AD9262BCPZ [ADI]

16-Bit, 2.5 MHz/5 MHz/10 MHz, 30 MSPS to 160 MSPS Dual Continuous Time Sigma-Delta ADC;
AD9262BCPZ
型号: AD9262BCPZ
厂家: ADI    ADI
描述:

16-Bit, 2.5 MHz/5 MHz/10 MHz, 30 MSPS to 160 MSPS Dual Continuous Time Sigma-Delta ADC

转换器
文件: 总32页 (文件大小:1136K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
16-Bit, 2.5 MHz/5 MHz/10 MHz, 30 MSPS to  
160 MSPS Dual Continuous Time Sigma-Delta ADC  
AD9262  
FUNCTIONAL BLOCK DIAGRAM  
FEATURES  
AVDD  
DRVDD  
SNR: 83 dB (85 dBFS) to 10 MHz input  
SFDR: −87 dBc to 10 MHz input  
Noise figure: 15 dB  
Input impedance: 1 kΩ  
Power: 600 mW  
1.8 V analog supply operation  
1.8 V to 3.3 V output supply  
Selectable bandwidth  
2.5 MHz/5 MHz/10 MHz real  
5 MHz/10 MHz/20 MHz complex  
Output data rate: 30 MSPS to 160 MSPS  
Integrated dc and quadrature correction  
Integrated decimation filters  
Integrated sample rate converter  
On-chip PLL clock multiplier  
On-chip voltage reference  
ORA  
VIN+A  
VIN–A  
D15A  
SAMPLE  
RATE  
LOW-PASS  
DECIMATION  
FILTER  
CT Σ-Δ  
DC  
CORRECT  
CMOS  
MODULATOR  
BUFFER  
CONVERTER  
D0A  
GAIN  
ADJ  
QUADRATURE  
ERROR  
ESTIMATE  
VREF  
CFILT  
PHASE  
ADJ  
AD9262  
DCO  
D15B  
D0B  
VIN–B  
VIN+B  
LOW-PASS  
DECIMATION  
FILTER  
SAMPLE  
RATE  
CONVERTER  
CT Σ-Δ  
MODULATOR  
DC  
CORRECT  
CMOS  
BUFFER  
CLK+  
CLK–  
PHASE-  
LOCKED  
LOOP  
SERIAL  
INTERFACE  
ORB  
AGND  
SDIO SCLK CSB DGND  
Figure 1  
The AD9262 incorporates an integrated dc correction and  
quadrature estimation block that corrects for gain and phase  
mismatch between the two channels. This functional block  
proves invaluable in complex signal processing applications  
such as direct conversion receivers.  
Offset binary, Gray code, or twos complement data format  
Serial control interface (SPI)  
APPLICATIONS  
The digital output data is presented in offset binary, Gray code,  
or twos complement format. A data clock output (DCO) is  
provided to ensure proper timing with the receiving logic. The  
AD9262 has the added feature of interleaving Channel A and  
Channel B data onto one 16-bit bus, simplifying on-board routing.  
Baseband quadrature receivers: CDMA2000, W-CDMA,  
multicarrier GSM/EDGE, 802.16x, and LTE  
Quadrature sampling instrumentation  
Medical equipment  
Radio detection and ranging (RADAR)  
The ADC is available in three different bandwidth options of  
2.5 MHz, 5 MHz, and 10 MHz, and operates on a 1.8 V analog  
supply and a 1.8 V to 3.3 V digital supply, consuming 600 mW.  
The AD9262 is available in a 64-lead LFCSP and is specified  
over the industrial temperature range (−40°C to +85°C).  
GENERAL DESCRIPTION  
The AD9262 is a dual channel, 16-bit analog-to-digital conver-  
ter (ADC) based on a continuous time (CT) sigma-delta (Σ-Δ)  
architecture that achieves −87 dBc of dynamic range over a  
10 MHz input bandwidth. The integrated features and characteris-  
tics unique to the continuous time Σ-Δ architecture significantly  
simplify its use and minimize the need for external components.  
PRODUCT HIGHLIGHTS  
1. Continuous time Σ-Δ architecture efficiently achieves high  
dynamic range and wide bandwidth.  
The AD9262 has a resistive input impedance that relaxes the  
requirements of the driver amplifier. In addition, a 32× oversam-  
pled fifth-order continuous time loop filter significantly attenuates  
out-of-band signals and aliases, reducing the need for external  
filters at the input.  
2. Passive input structure reduces or eliminates the require-  
ments for a driver amplifier.  
3. An oversampling ratio of 32× and high order loop filter  
provide excellent alias rejection reducing or eliminating the  
need for antialiasing filters.  
4. An integrated decimation filter, sample rate converter, PLL  
clock multiplier, and voltage reference provide ease of use.  
5. Integrated dc correction and quadrature error correction.  
6. Operates from a single 1.8 V analog power supply and  
1.8 V to 3.3 V output supply.  
An external clock input or the integrated integer-N PLL provides  
the 640 MHz internal clock needed for the oversampled conti-  
nuous time Σ-Δ modulator. On-chip decimation filters and sample  
rate converters reduce the modulator data rate from 640 MSPS to a  
user-defined output data rate between 30 MSPS and 160 MSPS,  
enabling a more efficient and direct interface.  
Rev. A  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2010 Analog Devices, Inc. All rights reserved.  
 
 
 
 
 
AD9262  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
AD9262BCPZ-10 ....................................................................... 12  
Equivalent Circuits......................................................................... 15  
Theory of Operation ...................................................................... 16  
Analog Input Considerations ................................................... 16  
Clock Input Considerations...................................................... 18  
Power Dissipation and Standby Mode .................................... 20  
Digital Engine............................................................................. 21  
DC and Quadrature Error Correction (QEC)........................ 23  
Digital Outputs ........................................................................... 24  
Timing ......................................................................................... 25  
Serial Port Interface (SPI).............................................................. 26  
Configuration Using the SPI..................................................... 26  
Hardware Interface..................................................................... 27  
Applications Information.............................................................. 28  
Filtering Requirement................................................................ 28  
Memory Map .................................................................................. 30  
Memory Map Definitions ......................................................... 30  
Outline Dimensions....................................................................... 32  
Ordering Guide .......................................................................... 32  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Functional Block Diagram .............................................................. 1  
Product Highlights ........................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
DC Specifications ......................................................................... 3  
AC Specifications.......................................................................... 4  
Digital Decimation Filtering Characteristics............................ 5  
Digital Specifications ................................................................... 6  
Switching Specifications .............................................................. 7  
Absolute Maximum Ratings............................................................ 8  
Thermal Resistance ...................................................................... 8  
ESD Caution.................................................................................. 8  
Pin Configuration and Function Descriptions............................. 9  
Typical Performance Characteristics ........................................... 10  
AD9262BCPZ ............................................................................. 10  
AD9262BCPZ-5.......................................................................... 11  
REVISION HISTORY  
2/10—Rev. 0 to Rev. A  
Changes to Figure 61...................................................................... 28  
1/10—Revision 0: Initial Version  
Rev. A | Page 2 of 32  
 
AD9262  
SPECIFICATIONS  
DC SPECIFICATIONS  
All power supplies set to 1.8 V, 640 MHz sample rate, 0.5 V internal reference, PLL disabled, 40 MSPS output data rate, AIN1 = −2.0 dBFS,  
unless otherwise noted.  
Table 1.  
AD9262BCPZ  
AD9262BCPZ-5  
AD9262BCPZ-10  
Parameter  
Temp  
Min  
Typ  
16  
Max  
Min  
Typ  
16  
5
Max  
Min  
Typ  
16  
Max  
Unit  
Bits  
RESOLUTION  
Full  
ANALOG INPUT BANDWIDTH  
ACCURACY  
2.5  
10  
MHz  
No Missing Codes  
Offset Error  
Gain Error  
Integral Nonlinearity (INL)2  
MATCHING CHARACERISTICS  
Offset Error  
Full  
Full  
Full  
25°C  
Guaranteed  
0.025  
0.ꢀ  
Guaranteed  
0.025  
0.ꢀ  
Guaranteed  
0.025  
0.ꢀ  
0.2  
3.0  
0.2  
3.0  
0.2  
3.0  
% FSR  
% FSR  
LSB  
1.5  
1.5  
1.5  
Full  
Full  
0.035  
0.3  
0.2  
1.3  
0.035  
0.3  
0.2  
1.3  
0.035  
0.3  
0.2  
1.3  
% FSR  
% FSR  
Gain Error  
TEMPERATURE DRIFT  
Offset Error  
Gain Error  
Full  
Full  
1.5  
50  
1.5  
50  
1.5  
50  
ppm/°C  
ppm/°C  
mV  
INTERNAL VOLTAGE REFERENCE  
ANALOG INPUT  
Input Span, VREF = 0.5 V  
Common-Mode Voltage  
Input Resistance  
POWER SUPPLIES  
Supply Voltage  
AVDD  
490  
1.ꢀ  
500  
510  
1.9  
490  
1.ꢀ  
500  
510  
1.9  
490  
1.ꢀ  
500  
510  
1.9  
Full  
Full  
Full  
2
2
2
V p-p diff  
V
kΩ  
1.8  
1
1.8  
1
1.8  
1
Full  
Full  
Full  
Full  
1.ꢀ  
1.ꢀ  
1.ꢀ  
1.ꢀ  
1.8  
1.8  
1.8  
1.8  
1.9  
1.9  
1.9  
3.6  
1.ꢀ  
1.ꢀ  
1.ꢀ  
1.ꢀ  
1.8  
1.8  
1.8  
1.8  
1.9  
1.9  
1.9  
3.6  
1.ꢀ  
1.ꢀ  
1.ꢀ  
1.ꢀ  
1.8  
1.8  
1.8  
1.8  
1.9  
1.9  
1.9  
3.6  
V
V
V
V
CVDD  
DVDD  
DRVDD  
Supply Current  
2
IAVDD  
Full  
Full  
Full  
Full  
Full  
Full  
146  
5ꢀ  
8.1  
108  
8.3  
1ꢀ  
165  
65  
8.8  
11ꢀ  
8.6  
146  
5ꢀ  
8.1  
141  
8.ꢀ  
18  
165  
65  
8.8  
152  
9.1  
146  
5ꢀ  
8.1  
169  
10  
165  
65  
8.8  
182  
12.ꢀ  
mA  
mA  
mA  
mA  
mA  
mA  
ICVDD2 PLL Enabled  
ICVDD2 PLL Disabled  
2
IDVDD  
IDRVDD2 (1.8 V)  
IDRVDD2 (3.3 V)  
22  
POWER CONSUMPTION  
Sine Wave Input2 PLL Disabled  
Sine Wave Input2 PLL Enabled  
Power-Down Power  
Standby Power2  
Full  
Full  
Full  
Full  
Full  
48ꢀ  
5ꢀ6  
23  
10  
3
538.5  
640  
54ꢀ  
636  
23  
10  
3
601.5  
ꢀ03  
600  
688  
23  
10  
3
660  
ꢀ62  
mW  
mW  
mW  
mW  
mW  
Sleep Power  
4
4
4
1 Input power is referenced to full scale. Therefore, all measurements were taken with a 2 dB signal below full scale, unless otherwise noted.  
2 Measured with a low input frequency, full-scale sine wave.  
Rev. A | Page 3 of 32  
 
 
 
