AD8607ARZ [ADI]

Precision Micropower, Low Noise CMOS Rail-to-Rail Input/Output Operational Amplifiers; 精密微功耗,低噪声CMOS轨到轨输入/输出运算放大器
AD8607ARZ
型号: AD8607ARZ
厂家: ADI    ADI
描述:

Precision Micropower, Low Noise CMOS Rail-to-Rail Input/Output Operational Amplifiers
精密微功耗,低噪声CMOS轨到轨输入/输出运算放大器

运算放大器 放大器电路 光电二极管 PC
文件: 总20页 (文件大小:458K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Precision Micropower, Low Noise CMOS  
Rail-to-Rail Input/Output Operational Amplifiers  
AD8603/AD8607/AD8609  
FEATURES  
PIN CONFIGURATIONS  
Low offset voltage: 50 μV max  
Low input bias current: 1 pA max  
Single-supply operation: 1.8 V to 5 V  
Low noise: 22 nV/√Hz  
Micropower: 50 μA max  
Low distortion  
OUT  
V–  
1
2
3
5
V+  
AD8603  
TOP VIEW  
(Not to Scale)  
+IN  
4
–IN  
Figure 1. 5-Lead TSOT-23 (UJ Suffix)  
No phase reversal  
Unity gain stable  
OUT A  
–IN A  
+IN A  
V–  
1
2
3
4
8
7
6
5
V+  
AD8607  
OUT B  
–IN B  
+IN B  
TOP VIEW  
APPLICATIONS  
Battery-powered instrumentation  
(Not to Scale)  
Multipole filters  
Sensors  
Figure 2. 8-Lead MSOP (RM Suffix)  
Low power ASIC input or output amplifiers  
OUT A  
IN A  
+IN A  
1
2
3
4
8
7
6
5
V+  
AD8607  
OUT B  
GENERAL DESCRIPTION  
IN B  
TOP VIEW  
(Not to Scale)  
The AD8603/AD8607/AD8609 are single/dual/quad micro-  
power rail-to-rail input and output amplifiers, respectively, that  
feature very low offset voltage as well as low input voltage and  
current noise.  
V
+IN B  
Figure 3. 8-Lead SOIC_N (R Suffix)  
1
2
3
4
5
6
7
OUT A  
IN A  
14  
13  
12  
11  
OUT D  
–IN D  
+IN D  
V–  
These amplifiers use a patented trimming technique that  
achieves superior precision without laser trimming. The parts  
are fully specified to operate from 1.8 V to 5.0 V single supply  
or from ±0.9 V to ±±.5 V dual supply. The combination of low  
offsets, low noise, very low input bias currents, and low power  
consumption make the AD8603/AD8607/AD8609 especially  
useful in portable and loop-powered instrumentation.  
+IN A  
V+  
AD8609  
TOP VIEW  
(Not to Scale)  
+IN B  
–IN B  
OUT B  
10 +IN C  
9
8
–IN C  
OUT C  
The ability to swing rail-to-rail at both the input and output  
enables designers to buffer CMOS ADCs, DACs, ASICs, and  
other wide output swing devices in low power, single-supply  
systems.  
Figure 4. 14-Lead TSSOP (RU Suffix)  
OUT A  
–IN A  
+IN A  
V+  
1
2
3
4
5
6
7
14 OUT D  
13 –IN D  
12 +IN D  
11 V–  
AD8609  
TOP VIEW  
The AD8603 is available in a tiny 5-lead TSOT-±3 package.  
The AD8607 is available in 8-lead MSOP and 8-lead SOIC  
packages. The AD8609 is available in 14-lead TSSOP and  
14-lead SOIC packages.  
(Not to Scale)  
+IN B  
–IN B  
OUT B  
10 +IN C  
9
8
–IN C  
OUT C  
Figure 5. 14-Lead SOIC_N (R Suffix)  
Rev. B  
Information furnished by Analog Devices is believed to be accurate and reliable.  
However, no responsibility is assumed by Analog Devices for its use, nor for any  
infringements of patents or other rights of third parties that may result from its use.  
Specifications subject to change without notice. No license is granted by implication  
or otherwise under any patent or patent rights of Analog Devices. Trademarks and  
registered trademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
© 2005 Analog Devices, Inc. All rights reserved.  
AD8603/AD8607/AD8609  
TABLE OF CONTENTS  
Specifications..................................................................................... 3  
Driving Capacitive Loads.......................................................... 1±  
Proximity Sensors....................................................................... 13  
Composite Amplifiers................................................................ 13  
Battery-Powered Applications.................................................. 14  
Photodiodes ................................................................................ 14  
Outline Dimensions....................................................................... 15  
Ordering Guide .......................................................................... 17  
Absolute Maximum Ratings............................................................ 5  
ESD Caution.................................................................................. 5  
Typical Performance Characteristics ............................................. 6  
Applications..................................................................................... 1±  
No Phase Reversal ...................................................................... 1±  
Input Overvoltage Protection ................................................... 1±  
REVISION HISTORY  
6/05—Rev. A to Rev. B  
Updated Figure 49 .......................................................................... 15  
Changes to Ordering Guide .......................................................... 17  
10/03—Rev. 0 to Rev. A  
Added AD8607 and AD8609 Parts ..................................Universal  
Changes to Specifications................................................................ 3  
Changes to Figure 35...................................................................... 10  
Added Figure 41.............................................................................. 11  
8/03—Revision 0: Initial Version  
Rev. B | Page 2 of 20  
AD8603/AD8607/AD8609  
SPECIFICATIONS  
Electrical Characteristics @ VS = 5 V, VCM = VS/±, TA = ±5°C, unless otherwise noted.  
Table 1.  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
INPUT CHARACTERISTICS  
Offset Voltage  
VOS  
VS = 3.3 V @ VCM = 0.5 V and 2.8 V  
–0.3 V < VCM < +5.2 V  
–40°C < TA < +125°C, –0.3 V < VCM < +5.2 V  
–40°C < TA < +125°C  
12  
40  
50  
μV  
μV  
μV  
μV/°C  
pA  
pA  
pA  
pA  
pA  
pA  
V
300  
700  
4.5  
1
Offset Voltage Drift  
Input Bias Current  
∆VOS/∆T  
IB  
1
0.2  
–40°C < TA < +85°C  
–40°C < TA < +125°C  
50  
500  
0.5  
50  
250  
+5.2  
Input Offset Current  
IOS  
0.1  
–40°C < TA < +85°C  
–40°C < TA < +125°C  
Input Voltage Range  
Common-Mode Rejection Ratio  
IVR  
CMRR  
–0.3  
85  
80  
0 V < VCM < 5 V  
–40°C < TA < +125°C  
RL = 10 kΩ, 0.5 V <VO < 4.5 V  
100  
dB  
dB  
Large Signal Voltage Gain  
AD8603  
AD8607/AD8609  
Input Capacitance  
AVO  
400  
250  
1000  
450  
1.9  
V/mV  
V/mV  
pF  
CDIFF  
CCM  
2.5  
pF  
OUTPUT CHARACTERISTICS  
Output Voltage High  
VOH  
IL = 1 mA  
–40°C to +125°C  
IL = 10 mA  
–40°C to +125°C  
IL = 1 mA  
–40°C to +125°C  
IL = 10 mA  
4.95  
4.9  
4.65  
4.50  
4.97  
4.97  
16  
V
V
V
V
mV  
mV  
mV  
mV  
mA  
Ω
Output Voltage Low  
VOL  
30  
50  
250  
330  
160  
–40°C to +125°C  
Output Current  
Closed-Loop Output Impedance  
POWER SUPPLY  
IOUT  
ZOUT  
80  
36  
f = 10 kHz, AV = 1  
Power Supply Rejection Ratio  
Supply Current/Amplifier  
PSRR  
ISY  
1.8 V < VS < 5 V  
VO = 0 V  
–40°C <TA < +125°C  
80  
100  
40  
dB  
μA  
μA  
50  
60  
DYNAMIC PERFORMANCE  
Slew Rate  
Settling Time 0.1%  
Gain Bandwidth Product  
SR  
tS  
GBP  
RL = 10 kΩ  
G = 1, 2 V Step  
RL = 100 kΩ  
RL = 10 kΩ  
RL = 10 kΩ, RL = 100 kΩ  
0.1  
23  
400  
316  
70  
V/μs  
μs  
kHz  
kHz  
Degrees  
Phase Margin  
ØO  
NOISE PERFORMANCE  
Peak-to-Peak Noise  
Voltage Noise Density  
en p-p  
en  
0.1 Hz to 10 Hz  
f = 1 kHz  
f = 10 kHz  
f = 1 kHz  
f = 10 kHz  
f = 100 kHz  
2.3  
25  
22  
0.05  
–115  
–110  
3.5  
μV  
nV/√Hz  
nV/√Hz  
pA/√Hz  
dB  
Current Noise Density  
Channel Separation  
in  
Cs  
dB  
Rev. B | Page 3 of 20  
 
