for a  
5 MHz signal band, a single filter is used; and for a 2.5 MHz  
signal band, the 5 MHz filter is cascaded with a second filter.  
Depending on the signal bandwidth, this drops the data rate  
into the fixed decimation filter. As a result, lower signal bandwidth  
options result in lower power. Bandwidth selection is determined  
by setting Register 0x0F[6:5].  
Table 15. LPF/EQZ Filter Coefficients  
Coefficient  
Number  
Coefficient  
Coefficient  
1ꢁ  
Number  
C16, C46  
C1ꢁ, C4ꢀ  
C18, C44  
C19, C43  
C20, C42  
C21, C41  
C22, C40  
C23, C39  
C24, C38  
C2ꢀ, C3ꢁ  
C26, C36  
C2ꢁ, C3ꢀ  
C28, C34  
C29, C33  
C30, C32  
C31  
Coefficient  
694  
−ꢁ44  
−6ꢁꢁ  
12ꢁ1  
4ꢀ0  
−1909  
103  
C0, C62  
C1, C61  
C2, C60  
C3, Cꢀ9  
C4, Cꢀ8  
Cꢀ, Cꢀꢁ  
C6, Cꢀ6  
Cꢁ, Cꢀꢀ  
C8, Cꢀ4  
C9, Cꢀ3  
C10, Cꢀ2  
C11, Cꢀ1  
C12, Cꢀ0  
C13, C49  
C14, C48  
C1ꢀ, C4ꢁ  
31  
−1ꢀ  
−ꢀ2  
36  
ꢁ8  
Decimation Filters  
−84  
−98  
1ꢁ0  
9ꢁ  
−291  
−42  
441  
−98  
−ꢀ92  
3ꢀ3  
A fixed frequency low-pass filter is used to define the signal  
band. This filter incorporates magnitude equalization for the  
droop of the preceding sinc decimation filters and the sinc  
filters of the sample rate converter. Table 14 and Table 15 detail  
the coefficients for the DEC4 and LPF/EQZ filters. The preceding  
sinc decimation filters are a standard sinc filter implementation.  
2612  
−114ꢁ  
−3326  
3022  
40ꢀ1  
−68ꢁ0  
−ꢀ30ꢀ  
21,141  
38,9ꢀ6  
BANDWIDTH SELECTION  
DECIMATION FILTERS  
10MHz  
5MHz  
10MHz  
5MHz  
DEC1  
4
DEC2  
4
DEC3  
DEC4  
HB  
LPF/EQZ  
FIR  
DEC01  
4
3
6
SINC  
2
2
SINC  
2
SINC  
2
SINC  
2
4
2
Σ-Δ  
OUTPUT  
2.5MHz  
2.5MHz  
DEC02  
3
INT1  
HB  
INT2  
HB  
INT3  
5
INT4  
SINC  
10MHz  
5MHz  
16  
DATA  
5
SINC  
8
2
2
2
SINC  
2.5MHz  
OUTPUT  
SAMPLE RATE CONVERTER  
NCO  
Figure 46. Digital Engine  
Rev. 0 | Page 19 of 28  
 
 
 
 
 
