AD8607_15 [ADI]

Precision Micropower, Low Noise CMOS;
AD8607_15
型号: AD8607_15
厂家: ADI    ADI
描述:

Precision Micropower, Low Noise CMOS

文件: 总16页 (文件大小:448K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Precision Micropower, Low Noise CMOS,  
Rail-to-Rail Input/Output Operational Amplifiers  
AD8603/AD8607/AD8609  
FEATURES  
PIN CONFIGURATIONS  
Low offset voltage: 50 μV maximum  
Low input bias current: 1 pA maximum  
Single-supply operation: 1.8 V to 5 V  
Low noise: 22 nV/√Hz  
OUT  
V–  
1
5
V+  
AD8603  
TOP VIEW  
2
(Not to Scale)  
+IN  
3
4
–IN  
Micropower: 50 μA maximum  
Low distortion  
Figure 1. 5-Lead TSOT (UJ Suffix)  
No phase reversal  
Unity gain stable  
OUT A  
–IN A  
+IN A  
V–  
1
2
3
4
8
7
6
5
V+  
AD8607  
OUT B  
–IN B  
+IN B  
TOP VIEW  
(Not to Scale)  
APPLICATIONS  
Battery-powered instrumentation  
Multipole filters  
Figure 2. 8-Lead MSOP (RM Suffix)  
Sensors  
OUT A  
–IN A  
+IN A  
V–  
1
2
3
4
8
7
6
5
V+  
Low power ASIC input or output amplifiers  
AD8607  
OUT B  
–IN B  
+IN B  
TOP VIEW  
(Not to Scale)  
GENERAL DESCRIPTION  
Figure 3. 8-Lead SOIC (R Suffix)  
The AD8603/AD8607/AD8609 are single/dual/quad micro-  
power rail-to-rail input and output amplifiers, respectively, that  
feature very low offset voltage as well as low input voltage and  
current noise.  
1
2
3
4
5
6
7
OUT A  
–IN A  
+IN A  
V+  
14  
13  
12  
11  
OUT D  
–IN D  
+IN D  
V–  
AD8609  
TOP VIEW  
(Not to Scale)  
These amplifiers use a patented trimming technique that achieves  
superior precision without laser trimming. The parts are fully  
specified to operate from 1.8 V to 5.0 V single supply or from  
±0.9 V to ±±.5 V dual supply. The combination of low offsets, low  
noise, very low input bias currents, and low power consumption  
makes the AD8603/AD8607/AD8609 especially useful in portable  
and loop-powered instrumentation.  
+IN B  
–IN B  
OUT B  
10 +IN C  
9
8
–IN C  
OUT C  
Figure 4. 14-Lead TSSOP (RU Suffix)  
The ability to swing rail to rail at both the input and output  
enables designers to buffer CMOS ADCs, DACs, ASICs, and  
other wide output swing devices in low power, single-supply  
systems.  
OUT A  
–IN A  
+IN A  
V+  
1
2
3
4
5
6
7
14 OUT D  
13 –IN D  
12 +IN D  
11 V–  
AD8609  
TOP VIEW  
(Not to Scale)  
+IN B  
–IN B  
OUT B  
10 +IN C  
The AD8603 is available in a tiny 5-lead TSOT package. The  
AD8607 is available in 8-lead MSOP and 8-lead SOIC packages.  
The AD8609 is available in 14-lead TSSOP and 14-lead SOIC  
packages.  
9
8
–IN C  
OUT C  
Figure 5. 14-Lead SOIC (R Suffix)  
Rev. C  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
www.analog.com  
Fax: 781.461.3113 ©2003–2008 Analog Devices, Inc. All rights reserved.  
 
AD8603/AD8607/AD8609  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Applications..................................................................................... 1±  
No Phase Reversal...................................................................... 1±  
Input Overvoltage Protection................................................... 1±  
Driving Capacitive Loads.......................................................... 1±  
Proximity Sensors....................................................................... 13  
Composite Amplifiers................................................................ 13  
Battery-Powered Applications.................................................. 13  
Photodiodes ................................................................................ 13  
Outline Dimensions....................................................................... 14  
Ordering Guide .......................................................................... 16  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Pin Configurations ........................................................................... 1  
Revision History ............................................................................... ±  
Specifications..................................................................................... 3  
Electrical Characteristics............................................................. 3  
Absolute Maximum Ratings............................................................ 5  
ESD Caution.................................................................................. 5  
Typical Performance Characteristics ............................................. 6  
REVISION HISTORY  
6/08—Rev. B to Rev. C  
Changes to Table 1............................................................................ 3  
Changes to Table ±............................................................................ 4  
Changes to Figure 15........................................................................ 7  
Changes to Figure 33...................................................................... 10  
Changes to Figure 45 and Figure 47............................................. 13  
Updated Outline Dimensions....................................................... 14  
Changes to Ordering Guide .......................................................... 16  
6/05—Rev. A to Rev. B  
Updated Figure 49 .......................................................................... 15  
Changes to Ordering Guide .......................................................... 17  
10/03—Rev. 0 to Rev. A  
Added AD8607 and AD8609 Parts ..................................Universal  
Changes to Specifications................................................................ 3  
Changes to Figure 35...................................................................... 10  
Added Figure 41.............................................................................. 11  
8/03—Revision 0: Initial Version  
Rev. C | Page 2 of 16  
 
