AD8429BRZ-R7 [ADI]

1 nV/√Hz Low Noise Instrumentation Amplifier ±4 V to ±18 V dual supply; 1内华达州/ √Hz的低噪声仪表放大器± 4 V至± 18 V双电源供电
AD8429BRZ-R7
型号: AD8429BRZ-R7
厂家: ADI    ADI
描述:

1 nV/√Hz Low Noise Instrumentation Amplifier ±4 V to ±18 V dual supply
1内华达州/ √Hz的低噪声仪表放大器± 4 V至± 18 V双电源供电

仪表放大器
文件: 总20页 (文件大小:554K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
1 nV/√Hz Low Noise  
Instrumentation Amplifier  
AD8429  
FEATURES  
PIN CONNECTION DIAGRAM  
Low noise  
1 nV/√Hz input noise  
45 nV/√Hz output noise  
AD8429  
1
2
3
4
8
7
6
5
–IN  
+V  
S
R
R
V
OUT  
G
G
REF  
–V  
High accuracy dc performance (AD8429BRZ)  
90 dB CMRR minimum (G = 1)  
50 μV maximum input offset voltage  
0.02% maximum gain accuracy (G = 1)  
Excellent ac specifications  
80 dB CMRR to 5 kHz (G = 1)  
15 MHz bandwidth (G = 1)  
1.2 MHz bandwidth (G = 100)  
22 V/μs slew rate  
+IN  
S
TOP VIEW  
(Not to Scale)  
Figure 1.  
THD: −130 dBc (1 kHz, G = 1)  
Versatile  
4 V to 18 V dual supply  
Gain set with a single resistor (G = 1 to 10,000)  
Temperature range for specified performance  
−40°C to +125°C  
APPLICATIONS  
Medical instrumentation  
Precision data acquisition  
Microphone preamplification  
Vibration analysis  
GENERAL DESCRIPTION  
The AD8429 is an ultralow noise, instrumentation amplifier  
designed for measuring extremely small signals over a wide  
temperature range (−40°C to +125°C).  
be useful to shift the output level when interfacing to a single  
supply signal chain.  
The AD8429 performance is specified over the extended industrial  
The AD8429 excels at measuring tiny signals. It delivers ultralow  
input noise performance of 1 nV/√Hz. The high CMRR of the  
AD8429 prevents unwanted signals from corrupting the acqui-  
sition. The CMRR increases as the gain increases, offering high  
rejection when it is most needed. The high performance pin  
configuration of the AD8429 allows it to reliably maintain high  
CMRR at frequencies well beyond those of typical instrumentation  
amplifiers.  
temperature range of −40°C to +125°C. It is available in an 8-lead  
plastic SOIC package.  
1000  
100  
G = 1  
10  
The AD8429 reliably amplifies fast changing signals. Its current  
feedback architecture provides high bandwidth at high gain, for  
example, 1.2 MHz at G = 100. The design includes circuitry to im-  
prove settling time after large input voltage transients. The AD8429  
was designed for excellent distortion performance, allowing use in  
demanding applications such as vibration analysis.  
G = 10  
G = 100  
1
G = 1k  
0.1  
1
10  
100  
1k  
10k  
100k  
Gain is set from 1 to 10,000 with a single resistor. A reference  
pin allows the user to offset the output voltage. This feature can  
FREQUENCY (Hz)  
Figure 2. RTI Voltage Noise Spectral Density vs. Frequency  
Rev. 0  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2011 Analog Devices, Inc. All rights reserved.  
 
AD8429  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Architecture ................................................................................ 15  
Gain Selection............................................................................. 15  
Reference Terminal .................................................................... 15  
Input Voltage Range................................................................... 16  
Layout .......................................................................................... 16  
Input Bias Current Return Path ............................................... 17  
Input Protection ......................................................................... 17  
Radio Frequency Interference (RFI)........................................ 17  
Calculating the Noise of the Input Stage................................. 18  
Outline Dimensions....................................................................... 19  
Ordering Guide .......................................................................... 19  
Applications....................................................................................... 1  
Pin Connection Diagram ................................................................ 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Absolute Maximum Ratings............................................................ 6  
Thermal Resistance ...................................................................... 6  
ESD Caution.................................................................................. 6  
Pin Configuration and Function Descriptions............................. 7  
Typical Performance Characteristics ............................................. 8  
Theory of Operation ...................................................................... 15  
REVISION HISTORY  
4/11—Revision 0: Initial Version  
Rev. 0 | Page 2 of 20  
 