AD9261  
Sample Rate Converter  
Table 18. SRC Conversion Factors  
The sample rate converter (SRC) allows the flexibility of a user-  
defined output sample rate, enabling a more efficient and direct  
interface to the digital receiver blocks.  
0x101[5:0]  
KOUT  
0x101[5:0]  
KOUT  
11  
0x101[5:0]  
KOUT  
22  
0
SRC reset  
22  
23  
24  
2ꢀ  
26  
2ꢁ  
28  
29  
30  
31  
32  
33  
34  
3ꢀ  
36  
3ꢁ  
38  
39  
40  
41  
42  
43  
44  
4ꢀ  
46  
4ꢁ  
48  
49  
ꢀ0  
ꢀ1  
ꢀ2  
ꢀ3  
ꢀ4  
ꢀꢀ  
ꢀ6  
ꢀꢁ  
ꢀ8  
ꢀ9  
60  
61  
62  
63  
1
4
11.ꢀ  
12  
22.ꢀ  
23  
2
4
The sample rate converter performs an interpolation and  
resampling procedure to provide an output data rate of  
20 MSPS to 168 MSPS. Table 16 and Table 17 detail the coeffi-  
cients for the INT1 and INT2 filters. The sinc filters are a  
standard implementation.  
3
4
12.ꢀ  
13  
23.ꢀ  
24  
4
4
4
13.ꢀ  
14  
24.ꢀ  
2ꢀ  
6
4
4
14.ꢀ  
1ꢀ  
2ꢀ.ꢀ  
26  
8
4
Table 16. INT1 Filter Coefficients  
9
4.ꢀ  
1ꢀ.ꢀ  
16  
26.ꢀ  
2ꢁ  
Coefficient  
Number  
Coefficient  
Coefficient Number  
10  
11  
12  
13  
14  
1ꢀ  
16  
1ꢁ  
18  
19  
20  
21  
Coefficient  
ꢀ.ꢀ  
6
16.ꢀ  
1ꢁ  
2ꢁ.ꢀ  
28  
C0, C26  
C1, C2ꢀ  
C2, C24  
C3, C23  
C4, C22  
Cꢀ, C21  
C6, C20  
1ꢀ  
Cꢁ, C19  
C8, C18  
C9, C1ꢁ  
C10, C16  
C11, C1ꢀ  
C12, C14  
C13  
0
6.ꢀ  
1ꢁ.ꢀ  
18  
28.ꢀ  
29  
0
−9ꢁ  
0
24ꢀ0  
0
ꢁ.ꢀ  
8
18.ꢀ  
19  
29.ꢀ  
30  
−ꢀꢁ61  
0
361  
0
8.ꢀ  
9
19.ꢀ  
20  
30.ꢀ  
31  
20433  
32ꢁ68  
−101ꢁ  
9.ꢀ  
10  
10.ꢀ  
20.ꢀ  
21  
31.ꢀ  
21.ꢀ  
Table 17. INT2 Filter Coefficients  
Cascaded Filter Responses  
The cascaded filter responses for the three signal bandwidth  
settings are for a 160 MSPS output data rate, as shown in Figure 47,  
Figure 48, and Figure 49.  
Coefficient  
Number  
Coefficient  
Coefficient Number  
Coefficient  
−1032  
0
4928  
8192  
C0, C14  
C1, C13  
C2, C12  
C3, C11  
−2ꢁ  
0
C4, C10  
Cꢀ, C9  
C6, C8  
Cꢁ  
22ꢁ  
0
0
0.08  
–20  
0.04  
The relationship between the output sample rate and the Σ-Δ  
modulator clock rate is expressed as follows:  
–40  
0
–60  
–0.04  
f
OUT = fMOD ÷ KOUT  
–0.08  
–80  
Table 18 shows the available KOUT conversion factors.  
0
2
4
6
8
10  
FREQUENCY (MHz)  
–100  
–120  
–140  
–160  
If the main clocking source of the AD9261 is provided by the  
PLL, it is important that once the PLL has been programmed  
and locked, to initiate an SRC reset before programming the  
desired KOUT factor. This is done by first writing 0x101[5:0] = 0  
and then rewriting to the same register with the appropriate  
0
10  
20  
30  
40  
50  
60  
70  
80  
K
OUT value. In addition, if the AD9261 loses its clock source and  
FREQUENCY (MHz)  
then later regains it, an SRC reset should be initiated.  
Figure 47. 10 MHz Signal Bandwidth, 160 MSPS  
Rev. 0 | Page 20 of 28  
 
 
 