 
AD9262  
AC SPECIFICATIONS  
All power supplies set to 1.8 V, 640 MHz sample rate, 0.5 V internal reference, PLL disabled, 40 MSPS output data rate, AIN = −2.0 dBFS,  
unless otherwise noted.  
Table 2.  
AD9262BCPZ  
Min Typ Max  
AD9262BCPZ-5  
Min Typ Max  
AD9262BCPZ-10  
Parameter1  
Temp  
Min Typ  
Max  
Unit  
SIGNAL-TO-NOISE RATIO (SNR)  
fIN = 600 kHz2  
Full  
86  
89  
89  
89  
dB  
dB  
dB  
dB  
dB  
fIN = 1.2 MHz3  
Full  
83  
86  
86  
86  
fIN = 2.4 MHz4  
Full  
81  
83  
83  
83  
fIN = 4.2 MHz  
25°C  
25°C  
fIN = 8.4 MHz  
EFFECTIVE NUMBER OF BITS (ENOB)  
fIN = 600 kHz  
25°C  
25°C  
25°C  
25°C  
25°C  
Bits  
Bits  
Bits  
Bits  
Bits  
fIN = 1.2 MHz  
14.5  
14.5  
fIN = 2.4 MHz  
14  
14  
fIN = 4.2 MHz  
13.5  
13.5  
fIN = 8.4 MHz  
SPURIOUS-FREE DYNAMIC RANGE (SFDR)  
fIN = 600 kHz2  
Full  
−8ꢀ  
−80  
dBc  
dBc  
dBc  
dBc  
dBc  
fIN = 1.2 MHz3  
Full  
−8ꢀ  
−8ꢀ  
−80  
fIN = 2.4 MHz4  
Full  
<−120  
−8ꢀ  
−8ꢀ  
−80  
fIN = 4.2 MHz  
25°C  
25°C  
<−120  
−8ꢀ  
fIN = 8.4 MHz  
<−120  
NOISE SPECTRAL DENSITY (NSD)  
AIN = −2 dBFS  
Full  
Full  
25°C  
−154.3  
−155.4  
15.6  
−152  
−154  
−155  
−156  
15  
−152  
−155  
−156  
15  
−153  
dBFS/Hz  
dBFS/Hz  
dB  
AIN = −40 dBFS  
NOISE FIGURE5  
−154.5  
−154.5  
TWO-TONE SFDR  
fIN1 = 1.8 MHz @ −8 dBFS, fIN2 = 2.1 MHz @ −8 dBFS  
fIN1 = 2.1 MHz @ −8 dBFS, fIN2 = 2.4 MHz @ −8 dBFS  
fIN1 = 3.ꢀ MHz @ −8 dBFS, fIN2 = 4.2 MHz @ −8 dBFS  
fIN1 = ꢀ.2 MHz @ −8 dBFS, fIN2 = 8.4 MHz @ −8 dBFS  
CROSSTALK6  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
−92  
dBc  
dBc  
dBc  
dBc  
dB  
−93  
−93  
−92.5  
−92.5  
−110  
−110  
−110  
ANALOG INPUT BANDWIDTH  
APERTURE JITTER  
2.5  
1
5
1
10  
1
MHz  
ps rms  
1 See the AN-835 Application Note, Understanding High Speed ADC Testing and Evaluation, for a complete set of definitions.  
2 Data guaranteed over the full temperature range for the AD9262BCPZ only.  
3 Data guaranteed over the full temperature range for the AD9262BCPZ-5 only.  
4 Data guaranteed over the full temperature range for the AD9262BCPZ-10 only.  
5 Noise figure with respect to 50 Ω. AD9262 internal impedance is 1000 Ω differential. See the AN-835 Application Note for a definition.  
6 Crosstalk measured with an input signal on both channels at different frequencies and the leakage of one on to the other.  
Rev. A | Page 4 of 32  
 
 
 
 
 
 
 
 
AD9262  
DIGITAL DECIMATION FILTERING CHARACTERISTICS  
All power supplies set to 1.8 V, 640 MHz sample rate, 0.5 V internal reference, PLL disabled, 40 MSPS output data rate, AIN = −2.0 dBFS,  
unless otherwise noted.  
Table 3.  
AD9262BCPZ  
Typ  
AD9262BCPZ-5  
Typ  
AD9262BCPZ-10  
Typ  
Parameter1  
Min  
Max  
Min  
Max  
Min  
Max  
Unit  
MHz  
dB  
MHz  
dB  
Pass-Band Transition  
Pass-Band Ripple  
Stop Band  
2.5  
3.ꢀ5  
5
6.5  
10  
13  
<0.1  
3.ꢀ5 MHz fS/2  
>85  
<0.1  
6.5 MHz − fS/2  
>85  
<0.1  
13 MHz fS/2  
>85  
Stop Band Attenuation  
1 See the AN-835 Application Note, Understanding High Speed ADC Testing and Evaluation, for a complete set of definitions.  
Rev. A | Page 5 of 32  
 
 
AD9262  
DIGITAL SPECIFICATIONS  
All power supplies set to 1.8 V, 640 MHz sample rate, 0.5 V internal reference, PLL disabled, 40 MSPS output data rate, AIN = −2.0 dBFS,  
unless otherwise noted.  
Table 4.  
Parameter1  
Temp  
Min  
Typ  
Max  
Unit  
DIFFERENTIAL CLOCK INPUTS (CLK+, CLK−)  
Logic Compliance  
Differential Input Voltage  
Input Common-Mode Range  
High Level Input Current  
Low Level Input Current  
Input Resistance  
Input Capacitance  
CMOS/LVPECL  
2
Full  
Full  
Full  
Full  
Full  
Full  
0.4  
0.3  
−60  
−60  
0.8  
V p-p  
V
μA  
μA  
kΩ  
pF  
0.450  
0.5  
+60  
+60  
20  
1
LOGIC INPUTS (SCLK)  
High Level Input Voltage  
Low Level Input Voltage  
High Level Input Current  
Low Level Input Current  
Input Resistance  
Input Capacitance  
Full  
Full  
Full  
Full  
Full  
Full  
1.2  
0
−50  
−10  
DRVDD + 0.3  
0.8  
−ꢀ5  
+10  
V
V
μA  
μA  
kΩ  
pF  
30  
2
LOGIC INPUTS (SDIO, CSB, RESET)  
High Level Input Voltage  
Low Level Input Voltage  
High Level Input Current  
Low Level Input Current  
Full  
Full  
Full  
Full  
Full  
Full  
1.2  
0
−10  
+40  
DRVDD + 0.3  
0.8  
+10  
V
V
μA  
μA  
kΩ  
pF  
+135  
Input Resistance  
Input Capacitance  
26  
5
DIGITAL OUTPUTS  
DRVDD = 3.3 V  
High Level Output Voltage (VOH, IOH = 50 μA)  
High Level Output Voltage (VOH, IOH = 0.5 mA)  
Low Level Output Voltage (VOL, IOL = 1.6 mA)  
Low Level Output Voltage (VOL, IOL = 50 μA)  
DRVDD = 1.8 V  
Full  
Full  
Full  
Full  
3.29  
3.25  
V
V
V
V
0.2  
0.05  
High Level Output Voltage (VOH, IOH = 50 μA)  
High Level Output Voltage (VOH, IOH = 0.5 mA)  
Low Level Output Voltage (VOL, IOL = 1.6 mA)  
Low Level Output Voltage (VOL, IOL = 50 μA)  
Full  
Full  
Full  
Full  
1.ꢀ9  
1.ꢀ5  
V
V
V
V
0.2  
0.05  
1 See the AN-835 Application Note, Understanding High Speed ADC Testing and Evaluation, for a complete set of definitions.  
Rev. A | Page 6 of 32  
 
 
AD9262  
SWITCHING SPECIFICATIONS  
All power supplies set to 1.8 V, 640 MHz sample rate, 0.5 V internal reference, PLL disabled, 40 MSPS output data rate, AIN = −2.0 dBFS  
unless otherwise noted.  
Table 5.  
Parameter1  
Temp  
Min  
Typ  
Max  
Unit  
CLOCK INPUT (USING CLOCK MULTIPLIER)  
Conversion Rate  
Full  
Full  
Full  
30  
160  
33  
60  
MSPS  
ns  
%
CLK Period  
CLK Duty Cycle  
6.25  
40  
50  
CLOCK INPUT (DIRECT CLOCKING)  
Conversion Rate  
CLK Period  
Full  
Full  
Full  
608  
1.49  
40  
640  
1.5625  
50  
6ꢀ2  
1.64  
60  
MSPS  
ns  
%
CLK Duty Cycle  
DATA OUTPUT PARAMETERS  
Output Data Rate  
Full  
Full  
Full  
20  
3
160  
MSPS  
ns  
Cycles4  
2
DCO to Data Skew (tSKEW  
Sample Latency3  
WAKE-UP TIME5  
)
960  
Power-Down Power  
Standby Power  
Sleep Power  
OUT-OF-RANGE RECOVERY TIME3  
SERIAL PORT INTERFACE6  
SCLK Period  
Full  
Full  
Full  
Full  
3
9
15  
960  
ꢁs  
ꢁs  
ꢁs  
Cycles4  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
40  
16  
16  
5
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SCLK Pulse Width High Time (tSHIGH  
)
SCLK Pulse Width Low Time (tSLOW  
SDIO to SCLK Setup Time (tSDS  
SDIO to SCLK Hold Time (tSDH  
CSB to SCLK Setup Time (tSS)  
CSB to SCLK Hold Time (tSH)  
)
)
)
2
5
2
1 See the AN-83 5 Application Note, Understanding High Speed ADC Testing and Evaluation, for a complete set of definitions.  
2 Data skew is measured from DCO 50% transition to data (D0x to D15x) 50% transition, with 5 pF load.  
3 Typical measured value for the AD9262BCPZ-10. For the AD9262BCPZ-5 and the AD9262BCPZ, typical values double and quadruple the number of cycles, respectively.  
4 Cycles refers to modulator clock cycles.  
5 Wake-up time is dependent on the value of the decoupling capacitor, value shown with 10uF capacitor on VREF and CFILT.  
6 See Figure 60 and the Serial Port Interface (SPI) section.  
Timing Diagram  
DCO  
tSKEW  
D0x TO D15x  
Figure 2. Timing Diagram  
Rev. A | Page ꢀ of 32  
 
 
 
 
 
 
 
 
AD9262  
ABSOLUTE MAXIMUM RATINGS  
THERMAL RESISTANCE  
Table 6.  
The exposed paddle must be soldered to the ground plane for  
the LFCSP package. Soldering the exposed paddle to the PCB  
increases the reliability of the solder joints, maximizing the  
thermal capability of the package.  
Parameter  
Rating  
Electrical  
AVDD to AGND  
DVDD to DGND  
DRVDD to DGND  
AGND to DGND  
AVDD to DRVDD  
CVDD to CGND  
CGND to DGND  
D0A to D15A to DGND  
D0B to D15B to DGND  
DCO to DGND  
−0.3 V to +2.0 V  
−0.3 V to +2.0 V  
−0.3 V to +3.9 V  
−0.3 V to +0.3 V  
−3.9 V to +2.0 V  
−0.3 V to +2.0 V  
−0.3 V to +0.3 V  
−0.3 V to +2.0 V  
−0.3 V to +2.0 V  
−0.3 V to +2.0 V  
−0.3 V to +2.0 V  
−0.3 V to +3.9 V  
−0.3 V to +3.9 V  
−0.3 V to +3.9 V  
Table 7. Thermal Resistance  
Package Type  
θJA  
θJC  
Unit  
64-Lead LFCSP (CP-64-4)  
21.2  
1.1  
°C/W  
Typical θJA and θJC are specified for a 4-layer board in still air.  
Airflow increases heat dissipation, effectively reducing θJA. In  
addition, metal in direct contact with the package leads from  
metal traces, through holes, ground, and power planes reduces  
the θJA.  
ORA, ORB to DGND  
SDIO to DGND  
CSB to AGND  
ESD CAUTION  
SCLK to AGND  
VIN+A/VIN−A, VIN+B/VIN−B to AGND −0.3 V to +2.5 V  
CLK+, CLK− to CGND  
Environmental  
−0.3 V to +2.0 V  
Storage Temperature Range  
Operating Temperature Range  
−65°C to +125°C  
−40°C to +85°C  
Lead Temperature (Soldering, 10 Sec) 300°C  
Junction Temperature 150°C  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Rev. A | Page 8 of 32  
 
 
 