AD8603/AD8607/AD8609  
SPECIFICATIONS  
ELECTRICAL CHARACTERISTICS  
VS = 5 V, VCM = VS/±, TA = ±5°C, unless otherwise noted.  
Table 1.  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
INPUT CHARACTERISTICS  
Offset Voltage  
VOS  
VS = 3.3 V @ VCM = 0.5 V and 2.8 V  
−0.3 V < VCM < +5.2 V  
−40°C < TA < +125°C, −0.3 V < VCM < +5.2 V  
−40°C < TA < +125°C  
12  
40  
50  
μV  
μV  
μV  
μV/°C  
pA  
pA  
pA  
pA  
pA  
pA  
V
300  
700  
4.5  
1
Offset Voltage Drift  
Input Bias Current  
∆VOS/∆T  
IB  
1
0.2  
−40°C < TA < +85°C  
−40°C < TA < +125°C  
50  
500  
0.5  
50  
250  
+5.2  
Input Offset Current  
IOS  
0.1  
−40°C < TA < +85°C  
−40°C < TA < +125°C  
Input Voltage Range  
Common-Mode Rejection Ratio  
IVR  
CMRR  
−0.3  
85  
80  
0 V < VCM < 5 V  
−40°C < TA < +125°C  
RL = 10 kΩ, 0.5 V < VO < 4.5 V  
100  
dB  
dB  
Large Signal Voltage Gain  
AD8603  
AD8607/AD8609  
Input Capacitance  
AVO  
400  
250  
1000  
450  
1.9  
V/mV  
V/mV  
pF  
CDIFF  
CCM  
2.5  
pF  
OUTPUT CHARACTERISTICS  
Output Voltage High  
VOH  
IL = 1 mA  
−40°C to +125°C  
IL = 10 mA  
−40°C to +125°C  
IL = 1 mA  
−40°C to +125°C  
IL = 10 mA  
4.95  
4.9  
4.65  
4.50  
4.97  
4.97  
16  
V
V
V
V
mV  
mV  
mV  
mV  
mA  
Ω
Output Voltage Low  
VOL  
30  
50  
250  
330  
160  
−40°C to +125°C  
Short-Circuit Current  
Closed-Loop Output Impedance  
POWER SUPPLY  
ISC  
ZOUT  
70  
36  
f = 10 kHz, AV = 1  
Power Supply Rejection Ratio  
Supply Current per Amplifier  
PSRR  
ISY  
1.8 V < VS < 5 V  
VO = 0 V  
−40°C <TA < +125°C  
80  
100  
40  
dB  
μA  
μA  
50  
60  
DYNAMIC PERFORMANCE  
Slew Rate  
Settling Time 0.1%  
Gain Bandwidth Product  
SR  
tS  
GBP  
RL = 10 kΩ  
G = 1, 2 V step  
RL = 100 kΩ  
RL = 10 kΩ  
RL = 10 kΩ, RL = 100 kΩ  
0.1  
23  
400  
316  
70  
V/μs  
μs  
kHz  
kHz  
Degrees  
Phase Margin  
ØO  
NOISE PERFORMANCE  
Peak-to-Peak Noise  
Voltage Noise Density  
en p-p  
en  
0.1 Hz to 10 Hz  
f = 1 kHz  
f = 10 kHz  
f = 1 kHz  
f = 10 kHz  
f = 100 kHz  
2.3  
25  
22  
0.05  
−115  
−110  
3.5  
μV  
nV/√Hz  
nV/√Hz  
pA/√Hz  
dB  
Current Noise Density  
Channel Separation  
in  
CS  
dB  
Rev. C | Page 3 of 16  
 