 
AD9261  
0
–20  
an overrange condition typically extends well beyond one clock  
cycle—that is, it does not toggle at the DCO rate—data can  
usually be successfully detected on the rising edge of DCO or  
monitored asynchronously.  
0.08  
0.04  
0
–40  
–60  
–0.04  
–0.08  
The AD9261 has two trip points that can trigger an overrange  
condition: analog and digital. The analog trip point is located  
in the modulator, and the second trip point is in the digital  
engine. In normal operation, it is possible for the analog trip  
point to toggle the OR pin for a number of clock cycles as the  
analog input approaches full scale. Because the OR pin is a pulse-  
width modulated (PWM) signal, as the analog input increases  
in amplitude, the duration of overrange pin toggling increases.  
Eventually, when the OR pin is high for an extended period of  
time, the ADC is overloaded, and there is little correspondence  
between analog input and digital output.  
–80  
0
1
2
3
4
5
FREQUENCY (MHz)  
–100  
–120  
–140  
–160  
0
10  
20  
30  
40  
50  
60  
70  
80  
FREQUENCY (MHz)  
Figure 48. 5 MHz Signal Bandwidth, 160 MSPS  
0
–20  
0.08  
0.04  
0
The second trip point is in the digital block. If the input signal  
is large enough to cause the data bits to clip to the maximum  
full-scale level, an overrange condition occurs. The overrange  
trip point can be adjusted by specifying a threshold level.  
–40  
–60  
–0.04  
–0.08  
–80  
Table 19 shows the corresponding threshold level in dBFS vs.  
register setting. If the input signal crosses this level, the OR pin  
is set. In the case where 0x111[5:0] is set to all 0s, the threshold  
level is set to the maximum code of 32,76710. This feature  
provides a means of reporting the instantaneous amplitude as it  
crosses a user-provided threshold. This gives the user a sense  
for the signal level without needing to perform a full power  
measurement.  
0.5  
1.5  
2.5  
FREQUENCY (MHz)  
–100  
–120  
–140  
–160  
0
10  
20  
30  
40  
50  
60  
70  
80  
FREQUENCY (MHz)  
Figure 49. 2.5 MHz Signal Bandwidth, 160 MSPS  
The user has the ability to select how the overrange conditions  
are reported, and this is controlled through Register 0x111 via  
AUTORST, OR_IND, and ORTHRESH (see Table 20). By  
enabling the AUTORST bit, Register 0x111[7], if an overrange  
occurs, the ADC automatically resets itself. The OR pin remains  
high until the automatic reset has completed. If an analog trip  
occurs, the modulator resets itself after 16 consecutive clock  
cycles of overrange.  
DIGITAL OUTPUTS  
Digital Output Format  
The AD9261 offers a variety of digital output formats for ease of  
system integration. The digital output consists of 16 data bits and  
an output clock signal (DCO) for data latching. The data bits can  
be configured for offset binary, twos complement, or Gray code  
by writing to Register 0x14[1:0]. In addition, the voltage swing of  
the digital outputs can be configured to 3.3 V TTL levels or a  
reduced voltage swing of 1.8 V by accessing Register 0x14[7].  
When 3.3 V voltage levels are desirable, the DRVDD power  
supply must be set to 3.3 V.  
If the AD9261 is used in a system that incorporates automatic  
gain control (AGC), the OR signal can be used to indicate that  
the signal amplitude should be reduced. This may be particularly  
effective for use in maximizing the signal dynamic range if the  
signal includes high occurrence components that occasionally  
exceed full scale by a small amount.  
Overrange (OR) Condition  
The OR pin serves as an indicator for an overrange condition. The  
OR pin is triggered by in-band signals that exceed the full-scale  
range of the ADC. In addition, the AD9261 possesses out-of-  
band gain above 10 MHz; therefore, a large out-of-band signal  
may trip an overrange condition.  
TIMING  
The AD9261 provides a data clock out (DCO) pin to assist  
in capturing the data in an external register. The data outputs  
are valid on the rising edge of DCO, unless changed by setting  
Register 0x16[7]. See Figure 2 for a graphical timing description.  
The OR pin is a synchronous output that is updated at the out-  
put data rate. Ideally, OR should be latched on the falling edge of  
DCO to ensure proper setup-and-hold time. However, because  
Rev. 0 | Page 21 of 28  
 