AD9262  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
PIN 1  
INDICATOR  
CLK–  
CVDD  
D0B  
D1B  
D2B  
DVDD  
DGND  
DRVDD  
D3B  
D4B 10  
D5B 11  
D6B 12  
D7B 13  
D8B 14  
D9B 15  
D10B 16  
1
2
3
4
5
6
7
8
9
48 SCLK  
47 SDIO  
46 ORA  
45 D15A  
44 D14A  
43 DVDD  
42 DGND  
41 DRVDD  
40 D13A  
39 D12A  
38 D11A  
37 D10A  
36 D9A  
AD9262  
CMOS OUTPUTS  
TOP VIEW  
(Not to Scale)  
35 D8A  
34 D7A  
33 D6A  
NOTES  
1. THE EXPOSED PAD MUST BE SOLDERED TO THE GROUND PLANE FOR THE  
LFCSP PACKAGE. SOLDERING THE EXPOSED PADDLE TO THE PCB  
INCREASES THE RELIABILITY OF THE SOLDER JOINTS, MAXIMIZING  
THE THERMAL CAPACITY OF THE PACKAGE.  
Figure 3. Pin Configuration  
Table 8. Pin Function Descriptions  
Pin No.  
Mnemonic  
Description  
1
CLK−  
Clock Input (−).  
2
CVDD  
Clock Supply (1.8 V).  
3 to 5, 9 to 21  
6, 25, 43  
D0B to D15B  
DVDD  
Channel B Data Output Pins. D0B is the LSB and D15B is the MSB.  
Digital Supply (1.8 V).  
ꢀ, 24, 42  
DGND  
Digital Ground.  
8, 23, 41  
22  
26  
DRVDD  
ORB  
DCO  
Digital Output Driver Supply (1.8 V to 3.3 V).  
Channel B Overrange Indicator.  
Data Clock Output.  
2ꢀ to 40, 44, 45  
46  
4ꢀ  
48  
49  
50  
D0A to D15A  
ORA  
SDIO  
SCLK  
CSB  
Channel A Data Output Pins. D0A is the LSB and D15A is the MSB.  
Channel A Overrange Indicator.  
Serial Port Interface Data Input/Output.  
Serial Port Interface Clock.  
Serial Port Interface Chip Select Active Low.  
Chip Reset.  
RESET  
51, 62  
AGND  
Analog Ground.  
52, 55, 58, 61  
AVDD  
Analog Supply (1.8 V).  
53  
54  
56  
VIN+A  
VIN−A  
VREF  
Channel A Analog Input (+).  
Channel A Analog Input (−).  
Voltage Reference Input.  
5ꢀ  
59  
60  
63  
CFILT  
Noise Limiting Filter Capacitor.  
Channel B Analog Input (+).  
Channel B Analog Input (−).  
Clock Ground.  
VIN+B  
VIN−B  
CGND  
64  
CLK+  
Clock Input (+).  
65 (EPAD)  
Exposed pad (EPAD)  
Analog Ground. (Pin 65 is the exposed thermal pad on the bottom of the package.) The  
exposed pad must be soldered to ground.  
Rev. A | Page 9 of 32  
 
AD9262  
TYPICAL PERFORMANCE CHARACTERISTICS  
All power supplies set to 1.8 V, 640 MHz sample rate, 2 V p-p differential input, 0.5 V internal reference, PLL disabled, AIN = −2.0 dBFS,  
TA = 25°C, output data rate 40 MSPS, unless otherwise noted.  
AD9262BCPZ  
0
120  
100  
80  
60  
40  
20  
0
BANDWIDTH: 2.5MHz  
DATA RATE: 40MSPS  
SFDR (dBFS)  
–20  
f
: 600kHz AT –2dBFS  
IN  
SNR: 87.9dB  
SFDR: 88.2dBc  
–40  
–60  
SNR (dBFS)  
SFDR (dBc)  
–80  
–100  
–120  
–140  
–160  
SNR (dB)  
–100 –90 –80 –70 –60 –50 –40 –30 –20 –10  
0
0
2
4
6
8
10  
12  
14  
16  
18  
20  
INPUT AMPLITUDE (dBFS)  
FREQUENCY (MHz)  
Figure 7. AD9262BCPZ Single-Tone SNR and SFDR vs. Input Amplitude  
with fIN = 600 kHz  
Figure 4. AD9262BCPZ Single-Tone FFT with fIN = 600 kHz  
0
0
BANDWIDTH: 2.5MHz  
DATA RATE: 40MSPS  
BANDWIDTH: 2.5MHz  
DATA RATE: 40MSPS  
–20  
–40  
–20  
f
: 1.2MHz AT –2dBFS  
f
f
: 1.8MHz AT –8dBFS  
: 2.1MHz AT –8dBFS  
IN  
IN1  
SNR: 87.7dB  
SFDR: 87.1dBc  
IN2  
SFDR: –91.7dBc  
–40  
–60  
–60  
–80  
–80  
–100  
–120  
–140  
–160  
–100  
–120  
–140  
–160  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 8. AD9262BCPZ Two-Tone FFT with fIN1 = 1.8 MHz, fIN2 = 2.1 MHz  
Figure 5. AD9262BCPZ Single-Tone FFT with fIN = 1.2 MHz  
0
0
–20  
–40  
BANDWIDTH: 2.5MHz  
DATA RATE: 40MSPS  
–20  
–40  
f
: 2.4MHz AT –2dBFS  
IN  
SNR: 87.8dB  
SFDR: 106.6dBc  
–60  
SFDR (dBc)  
–80  
–60  
–100  
–120  
–140  
–160  
–80  
SFDR (dBFS)  
–100  
–120  
–100 –90  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
–80  
–70  
–60  
–50  
–40  
–30  
–20  
–10  
INPUT AMPLITUDE (dBFS)  
FREQUENCY (MHz)  
Figure 6. AD9262BCPZ Single-Tone FFT with fIN = 2.4 MHz  
Figure 9. AD9262BCPZ Two-Tone SFDR/IMD3 vs. Input Amplitude  
with fIN1 = 1.8 MHz, fIN2 = 2.1 MHz  
Rev. A | Page 10 of 32  
 
 
AD9262  
AD9262BCPZ-5  
120  
100  
80  
60  
40  
20  
0
0
BANDWIDTH: 5MHz  
DATA RATE: 40MSPS  
SFDR (dBFS)  
–20  
–40  
f
: 1.2MHz AT –2dBFS  
IN  
SNR: 85.3dB  
SFDR: 87.1dBc  
–60  
SNR (dBFS)  
SFDR (dBc)  
–80  
–100  
–120  
–140  
–160  
SNR (dB)  
–100 –90 –80 –70 –60 –50 –40 –30 –20 –10  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
INPUT AMPLITUDE (dBFS)  
FREQUENCY (MHz)  
Figure 10. AD9262BCPZ-5 Single-Tone FFT with fIN = 1.2 MHz  
Figure 13. AD9262BCPZ-5 Single-Tone SNR and SFDR vs. Input Amplitude with  
f
IN = 1.2 MHz  
0
0
–20  
BANDWIDTH: 5MHz  
DATA RATE: 40MSPS  
BANDWIDTH: 5MHz  
DATA RATE: 40MSPS  
–20  
f
: 2.4MHz AT –2dBFS  
f
f
: 1.8MHz AT –8dBFS  
: 2.1MHz AT –8dBFS  
IN  
IN1  
SNR: 85.7dB  
SFDR: 87.4dBc  
IN2  
SFDR: –92.8dBc  
–40  
–60  
–40  
–60  
–80  
–80  
–100  
–120  
–140  
–160  
–100  
–120  
–140  
–160  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 11. AD9262BCPZ-5 Single-Tone FFT with fIN = 2.4 MHz  
Figure 14. AD9262BCPZ-5 Two-Tone FFT with fIN1 = 1.8 MHz, fIN2 = 2.1 MHz  
0
0
BANDWIDTH: 5MHz  
DATA RATE: 40MSPS  
–20  
f
: 4.2MHz AT –2dBFS  
IN  
–20  
SNR: 85.7dB  
SFDR: 104.9dBc  
–40  
–60  
SFDR (dBc)  
–40  
–60  
–80  
–80  
–100  
–120  
–140  
–160  
SFDR (dBFS)  
–100  
–120  
–100 –90  
–80  
–70  
–60  
–50  
–40  
–30  
–20  
–10  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
INPUT AMPLITUDE (dBFS)  
FREQUENCY (MHz)  
Figure 15. AD9262BCPZ-5 Two-Tone SFDR/IMD3 vs. Input Amplitude  
with fIN1 = 2.1 MHz, fIN2 = 2.4 MHz  
Figure 12. AD9262BCPZ-5 Single-Tone FFT with fIN = 4.2 MHz  
Rev. A | Page 11 of 32  
 
AD9262  
AD9262BCPZ-10  
0
–20  
0
BANDWIDTH: 10MHz  
DATA RATE: 40MSPS  
BANDWIDTH: 10MHz  
DATA RATE: 40MSPS  
–20  
–40  
f
f
: 2.1MHz AT –8dBFS  
: 2.4MHz AT –8dBFS  
IN1  
f
: 2.4MHz AT –2dBFS  
IN  
IN2  
SNR: 82.8dB  
SFDR: 87.7dBc  
SFDR: –93dBc  
–40  
–60  
–60  
–80  
–80  
–100  
–120  
–140  
–160  
–100  
–120  
–140  
–160  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 16. AD9262BCPZ-10 Single-Tone FFT with fIN = 2.4 MHz  
Figure 19. AD9262BCPZ-10 Two-Tone FFT with fIN1 = 2.1 MHz, fIN2 = 2.4 MHz  
0
0
BANDWIDTH: 10MHz  
BANDWIDTH: 10MHz  
DATA RATE: 40MSPS  
DATA RATE: 40MSPS  
–20  
–20  
f
: 4.2MHz AT –2dBFS  
f
f
: 3.6MHz AT –8dBFS  
: 4.2MHz AT –8dBFS  
IN  
IN1  
SNR: 82.7dB  
SFDR: 86.7dBc  
IN2  
SFDR: –92.5dBc  
–40  
–60  
–40  
–60  
–80  
–80  
–100  
–120  
–140  
–160  
–100  
–120  
–140  
–160  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 17. AD9262BCPZ-10 Single-Tone FFT with fIN = 4.2 MHz  
Figure 20. AD9262BCPZ-10 Two-Tone FFT with fIN1 = 3.6 MHz, fIN2 = 4.2 MHz  
0
0
BANDWIDTH: 10MHz  
DATA RATE: 40MSPS  
BANDWIDTH: 10MHz  
DATA RATE: 40MSPS  
–20  
–20  
f
f
: 7.2MHz AT –8dBFS  
: 8.4MHz AT –8dBFS  
IN1  
f
: 8.4MHz AT –2dBFS  
IN  
IN2  
SNR: 82.6dB  
SFDR: 104.1dBc  
SFDR: –92.5dBc  
–40  
–60  
–40  
–60  
–80  
–80  
–100  
–120  
–140  
–160  
–100  
–120  
–140  
–160  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 18. AD9262BCPZ-10 Single-Tone FFT with fIN = 8.4 MHz  
Figure 21. AD9262BCPZ-10 Two-Tone FFT with fIN1 = 7.2 MHz, fIN2 = 8.4 MHz  
Rev. A | Page 12 of 32  
 