AD8603/AD8607/AD8609  
VS = 1.8 V, VCM = VS/±, TA = ±5°C, unless otherwise noted.  
Table 2.  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
INPUT CHARACTERISTICS  
Offset Voltage  
VOS  
VS = 3.3 V @ VCM = 0.5 V and 2.8 V  
−0.3 V < VCM < +1.8 V  
−40°C < TA < +85°C, −0.3 V < VCM < +1.8 V  
−40°C < TA < +125°C, −0.3 V < VCM < +1.7 V  
−40°C < TA < +125°C  
12  
40  
50  
μV  
μV  
μV  
μV  
μV/°C  
pA  
pA  
pA  
pA  
pA  
pA  
V
300  
500  
700  
4.5  
1
Offset Voltage Drift  
Input Bias Current  
∆VOS/∆T  
IB  
1
0.2  
−40°C < TA < +85°C  
−40°C < TA < +125°C  
50  
500  
0.5  
50  
250  
+1.8  
Input Offset Current  
IOS  
0.1  
98  
−40°C < TA < +85°C  
−40°C < TA < +125°C  
Input Voltage Range  
Common-Mode Rejection Ratio  
IVR  
CMRR  
−0.3  
80  
70  
0 V < VCM < 1.8 V  
−40°C < TA < +85°C  
dB  
dB  
Large Signal Voltage Gain  
AD8603  
AD8607/AD8609  
Input Capacitance  
AVO  
RL = 10 kΩ, 0.5 V < VO < 4.5 V  
150  
100  
3000  
2000  
2.1  
V/mV  
V/mV  
pF  
CDIFF  
CCM  
3.8  
pF  
OUTPUT CHARACTERISTICS  
Output Voltage High  
VOH  
VOL  
IL = 1 mA  
−40°C to +125°C  
IL = 1 mA  
1.65  
1.6  
1.72  
38  
V
V
mV  
mV  
mA  
Ω
Output Voltage Low  
60  
80  
−40°C to +125°C  
Short-Circuit Current  
Closed-Loop Output Impedance  
POWER SUPPLY  
ISC  
ZOUT  
10  
36  
f = 10 kHz, AV = 1  
Power Supply Rejection Ratio  
Supply Current per Amplifier  
PSRR  
ISY  
1.8 V < VS < 5 V  
VO = 0 V  
−40°C < TA < +85°C  
80  
100  
40  
dB  
μA  
μA  
50  
60  
DYNAMIC PERFORMANCE  
Slew Rate  
Settling Time 0.1%  
Gain Bandwidth Product  
SR  
tS  
GBP  
RL = 10 kΩ  
G = 1, 1 V step  
RL = 100 kΩ  
RL = 10 kΩ  
RL = 10 kΩ, RL = 100 kΩ  
0.1  
9.2  
385  
316  
70  
V/μs  
μs  
kHz  
kHz  
Degrees  
Phase Margin  
ØO  
NOISE PERFORMANCE  
Peak-to-Peak Noise  
Voltage Noise Density  
en p-p  
en  
0.1 Hz to 10 Hz  
f = 1 kHz  
f = 10 kHz  
f = 1 kHz  
2.3  
25  
22  
0.05  
−115  
−110  
3.5  
μV  
nV/√Hz  
nV/√Hz  
pA/√Hz  
dB  
Current Noise Density  
Channel Separation  
in  
CS  
f = 10 kHz  
f = 100 kHz  
dB  
Rev. C | Page 4 of 16  
AD8603/AD8607/AD8609  
ABSOLUTE MAXIMUM RATINGS  
Absolute maximum ratings apply at ±5°C, unless otherwise noted.  
Table 4. Package Characteristics  
1
Package Type  
θJA  
θJC  
61  
45  
43  
36  
35  
Unit  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
Table 3.  
5-Lead TSOT (UJ)  
8-Lead MSOP (RM)  
8-Lead SOIC_N (R)  
14-Lead SOIC_N (R)  
14-Lead TSSOP (RU)  
207  
210  
158  
120  
180  
Parameter  
Rating  
Supply Voltage  
6 V  
Input Voltage  
GND to VS  
6 V  
Indefinite  
−65°C to +150°C  
300°C  
Differential Input Voltage  
Output Short-Circuit Duration to GND  
Storage Temperature Range  
Lead Temperature (Soldering, 60 sec)  
Operating Temperature Range  
Junction Temperature Range  
1 θJA is specified for the worst-case conditions, that is, θJA is specified for a  
device soldered in a circuit board for surface-mount packages.  
−40°C to +125°C  
−65°C to +150°C  
ESD CAUTION  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational section of  
this specification is not implied. Exposure to absolute maximum  
rating conditions for extended periods may affect device reliability.  
Rev. C | Page 5 of 16  
 