 
 
 
AD9261  
Table 19. OR Threshold Levels  
0x111[5:0]  
Threshold (dBFS)  
0x111[5:0]  
16  
Threshold (dBFS)  
−9.28  
0x111[5:0]  
2B  
Threshold (dBFS)  
−3.4ꢀ  
1
−36.12  
−30.10  
−26.ꢀ8  
−24.08  
−22.14  
−20.ꢀ6  
−19.22  
−18.06  
−1ꢁ.04  
−16.12  
−1ꢀ.29  
−14.ꢀ4  
−13.84  
−13.20  
−12.60  
−12.04  
−11.ꢀ1  
−11.02  
−10.ꢀ6  
−10.10  
−9.68  
2
3
4
6
8
9
A
B
C
D
E
1ꢁ  
18  
19  
1A  
1B  
1C  
1D  
1E  
1F  
20  
21  
22  
23  
24  
2ꢀ  
26  
2ꢁ  
28  
−8.89  
−8.ꢀ2  
−8.16  
−ꢁ.82  
−ꢁ.ꢀ0  
−ꢁ.18  
−6.88  
−6.ꢀ8  
−6.30  
−6.02  
−ꢀ.ꢁꢀ  
−ꢀ.49  
−ꢀ.24  
−ꢀ.00  
−4.ꢁ6  
−4.ꢀ3  
2C  
2D  
2E  
2F  
30  
31  
32  
33  
34  
3ꢀ  
36  
3ꢁ  
38  
39  
3A  
3B  
3C  
3D  
3E  
−3.2ꢀ  
−3.06  
−2.8ꢁ  
−2.68  
−2.ꢀ0  
−2.32  
−2.14  
−1.9ꢁ  
−1.80  
−1.64  
−1.48  
−1.32  
−1.16  
−1.00  
−0.86  
−0.ꢁ1  
F
10  
11  
12  
13  
14  
1ꢀ  
−4.30  
−4.08  
−3.8ꢁ  
−3.66  
−0.ꢀ6  
−0.42  
−0.28  
−0.14  
29  
2A  
3F  
Table 20. OR Conditions  
OR Conditions  
AUTORST OR_IND ORTHRESH[5:0] ORTHRESH[4:0] Description  
Normal, Reset Off  
0
0
0
0
0
00000  
Digital trip: if 16-bit output > 32,ꢁ6ꢁ, OR = 1, else OR = 0  
Digital Threshold,  
Reset Off  
>0  
Digital threshold: If 16-bit output > ORTHRESH, OR = 1,  
else OR = 0  
Full Overrange,  
Reset Off  
0
1
0
X1  
If analog trip or digital trip, OR = 1, else OR = 0  
Data Valid, No Reset  
Normal, Reset On  
0
1
1
1
0
0
1
0
X1  
If analog trip or digital trip or calibration, OR = 0, else OR = 1  
Digital trip: if 16-bit output > 32,ꢁ6ꢁ, OR = 1, else OR = 0  
00000  
Digital Threshold,  
Reset On  
>0  
Digital threshold: if 16-bit output > ORTHRESH, OR = 1,  
else OR = 0  
Full Overrange,  
Reset On  
1
1
1
1
0
1
X1  
X1  
If analog trip or digital trip, OR = 1, else OR = 0  
Data Valid,  
Reset On  
If analog trip or digital trip or calibration, OR = 0 else OR = 1  
1 X = don’t care.  
Rev. 0 | Page 22 of 28  
 