AD9262  
120  
100  
80  
60  
40  
20  
0
110  
105  
100  
95  
SFDR (dBFS)  
SNR (dBFS)  
SFDR (dBc)  
SFDR (dBc)  
SNR (dB)  
90  
SNR (dB)  
85  
80  
–100 –90 –80 –70 –60 –50 –40 –30 –20 –10  
0
1
2
3
4
5
6
7
8
9
10  
INPUT AMPLITUDE (dBFS)  
FREQUENCY (MHz)  
Figure 22. AD9262BCPZ-10 Single-Tone SNR/SFDR vs. Input Amplitude  
with fIN = 2.4 MHz  
Figure 25. AD9262BCPZ-10 SNR/SFDR vs. Input Frequency  
0
–20  
–40  
92  
91  
90  
89  
88  
87  
86  
85  
84  
83  
82  
81  
1.9 V  
1.8V  
SFDR  
1.7V  
SFDR (dBc)  
–60  
–80  
SFDR (dBFS)  
SNR  
1.9V  
1.8V  
1.7V  
–100  
–120  
–100 –90  
–80  
–70  
–60  
–50  
–40  
–30  
–20  
–10  
–60  
–40  
–20  
0
20  
40  
60  
80  
100  
INPUT AMPLITUDE (dBFS)  
TEMPERATURE (°C)  
Figure 23. AD9262BCPZ-10 Two-Tone SFDR/IMD3 vs. Input Amplitude  
with fIN1 = 2.1 MHz, fIN2 = 2.4 MHz  
Figure 26. AD9262BCPZ-10 SFDR/SNR vs. Temperature with fIN = 2.4 MHz  
89  
84.0  
83.8  
83.6  
83.4  
83.2  
83.0  
82.8  
82.6  
82.4  
82.2  
SFDR (dBc)  
88  
87  
86  
85  
84  
83  
82  
SNR (dB)  
82.0  
0
20  
40  
60  
80  
100  
120  
140  
160  
180  
1.700 1.725 1.750 1.775 1.800 1.825 1.850 1.875 1.900  
OUTPUT DATA RATE (MSPS)  
COMMON-MODE VOLTAGE (V)  
Figure 24. AD9262BCPZ-10 SNR/SFDR vs. Output Data Rate with fIN = 2.4 MHz  
Figure 27. AD9262BCPZ-10 SNR vs. Input Common-Mode Voltage  
with fIN = 2.4 MHz  
Rev. A | Page 13 of 32  
AD9262  
0.5  
0
83.0  
82.5  
82.0  
81.5  
81.0  
80.5  
80.0  
79.5  
79.0  
78.5  
fIN = 2.4MHz  
fIN = 8.4MHz  
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
–3.0  
78.0  
1.0  
0
8192 16,384 24,576 32,768 40,960 49,152 57,344 65,536  
OUTPUT CODE  
4.5  
6.0  
7.5  
8.5 10.0 12.0 14.0 16.0 21.0  
9.0 10.5 12.5 15.0 17.0  
PLL DIVIDE RATIO  
4.0  
5.0  
7.0  
8.0  
Figure 28. AD9262BCPZ-10 Single-Tone SNR vs. PLL Divide Ratio  
Figure 29. AD9262BCPZ-10 INL  
Rev. A | Page 14 of 32  
 
AD9262  
EQUIVALENT CIRCUITS  
AVDD  
26k  
1kΩ  
CSB  
500  
2V p-p DIFFERENTIAL  
1.8V CM  
500Ω  
Figure 30. Equivalent Analog Input Circuit  
Figure 34. Equivalent CSB Input Circuit  
CVDD  
DRVDD  
CLK+  
CLK–  
10k  
90kΩ  
10kΩ  
30kΩ  
CVDD  
DGND  
Figure 35. Equivalent Digital Output Circuit  
Figure 31. Equivalent Clock Input Circuit  
DRVDD  
2.85k  
8.5kΩ  
10kΩ  
0.5V  
1k  
SDIO  
3.5kΩ  
10µF  
TO CURRENT  
GENERATOR  
Figure 36. Equivalent VREF Circuit  
Figure 32. Equivalent SDIO Input Circuit  
1kΩ  
SCLK  
30kΩ  
Figure 33. Equivalent SCLK Input Circuit  
Rev. A | Page 15 of 32  
 
 
AD9262  
THEORY OF OPERATION  
DIGITAL FILTER CUTOFF FREQUENCY  
The AD9262 uses a continuous time Σ-Δ modulator to convert  
the analog input to a digital word. The digital word is processed  
by the decimation filter and rate-adjusted by the sample rate  
converter (see Figure 37). The modulator consists of a continuous  
fMOD/32  
fMOD/16  
time loop filter preceding a quantizer that samples at fMOD  
=
BAND OF INTEREST  
640 MSPS. This produces an oversampling ratio (OSR) of 32 for  
a 10 MHz input bandwidth. The output of the quantizer is fed  
back to a DAC that ideally cancels the input signal. The incom-  
plete input cancellation residue is filtered by the loop filter and  
is used to form the next quantizer sample.  
Figure 40. Digital Filter Cutoff Frequency  
MODULATOR  
fOUT/2  
BAND OF INTEREST  
fOUT  
fMOD/16  
DECIMATION SAMPLE RATE  
FILTER  
CONVERTER  
LOOP FILTER  
H(f)  
QUANTIZER  
ADC  
Figure 41. Sample Rate Converter  
+
SRC  
ANALOG INPUT CONSIDERATIONS  
The continuous time modulator removes the need for an anti-  
alias filter at the input to the AD9262. A discrete time converter  
aliases signals around the sample clock frequency and its multiples  
to the band of interest (see Figure 42). Therefore, an external  
antialias filter is needed to reject these signals.  
Figure 37. Σ-Δ Modulator Overview  
The quantizer produces a nine-level digital word. The quantization  
noise is spread uniformly over the Nyquist band (see Figure 38),  
but the feedback loop causes the quantization noise present in  
the nine-level output to have a nonuniform spectral shape. This  
noise-shaping technique (see Figure 39) pushes the in-band  
noise out of band; therefore, the amount of quantization noise  
in the frequency band of interest is minimal.  
DESIRED  
INPUT  
UNDESIRED  
SIGNAL  
fS  
fS/2  
ADC  
Figure 42. Discrete Time Converter  
The digital decimation filter that follows the modulator removes  
the large out-of-band quantization noise (see Figure 40), while  
also reducing the data rate from fMOD to fMOD/16. If the internal  
PLL is enabled, the sample rate converter generates samples at  
the same frequency as the input clock frequency. If the internal  
PLL is disabled, the sample rate converter can be programmed  
to give an output frequency that is a divide ratio of the modulator  
clock. The sample rate converter is designed to attenuate images  
outside the band of interest (see Figure 41).  
In contrast, the continuous time Σ-Δ modulator used within the  
AD9262 has inherent antialiasing. The antialiasing property  
results from sampling occurring at the output of the loop filter  
(see Figure 43), and thus aliasing occurs at the same point in the  
loop as quantization noise is injected; aliases are shaped by the  
same mechanism as quantization noise. The quantization noise  
transfer function, NTF(f), has zeros in the band of interest and in  
all alias bands because NTF(f) is a discrete time transfer function,  
whereas the loop filter transfer function, LF(f), is a continuous  
time transfer function, which introduces poles only in the band  
of interest. The signal transfer function, being the product of  
NTF(f) and LF(f), only has zeros in alias bands and therefore  
suppresses all aliases.  
QUANTIZATION NOISE  
fMOD/2  
BAND OF INTEREST  
LF(f)  
Figure 38. Quantization Noise  
LOOP FILTER  
INPUT  
LF(f)  
QUANTIZATION  
fMOD  
NOISE  
fMOD  
NOISE SHAPING  
OUTPUT  
H(z)  
fMOD/2  
NTF(f)  
BAND OF INTEREST  
Figure 39. Noise Shaping  
f
fMOD  
Figure 43. Continuous Time Converter  
Rev. A | Page 16 of 32  
 
 
 
 
 
 
 
 
 
AD9262  
Input Common Mode  
2V p-p  
VIN+x  
VIN–x  
50  
1:1  
The analog inputs of the AD9262 are not internally dc biased. In  
ac-coupled applications, the user must provide this bias externally.  
Setting the device such that VCM = AVDD is recommended for  
optimum performance. The analog inputs are 500 Ω resistors,  
and the internal reference loop aims to develop 0.5 V across  
each input resistor (see Figure 44). With 0 V differential input,  
the driver sources 1 mA into each analog input.  
R
T
V
AD9262  
S
50Ω  
SIGNAL  
SOURCE  
AVDD  
0.1µF  
Figure 46. Differential Transformer Configuration  
Voltage Reference  
AVDD – 0.5V  
A stable and accurate 0.5 V voltage reference is built into the  
AD9262. The reference voltage should be decoupled to minimize  
the noise bandwidth using a 10 μF capacitor. The reference is  
used to generate a bias current into a matched resistor such that,  
when used to bias the current in the feedback DAC, a voltage  
of AVDD − 0.5 V is developed at the internal side of the input  
resistors (see Figure 47). The current bias circuit should also be  
decoupled on the CFILT pin with a 10 μF capacitor. For this  
reason, the VREF voltage should always be 0.5 V.  
500  
VIN+x  
= AVDD  
p-p = 2V  
V
V
TO LOOP FILTER  
STAGE 2  
CM  
IN  
VIN–x  
500Ω  
DAC  
FROM QUANTIZER  
Figure 44. Input Common Mode  
Differential Input Configurations  
AVDD – 0.5V  
The AD9262 can also be configured for differential inputs. The  
ADA4937-2 differential driver provides excellent performance  
and a flexible interface to the ADC. The output common-mode  
voltage of the ADA4937-2 is easily set by connecting AVDD to  
the VOCM2 pin of the ADA4937-2 (see Figure 45). The noise and  
linearity of the ADA4937-2 need important consideration because  
the system performance may be limited by the ADA4937-2.  
V
V
= AVDD  
p-p = 2V  
CM  
IN  
500  
500Ω  
VIN+x  
VIN–x  
0.5V  
TO LOOP  
FILTER  
STAGE 2  
VREF  
10kΩ  
AVDD  
500Ω  
REF  
10µF  
AVDD – 0.5V  
+5V  
+1.8V  
0.1µF  
CFILT  
0.1µF  
10µF  
VIN–x  
200  
AVDD  
Figure 47. Voltage Reference Loop  
9
2V p-p  
50Ω  
200Ω  
6
11  
7
13  
Internal Reference Connection  
V
OCM2  
ADA4937-2  
AD9262  
V
R
T
60.4  
S
To minimize thermal noise, the internal reference on the AD9262  
is an unbuffered 0.5 V. It has an internal 10 kΩ series resistor,  
which, when externally decoupled with a 10 μF capacitor, limits  
the noise (see Figure 48). The unbuffered reference should not  
be used to drive any external circuitry. The internal reference is  
used by default and when Serial Register 0x18[6] is reset.  
12  
15  
SIGNAL  
SOURCE  
200Ω  
VIN+x  
0.1µF  
49.9Ω  
0.1µF  
60.4Ω  
–5V  
Figure 45. Differential Input Configuration Using the ADA4937-2  
For frequencies offset from dc, where SNR is a key parameter,  
differential transformer coupling is the recommended input  
configuration. An example is shown in Figure 46. The center  
tap of the secondary winding of the transformer is connected to  
AVDD to bias the analog input.  
2.85kΩ  
8.5kΩ  
10kΩ  
0.5V  
3.5kΩ  
10µF  
The signal characteristics must be considered when selecting a  
transformer. Most RF transformers saturate at frequencies  
below a couple of megahertz (MHz), and excessive signal power  
can cause core saturation, which leads to distortion.  
TO CURRENT  
GENERATOR  
Figure 48. Internal Reference Configuration  
Rev. A | Page 1ꢀ of 32  
 
 
 
 
 