AD8603/AD8607/AD8609  
TYPICAL PERFORMANCE CHARACTERISTICS  
300  
250  
200  
150  
100  
50  
2600  
V
T
= 3.3V  
= 25°C  
S
A
V
T
= 5V  
= 25°C  
= 0V TO 5V  
S
A
2400  
2200  
2000  
1800  
1600  
1400  
V
CM  
0
1200  
1000  
–50  
–100  
–150  
800  
600  
400  
–200  
–250  
–300  
200  
0
0
0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0 3.3  
((VV))  
–270 –210 –150 –90 –30  
V
0
30 90  
150 210 270  
V
(µV)  
CM  
OS  
Figure 9. Input Offset Voltage vs. Common-Mode Voltage  
Figure 6. Input Offset Voltage Distribution  
400  
30  
25  
20  
15  
10  
5
V
= ±2.5V  
= –40°C TO +125°C  
S
T
A
350  
300  
V
= 0V  
CM  
V
= ±2.5V  
S
250  
200  
150  
100  
50  
0
0
0
25  
50  
75  
100  
125  
0
0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0 4.4 4.8 5.2  
TCVOS (µV/°C)  
TEMPERATURE (°C)  
Figure 10. Input Bias Current vs. Temperature  
Figure 7. Input Offset Voltage Drift Distribution  
1000  
100  
300  
250  
200  
150  
100  
50  
V
T
= 5V  
= 25°C  
S
A
V
T
= 5V  
= 25°C  
S
A
10  
0
SOURCE  
SINK  
–50  
1
0.1  
–100  
–150  
–200  
–250  
–300  
0.01  
0.001  
0
0.5  
1.0  
1.5  
2.0  
2.5  
(V)  
3.0  
3.5  
4.0  
4.5  
5.0  
10  
0.01  
0.1  
LOAD CURRENT (mA)  
1
V
CM  
Figure 8. Input Offset Voltage vs. Common-Mode Voltage  
Figure 11. Output Voltage to Supply Rail vs. Load Current  
Rev. C | Page 6 of 16  
 