 
AD9261  
SERIAL PORT INTERFACE (SPI)  
During an instruction phase, a 16-bit instruction is transmitted.  
Data follows the instruction phase and the length is determined  
by the W0 bit and the W1 bit. All data is composed of 8-bit words.  
The first bit of each individual byte of serial data indicates whether  
a read or write command is issued. This allows the serial data  
input/output (SDIO) pin to change direction from an input to  
an output.  
The AD9261 serial port interface (SPI) allows the user to configure  
the converter for specific functions or operations through a  
structured register space provided inside the ADC. This provides  
the user added flexibility and customization depending on the  
application. Addresses are accessed via the serial port and can  
be written to or read from via the port. Memory is organized  
into bytes that are further divided into fields, as documented in  
the Memory Map section. For detailed operational information,  
see the AN-877 Application Note, Interfacing to High Speed  
ADCs via SPI.  
In addition to word length, the instruction phase determines if  
the serial frame is a read or write operation, allowing the serial  
port to be used to both program the chip as well as to read the  
contents of the on-chip memory. If the instruction is a readback  
operation, performing a readback causes the serial data input/  
output (SDIO) pin to change direction from an input to an output  
at the appropriate point in the serial frame.  
CONFIGURATION USING THE SPI  
As summarized in Table 21, three pins define the SPI of this ADC.  
The SCLK pin synchronizes the read and write data presented  
to the ADC. The SDIO pin allows data to be sent and read from  
the internal ADC memory map registers. The CSB pin is an active  
low control that enables or disables the read and write cycles.  
Data can be sent in MSB-first or in LSB-first mode. MSB first is  
the default setting on power-up and can be changed via the  
configuration register. For more information, see the AN-877  
Application Note, Interfacing to High Speed ADCs via SPI.  
Table 21. Serial Port Interface Pins  
Pin Name  
SCLK  
Description  
Table 22. SPI Timing Diagram Specifications  
Parameter Description  
SCLK (serial clock) is the serial shift clock. SCLK  
synchronizes serial interface reads and writes.  
SDIO (serial data input/output) is an input and  
output depending on the instruction being sent  
and the relative position in the timing frame.  
CSB (chip select bar) is an active low control that  
gates the read and write cycles.  
tSDS  
tSDH  
tSCLK  
tSS  
Setup time between data and rising edge of SCLK  
Hold time between data and rising edge of SCLK  
Period of the clock  
Setup time between CSB and SCLK  
Hold time between CSB and SCLK  
SDIO  
CSB  
tSH  
The falling edge of CSB in conjunction with the rising edge of  
SCLK determines the start of the framing. Figure 50 and Table 22  
provide an example of the serial timing and its definitions.  
tSHIGH  
Minimum period that SCLK should be in a logic  
high state  
Minimum period that SCLK should be in a logic  
low state  
tSLOW  
Other modes involving CSB are available. CSB can be held low  
indefinitely to permanently enable the device (this is called  
streaming). CSB can stall high between bytes to allow for addi-  
tional external timing. When CSB is tied high, SPI functions are  
placed in a high impedance mode.  
tSDS  
tSHIGH  
tSCLK  
tSH  
tSS  
tSDH  
tSLOW  
CSB  
SCLK DON’T CARE  
SDIO DON’T CARE  
DON’T CARE  
R/W  
W1  
W0  
A12  
A11  
A10  
A9  
A8  
A7  
D5  
D4  
D3  
D2  
D1  
D0  
DON’T CARE  
Figure 50. Serial Port Interface Timing Diagram  
Rev. 0 | Page 23 of 28  
 
 
 
 
 
AD9261  
HARDWARE INTERFACE  
The pins described in Table 21 comprise the physical interface  
between the programming device of the user and the serial port  
of the AD9261. The SCLK and CSB pins function as inputs  
when using the SPI interface. The SDIO pin is bidirectional,  
functioning as an input during write phases and as an output  
during readback.  
such method is described in detail in the AN-812 Application  
Note, MicroController-Based Serial Port Interface (SPI) Boot  
Circuit.  
When the SPI interface is not used, some pins serve a dual  
function. When strapped to AVDD or ground during device  
power-on, the pins are associated with a specific function.  
The SPI interface is flexible enough to be controlled by either  
PROM or PIC microcontrollers. This provides the user with the  
ability to use an alternate method to program the ADC. One  
Rev. 0 | Page 24 of 28  
 