AD8603/AD8607/AD8609  
Electrical Characteristics @ VS = 1.8 V, VCM = VS/±, TA = ±5°C, unless otherwise noted.  
Table 2.  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
INPUT CHARACTERISTICS  
Offset Voltage  
VOS  
VS = 3.3 V @ VCM = 0.5 V and 2.8 V  
–0.3 V < VCM < +1.8 V  
–40°C < TA < +85°C, –0.3 V < VCM < +1.8 V  
–40°C < TA < +125°C, –0.3 V < VCM < +1.7 V  
–40°C < TA < +125°C  
12  
40  
50  
μV  
μV  
μV  
μV  
μV/°C  
pA  
pA  
pA  
pA  
pA  
pA  
V
300  
500  
700  
4.5  
1
Offset Voltage Drift  
Input Bias Current  
∆VOS/∆T  
IB  
1
0.2  
–40°C < TA < +85°C  
–40°C < TA < +125°C  
50  
500  
0.5  
50  
250  
+1.8  
Input Offset Current  
IOS  
0.1  
98  
–40°C < TA < +85°C  
–40°C < TA < +125°C  
Input Voltage Range  
Common-Mode Rejection Ratio  
IVR  
CMRR  
–0.3  
80  
70  
0 V < VCM < 1.8 V  
–40°C < TA < +85°C  
dB  
dB  
Large Signal Voltage Gain  
AD8603  
AD8607/AD8609  
Input Capacitance  
AVO  
RL = 10 kΩ, 0.5 V <VO < 4.5 V  
150  
100  
3000  
2000  
2.1  
V/mV  
V/mV  
pF  
CDIFF  
CCM  
3.8  
pF  
OUTPUT CHARACTERISTICS  
Output Voltage High  
VOH  
VOL  
IL = 1 mA  
–40°C to +125°C  
IL = 1 mA  
1.65  
1.6  
1.72  
38  
V
V
mV  
mV  
mA  
Ω
Output Voltage Low  
60  
80  
–40°C to +125°C  
Output Current  
Closed-Loop Output Impedance  
POWER SUPPLY  
IOUT  
ZOUT  
7
36  
f = 10 kHz, AV = 1  
Power Supply Rejection Ratio  
Supply Current/Amplifier  
PSRR  
ISY  
1.8 V < VS < 5 V  
VO = 0 V  
–40°C < TA < +85°C  
80  
100  
40  
dB  
μA  
μA  
50  
60  
DYNAMIC PERFORMANCE  
Slew Rate  
Settling Time 0.1%  
Gain Bandwidth Product  
SR  
tS  
GBP  
RL = 10 kΩ  
G = 1, 1 V Step  
RL = 100 kΩ  
RL = 10 kΩ  
RL = 10 kΩ, RL = 100 kΩ  
0.1  
9.2  
385  
316  
70  
V/μs  
μs  
kHz  
kHz  
Degrees  
Phase Margin  
ØO  
NOISE PERFORMANCE  
Peak-to-Peak Noise  
Voltage Noise Density  
en p-p  
en  
0.1 Hz to 10 Hz  
f = 1 kHz  
f = 10 kHz  
f = 1 kHz  
2.3  
25  
22  
3.5  
μV  
nV/√Hz  
nV/√Hz  
pA/√Hz  
Current Noise Density  
Channel Separation  
in  
0.05  
Cs  
f = 10 kHz  
f = 100 kHz  
–115  
–110  
dB  
dB  
Rev. B | Page 4 of 20  
AD8603/AD8607/AD8609  
ABSOLUTE MAXIMUM RATINGS  
Table 3.  
Table 4. Package Characteristics  
Package Type  
Parameter1  
Rating  
6 V  
GND to VS  
6 V  
θJA  
θJC  
61  
45  
43  
36  
35  
Unit  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
1
Supply Voltage  
Input Voltage  
5-Lead TSOT-23 (UJ)  
8-Lead MSOP (RM)  
8-Lead SOIC_N (R)  
14-Lead SOIC_N (R)  
14-Lead TSSOP (RU)  
207  
210  
158  
120  
180  
Differential Input Voltage  
Output Short-Circuit Duration to GND  
Storage Temperature Range  
All Packages  
Lead Temperature (Soldering, 60 sec)  
Operating Temperature Range  
Junction Temperature Range  
All Packages  
Indefinite  
–65°C to +150°C  
300°C  
–40°C to +125°C  
1 θJA is specified for the worst-case conditions, that is, θJA is specified for device  
soldered in circuit board for surface-mount packages.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
–65°C to +150°C  
1 Absolute maximum ratings apply at 25°C, unless otherwise noted.  
ESD CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on  
the human body and test equipment and can discharge without detection. Although this product features  
proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy  
electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance  
degradation or loss of functionality.  
Rev. B | Page 5 of 20  
 