AD8603/AD8607/AD8609  
350  
300  
1750  
1575  
1400  
1225  
1050  
875  
V
T
= 5V  
= 25°C  
V
= ±2.5V, ±0.9V  
S
S
A
V
– V @ 10mA LOAD  
OH  
DD  
250  
200  
A
= 100  
V
A
= 10  
V
V
@ 10mA LOAD  
OL  
A
= 1  
V
150  
100  
50  
700  
525  
350  
175  
0
V
– V @ 1mA LOAD  
OH  
DD  
V
@ 1mA LOAD  
95 110 125  
OL  
0
–40 –25 –10  
5
20  
35  
50  
65  
80  
100  
1k  
10k  
100k  
TEMPERATURE (°C)  
FREQUENCY (Hz)  
Figure 12. Output Voltage Swing vs. Temperature  
Figure 15. Output Impedance vs. Frequency  
100  
80  
225  
180  
140  
120  
100  
80  
V
= ±2.5V  
V
R
C
= ±2.5V  
= 100k  
= 20pF  
S
S
L
L
60  
40  
20  
135  
90  
Φ = 70.9°  
45  
60  
0
–20  
–40  
–60  
–80  
0
40  
20  
0
–45  
–90  
–135  
–180  
–20  
–40  
–60  
–100  
–225  
10M  
1k  
10k  
100k  
1M  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
FREQUENCY (Hz)  
Figure 13. Open-Loop Gain and Phase vs. Frequency  
Figure 16. CMRR vs. Frequency  
5.0  
4.5  
4.0  
3.5  
3.0  
140  
120  
100  
V
= ±2.5V  
S
V
V
= 5V  
S
= 4.9V p-p  
= 25°C  
= 1  
IN  
T
A
A
V
80  
60  
40  
20  
2.5  
2.0  
1.5  
0
–20  
1.0  
0.5  
0
–40  
–60  
0.01  
0.1  
1
10  
100  
10  
100  
1k  
10k  
100k  
FREQUENCY (kHz)  
FREQUENCY (Hz)  
Figure 17. PSRR vs. Frequency  
Figure 14. Closed-Loop Output Voltage Swing vs. Frequency  
Rev. C | Page 7 of 16  
AD8603/AD8607/AD8609  
60  
V
= 5V  
V = 5V, 1.8V  
S
S
50  
40  
30  
20  
10  
0
OS–  
OS+  
10  
100  
LOAD CAPACITANCE (pF)  
1000  
TIME (1s/DIV)  
Figure 18. Small Signal Overshoot vs. Load Capacitance  
Figure 21. 0.1 Hz to 10 Hz Input Voltage Noise  
60  
V
= 5V  
V
= ±2.5V  
S
S
55  
50  
R
C
A
= 10k  
= 200pF  
= 1  
L
L
V
45  
40  
35  
30  
25  
20  
15  
10  
5
0
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
TIME (4µs/DIV)  
TEMPERATURE (°C)  
Figure 19. Supply Current vs. Temperature  
Figure 22. Small Signal Transient  
100  
90  
T
= 25°C  
A
V
= 5V  
S
R
C
A
= 10kΩ  
= 200pF  
= 1  
L
L
V
80  
70  
60  
50  
40  
30  
20  
10  
0
0
1
2
3
4
5
TIME (20µs/DIV)  
SUPPLY VOLTAGE (V)  
Figure 20. Supply Current vs. Supply Voltage  
Figure 23. Large Signal Transient  
Rev. C | Page 8 of 16  
AD8603/AD8607/AD8609  
176  
154  
132  
110  
88  
V
R
A
= ±2.5V  
= 10kΩ  
= 100  
V
= ±2.5V  
S
S
L
V
+2.5V  
V
= 50mV  
IN  
0V  
0V  
66  
44  
–50mV  
22  
0
0
1
2
3
4
5
6
7
8
9
10  
μ
s/DIV))  
TIME (40µs/DIV)  
FREQUENCY (kHz)  
Figure 24. Negative Overload Recovery  
Figure 27. Voltage Noise Density vs. Frequency  
800  
750  
700  
650  
600  
550  
V
R
A
= ±2.5V  
= 10kΩ  
= 100  
V
= 1.8V  
= 25°C  
S
S
T
L
A
V
= 0V TO 1.8V  
V
CM  
+2.5V  
V
= 50mV  
IN  
0V  
0V  
500  
450  
400  
350  
300  
250  
200  
150  
100  
–50mV  
50  
0
–300 –240 –180 –120 –60  
0
60  
120 180 240 300  
TIME (4µs/DIV)  
V
(µV)  
OS  
Figure 25. Positive Overload Recovery  
Figure 28. VOS Distribution  
300  
250  
200  
150  
100  
50  
168  
V
= ±2.5V  
V
T
= 1.8V  
= 25°C  
S
S
A
144  
120  
96  
72  
48  
24  
0
0
–50  
–100  
–150  
–200  
–250  
–300  
0
0.3  
0.6  
0.9  
1.2  
1.5  
1.8  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
VV ((VV))  
CCMM  
FREQUENCY (kHz)  
Figure 29. Input Offset Voltage vs. Common-Mode Voltage  
Figure 26. Voltage Noise Density vs. Frequency  
Rev. C | Page 9 of 16  
AD8603/AD8607/AD8609  
1000  
100  
80  
225  
180  
V
R
C
= ±0.9V  
= 100k  
= 20pF  
V
T
= 1.8V  
= 25°C  
S
S
L
L
A
60  
40  
20  
135  
90  
100  
10  
Φ = 70°  
45  
SOURCE  
0
–20  
–40  
–60  
–80  
0
SINK  
–45  
–90  
–135  
–180  
–225  
1
0.1  
0.01  
0.001  
–100  
1k  
10k  
100k  
1M  
10M  
10  
0.01  
0.1  
LOAD CURRENT (mA)  
1
FREQUENCY (Hz)  
Figure 33. Open-Loop Gain and Phase vs. Frequency  
Figure 30. Output Voltage to Supply Rail vs. Load Current  
140  
120  
100  
V
= 1.8V  
S
90  
80  
70  
60  
50  
40  
V
= 1.8V  
S
100  
80  
V
– V @ 1mA LOAD  
OH  
DD  
60  
40  