AD9261  
MEMORY MAP  
Table 23. Memory Map  
Register Name  
SPI Port Config  
Chip ID  
Address  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0x00  
0x01  
0x02  
0x08  
0x09  
0x0A  
0x0F  
0x14  
0x1ꢀ  
0x16  
0x18  
0x101  
0x111  
0
LSBFIRST  
SOFTRESET  
1
1
SOFTRESET  
LSBFIRST  
0
CHIPID[ꢁ:0]  
CHILDID[2:0]  
Chip Grade  
Power Modes  
PLLENABLE  
PLL  
PWRDWN[1:0]  
PLLENABLE  
PLLLOCKED  
DRVSTD  
PLLAUTO  
PLLMULT[ꢀ:0]  
Analog Input  
Output Modes  
Output Adjust  
Output Clock  
Reference  
BW[1:0]  
Interleave  
OUTENB  
OUTINV  
Format[1:0]  
DRVSTR33[1:0]  
DRVSTR18[1:0]  
DCOINV  
EXTREF  
OR_IND  
Output Data  
Overrange  
KOUT[ꢀ:0]  
AUTORST  
ORTHRESH[ꢀ:0]  
MEMORY MAP DEFINITIONS  
Table 24. Memory Map Definitions  
Register  
Address  
Bit(s)  
Mnemonic  
Default  
Description  
SPI Port Config  
0x00  
6, 1  
LSBFIRST  
0
0: serial interface uses MSB first format  
1: serial interface uses LSB first format  
ꢀ, 2  
SOFTRESET  
CHIPID  
0
1: default all serial registers except 0x00, 0x09, and 0x0A  
0x26: AD9261  
Chip ID  
0x01  
0x02  
0x08  
[ꢁ:0]  
[ꢀ:4]  
[1:0]  
0x26  
Chip Grade  
Power Modes  
CHILDID  
PWRDWN  
0
0
0x00: 10 MHz bandwidth  
0x0: normal operation  
0x1: power-down (local)  
0x2: standby (everything except reference circuits)  
0x3: sleep  
PLLENABLE  
PLL  
0x09  
0x0A  
2
PLLENABLE  
PLLLOCKED  
0
0
1: enable PLL  
0: PLL is not locked  
1: PLL is locked  
6
[ꢀ:0]  
[6:ꢀ]  
PLLAUTO  
PLLMULT  
BW  
0
0
0
1: PLL autoband enabled  
See Table 10  
Analog Input  
0x0F  
0x14  
0x0: 10 MHz  
0x1: ꢀ MHz  
0x2: 2.ꢀ MHz  
0x3: 10 MHz  
Output Modes  
DRVSTD  
0
0: 3.3 V  
1: 1.8 V  
4
2
[1:0]  
Interleave  
OUTENB  
OUTINV  
Format  
0
0
0
0
1: interleave both channels onto D[1ꢀ:0]  
1: data outputs tristated  
1: data outputs bitwise inverted  
0: offset binary  
1: twos complement  
2: Gray code  
3: offset binary  
Rev. 0 | Page 2ꢀ of 28  
 