 
AD8603/AD8607/AD8609  
TYPICAL PERFORMANCE CHARACTERISTICS  
2600  
300  
250  
200  
150  
100  
50  
V
T
= 3.3V  
= 25°C  
V
T
V
= 5V  
= 25°C  
S
A
S
2400  
2200  
2000  
1800  
1600  
1400  
A
= 0V TO 5V  
CM  
0
1200  
1000  
–50  
–100  
–150  
800  
600  
400  
–200  
–250  
–300  
200  
0
–270 –210 –150 –90 –30  
V
0
30  
90  
150 210 270  
0.0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0 3.3  
(μV)  
V
((VV))  
OS  
CM  
Figure 6. Input Offset Voltage Distribution  
Figure 9. Input Offset Voltage vs. Common-Mode Voltage  
30  
25  
20  
15  
10  
5
400  
350  
300  
V
= ±2.5V  
S
V
T
= ±2.5V  
= –40°C TO +125°C  
= 0V  
S
A
V
CM  
250  
200  
150  
100  
50  
0
0
0
0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0 4.4 4.8 5.2  
0
25  
50  
75  
100  
125  
TCVOS (μV/°C)  
TEMPERATURE (°C)  
Figure 7. Input Offset Voltage Drift Distribution  
Figure 10. Input Bias vs. Temperature  
300  
250  
200  
150  
100  
50  
1000  
100  
10  
V
T
= 5V  
= 25°C  
S
A
V
T
= 5V  
= 25°C  
S
A
0
SINK  
SOURCE  
–50  
1
0.1  
–100  
–150  
–200  
–250  
–300  
0.01  
0.001  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
(V)  
3.0  
3.5  
4.0  
4.5  
5.0  
10  
0.01  
0.1  
LOAD CURRENT (mA)  
1
V
CM  
Figure 8. Input Offset Voltage vs. Common-Mode Voltage  
Figure 11. Output Voltage to Supply Rail vs. Load Current  
Rev. B | Page 6 of 20  
 