20  
V
@ 1mA LOAD  
OL  
0
30  
20  
10  
0
–20  
–40  
–60  
100  
1k  
10k  
FREQUENCY (Hz)  
100k  
–10  
–40 –25  
5
20  
35  
50  
65 80  
95 110 125  
TEMPERATURE (°C)  
Figure 31. Output Voltage Swing vs. Temperature  
Figure 34. CMRR vs. Frequency  
60  
50  
40  
30  
20  
10  
0
1.8  
1.5  
1.2  
0.9  
0.6  
V
= 1.8V  
= 25°C  
= 1  
S
T
A
V
V
= 1.8V  
S
A
V
= 1.7V p-p  
= 25°C  
= 1  
IN  
T
A
A
V
OS–  
0.3  
0
OS+  
10  
100  
LOAD CAPACITANCE (pF)  
1000  
0.01  
0.1  
1
10  
100  
FREQUENCY (kHz)  
Figure 32. Small Signal Overshoot vs. Load Capacitance  
Figure 35. Closed-Loop Output Voltage Swing vs. Frequency  
Rev. C | Page 10 of 16  
AD8603/AD8607/AD8609  
176  
154  
132  
110  
88  
V
= 1.8V  
= 10k  
= 200pF  
= 1  
V
= ±0.9V  
S
S
R
C
A
L
L
V
66  
44  
22  
0
0
1
2
3
4
5
6
7
8
9
10  
TIME (4µs/DIV)  
FREQUENCY (kHz)  
Figure 39. Voltage Noise Density vs. Frequency  
Figure 36. Small Signal Transient  
0
V
= ±2.5V, ±0.9V  
S
V
= 1.8V  
S
–20  
R
C
A
= 10k  
= 200pF  
= 1  
L
L
V
–40  
–60  
–80  
–100  
–120  
–140  
100  
1k  
10k  
100k  
1M  
TIME (20µs/DIV)  
FREQUENCY (Hz)  
Figure 37. Large Signal Transient  
Figure 40. Channel Separation vs. Frequency  
168  
140  
112  
84  
V
= ±0.9V  
S
56  
28  
0
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
FREQUENCY (kHz)  
Figure 38. Voltage Noise Density vs. Frequency  
Rev. C | Page 11 of 16  
AD8603/AD8607/AD8609  
APPLICATIONS  
The use of the snubber circuit is usually recommended for unity  
gain configurations. Higher gain configurations help improve  
the stability of the circuit. Figure 44 shows the same output  
response with the snubber in place.  
NO PHASE REVERSAL  
The AD8603/AD8607/AD8609 do not exhibit phase inversion  
even when the input voltage exceeds the maximum input  
common-mode voltage. Phase reversal can cause permanent  
damage to the amplifier, resulting in system lockups. The  
AD8603/AD8607/AD8609 can handle voltages of up to 1 V  
over the supply.  
V
V
C
= ±0.9V  
= 100mV  
= 2nF  
S
IN  
L
L
R
= 10k  
V
V
A
R
= ±2.5V  
= 6V p-p  
= 1  
S
IN  
V
IN  
V
L
= 10kΩ  
V
OUT  
Figure 42. Output Response to a 2 nF Capacitive Load, Without Snubber  
V
EE  
V–  
V+  
TIME (4µs/DIV)  
R
S
150  
C
L
Figure 41. No Phase Response  
+
200mV  
C
S
V
CC  
47pF  
INPUT OVERVOLTAGE PROTECTION  
Figure 43. Snubber Network  
If a voltage 1 V higher than the supplies is applied at either  
input, the use of a limiting series resistor is recommended. If  
both inputs are used, each one should be protected with a  
series resistor.  
V
= ±0.9V  
= 100mV  
= 2nF  
= 10k  
= 150Ω  
= 470pF  
SY  
IN  
V
C
R
R
C
L
L
S
S
To ensure good protection, the current should be limited to a  
maximum of 5 mA. The value of the limiting resistor can be  
determined from the following equation:  
(VIN VS)/(RS + ±00 Ω) ≤ 5 mA  
DRIVING CAPACITIVE LOADS  
The AD8603/AD8607/AD8609 are capable of driving large  
capacitive loads without oscillating. Figure 4± shows the output  
of the AD8603/AD8607/AD8609 in response to a 100 mV input  
signal, with a ± nF capacitive load.  
Figure 44. Output Response to a 2 nF Capacitive Load with Snubber  
Although it is configured in positive unity gain (the worst case),  
the AD8603 shows less than ±0% overshoot. Simple additional  
circuitry can eliminate ringing and overshoot.  
Optimum values for RS and CS are determined empirically;  
Table 5 lists a few starting values.  
One technique is the snubber network, which consists of a  
series RC and a resistive load (see Figure 43). With the snubber  
in place, the AD8603/AD8607/AD8609 are capable of driving  
capacitive loads of ± nF with no ringing and less than 3%  
overshoot.  
Table 5. Optimum Values for the Snubber Network  
CL (pF)  
RS (Ω)  
CS (pF)  
100 to ~500  
1500  
500  
100  
680  
330  
1600 to ~2000  
400  
100  
Rev. C | Page 12 of 16  
 