AD9262  
External Reference Operation  
width. The input range of the clock is limited to 640 MHz 5%.  
In situations where the AD9262 loses its clock and then later  
regains it, it is important that the sample rate converter be reset  
and reprogrammed before the desired output data rate is  
achieved.  
If an external reference is desired, the internal reference can be  
disabled by setting Serial Register 0x18[6] high. Figure 49 shows  
an application using the ADR130B as a stable external reference.  
0.5V  
ADR130B  
AVDD  
10kΩ  
Direct Clocking  
0.1µF  
10µF  
The default configuration of the AD9262 is for direct clocking  
where the PLL is bypassed. Figure 50 shows one preferred method  
for clocking the AD9262. A low jitter clock source is converted  
from a single-ended signal to a differential signal using an RF  
transformer. The back-to-back Schottky diodes across the  
secondary side of the transformer limits clock excursions into the  
AD9262 to approximately 0.8 V p-p differential. This helps  
prevent the large voltage swings of the clock from feeding  
through to other portions of the AD9262 while preserving the  
fast rise and fall times of the signal, which are critical to  
achieving low jitter.  
TO CURRENT  
GENERATOR  
Figure 49. External Reference Configuration  
CLOCK INPUT CONSIDERATIONS  
The AD9262 offers two modes of sourcing the ADC sample  
clock (CLK+ and CLK−). The first mode uses an on-chip clock  
multiplier that accepts a reference clock operating at the lower  
input frequency. The on-chip phase-locked loop (PLL) then  
multiplies the reference clock to a higher frequency, which is  
then used to generate all the internal clocks required by the ADC  
MINI-CIRCUITS  
TC1-1-13M+, 1:1  
The clock multiplier provides a high quality clock that meets  
the performance requirements of most applications. Using the  
on-chip clock multiplier removes the burden of generating and  
distributing the high speed clock.  
0.1µF  
0.1µF  
XFMR  
CLK+  
CLK–  
CLOCK  
INPUT  
ADC  
AD9262  
50  
0.1µF  
The second mode bypasses the clock multiplier circuitry and  
allows the clock to be directly sourced. This mode enables the  
user to source a very high quality clock directly to the Σ-Δ  
modulator. Sourcing the ADC clock directly may be necessary  
in demanding applications that require the lowest possible ADC  
output noise. See Figure 28, which shows the degradation in  
SNR performance for the various PLL settings.  
SCHOTTKY  
DIODES:  
HSM2812  
0.1µF  
Figure 50. Transformer-Coupled Differential Clock  
If a differential clock is not available, the AD9262 can be driven  
by a single-ended signal into the CLK+ terminal with the CLK−  
terminal ac-coupled to ground. Figure 51 shows the circuit  
configuration.  
In either case, when using the on-chip clock multiplier or sourcing  
the high speed clock directly, it is necessary that the clock  
source have low jitter to maximize the ADC noise performance.  
High speed, high resolution ADCs are sensitive to the quality of  
the clock input. As jitter increases, the SNR performance of the  
AD9262 degrades from that specified in Table 2. The jitter  
inherent in the part due to the PLL root sum squares with any  
external clock jitter, thereby degrading performance. To prevent  
jitter from dominating the performance of the AD9262, the input  
clock source should be no greater than 1 ps rms of jitter.  
0.1µF  
CLK+  
CLK–  
CLOCK  
INPUT  
ADC  
AD9262  
50  
SCHOTTKY  
DIODES:  
HSM2812  
0.1µF  
Figure 51. Single-Ended Clock  
Another option is to ac couple a differential LVPECL signal to  
the sample clock input pins, as shown in Figure 52. The AD951x  
family of clock drivers is recommended because it offers excellent  
jitter performance.  
The CLK inputs are self-biased to 450 mV (see Figure 31);  
if the inputs are dc-coupled, it is important to maintain the  
specified 450 mV input common-mode voltage. Each input pin  
can safely swing from 200 mV p-p to 1 V p-p single-ended  
about the 450 mV common-mode voltage. The recommended  
clock inputs are CMOS or LVPECL.  
0.1µF  
0.1µF  
CLK+  
CLK–  
CLOCK  
INPUT  
CLK  
ADC  
AD951x  
LVPECL  
DRIVER  
The specified clock rate of the Σ-Δ modulator, fMOD, is 640 MHz.  
The clock rate possesses a direct relationship to the available  
input bandwidth of the ADC.  
100Ω  
AD9262  
CLOCK  
INPUT  
CLK  
0.1µF  
0.1µF  
240Ω  
240Ω  
1
1
50Ω  
50Ω  
Bandwidth = fMOD ÷ 64  
In either case, using the on-chip clock multiplier to generate the  
Σ-Δ modulator clock rate or directly sourcing the clock, any  
deviation from 640 MHz results in a change in input band-  
1
50RESISTORS ARE OPTIONAL.  
Figure 52. Differential LVPECL Sample Clock  
Rev. A | Page 18 of 32  
 
 
 
 
 
AD9262  
Internal PLL Clock Distribution  
PLL Autoband Select  
The alternative clocking option available on the AD9262 is to apply  
a low frequency reference clock and use the on-chip clock multip-  
lier to generate the high frequency fMOD rate. The internal clock  
architecture is shown in Figure 53.  
The PLL VCO has a wide operating range that is covered by  
overlapping frequency bands. For any desired VCO output  
frequency, there are multiple valid PLL band select values. The  
AD9262 possesses an automatic PLL band select feature on chip  
that determines the optimal PLL band setting. This feature can  
be enabled by writing to Register 0x0A[6]and is the recommended  
configuration with the PLL clocking option. When the device is  
taken out of sleep or standby mode, Register 0x0A[6] must be  
toggled to reinitiate the autoband detect. See Table 9 for informa-  
tion about enabling the autoband select along with configuring  
the PLL.  
CLK+/CLK–  
PHASE  
LOOP  
VCO  
DETECTOR  
FILTER  
PLL  
÷2  
DIVIDER  
PLL MULT  
0x0A[5:0]  
MODULATOR  
CLOCK  
Table 10. PLL Multiplication Factors  
640MSPS  
0x0A[5:0]  
PLLMULT (N) 0x0A[5:0]  
PLLMULT (N)  
PLLENABLE  
0x09[2]  
1
8
33  
34  
35  
36  
3ꢀ  
38  
39  
40  
41  
42  
43  
44  
45  
46  
4ꢀ  
48  
49  
50  
51  
52  
53  
54  
55  
56  
5ꢀ  
58  
59  
60  
61  
62  
63  
64  
32  
34  
34  
34  
34  
34  
34  
34  
34  
42  
42  
42  
42  
42  
42  
42  
42  
42  
42  
42  
42  
42  
42  
42  
42  
42  
42  
42  
42  
42  
42  
42  
2
3
4
5
6
8
9
8
8
8
8
8
8
8
9
Figure 53. Internal Clock Architecture  
The clock multiplication circuit operates such that the VCO  
outputs a frequency, fVCO, equal to the reference clock input  
multiplied by N.  
f
VCO = (CLK ) × (N)  
where N is the PLL multiplication (PLLMULT) factor.  
The Σ-Δ modulator clock frequency, fMOD, is equal to  
10  
11  
12  
13  
14  
15  
16  
1ꢀ  
18  
19  
20  
21  
22  
23  
24  
25  
26  
2ꢀ  
28  
29  
30  
31  
32  
10  
10  
12  
12  
14  
15  
16  
1ꢀ  
18  
18  
20  
21  
21  
21  
24  
25  
25  
25  
28  
28  
30  
30  
32  
f
MOD = fVCO ÷ 2  
The reference clock, CLK , is limited to 30 MHz to 160 MHz  
when configured to use the on-chip clock multiplier. Given the  
input range of the reference clock and the available multiplication  
factors, the fVCO is approximately 1280 MHz. This results in the  
desired fMOD rate of 640 MHz with a 50% duty cycle.  
Before the PLL enable register bit (PLLENABLE) is set, the PLL  
multiplication factor should be programmed into Register  
0x0A[5:0]. After setting the PLLENABLE bit, the PLL locks and  
reports a locked state in Register 0x0A[7]. If the PLL multiplica-  
tion factor is changed, the PLL enable bit should be reset and set  
again. Some common clock multiplication factors are shown in  
Table 11.  
The recommended sequence for enabling and programming the  
on-chip clock multiplier is shown in Table 9.  
Table 9. Sequence for Enabling and Programming the PLL  
Step  
Procedure  
1
2
Apply a reference clock to the CLK pins.  
Program the PLL multiplication factor in  
Register 0x0A[5:0]. See Table 10.  
Enable the PLL; Register 0x09 = 04 (decimal).  
Enable PLL autoband select.  
Initiate an SRC reset; Register 0x101[5:0] = 0.  
Set SRC to desired value via Register 0x101[5:0].  
3
4
5
6
Rev. A | Page 19 of 32  
 
 
 
AD9262  
POWER DISSIPATION AND STANDBY MODE  
Table 11. Common Modulator Clock Multiplication Factors  
The AD9262 power consumption can be further reduced by  
configuring the chip in channel power-down, standby, or sleep  
mode. The low power modes turn off internal blocks of the chip,  
including the reference. As a result, the wake-up time is depen-  
dent on the amount of circuitry that is turned off. Fewer internal  
circuits that are powered down result in proportionally shorter  
wake-up time. The low power modes are shown in Table 12.  
In the standby mode, all clock related activity and the output  
channels are disabled. Only the references and CMOS outputs  
remain powered up to ensure a short recovery and link integr-  
ity. During sleep mode, all internal circuits are powered down,  
putting the device into its lowest power mode, and the CMOS  
outputs are disabled.  
CLK  
(MHz)  
0x0A[5:0]  
(PLLMULT)  
fVCO  
(MHz)  
fMOD  
(MHz)  
BW  
(MHz)  
42  
32  
25  
21  
1ꢀ  
1ꢀ  
16  
15  
14  
10  
10  
8
1290.24  
1258.29  
1300.00  
1290.24  
1305.60  
1326.00  
1258.29  
1344.00  
1290.24  
1228.80  
1344.00  
1228.80  
1258.29  
645.12  
629.15  
650.00  
645.12  
652.80  
663.00  
629.15  
6ꢀ2.00  
645.12  
614.40  
6ꢀ2.00  
614.40  
629.15  
10.08  
9.83  
30.ꢀ2  
39.3216  
52.00  
61.44  
ꢀ6.80  
ꢀ8.00  
ꢀ8.6432  
89.60  
10.16  
10.08  
10.20  
10.36  
9.83  
10.50  
10.08  
9.60  
92.16  
122.88  
134.40  
153.60  
15ꢀ.2864  
10.50  
9.60  
Each ADC channel can be independently powered down or  
both channels can be set simultaneously by writing to the  
channel index, Register 0x05[1:0].  
8
9.83  
Jitter Considerations  
Table 12. Low Power Modes  
The aperture jitter requirements for continuous time Σ-Δ conver-  
ters may be more forgiving than Nyquist rate converters. The  
continuous time Σ-Δ architecture is an oversampled system  
and to accurately represent the analog input signal to the ADC,  
a large number of output samples must be averaged together. As  
a result, the jitter contribution from each sample is root sum  
squared, resulting in a more subtle impact on noise perfor-  
mance as compared to Nyquist converters where aperture  
jitter has a direct impact on each sampled output.  
Mode  
0x08[1:0] Analog Circuitry  
Clock Ref  
Normal  
Power-Down  
Standby  
Sleep  
0x0  
0x1  
0x2  
0x3  
On  
Off  
Off  
Off  
On  
On  
Off  
Off  
On  
On  
On  
Off  
In the block diagram of the continuous time Σ-Δ modulator  
(see Figure 37), the two building blocks most susceptible to  
jitter are the quantizer and the DAC. The error introduced  
through the sampling process is reduced by the loop gain and  
shaped in the same way as the quantization noise and, therefore,  
its effect can be neglected. On the contrary, the jitter error  
associated with the DAC directly adds to the input signal, thus  
increasing the in-band noise power and degrading the modulator  
performance. The SNR degradation due to jitter can be  
represented by the following equation.  
SNR = −20 log (2πfanalogtjitter_rms) dB  
where fanalog is the analog input frequency and tjitter_rms is the jitter.  
The SNR performance of the AD9262 remains constant within  
the input bandwidth of the converter, from DC to 10 MHz.  
Therefore, the minimal jitter specification is determined at the  
highest input frequency. From the calculation, the aperture  
jitter of the input clock must be no greater than 1 ps to achieve  
optimal SNR performance.  
Rev. A | Page 20 of 32  
 
 
 