AD8603/AD8607/AD8609  
350  
1925  
1750  
1575  
1400  
1225  
V
T
= 5V  
= 25°C  
S
A
300  
250  
200  
V = ±2.5V, ±0.9V  
S
V
– V @ 10mA LOAD  
OH  
DD  
V
@ 10mA LOAD  
OL  
1050  
875  
A = 100  
150  
100  
50  
700  
A = 10  
A = 1  
525  
350  
175  
V
– V @ 1mA LOAD  
OH  
DD  
V
@ 1mA LOAD  
95 110 125  
OL  
0
–40 –25 –10  
5
20  
35  
50  
65  
80  
100  
1k  
10k  
FREQUENCY (Hz)  
100k  
TEMPERATURE (°C)  
Figure 12. Output Voltage Swing vs. Temperature  
Figure 15. Output Impedance vs. Frequency  
140  
120  
100  
80  
100  
80  
225  
180  
V
R
C
= ±2.5V  
= 100kΩ  
= 20pF  
S
V
= ±2.5V  
L
S
L
φ = 70.9°  
60  
40  
20  
135  
90  
45  
60  
0
–20  
–40  
–60  
–80  
0
40  
20  
0
–45  
–90  
–135  
–180  
–20  
–40  
–60  
–100  
–225  
10M  
1k  
10k  
100k  
1M  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
FREQUENCY (Hz)  
Figure 13. Open-Loop Gain and Phase vs. Frequency  
Figure 16. Common-Mode Rejection Ratio vs. Frequency  
140  
120  
100  
5.0  
V
V
= 5V  
= 4.9V p-p  
S
V
= ±2.5V  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
S
IN  
T = 25°C  
= 1  
A
V
80  
60  
40  
20  
0
–20  
1.0  
0.5  
0.0  
–40  
–60  
0.01  
0.1  
1
10  
100  
10  
100  
1k  
10k  
100k  
FREQUENCY (kHz)  
FREQUENCY (Hz)  
Figure 14. Closed-Loop Output Voltage Swing vs. Frequency  
Figure 17. PSRR vs. Frequency  
Rev. B | Page 7 of 20  
AD8603/AD8607/AD8609  
60  
V
= 5V  
S
V
= 5V, 1.8V  
S
50  
40  
30  
20  
10  
0
OS–  
OS+  
10  
100  
LOAD CAPACITANCE (pF)  
1000  
TIME (1s/DIV)  
Figure 18. Small Signal Overshoot vs. Load Capacitance  
Figure 21. 0.1 Hz to 10 Hz Input Voltage Noise  
60  
55  
50  
V
= 5V  
S
V
= ±2.5V  
S
R
C
A
= 10kΩ  
= 200pF  
= 1  
L
L
V
45  
40  
35  
30  
25  
20  
15  
10  
5
0
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
TIME (4μs/DIV)  
TEMPERATURE (°C)  
Figure 19. Supply Current vs. Temperature  
Figure 22. Small Signal Transient  
100  
90  
V
= 5V  
= 10kΩ  
= 200pF  
S
T
= 25°C  
R
C
A
A
L
L
V
80  
70  
60  
50  
40  
=
1
30  
20  
10  
0
0
1.0  
2.0  
3.0  
4.0  
5.0  
TIME (20μs/DIV)  
SUPPLY VOLTAGE (V)  
Figure 20. Supply Current vs. Supply Voltage  
Figure 23. Large Signal Transient  
Rev. B | Page 8 of 20  
AD8603/AD8607/AD8609  
176  
154  
132  
110  
88  
V
R
A
= ±2.5V  
= 10kΩ  
= 100  
S
V
= ±2.5V  
S
L
V
+2.5V  
V
= 50mV  
IN  
0V  
0V  
66  
44  
–50mV  
22  
0
0
1
2
3
4
5
6
7
8
9
10  
μs/DIV))  
TIME (40μs/DIV)  
FREQUENCY (kHz)  
Figure 24. Negative Overload Recovery  
Figure 27. Voltage Noise Density vs. Frequency  
800  
V
R
A
= ±2.5V  
= 10kΩ  
= 100  
S
750  
700  
650  
600  
550  
L
V
= 1.8V  
S
V
T
= 25°C  
A
+2.5V  
V
= 50mV  
IN  
V
= 0V to 1.8V  
CM  
0V  
0V  
500  
450  
400  
350  
300  
250  
200  
150  
100  
–50mV  
50  
0
–300 –240 –180 –120 –60  
0
60  
120 180 240 300  
TIME (4μs/DIV)  
V
(μV)  
OS  
Figure 28. VOS Distribution  
Figure 25. Positive Overload Recovery  
168  
300  
250  
200  
150  
100  
50  
V
= ±2.5V  
S
V
T
= 1.8V  
= 25°C  
S
A
144  
120  
96  
0
72  
48  
24  
0
–50  
–100  
–150  
–200  
–250  
–300  
0
0.3  
0.6  
0.9  
1.2  
1.5  
1.8  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
VV ((VV))  
CCMM  
FREQUENCY (kHz)  
Figure 26. Voltage Noise Density vs. Frequency  
Figure 29. Input Offset Voltage vs. Common-Mode Voltage  
Rev. B | Page 9 of 20  
AD8603/AD8607/AD8609  
1000  
100  
80  
225  
180  
V
R
C
= ±0.9V  
= 100kΩ  
= 20pF  
S
V
T
= 1.8V  
= 25°C  
S
A
L
L
100  
10  
φ = 70°  
60  
40  
20  
135  
90  
45  
SOURCE  
SINK  
0
–20  
–40  
–60  
–80  
0
1
0.1  
–45  
–90  
–135  
–180  
0.01  
0.001  
–100  
–225  
10M  
10  
0.01  
0.1  
LOAD CURRENT (mA)  
1
1
10  
100  
1M  
FREQUENCY (Hz)  
Figure 30. Output Voltage to Supply Rail vs. Load Current  