 
 
 
 
AD8603/AD8607/AD8609  
PROXIMITY SENSORS  
BATTERY-POWERED APPLICATIONS  
Proximity sensors can be capacitive or inductive and are used in  
a variety of applications. One of the most common applications  
is liquid level sensing in tanks. This is particularly popular in  
pharmaceutical environments where a tank must know when to  
stop filling or mixing a given liquid. In aerospace applications,  
these sensors detect the level of oxygen used to propel engines.  
Whether in a combustible environment or not, capacitive  
sensors generally use low voltage. The precision and low voltage  
of the AD8603/AD8607/AD8609 make the parts an excellent  
choice for such applications.  
The AD8603/AD8607/AD8609 are ideal for battery-powered  
applications. The parts are tested at 5 V, 3.3 V, ±.7 V, and 1.8 V  
and are suitable for various applications whether in single or  
dual supply.  
In addition to their low offset voltage and low input bias, the  
AD8603/AD8607/AD8609 have a very low supply current of  
40 μA, making the parts an excellent choice for portable electronics.  
The TSOT package allows the AD8603 to be used on smaller  
board spaces.  
PHOTODIODES  
COMPOSITE AMPLIFIERS  
Photodiodes have a wide range of applications from barcode  
scanners to precision light meters and CAT scanners. The very  
low noise and low input bias current of the AD8603/AD8607/  
AD8609 make the parts very attractive amplifiers for I-V  
conversion applications.  
A composite amplifier can provide a very high gain in applications  
where high closed-loop dc gains are needed. The high gain  
achieved by the composite amplifier comes at the expense of a  
loss in phase margin. Placing a small capacitor, CF, in the feedback  
in parallel with R± (see Figure 45) improves the phase margin.  
Picking CF = 50 pF yields a phase margin of about 45° for the  
values shown in Figure 45.  
Figure 47 shows a simple photodiode circuit. The feedback  
capacitor helps the circuit maintain stability. The signal band-  
width can be increased at the expense of an increase in the total  
noise; a low-pass filter can be implemented by a simple RC network  
at the output to reduce the noise. The signal bandwidth can be  
calculated by ½πR±C±, and the closed-loop bandwidth is the  
intersection point of the open-loop gain and the noise gain.  
C
F
R1  
R2  
1k  
99kΩ  
V
EE  
V
CC  
V+  
U5  
AD8603  
V–  
The circuit shown in Figure 47 has a closed-loop bandwidth of  
58 kHz and a signal bandwidth of 16 Hz. Increasing C± to 50 pF  
yields a closed-loop bandwidth of 65 kHz, but only 3.± Hz of  
signal bandwidth can be achieved.  
AD8541  
V+  
V
V
V
CC  
IN  
V
EE  
R3  
R4  
1kΩ  
99kΩ  
C2  
10pF  
Figure 45. High Gain Composite Amplifier  
A composite amplifier can be used to optimize dc and ac  
characteristics. Figure 46 shows an example using the AD8603  
and the AD8541. This circuit offers many advantages. The band-  
width is increased substantially, and the input offset voltage and  
noise of the AD8541 become insignificant because they are divided  
by the high gain of the AD8603.  
R2  
1000MΩ  
V
EE  
V–  
AD8603  
The circuit in Figure 46 offers high bandwidth (nearly double  
that of the AD8603), high output current, and very low power  
consumption of less than 100 μA.  
C1  
10pF  
R1  
1000MΩ  
V+  
V
CC  
R2  
Figure 47. Photodiode Circuit  
V
100kΩ  
EE  
R1  
V–  
V
CC  
1kΩ  
R3  
AD8603  
R4  
V+  
1kΩ  
V
IN  
V
100Ω  
AD8541  
C2  
V+  
V
EE  
C3  
V
CC  
Figure 46. Low Power Composite Amplifier  
Rev. C | Page 13 of 16  
 
 
 
 
AD8603/AD8607/AD8609  
OUTLINE DIMENSIONS  
2.90 BSC  
5
1
4
3
2.80 BSC  
1.60 BSC  
2
PIN 1  
0.95 BSC  
1.90  
BSC  
*
0.90  
0.87  
0.84  
*
1.00 MAX  
0.20  
0.08  
8°  
4°  
0°  
0.10 MAX  
0.60  
0.45  
0.30  
0.50  
0.30  
SEATING  
PLANE  
*
COMPLIANT TO JEDEC STANDARDS MO-193-AB WITH  
THE EXCEPTION OF PACKAGE HEIGHT AND THICKNESS.  
Figure 48. 5-Lead Thin Small Outline Transistor Package [TSOT]  
(UJ-5)  
Dimensions shown in millimeters  
3.20  
3.00  
2.80  
8
1
5
4
5.15  
4.90  
4.65  
3.20  
3.00  
2.80  
PIN 1  
0.65 BSC  
0.95  
0.85  
0.75  
1.10 MAX  
0.80  
0.60  
0.40  
8°  
0°  
0.15  
0.00  
0.38  
0.22  
0.23  
0.08  
SEATING  
PLANE  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-187-AA  
Figure 49. 8-Lead Mini Small Outline Package [MSOP]  
(RM-8)  
Dimensions shown in millimeters  
Rev. C | Page 14 of 16  
 