AD9262  
Table 14. DEC4 Filter Coefficients  
DIGITAL ENGINE  
Bandwidth Selection  
Coefficient  
Number  
Coefficient  
Coefficient Number  
Coefficient  
1121  
0
−2ꢀ96  
0
10,184  
16,384  
The digital engine (see Figure 54) selects the decimation signal  
bandwidth by cascading third-order sinc (sinc3) decimate-by-2  
filters. For a 10 MHz signal band, no filters are cascaded; for a  
5 MHz signal band, a single filter is used; and for a 2.5 MHz  
signal band, the 5 MHz filter is cascaded with a second filter.  
Depending on the signal bandwidth, this drops the data rate  
into the fixed decimation filter. As a result, lower signal bandwidth  
options result in lower power. Bandwidth selection is determined  
by setting Serial Register 0x0F[6:5]. Table 13 summarizes the  
available bandwidth options.  
C0, C22  
C1, C21  
C2, C20  
C3, C19  
C4, C18  
C5, C1ꢀ  
−21  
0
122  
0
−418  
0
C6, C16  
Cꢀ, C15  
C8, C14  
C9, C13  
C10, C12  
C11  
Table 15. LPF/EQZ Filter Coefficients  
Coefficient  
Number  
Coefficient  
Coefficient  
1ꢀ  
31  
−15  
−52  
36  
Number  
C16, C46  
C1ꢀ, C45  
C18, C44  
C19, C43  
C20, C42  
C21, C41  
C22, C40  
C23, C39  
C24, C38  
C25, C3ꢀ  
C26, C36  
C2ꢀ, C35  
C28, C34  
C29, C33  
C30, C32  
C31  
Coefficient  
694  
−ꢀ44  
−6ꢀꢀ  
12ꢀ1  
450  
−1909  
103  
C0, C62  
C1, C61  
C2, C60  
C3, C59  
C4, C58  
C5, C5ꢀ  
C6, C56  
Cꢀ, C55  
C8, C54  
C9, C53  
C10, C52  
C11, C51  
C12, C50  
C13, C49  
C14, C48  
C15, C4ꢀ  
Table 13. Output Bandwidth Options  
BW[1:0] AD9262BCPZ  
AD9262BCPZ-5  
AD9262BCPZ-10  
10 MHz  
5 MHz  
2.5 MHz  
2.5 MHz  
0x0  
0x1  
0x2  
0x3  
2.5 MHz  
2.5 MHz  
2.5 MHz  
2.5 MHz  
5 MHz  
5 MHz  
2.5 MHz  
2.5 MHz  
ꢀ8  
−84  
−98  
1ꢀ0  
9ꢀ  
−291  
−42  
441  
−98  
−592  
353  
Decimation Filters  
2612  
−114ꢀ  
−3326  
3022  
The fixed decimation filters reduce the sample rate from 640 MSPS  
to 40 MSPS. A fixed frequency low-pass filter is used to define  
the signal band. This filter incorporates magnitude equalization  
for the droop of the preceding sinc decimation filters and the  
sinc filters of the sample rate converter. Table 14 and Table 15  
detail the coefficients for the DEC4 and LPF/EQZ filters. Sinc filter  
implementation for all sinc filters is standard.  
4051  
−68ꢀ0  
−5305  
21,141  
38,956  
BANDWIDTH SELECTION  
DECIMATION FILTERS  
10MHz  
5MHz  
10MHz  
5MHz  
DEC1  
4
DEC2  
4
DEC3  
DEC4  
HB  
LPF/EQZ  
FIR  
DEC01  
4
3
6
SINC  
2
2
SINC  
2
SINC  
2
SINC  
2
4
2
Σ-Δ  
OUTPUT  
2.5MHz  
2.5MHz  
DEC02  
3
INT1  
HB  
INT2  
HB  
INT3  
5
INT4  
SINC  
10MHz  
5MHz  
16  
5
SINC  
8
2
2
2
SINC  
DATA  
OUTPUT  
2.5MHz  
SAMPLE RATE CONVERTER  
NCO  
Figure 54. Digital Engine  
Rev. A | Page 21 of 32  
 
 
 
 
 
AD9262  
Sample Rate Converter  
If the main clocking source of the AD9262 is provided by the  
PLL, it is important, once the PLL has been programmed and  
locked, to initiate an SRC reset before programming the desired  
The sample rate converter (SRC) allows the flexibility of a  
user-defined output sample rate, enabling a more efficient  
and direct interface to the digital receiver blocks.  
KOUT factor. This is done by first writing 0x101[5:0] = 0 and  
then rewriting to the same register with the appropriate KOUT  
value. In addition, if the AD9262 loses its clock source and then  
later regains it, an SRC reset should be initiated.  
The sample rate converter performs an interpolation and  
resampling procedure to provide an output data rate of  
20 MSPS to 168 MSPS. Table 16 and Table 17 detail the  
coefficients for the INT1 and INT2 filters. The sinc filters  
are a standard implementation.  
Table 18. SRC Conversion Factors  
0x101[5:0]  
KOUT  
0x101[5:0]  
KOUT  
11  
0x101[5:0]  
KOUT  
22  
The relationship between the output sample rate and the Σ-Δ  
modulator clock rate is expressed as follows:  
0
SRC reset  
22  
44  
45  
46  
4ꢀ  
48  
49  
50  
51  
52  
53  
54  
55  
56  
5ꢀ  
58  
59  
60  
61  
62  
63  
1
4
23  
11.5  
12  
22.5  
23  
2
4
24  
f
OUT = fMOD ÷ KOUT  
3
4
25  
12.5  
13  
23.5  
24  
Table 18 shows the available KOUT conversion factors.  
4
4
26  
5
4
2ꢀ  
13.5  
14  
24.5  
25  
Table 16. INT1 Filter Coefficients  
6
4
28  
Coefficient  
Number  
Coefficient  
Coefficient Number  
4
29  
14.5  
15  
25.5  
26  
Coefficient  
8
4
30  
9
4.5  
5
31  
15.5  
16  
26.5  
2ꢀ  
C0, C26  
C1, C25  
C2, C24  
C3, C23  
C4, C22  
C5, C21  
C6, C20  
15  
0
−9ꢀ  
0
361  
0
Cꢀ, C19  
C8, C18  
C9, C1ꢀ  
C10, C16  
C11, C15  
C12, C14  
C13  
0
10  
11  
12  
13  
14  
15  
16  
1ꢀ  
18  
19  
20  
21  
32  
2450  
0
−5ꢀ61  
0
20,433  
32,ꢀ68  
5.5  
6
33  
16.5  
1ꢀ  
2ꢀ.5  
28  
34  
6.5  
35  
1ꢀ.5  
18  
28.5  
29  
36  
ꢀ.5  
8
3ꢀ  
18.5  
19  
29.5  
30  
−101ꢀ  
38  
8.5  
9
39  
19.5  
20  
30.5  
31  
Table 17. INT2 Filter Coefficients  
40  
9.5  
10  
10.5  
41  
20.5  
21  
31.5  
Coefficient  
Number  
Coefficient  
Coefficient Number  
42  
Coefficient  
−1032  
0
4928  
8192  
43  
21.5  
C0, C14  
C1, C13  
C2, C12  
C3, C11  
−2ꢀ  
0
C4, C10  
C5, C9  
C6, C8  
Cꢀ  
22ꢀ  
0
Rev. A | Page 22 of 32  
 
 
 
AD9262  
Cascaded Filter Responses  
DC AND QUADRATURE ERROR CORRECTION (QEC)  
The cascaded filter responses for the three signal bandwidth  
settings are for a 160 MSPS output data rate, as shown in Figure 55,  
Figure 56, and Figure 57.  
In direct conversion or other quadrature systems, mismatches  
between the real (I) and imaginary (Q) signal paths cause  
frequencies in the positive spectrum to image into the negative  
spectrum and vice versa. From an RF point of view, this is  
equivalent to information above the LO frequency interfering  
with information below the LO frequency, and vice versa. These  
mismatches may occur from gain and/or phase mismatches in  
the analog quadrature demodulator or in any components in  
the ADC signal chain itself. In a single-carrier zero-IF system  
where the carrier has been placed symmetrically around dc, this  
causes self-distortion of the carrier as the two sidebands fold  
onto one another and degrade the EVM of the signal.  
0
0.08  
–20  
0.04  
–40  
0
–60  
–0.04  
–0.08  
–80  
0
2
4
6
8
10  
FREQUENCY (MHz)  
–100  
–120  
–140  
–160  
In a multicarrier communication system, this can be even more  
problematic because carriers of widely different power levels  
can interfere with one another. For example, a large carrier  
centered at +f1 can have an image appear at –f1 that can be  
larger than the desired carrier at this frequency.  
0
0
0
10  
20  
30  
40  
50  
60  
70  
80  
80  
80  
FREQUENCY (MHz)  
Figure 55. 10 MHz Signal Bandwidth, 160 MSPS  
The integrated quadrature error correction (QEC) algorithm of  
the AD9262 attempts to measure and correct the amplitude and  
phase imbalances of the I and Q signal paths to achieve higher  
levels of image suppression than is achievable by analog means  
alone. These errors can be corrected in an adapted manner  
where the I and Q gain and quadrature phase mismatches are  
constantly estimated and corrected. This allows changes in the  
mismatches due to slow supply and temperature changes to be  
constantly tracked.  
0
–20  
0.08  
0.04  
0
–40  
–60  
–0.04  
–0.08  
–80  
0
1
2
3
4
5
FREQUENCY (MHz)  
–100  
–120  
–140  
–160  
The quadrature errors are corrected in a frequency independent  
manner on the AD9262; therefore, systems with significant  
mismatch in the baseband chain may have reduced image  
suppression. The AD9262 QEC still corrects the systematic  
imbalances.  
10  
20  
30  
40  
50  
60  
70  
FREQUENCY (MHz)  
Figure 56. 5 MHz Signal Bandwidth, 160 MSPS  
The convergence time of the QEC algorithm is dependent on  
the statistics of the input signal. For large signals and large  
imbalance errors, this convergence time is typically less than  
two million samples of the AD9262 output data rate.  
0
–20  
0.08  
0.04  
0
–40  
LO Leakage (DC) Correction  
–60  
–0.04  
–0.08  
In a direct conversion receiver subsystem, LO to RF leakage of  
the quadrature modulator shows up as dc offsets at baseband.  
These offsets are added to dc offsets in the baseband signal  
paths, and both contribute to a carrier at dc. In a zero-IF receiver,  
this dc energy can cause problems because it appears in band of  
a desired channel. As part of the AD9262 QEC function, the dc  
offset is suppressed by applying a low frequency notch filter to  
form a null around dc. The 3 dB bandwidth of this notch filter  
vs. the AD9262 output data rates is shown in Figure 58.  
–80  
0.5  
1.5  
2.5  
FREQUENCY (MHz)  
–100  
–120  
–140  
–160  
10  
20  
30  
40  
50  
60  
70  
FREQUENCY (MHz)  
Figure 57. 2.5 MHz Signal Bandwidth, 160 MSPS  
Rev. A | Page 23 of 32  
 
 
 