Figure 33. Open-Loop Gain and Phase vs. Frequency  
100  
140  
120  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
= 1.8V  
V
= 1.8V  
S
S
100  
80  
V
– V @ 1mA LOAD  
OH  
DD  
60  
40  
20  
V
@ 1mA LOAD  
OL  
0
–20  
–40  
–60  
100  
–10  
–40 –25  
5
20  
35  
50  
65 80  
95 110 125  
1k  
10k  
FREQUENCY (Hz)  
100k  
TEMPERATURE (°C)  
Figure 31. Output Voltage Swing vs. Temperature  
Figure 34. Common-Mode Rejection Ratio vs. Frequency  
60  
50  
40  
30  
20  
10  
0
1.8  
1.5  
1.2  
0.9  
0.6  
V
T
A
= 1.8V  
S
A
V
V
= 1.8V  
S
= 25°C  
= 1.7V p-p  
IN  
= 1  
V
T = 25°C  
= 1  
A
V
OS–  
OS+  
0.3  
0.0  
10  
100  
LOAD CAPACITANCE (pF)  
1000  
0.01  
0.1  
1
10  
100  
FREQUENCY (kHz)  
Figure 35. Closed-Loop Output Voltage Swing vs. Frequency  
Figure 32. Small Signal Overshoot vs. Load Capacitance  
Rev. B | Page 10 of 20  
AD8603/AD8607/AD8609  
176  
154  
132  
110  
88  
V
= ±0.9V  
S
V
= 1.8V  
= 10kΩ  
= 200pF  
= 1  
S
R
C
A
L
L
V
66  
44  
22  
0
0
1
2
3
4
5
6
7
8
9
10  
FREQUENCY (kHz)  
TIME (4μs/DIV)  
Figure 36. Small Signal Transient  
Figure 39. Voltage Noise Density  
0
V
= ±2.5V, ±0.9V  
S
V
= 1.8V  
= 10kΩ  
= 200pF  
= 1  
S
–20  
R
C
A
L
L
V
–40  
–60  
–80  
–100  
–120  
–140  
100  
1k  
10k  
100k  
1M  
TIME (20μs/DIV)  
FREQUENCY (Hz)  
Figure 40. Channel Separation  
Figure 37. Large Signal Transient  
168  
140  
112  
84  
V
= ±0.9V  
S
56  
28  
0
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
FREQUENCY (kHz)  
Figure 38. Voltage Noise Density  
Rev. B | Page 11 of 20  
AD8603/AD8607/AD8609  
APPLICATIONS  
NO PHASE REVERSAL  
The use of the snubber circuit is usually recommended for unity  
gain configurations. Higher gain configurations help improve  
the stability of the circuit. Figure 44 shows the same output  
response with the snubber in place.  
The AD8603/AD8607/AD8609 do not exhibit phase inversion  
even when the input voltage exceeds the maximum input  
common-mode voltage. Phase reversal can cause permanent  
damage to the amplifier, resulting in system lockups. The  
AD8603/AD8607/AD8609 can handle voltages of up to 1 V  
over the supply.  
V
V
C
= ±0.9V  
= 100mV  
= 2nF  
S
IN  
L
L
R
= 10kΩ  
V
V
A
= ±2.5V  
= 6V p-p  
= 1  
S
V
IN  
IN  
V
L
R
= 10kΩ  
V
OUT  
Figure 42. Output Response to a 2 nF Capacitive Load, Without Snubber  
V
EE  
TIME (4μs/DIV)  
Figure 41. No Phase Response  
V–  
V+  
R
150Ω  
S
INPUT OVERVOLTAGE PROTECTION  
C
L
200mV  
V
+
CC  
C
S
If a voltage 1 V higher than the supplies is applied at either  
input, the use of a limiting series resistor is recommended. If  
both inputs are used, each one should be protected with a  
series resistor.  
47pF  
Figure 43. Snubber Network  
To ensure good protection, the current should be limited to a  
maximum of 5 mA. The value of the limiting resistor can be  
determined from the equation  
V
V
C
R
R
C
= ±0.9V  
= 100mV  
= 2nF  
= 10kΩ  
= 150Ω  
= 470pF  
SY  
IN  
L
L
S
S
(VIN VS)/(RS + ±00 Ω) 5 mA  
DRIVING CAPACITIVE LOADS  
The AD8603/AD8607/AD8609 are capable of driving large  
capacitive loads without oscillating. Figure 4± shows the output  
of the AD8603/AD8607/AD8609 in response to a 100 mV input  
signal, with a ± nF capacitive load.  
Although it is configured in positive unity gain (the worst case),  
the AD8603 shows less than ±0% overshoot. Simple additional  
circuitry can eliminate ringing and overshoot.  
Figure 44. Output Response to a 2 nF Capacitive Load, With Snubber  
One technique is the snubber network, which consists of a  
series RC and a resistive load (see Figure 43). With the snubber  
in place, the AD8603/AD8607/AD8609 are capable of driving  
capacitive loads of ± nF with no ringing and less than 3%  
overshoot.  
Rev. B | Page 12 of 20  
 