AD8603/AD8607/AD8609  
5.00 (0.1968)  
4.80 (0.1890)  
8
1
5
4
6.20 (0.2441)  
5.80 (0.2284)  
4.00 (0.1574)  
3.80 (0.1497)  
0.50 (0.0196)  
0.25 (0.0099)  
1.27 (0.0500)  
BSC  
45°  
1.75 (0.0688)  
1.35 (0.0532)  
0.25 (0.0098)  
0.10 (0.0040)  
8°  
0°  
0.51 (0.0201)  
0.31 (0.0122)  
COPLANARITY  
0.10  
1.27 (0.0500)  
0.40 (0.0157)  
0.25 (0.0098)  
0.17 (0.0067)  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MS-012-AA  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 50. 8-Lead Standard Small Outline Package [SOIC_N]  
(R-8)  
Dimensions shown in millimeters and (inches)  
8.75 (0.3445)  
8.55 (0.3366)  
8
7
14  
1
6.20 (0.2441)  
5.80 (0.2283)  
4.00 (0.1575)  
3.80 (0.1496)  
1.27 (0.0500)  
0.50 (0.0197)  
0.25 (0.0098)  
45°  
BSC  
1.75 (0.0689)  
1.35 (0.0531)  
0.25 (0.0098)  
0.10 (0.0039)  
8°  
0°  
COPLANARITY  
0.10  
SEATING  
PLANE  
1.27 (0.0500)  
0.40 (0.0157)  
0.51 (0.0201)  
0.31 (0.0122)  
0.25 (0.0098)  
0.17 (0.0067)  
COMPLIANT TO JEDEC STANDARDS MS-012-AB  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 51. 14-Lead Standard Small Outline Package [SOIC_N]  
(R-14)  
Dimensions shown in millimeters and (inches)  
5.10  
5.00  
4.90  
14  
8
7
4.50  
4.40  
4.30  
6.40  
BSC  
1
PIN 1  
0.65  
BSC  
1.05  
1.00  
0.80  
0.20  
0.09  
1.20  
MAX  
0.75  
0.60  
0.45  
8°  
0°  
0.15  
0.05  
0.30  
0.19  
SEATING  
PLANE  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-153-AB-1  
Figure 52. 14-Lead Thin Shrink Small Outline Package [TSSOP]  
(RU-14)  
Dimensions shown in millimeters  
Rev. C | Page 15 of 16  
AD8603/AD8607/AD8609  
ORDERING GUIDE  
Model  
Temperature Range  
Package Description  
5-Lead TSOT  
5-Lead TSOT  
5-Lead TSOT  
5-Lead TSOT  
Package Option  
UJ-5  
UJ-5  
UJ-5  
UJ-5  
Branding  
BFA  
BFA  
BFA  
A0X  
AD8603AUJ-R2  
AD8603AUJ-REEL  
AD8603AUJ-REEL7  
AD8603AUJZ-R21  
AD8603AUJZ-REEL1  
AD8603AUJZ-REEL71  
AD8607ARM-R2  
AD8607ARM-REEL  
AD8607ARMZ-R21  
AD8607ARMZ-REEL1  
AD8607AR  
AD8607AR-REEL  
AD8607AR-REEL7  
AD8607ARZ1  
AD8607ARZ-REEL1  
AD8607ARZ-REEL71  
AD8609AR  
AD8609AR-REEL  
AD8609AR-REEL7  
AD8609ARZ1  
AD8609ARZ-REEL1  
AD8609ARZ-REEL71  
AD8609ARU  
AD8609ARU-REEL  
AD8609ARUZ1  
AD8609ARUZ-REEL1  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
5-Lead TSOT  
5-Lead TSOT  
UJ-5  
UJ-5  
A0X  
A0X  
8-Lead MSOP  
8-Lead MSOP  
8-Lead MSOP  
8-Lead MSOP  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
14-Lead SOIC_N  
14-Lead SOIC_N  
14-Lead SOIC_N  
14-Lead SOIC_N  
14-Lead SOIC_N  
14-Lead SOIC_N  
14-Lead TSSOP  
14-Lead TSSOP  
14-Lead TSSOP  
14-Lead TSSOP  
RM-8  
RM-8  
RM-8  
RM-8  
R-8  
R-8  
R-8  
R-8  
R-8  
A00  
A00  
A0G  
A0G  
R-8  
R-14  
R-14  
R-14  
R-14  
R-14  
R-14  
RU-14  
RU-14  
RU-14  
RU-14  
1 Z = RoHS Compliant Part.  
©2003–2008 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D04356-0-6/08(C)  
Rev. C | Page 16 of 16  
 
 
 

相关型号:

AD8608

Precision Low noise CMOS Rail-to-Rail Input/Output Operational Amplifiers
ADI

AD8608-KGD-CHIP

暂无描述
ADI

AD8608AR

Precision Low noise CMOS Rail-to-Rail Input/Output Operational Amplifiers
ADI

AD8608AR-REEL

Precision Low noise CMOS Rail-to-Rail Input/Output Operational Amplifiers
ADI

AD8608AR-REEL7

Precision Low noise CMOS Rail-to-Rail Input/Output Operational Amplifiers
ADI

AD8608ARN

Operational Amplifier
ETC

AD8608ARU

Precision Low noise CMOS Rail-to-Rail Input/Output Operational Amplifiers
ADI

AD8608ARU-REEL

Precision Low noise CMOS Rail-to-Rail Input/Output Operational Amplifiers
ADI

AD8608ARUZ

Precision, Low Noise, CMOS, Rail-to-Rail, Input/Output Operational Amplifiers
ADI

AD8608ARUZ-REEL

Precision, Low Noise, CMOS, Rail-to-Rail, Input/Output Operational Amplifiers
ADI

AD8608ARZ

Precision, Low Noise, CMOS, Rail-to-Rail, Input/Output Operational Amplifiers
ADI

AD8608ARZ-REEL

Precision, Low Noise, CMOS, Rail-to-Rail, Input/Output Operational Amplifiers
ADI