 
AD9262  
60  
50  
40  
30  
20  
10  
Interleaved Outputs  
The AD9262 has the added feature of interleaving Channel A  
and Channel B data onto one 16-bit bus. This feature is availa-  
ble for integer values of KOUT greater than 8 and does not apply  
to half values of KOUT. The interleave function can be accessed  
by writing to Register 0x14[5]. The data from both Channel A  
and Channel B are interleaved and presented on the Channel A  
bus, whereas the Channel B bus is internally grounded. Channel  
A is sampled on the falling edge of DCO and Channel B on the  
rising edge. The output of Channel A and Channel B can be  
interchanged by inverting the DCO clock, Register 0x16[7]. In this  
case, Channel B is sampled on the falling edge and Channel A  
on the rising edge.  
0
30  
50  
70  
90  
110  
130  
150  
OUTPUT DATA RATE (MSPS)  
DCO  
Figure 58. DC Correction Low Frequency Notch Filter 3 dB Bandwidth vs.  
Output Data Rate  
DCO  
In applications where constant tracking of the dc offsets and  
quadrature errors are not needed, the algorithms can be  
independently frozen to save power. When frozen, the image  
and LO leakage (dc) correction are still performed, but changes  
are no longer tracked. Register 0x112[5:3] disables the  
respective correction when frozen.  
A
B
A
B
A
BUS A  
BUS B  
Figure 59. Interleaved Output Mode  
Overrange (OR) Condition  
The ORA and ORB (ORx) pins serve as indicators for an overrange  
condition. The ORx pins are triggered by in-band signals that  
exceed the full-scale range of the ADC. In addition, the AD9262  
possesses out-of-band gain above 10 MHz. Therefore, a large  
out-of-band signal may trip an overrange condition.  
The quadrature gain, quadrature phase, and dc correction  
algorithms can also be disabled independently for system  
debugging or to save power by setting Register 0x112[2:0].  
The default configuration on the AD9262 has the QEC and dc  
correction blocks disabled, and Register 0x101[6] must be  
pulled high to enable the correction blocks. After the QEC is  
enabled and a correction value has been calculated, the value  
remains active as long as any one of the QEC functions (DC,  
gain, or phase correction) is used.  
The ORx pins are synchronous outputs that are updated at the  
output data rate. Ideally, ORx should be latched on the falling  
edge of DCO to ensure proper setup-and-hold time. However,  
because an overrange condition typically extends well beyond one  
clock cycle (that is, it does not toggle at the DCO rate) data can  
usually be successfully detected on the rising edge of DCO or  
monitored asynchronously.  
QEC and DC Correction Range  
Table 19 gives the minimum and maximum correction ranges  
of the algorithms on the AD9262 If the mismatches are greater  
than these ranges, an imperfect correction results.  
The AD9262 has two trip points that can trigger an overrange  
condition: analog and digital. The analog trip point is located in  
the modulator ,and the second trip point is in the digital engine.  
In normal operation, it is possible for the analog trip point to  
toggle the ORx pin for a number of clock cycles as the analog  
input approaches full scale. Because the ORx pin is a pulse-width  
modulated (PWM) signal, as the analog input increases in ampli-  
tude, the duration of overrange pin toggling increases. Eventually,  
when the ORx pin is high for an extended period of time, the  
ADC is overloaded, whereby there is little correspondence  
between analog input and digital output.  
Table 19. QEC and DC Correction Range  
Parameter  
Min  
Max  
Gain  
Phase  
DC  
−1.1 dB  
−1.ꢀ9 degrees  
−6 %  
+1.0 dB  
+1.ꢀ9 degrees  
+6%  
DIGITAL OUTPUTS  
Digital Output Format  
The AD9262 offers a variety of digital output formats for ease of  
system integration. The digital output on each channel consists  
of 16 data bits and an output clock signal (DCO) for data latching.  
The data bits can be configured for offset binary, twos comple-  
ment, or Gray code by writing to Register 0x14[1:0]. In addition,  
the voltage swing of the digital outputs can be configured to 3.3 V  
TTL levels or a reduced voltage swing of 1.8 V by accessing  
Register 0x14[7]. When 3.3 V voltage levels are desirable, the  
DRVDD power supply must be set to 3.3 V.  
The second trip point is in the digital block. If the input signal is  
large enough to cause the data bits to clip to its maximum full-  
scale level, an overrange condition occurs. The overrange trip  
point can be adjusted by specifying a threshold level.  
Rev. A | Page 24 of 32  
 
 
 
 
AD9262  
Table 20 shows the corresponding threshold level in dBFS vs.  
register setting. If the input signal crosses this level, the ORx pin  
is set. In the case where 0x111[5:0] is set to all 0s, the threshold  
level is set to the maximum code of 32,76710. This feature pro-  
vides a means of reporting the instantaneous amplitude as it  
crosses a user-provided threshold. This gives the user a sense  
of the signal level without needing to perform a full power  
measurement.  
occurs, the modulator resets itself after 16 consecutive clock  
cycles of overrange.  
If the AD9262 is used in a system that incorporates automatic  
gain control (AGC), the ORx signal can be used to indicate that  
the signal amplitude should be reduced. This may be particularly  
effective for use in maximizing the signal dynamic range if the  
signal includes high occurrence components that occasionally  
exceed full scale by a small amount.  
The user has the ability to select how the overrange conditions  
are reported, and this is controlled through Register 0x111 via  
AUTORST, OR_IND, and ORTHRESH (see Table 21). By  
enabling the AUTORST bit, Register 0x111[7], if an overrange  
occurs, the ADC automatically resets itself. The ORx pins remain  
high until the automatic reset has completed. If an analog trip  
TIMING  
The AD9262 provides a data clock out (DCO) pin to assist in  
capturing the data in an external register. The data outputs are  
valid on the rising edge of DCO, unless changed by setting  
Serial Register 0x16[7] (see the Serial Port Interface (SPI)  
section). See Figure 2 for a graphical timing description.  
Table 20. OR Threshold Levels  
0x111[5:0]  
Threshold (dBFS)  
−36.12  
−30.10  
−26.58  
−24.08  
−22.14  
−20.56  
−19.22  
−18.06  
−1ꢀ.04  
−16.12  
−15.29  
−14.54  
−13.84  
−13.20  
−12.60  
−12.04  
−11.51  
−11.02  
−10.56  
−10.10  
−9.68  
0x111[5:0]  
16  
1ꢀ  
18  
19  
1A  
1B  
1C  
1D  
1E  
1F  
20  
21  
22  
23  
24  
25  
26  
2ꢀ  
Threshold (dBFS)  
−9.28  
−8.89  
−8.52  
−8.16  
−ꢀ.82  
−ꢀ.50  
−ꢀ.18  
−6.88  
−6.58  
−6.30  
−6.02  
−5.ꢀ5  
−5.49  
−5.24  
−5.00  
−4.ꢀ6  
0x111[5:0]  
2B  
2C  
2D  
2E  
2F  
30  
31  
32  
33  
34  
35  
36  
3ꢀ  
38  
39  
3A  
3B  
3C  
Threshold (dBFS)  
−3.45  
−3.25  
−3.06  
−2.8ꢀ  
−2.68  
−2.50  
−2.32  
−2.14  
−1.9ꢀ  
−1.80  
−1.64  
−1.48  
−1.32  
−1.16  
−1.00  
−0.86  
1
2
3
4
5
6
8
9
A
B
C
D
E
F
10  
11  
12  
13  
14  
15  
−4.53  
−4.30  
−4.08  
−3.8ꢀ  
−0.ꢀ1  
−0.56  
−0.42  
−0.28  
28  
29  
2A  
3D  
3E  
3F  
−3.66  
−0.14  
Table 21. ORx Conditions  
ORx Conditions  
AUTORST OR_IND ORTHRESH[5:0] ORTHRESH[4:0] Description  
Normal, Reset Off  
0
0
0
0
0
00000  
Digital trip: if 16-bit output > 32,ꢀ6ꢀ, ORx = 1, else ORx = 0  
Digital Threshold,  
Reset Off  
>0  
Digital threshold: if 16-bit output > ORTHRESH, ORx = 1,  
else ORx = 0  
Full Overrange,  
Reset Off  
0
1
0
X
If analog trip or digital trip, ORx = 1, else ORx = 0  
Data Valid, No Reset  
Normal, Reset On  
0
1
1
1
0
0
1
0
X
If analog trip or digital trip or calibration, ORx = 0, else ORx = 1  
Digital trip: if 16-bit output > 32,ꢀ6ꢀ, ORx = 1, else ORx = 0  
00000  
Digital Threshold,  
Reset On  
>0  
Digital threshold: if 16-bit output > ORTHRESH, ORx = 1,  
else ORx = 0  
Full Overrange,  
Reset On  
1
1
1
1
0
1
X
X
If analog trip or digital trip ORx = 1 else ORx = 0  
Data Valid,  
Reset On  
If analog trip or digital trip or calibration, ORx = 0 else ORx = 1  
Rev. A | Page 25 of 32  
 
 
 
AD9262  
SERIAL PORT INTERFACE (SPI)  
During an instruction phase, a 16-bit instruction is transmitted.  
Data follows the instruction phase, and the length is determined  
by the W0 bit and the W1 bit. All data is composed of 8-bit words.  
The first bit of each individual byte of serial data indicates whether  
a read or write command is issued. This allows the serial data  
input/output (SDIO) pin to change direction from an input to  
an output.  
The AD9262 serial port interface (SPI) allows the user to configure  
the converter for specific functions or operations through a  
structured register space provided inside the ADC. This provides  
the user added flexibility and customization depending on the  
application. Addresses are accessed via the serial port and can  
be written to or read from via the port. Memory is organized  
into bytes that are further divided into fields, as documented in  
the Memory Map section. For detailed operational information,  
see the AN-877 Application Note, Interfacing to High Speed  
ADCs via SPI.  
In addition to word length, the instruction phase determines if  
the serial frame is a read or write operation, allowing the serial  
port to be used to both program the chip and to read the contents  
of the on-chip memory. If the instruction is a readback opera-  
tion, performing a readback causes the serial data input/output  
(SDIO) pin to change direction from an input to an output at the  
appropriate point in the serial frame.  
CONFIGURATION USING THE SPI  
As summarized in Table 22, three pins define the SPI of this ADC.  
The SCLK pin synchronizes the read and write data presented  
to the ADC. The SDIO pin allows data to be sent and read from  
the internal ADC memory map registers. The CSB pin is an active  
low control that enables or disables the read and write cycles.  
Data can be sent in MSB-first or in LSB-first mode. MSB first is  
the default setting on power-up and can be changed via the  
configuration register. For more information, see the AN-877  
Application Note, Interfacing to High Speed ADCs via SPI.  
Table 22. Serial Port Interface Pins  
Pin Name Description  
Table 23. SPI Timing Diagram Specifications  
Parameter Description  
SCLK  
SCLK (serial clock) is the serial shift clock. SCLK  
synchronizes serial interface reads and writes.  
SDIO (serial data input/output) is an input and  
output depending on the instruction being sent  
and the relative position in the timing frame.  
CSB (chip select bar) is an active low control that  
gates the read and write cycles.  
tSDS  
tSDH  
tSCLK  
tSS  
Setup time between data and rising edge of SCLK  
Hold time between data and rising edge of SCLK  
Period of the clock  
Setup time between CSB and SCLK  
Hold time between CSB and SCLK  
SDIO  
CSB  
tSH  
The falling edge of CSB in conjunction with the rising edge of  
SCLK determines the start of the framing. Figure 60 and Table 23  
provide an example of the serial timing and its definitions.  
tSHIGH  
Minimum period that SCLK should be in a logic  
high state  
Minimum period that SCLK should be in a logic  
low state  
tSLOW  
Other modes involving CSB are available. CSB can be held low  
indefinitely to permanently enable the device (this is called  
streaming). CSB can stall high between bytes to allow for addi-  
tional external timing. When CSB is tied high, SPI functions are  
placed in a high impedance mode.  
tSDS  
tSHIGH  
tSCLK  
tSH  
tSS  
tSDH  
tSLOW  
CSB  
SCLK DON’T CARE  
SDIO DON’T CARE  
DON’T CARE  
R/W  
W1  
W0  
A12  
A11  
A10  
A9  
A8  
A7  
D5  
D4  
D3  
D2  
D1  
D0  
DON’T CARE  
Figure 60. Serial Port Interface Timing Diagram  
Rev. A | Page 26 of 32  
 
 
 
 
 
AD9262  
The SPI interface is flexible enough to be controlled by either  
HARDWARE INTERFACE  
PROM or PIC microcontrollers. This provides the user with the  
ability to use an alternate method to program the ADC. One  
such method is described in detail in the AN-812 Application  
Note, MicroController-Based Serial Port Interface (SPI) Boot  
Circuit.  
The pins described in Table 22 comprise the physical interface  
between the programming device of the user and the serial port  
of the AD9262. The SCLK and CSB pins function as inputs  
when using the SPI interface. The SDIO pin is bidirectional,  
functioning as an input during write phases and as an output  
during readback.  
Rev. A | Page 2ꢀ of 32  
 