 
 
 
AD8603/AD8607/AD8609  
Optimum values for RS and CS are determined empirically;  
Table 5 lists a few starting values.  
COMPOSITE AMPLIFIERS  
A composite amplifier can provide a very high gain in  
applications where high closed-loop dc gains are needed. The  
high gain achieved by the composite amplifier comes at the  
expense of a loss in phase margin. Placing a small capacitor,  
CF, in the feedback in parallel with R± (Figure 45) improves the  
phase margin. Picking CF = 50 pF yields a phase margin of  
about 45° for the values shown in Figure 45.  
Table 5. Optimum Values for the Snubber Network  
CL (pF)  
RS (Ω)  
CS (pF)  
100~500  
1500  
500  
100  
680  
330  
1600~2000  
400  
100  
PROXIMITY SENSORS  
A composite amplifier can be used to optimize dc and ac  
characteristics. Figure 46 shows an example using the AD8603  
and the AD8541. This circuit offers many advantages. The  
bandwidth is increased substantially, and the input offset  
voltage and noise of the AD8541 become insignificant since  
they are divided by the high gain of the AD8603.  
Proximity sensors can be capacitive or inductive and are used in  
a variety of applications. One of the most common applications  
is liquid level sensing in tanks. This is particularly popular in  
pharmaceutical environments where a tank must know when to  
stop filling or mixing a given liquid. In aerospace applications,  
these sensors detect the level of oxygen used to propel engines.  
Whether in a combustible environment or not, capacitive  
sensors generally use low voltage. The precision and low voltage  
of the AD8603/AD8607/AD8609 make the parts an excellent  
choice for such applications.  
The circuit of Figure 46 offers a high bandwidth (nearly double  
that of the AD8603), a high output current, and a very low  
power consumption of less than 100 μA.  
R2  
100kΩ  
R1  
R2  
V
EE  
AD8603  
1kΩ  
99kΩ  
V
V
EE  
CC  
R1  
R3  
V
1kΩ  
V+  
R4  
V
V+  
1kΩ  
CC  
V+  
V
IN  
U5  
V–  
AD8603  
V
100Ω  
AD8541  
C3  
C2  
AD8541  
V+  
V
CC  
V
V
EE  
V
V
CC  
IN  
V
EE  
R3  
R4  
1kΩ  
99kΩ  
Figure 46. Low Power Composite Amplifier  
Figure 45. High Gain Composite Amplifier  
Rev. B | Page 13 of 20  
 