 
AD9261  
Register  
Address  
Bit(s)  
Mnemonic  
Default  
Description  
Output Adjust  
0x1ꢀ  
[3:2]  
DRVSTR33  
0
Typical output sink current to DGND  
0: 33 mA  
1: 63 mA  
2: 93 mA  
3: 120 mA  
[1:0]  
DRVSTR18  
2
Typical output sink current to DGND  
0: 10 mA  
1: 20 mA  
2: 30 mA  
3: 39 mA  
Output Clock  
Reference  
0x16  
DCOINV  
EXTREF  
KOUT  
0
0
0
0
0
0
1: invert DCO  
0x18  
6
1: use external reference  
Output data rate, see Table 18  
1: enable loop filter reset indicator on OR pin  
See Table 20  
Output Data  
Overrange  
0x101  
0x111  
[ꢀ:0]  
6
AUTORST  
OR_IND  
ORTHRESH  
[ꢀ:0]  
See Table 19  
Rev. 0 | Page 26 of 28  
AD9261  
OUTLINE DIMENSIONS  
0.30  
0.23  
0.18  
7.00  
BSC SQ  
0.60 MAX  
0.60 MAX  
PIN 1  
INDICATOR  
37  
36  
48  
1
PIN 1  
INDICATOR  
EXPOSED  
5.25  
5.10 SQ  
4.95  
TOP  
VIEW  
6.75  
BSC SQ  
PAD  
(BOTTOM VIEW)  
0.50  
0.40  
0.30  
25  
24  
12  
13  
0.25 MIN  
5.50  
REF  
0.80 MAX  
0.65 TYP  
1.00  
0.85  
0.80  
12° MAX  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.05 MAX  
0.02 NOM  
COPLANARITY  
0.08  
0.50 BSC  
SECTION OF THIS DATA SHEET.  
0.20 REF  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MO-220-VKKD-2  
Figure 51. 48-Lead Frame Chip Scale Package [LFCSP_VQ]  
7 mm × 7 mm Body, Very Thin Quad (CP-48-1)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
Temperature Range  
−40°C to +8ꢀ°C  
−40°C to +8ꢀ°C  
Package Description  
Package Option  
AD9261BCPZ-10  
AD9261BCPZRLꢁ-10  
AD9261-10EBZ  
48-Lead Lead Frame Chip Scale Package (LFCSP_VQ)  
48-Lead Lead Frame Chip Scale Package (LFCSP_VQ)  
Evaluation Board  
CP-48-1  
CP-48-1  
1 Z = RoHS Compliant Part.  
Rev. 0 | Page 2ꢁ of 28  
 
 
AD9261  
NOTES  
©2010 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D07803-0-4/10(0)  
Rev. 0 | Page 28 of 28  

相关型号:

AD9262

30 MSPS to 160 MSPS Dual Continuous Time Sigma-Delta ADC
ADI

AD9262-10EBZ

30 MSPS to 160 MSPS Dual Continuous Time Sigma-Delta ADC
ADI

AD9262-5EBZ

30 MSPS to 160 MSPS Dual Continuous Time Sigma-Delta ADC
ADI

AD9262BCPZ

2-CH 16-BIT DELTA-SIGMA ADC, PARALLEL ACCESS, QCC64, 9 X 9 MM, ROHS COMPLIANT, MO-220VMMD-4, LFCSP-64
ROCHESTER

AD9262BCPZ

16-Bit, 2.5 MHz/5 MHz/10 MHz, 30 MSPS to 160 MSPS Dual Continuous Time Sigma-Delta ADC
ADI

AD9262BCPZ-10

30 MSPS to 160 MSPS Dual Continuous Time Sigma-Delta ADC
ADI

AD9262BCPZ-5

30 MSPS to 160 MSPS Dual Continuous Time Sigma-Delta ADC
ADI

AD9262EBZ

30 MSPS to 160 MSPS Dual Continuous Time Sigma-Delta ADC
ADI

AD9262_17

30 MSPS to 160 MSPS Dual Continuous Time Sigma-Delta ADC
ADI

AD9265

16-Bit, 125 MSPS/105 MSPS/80 MSPS 1.8 V Analog-to-Digital Converter
ADI

AD9265-105EBZ

16-Bit, 125 MSPS/105 MSPS/80 MSPS 1.8 V Analog-to-Digital Converter
ADI

AD9265-125EBZ

16-Bit, 125 MSPS/105 MSPS/80 MSPS 1.8 V Analog-to-Digital Converter
ADI