AD9262  
APPLICATIONS INFORMATION  
Figure 61 shows the gain profile of the AD9262, and this can be  
interpreted as the level at which the signal power should be  
scaled back to prevent an overload condition. This is the ulti-  
mate trip point and before this point is reached, the in-band  
noise (IBN) slowly degrades. As a result, it is recommended that  
the low-pass filter be designed to match the profile of Figure 62,  
which shows the maximum input signal for a 3 dB degradation  
of in-band noise. The input signal is attenuated to allow only  
3 dB of noise degradation over frequency.  
FILTERING REQUIREMENT  
The need for antialias protection often requires one or two  
octaves for a transition band, which reduces the usable band-  
width of a Nyquist converter to between 25% and 50% of the  
available bandwidth. A CT Σ-Δ converter maximizes the availa-  
ble signal bandwidth by forgoing the need for an anti-aliasing  
filter because the architecture possesses inherent anti-aliasing.  
Although a high order, sharp cutoff antialiasing filter may not  
be necessary because of the unique characteristics of the  
architecture, a low order filter may still be required to precede  
the ADC for out-of-band signal handling.  
The noise performance is normalized to a −2 dBFS in-band  
signal. The AD9262 STF and NTF are flat within the band of  
interest and should result in almost no change in input level  
and IBN. Beyond the bandwidth of the AD9262, out-of-band  
peaking adds gain to the system, therefore requiring the input  
power to be scaled back to prevent in-band noise degradation.  
The input power is scaled back to a point where only 3 dB of  
noise degradation is allowed, therefore resulting in the response  
shown in Figure 62.  
Depending on the application and the system architecture, this  
low order filter may or may not be necessary. The signal trans-  
fer function (STF) of a continuous time feedforward ADC  
usually contains out-of-band peaks. Because these STF peaks  
are typically one or two octaves above the pass-band edge, they  
are not problematic in applications where the bulk of the signal  
energy is in or near the pass band. However, in applications  
with large far-out interferers, it is necessary to either add a filter  
to attenuate these problematic signals or to allocate some of the  
ADC dynamic range to accommodate them.  
5
0
Figure 61 shows the normalized STF of the AD9262 CT Σ-Δ  
converter. The figure shows out-of-band peaking beyond the  
band edge of the ADC. Within the 10 MHz band of interest, the  
STF is maximally flat with less than 0.1 dB of gain. Maximum  
peaking occurs at 60 MHz with 10 dB of gain. To put this into  
perspective, for a fixed input power, a 5 MHz in-band signal  
appears at −5 dBFS, a 25 MHz tone appears at −2 dBFS and  
60 MHz tone at +5 dBFS. Because the maximum input to the  
ADC is −2 dBFS, large out-of-band signals can quickly saturate  
the system. This implies that, under these conditions, the digital  
outputs of the ADC no longer accurately represent the input.  
See the Overrange (OR) Condition section for details on over-  
range detection and recovery.  
–5  
–40°C  
–10  
–15  
+85°C  
+25°C  
CHEBYSHEVII  
–20  
–25  
FILTER RESPONSE  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
FREQUENCY (MHz)  
Figure 62. Maximum Input Level for 3 dB Noise Degradation  
An example third-order, low-pass Chebyshev II type filter is  
shown in Figure 63. Table 24 summarizes the components  
and manufacturers used to build the circuit.  
15  
13  
11  
9
L1  
180nH  
VIN+  
C2  
390pF  
7
C3  
C1  
AD9262  
1kΩ  
150pF  
18pF  
CT-Σ-Δ  
5
L1  
180nH  
VIN–  
3
1
C2  
390pF  
–1  
–3  
–5  
Figure 63. Third-Order, Low-Pass Chebyshev II Filter  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
FREQUENCY (MHz)  
Figure 61. STF  
Rev. A | Page 28 of 32  
 
 
 
 
 
AD9262  
Table 24. Chebyshev II Filter Components  
In addition to matching the profile of Figure 62, group delay  
and channel matching are important filter design criteria. Low  
tolerance components are highly recommended for improved  
channel matching, which translates to minimal degradation in  
image rejection for quadrature systems.  
Parameter  
Value  
Unit  
Manufacturer  
C1  
L1  
C2  
C3  
18  
pF  
nH  
pF  
Murata GRM188 series, 0603  
Coil Craft 0603 LS, 2%  
Murata GRM188 series, 0603  
Murata GRM188 series, 0603  
180  
390  
150  
pF  
Rev. A | Page 29 of 32  
 
AD9262  
MEMORY MAP  
Table 25. Memory Map  
Register Name  
SPI Port Config  
Chip ID  
Address  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0x00  
0x01  
0x02  
0x05  
0x08  
0x09  
0x0A  
0x0F  
0x14  
0x15  
0x16  
0x18  
0x101  
0x111  
0x112  
0x113  
0
LSBFIRST  
SOFTRESET  
1
1
SOFTRESET  
LSBFIRST  
0
CHIPID[ꢀ:0]  
CHILDID[2:0]  
Chip Grade  
Channel Index  
Power Modes  
PLLENABLE  
PLL  
1
Channel[1:0]  
PWRDWN[1:0]  
PLLENABLE  
PLLLOCKED  
DRVSTD  
PLLAUTO  
PLLMULT[5:0]  
Analog Input  
Output Modes  
Output Adjust  
Output Clock  
Reference  
BW[1:0]  
Interleave  
OUTENB  
OUTINV  
Format[1:0]  
DRVSTR33[1:0]  
DRVSTR18[1:0]  
DCOINV  
EXTREF  
QEC  
Output Data  
Overrange  
QEC1  
KOUT[5:0]  
AUTORST  
OR_IND  
ORTHRESH[5:0]  
DCFRZ  
PHASEFRZ GAINFRZ  
DCENB  
DCFRC  
PHASEENB GAINENB  
PHASEFRC GAINFRC  
QEC2  
MEMORY MAP DEFINITIONS  
Table 26. Memory Map Definitions  
Register  
Address  
Bit(s)  
Mnemonic  
Default  
Description  
SPI Port Config  
0x00  
6, 1  
LSBFIRST  
0
0: serial interface uses MSB first format  
1: serial interface uses LSB first format  
5, 2  
SOFTRESET  
CHIPID  
0
1: default all serial registers except 0x00, 0x09, and 0x0A  
0x22: AD9262  
Chip ID  
0x01  
0x02  
[ꢀ:0]  
[5:4]  
0x22  
0
Chip Grade  
CHILDID  
0x00: 10 MHz bandwidth  
0x10: 5 MHz bandwidth  
0x20: 2.5 MHz bandwidth  
0: both channels addressed simultaneously  
1: Channel A only addressed  
2: Channel B only addressed  
3: both channels addressed simultaneously  
0x0: normal operation  
Channel Index  
Power Modes  
0x05  
0x08  
[1:0]  
[1:0]  
Channel  
0
0
PWRDWN  
0x1: power-down (local)  
0x2: standby (everything except reference circuits)  
0x3: sleep  
PLLENABLE  
PLL  
0x09  
0x0A  
2
PLLENABLE  
PLLLOCKED  
0
0
1: enable PLL  
0: PLL is not locked  
1: PLL is locked  
6
[5:0]  
[6:5]  
PLLAUTO  
PLLMULT  
BW  
0
0
0
1: PLL autoband enabled  
See Table 10  
Analog Input  
0x0F  
See Table 13  
Rev. A | Page 30 of 32  
 
 
AD9262  
Register  
Address  
Bit(s)  
Mnemonic  
Default  
Description  
Output Modes  
0x14  
DRVSTD  
0
0: 3.3 V  
1: 1.8 V  
5
4
2
[1:0]  
Interleave  
OUTENB  
OUTINV  
Format  
0
0
0
0
1: interleave both channels onto D[15:0]A  
1: data outputs tristated  
1: data outputs bitwise inverted  
0: offset binary  
1: twos complement  
2: Gray code  
3: offset binary  
Output Adjust  
0x15  
[3:2]  
[1:0]  
DRVSTR33  
DRVSTR18  
0
2
Typical output sink current to DGND  
0: 33 mA  
1: 63 mA  
2: 93 mA  
3: 120 mA  
Typical output sink current to DGND  
0: 10 mA  
1: 20 mA  
2: 30 mA  
3: 39 mA  
Output Clock  
Reference  
0x16  
0x18  
0x101  
DCOINV  
EXTREF  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1: invert DCO  
6
1: use external reference  
1: enable quadrature error correction  
Output data rate, see Table 18  
1: enable loop filter reset indicator on ORx pin  
Refer to Table 21  
Output Data  
6
[5:0]  
6
[5:0]  
5
4
3
2
1
QEC  
KOUT  
Overrange  
QEC1  
0x111  
0x112  
AUTORST  
OR_IND  
ORTHRESH  
DCFRZ  
PHASEFRZ  
GAINFRZ  
DCENB  
PHASEENB  
GAINENB  
DCFRC  
PHASEFRC  
GAINFRC  
Refer to Table 20  
1: freeze dc correction coefficients  
1: freeze phase correction coefficients  
1: freeze gain correction coefficients  
1: disable dc correction  
1: disable phase correction  
1: disable gain correction  
1: force dc correction coefficients to initial static values  
0
QEC2  
0x113  
2
1
0
1: force phase correction coefficients to initial static values  
1: force gain correction coefficients to initial static values  
Rev. A | Page 31 of 32  
AD9262  
OUTLINE DIMENSIONS  
0.60 MAX  
9.00  
BSC SQ  
0.60  
MAX  
PIN 1  
INDICATOR  
64  
49  
1
48  
PIN 1  
INDICATOR  
0.50  
BSC  
6.35  
6.20 SQ  
6.05  
8.75  
BSC SQ  
TOP VIEW  
EXPOSED PAD  
(BOTTOM VIEW)  
0.50  
0.40  
0.30  
33  
32  
16  
17  
0.25 MIN  
7.50  
REF  
0.80 MAX  
0.65 TYP  
12° MAX  
1.00  
0.85  
0.80  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.05 MAX  
0.02 NOM  
SECTION OF THIS DATA SHEET.  
0.30  
0.23  
0.18  
SEATING  
PLANE  
0.20 REF  
COMPLIANT TO JEDEC STANDARDS MO-220-VMMD-4  
Figure 64. 64-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
9 mm × 9 mm Body, Very Thin Quad  
(CP-64-4)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
Temperature Range  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
Package Description  
Package Option  
CP-64-4  
CP-64-4  
AD9262BCPZ-10  
AD9262BCPZ-5  
AD9262BCPZ  
AD9262EBZ  
64-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
64-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
64-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
Evaluation Board  
CP-64-4  
AD9262-5EBZ  
AD9262-10EBZ  
Evaluation Board  
Evaluation Board  
1 Z = RoHS Compliant Part.  
©2010 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D07772-0-2/10(A)  
Rev. A | Page 32 of 32  
 
 
 

相关型号:

AD9262BCPZ-10

30 MSPS to 160 MSPS Dual Continuous Time Sigma-Delta ADC
ADI

AD9262BCPZ-5

30 MSPS to 160 MSPS Dual Continuous Time Sigma-Delta ADC
ADI

AD9262EBZ

30 MSPS to 160 MSPS Dual Continuous Time Sigma-Delta ADC
ADI

AD9262_17

30 MSPS to 160 MSPS Dual Continuous Time Sigma-Delta ADC
ADI

AD9265

16-Bit, 125 MSPS/105 MSPS/80 MSPS 1.8 V Analog-to-Digital Converter
ADI

AD9265-105EBZ

16-Bit, 125 MSPS/105 MSPS/80 MSPS 1.8 V Analog-to-Digital Converter
ADI

AD9265-125EBZ

16-Bit, 125 MSPS/105 MSPS/80 MSPS 1.8 V Analog-to-Digital Converter
ADI

AD9265-80EBZ

16-Bit, 125 MSPS/105 MSPS/80 MSPS 1.8 V Analog-to-Digital Converter
ADI

AD9265-FMC-125EBZ

16-Bit, 125 MSPS/105 MSPS/80 MSPS, 1.8 V Analog-to-Digital Converter
ADI

AD9265BCPZ-105

16-Bit, 125 MSPS/105 MSPS/80 MSPS 1.8 V Analog-to-Digital Converter
ADI

AD9265BCPZ-125

16-Bit, 125 MSPS/105 MSPS/80 MSPS 1.8 V Analog-to-Digital Converter
ADI

AD9265BCPZ-80

16-Bit, 125 MSPS/105 MSPS/80 MSPS 1.8 V Analog-to-Digital Converter
ADI