 
 
AD8603/AD8607/AD8609  
BATTERY-POWERED APPLICATIONS  
The AD8603/AD8607/AD8609 are ideal for battery-powered  
applications. The parts are tested at 5 V, 3.3 V, ±.7 V, and 1.8 V  
and are suitable for various applications whether in single or  
dual supply.  
Figure 47 shows a simple photodiode circuit. The feedback  
capacitor helps the circuit maintain stability. The signal  
bandwidth can be increased at the expense of an increase in the  
total noise; a low-pass filter can be implemented by a simple RC  
network at the output to reduce the noise. The signal bandwidth  
can be calculated by ½πR±C± and the closed-loop bandwidth is  
the intersection point of the open-loop gain and the noise gain.  
In addition to their low offset voltage and low input bias, the  
AD8603/AD8607/AD8609 have a very low supply current of  
40 μA, making the parts an excellent choice for portable elec-  
tronics. The TSOT package allows the AD8603 to be used on  
smaller board spaces.  
The circuit shown in Figure 47 has a closed-loop bandwidth of  
58 kHz and a signal bandwidth of 16 Hz. Increasing C± to 50 pF  
yields a closed-loop bandwidth of 65 kHz, but only 3.± Hz of  
signal bandwidth can be achieved.  
PHOTODIODES  
Photodiodes have a wide range of applications from bar code  
scanners to precision light meters and CAT scanners. The very  
low noise and low input bias current of the AD8603/AD8607/  
AD8609 make the parts very attractive amplifiers for I-V  
conversion applications.  
C2 10pF  
R2 1000MΩ  
V
CC  
AD8603  
V
EE  
Figure 47. Photodiode Circuit  
Rev. B | Page 14 of 20  
 
 
AD8603/AD8607/AD8609  
OUTLINE DIMENSIONS  
5.00 (0.1968)  
4.80 (0.1890)  
8
1
5
4
6.20 (0.2440)  
5.80 (0.2284)  
4.00 (0.1574)  
3.80 (0.1497)  
1.27 (0.0500)  
BSC  
0.50 (0.0196)  
0.25 (0.0099)  
× 45°  
1.75 (0.0688)  
1.35 (0.0532)  
0.25 (0.0098)  
0.10 (0.0040)  
8°  
0.51 (0.0201)  
0.31 (0.0122)  
0° 1.27 (0.0500)  
COPLANARITY  
0.10  
0.25 (0.0098)  
0.17 (0.0067)  
SEATING  
PLANE  
0.40 (0.0157)  
COMPLIANT TO JEDEC STANDARDS MS-012-AA  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN  
Figure 48. 8-Lead Standard Small Outline Package [SOIC_N]  
(R-8)  
Dimensions shown in millimeters and (inches)  
2.90 BSC  
5
1
4
3
2.80 BSC  
1.60 BSC  
2
PIN 1  
0.95 BSC  
1.90  
BSC  
*
0.90  
0.87  
0.84  
*
1.00 MAX  
0.20  
0.08  
8°  
4°  
0°  
0.10 MAX  
0.60  
0.45  
0.30  
0.50  
0.30  
SEATING  
PLANE  
*
COMPLIANT TO JEDEC STANDARDS MO-193-AB WITH  
THE EXCEPTION OF PACKAGE HEIGHT AND THICKNESS.  
Figure 49. 5-Lead Thin Small Outline Transistor Package [TSOT]  
(UJ-5)  
Dimensions shown in millimeters  
3.00  
BSC  
8
1
5
4
4.90  
BSC  
3.00  
BSC  
PIN 1  
0.65 BSC  
1.10 MAX  
0.15  
0.00  
0.80  
0.60  
0.40  
8°  
0°  
0.38  
0.22  
0.23  
0.08  
COPLANARITY  
0.10  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MO-187-AA  
Figure 50. 8-Lead Mini Small Outline Package [MSOP]  
(RM-8)  
Dimensions shown in millimeters  
Rev. B | Page 15 of 20  
 
AD8603/AD8607/AD8609  
8.75 (0.3445)  
8.55 (0.3366)  
14  
1
8
7
4.00 (0.1575)  
3.80 (0.1496)  
6.20 (0.2441)  
5.80 (0.2283)  
1.27 (0.0500)  
BSC  
0.50 (0.0197)  
0.25 (0.0098)  
1.75 (0.0689)  
1.35 (0.0531)  
×
45°  
0.25 (0.0098)  
0.10 (0.0039)  
8°  
0°  
0.51 (0.0201)  
0.31 (0.0122)  
SEATING  
PLANE  
1.27 (0.0500)  
0.40 (0.0157)  
COPLANARITY  
0.10  
0.25 (0.0098)  
0.17 (0.0067)  
COMPLIANT TO JEDEC STANDARDS MS-012-AB  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN  
Figure 51. 14-Lead Standard Small Outline Package [SOIC_N]  
(R-14)  
Dimensions shown in millimeters and (inches)  
5.10  
5.00  
4.90  
14  
8
7
4.50  
4.40  
4.30  
6.40  
BSC  
1
PIN 1  
0.65  
BSC  
1.05  
1.00  
0.80  
0.20  
0.09  
1.20  
MAX  
0.75  
8°  
0°  
0.60  
0.45  
0.15  
0.05  
0.30  
0.19  
SEATING  
PLANE  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-153-AB-1  
Figure 52. 14-Lead Thin Shrink Small Outline Package [TSSOP]  
(RU-14)  
Dimensions shown in millimeters  
Rev. B | Page 16 of 20  
AD8603/AD8607/AD8609  
ORDERING GUIDE  
Model  
Temperature Range  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
Package Description  
5-Lead TSOT-23  
5-Lead TSOT-23  
5-Lead TSOT-23  
5-Lead TSOT-23  
5-Lead TSOT-23  
5-Lead TSOT-23  
8-Lead MSOP  
Package Option  
UJ-5  
UJ-5  
UJ-5  
UJ-5  
Branding  
BFA  
BFA  
BFA  
A0X  
AD8603AUJ-R2  
AD8603AUJ-REEL  
AD8603AUJ-REEL7  
AD8603AUJZ-R21  
AD8603AUJZ-REEL1  
AD8603AUJZ-REEL71  
AD8607ARM-R2  
AD8607ARM-REEL  
AD8607ARMZ-R21  
AD8607ARMZ-REEL1  
AD8607AR  
AD8607AR-REEL  
AD8607AR-REEL7  
AD8607ARZ1  
AD8607ARZ-REEL1  
AD8607ARZ-REEL71  
AD8609AR  
AD8609AR-REEL  
AD8609AR-REEL7  
AD8609ARZ1  
AD8609ARZ-REEL1  
AD8609ARZ-REEL71  
AD8609ARU  
AR8609ARU-REEL  
AD8609ARUZ1  
AR8609ARUZ-REEL1  
UJ-5  
UJ-5  
A0X  
A0X  
RM-8  
RM-8  
RM-8  
RM-8  
R-8  
R-8  
R-8  
R-8  
R-8  
A00  
A00  
A0G  
A0G  
8-Lead MSOP  
8-Lead MSOP  
8-Lead MSOP  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
14-Lead SOIC_N  
14-Lead SOIC_N  
14-Lead SOIC_N  
14-Lead SOIC_N  
14-Lead SOIC_N  
14-Lead SOIC_N  
14-Lead TSSOP  
14-Lead TSSOP  
14-Lead TSSOP  
14-Lead TSSOP  
R-8  
R-14  
R-14  
R-14  
R-14  
R-14  
R-14  
RU-14  
RU-14  
RU-14  
RU-14  
1 Z = Pb-free part.  
Rev. B | Page 17 of 20  
 
 
AD8603/AD8607/AD8609  
NOTES  
Rev. B | Page 18 of 20  
AD8603/AD8607/AD8609  
NOTES  
Rev. B | Page 19 of 20  
AD8603/AD8607/AD8609  
NOTES  
©
2005 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
C04356–0–6/05(B)  
Rev. B | Page 20 of 20  

相关型号:

AD8607ARZ-REEL

Precision Micropower, Low Noise CMOS Rail-to-Rail Input/Output Operational Amplifiers
ADI

AD8607ARZ-REEL1

Precision Micropower, Low Noise CMOS, Rail-to-Rail Input/Output Operational Amplifiers
ADI

AD8607ARZ-REEL7

Precision Micropower, Low Noise CMOS Rail-to-Rail Input/Output Operational Amplifiers
ADI

AD8607ARZ-REEL71

Precision Micropower, Low Noise CMOS, Rail-to-Rail Input/Output Operational Amplifiers
ADI

AD8607ARZ1

Precision Micropower, Low Noise CMOS, Rail-to-Rail Input/Output Operational Amplifiers
ADI

AD8607_15

Precision Micropower, Low Noise CMOS
ADI

AD8608

Precision Low noise CMOS Rail-to-Rail Input/Output Operational Amplifiers
ADI

AD8608-KGD-CHIP

暂无描述
ADI

AD8608AR

Precision Low noise CMOS Rail-to-Rail Input/Output Operational Amplifiers
ADI

AD8608AR-REEL

Precision Low noise CMOS Rail-to-Rail Input/Output Operational Amplifiers
ADI

AD8608AR-REEL7

Precision Low noise CMOS Rail-to-Rail Input/Output Operational Amplifiers
ADI

AD8608ARN

Operational Amplifier
ETC