AD8429  
SPECIFICATIONS  
VS = 15 V, VREF = 0 V, TA = 25°C, G = 1, RL = 10 kΩ, unless otherwise noted.  
Table 1.  
A Grade  
B Grade  
Typ  
Parameter  
Test Conditions/Comments Min  
Typ  
Max  
Min  
Max  
Unit  
COMMON-MODE REJECTION  
RATIO (CMRR)  
CMRR DC to 60 Hz with 1 kΩ  
Source Imbalance  
VCM  
=
10 V  
G = 1  
80  
90  
dB  
dB  
dB  
dB  
G = 10  
100  
120  
134  
110  
130  
140  
G = 100  
G = 1000  
CMRR at 5 kHz  
G = 1  
VCM  
=
10 V  
76  
90  
90  
90  
80  
90  
90  
90  
dB  
dB  
dB  
dB  
G = 10  
G = 100  
G = 1000  
VOLTAGE NOISE, RTI  
Spectral Density1: 1 kHz  
Input Voltage Noise, eni  
Output Voltage Noise, eno  
Peak to Peak: 0.1 Hz to 10 Hz  
G = 1  
VIN+, VIN− = 0 V  
1.0  
45  
1.0  
45  
nV/√Hz  
nV/√Hz  
2
2
μV p-p  
nV p-p  
G = 1000  
100  
100  
CURRENT NOISE  
Spectral Density: 1 kHz  
Peak to Peak: 0.1 Hz to 10 Hz  
VOLTAGE OFFSET2  
Input Offset, VOSI  
1.5  
1.5  
pA/√Hz  
pA p-p  
100  
100  
150  
1
50  
μV  
Average TC  
0.1  
3
0.1  
3
0.3  
500  
10  
μV/°C  
μV  
Output Offset, VOSO  
Average TC  
Offset RTI vs. Supply (PSR)  
G = 1  
1000  
10  
μV/°C  
VS = 5 V to 15 V  
90  
100  
120  
130  
130  
dB  
dB  
dB  
dB  
G = 10  
G = 100  
110  
130  
130  
G = 1000  
INPUT CURRENT  
Input Bias Current  
Average TC  
300  
100  
150  
30  
nA  
250  
15  
250  
15  
pA/°C  
nA  
Input Offset Current  
Average TC  
pA/°C  
DYNAMIC RESPONSE  
Small Signal Bandwidth: –3 dB  
G = 1  
15  
4
15  
4
MHz  
MHz  
MHz  
MHz  
G = 10  
G = 100  
G = 1000  
1.2  
0.15  
1.2  
0.15  
Rev. 0 | Page 3 of 20  
 
AD8429  
A Grade  
Typ  
B Grade  
Typ  
Parameter  
Settling Time 0.01%  
G = 1  
Test Conditions/Comments Min  
Max  
Min  
Max  
Unit  
10 V step  
0.75  
0.65  
0.85  
5
0.75  
0.65  
0.85  
5
μs  
μs  
μs  
μs  
G = 10  
G = 100  
G = 1000  
Settling Time 0.001%  
G = 1  
10 V step  
0.9  
0.9  
1.2  
7
0.9  
0.9  
1.2  
7
μs  
μs  
μs  
μs  
G = 10  
G = 100  
G = 1000  
Slew Rate  
G = 1 to 100  
THD  
22  
22  
V/μs  
First five harmonics, f = 1 kHz,  
RL = 2 kΩ, VOUT = 10 V p-p  
G = 1  
G = 10  
−130  
−116  
−113  
−111  
−130  
−116  
−113  
−111  
dBc  
dBc  
dBc  
dBc  
G = 100  
G = 1000  
THD + N  
f = 1 kHz, RL = 2 kΩ, VOUT  
10 V p-p  
=
G = 100  
GAIN3  
0.0005  
0.0005  
%
G = 1 + (6 kΩ/RG)  
Gain Range  
Gain Error  
1
10000  
1
10000  
V/V  
VOUT  
= 10 V  
G = 1  
0.05  
0.3  
0.02  
0.15  
%
%
G > 1  
Gain Nonlinearity  
G = 1 to 1000  
Gain vs. Temperature  
G = 1  
VOUT = −10 V to +10 V  
RL = 10 kΩ  
2
2
2
2
ppm  
5
5
ppm/°C  
ppm/°C  
G > 1  
−100  
−100  
INPUT  
Impedance (Pin to Ground)4  
1.5||3  
1.5||3  
GΩ||pF  
V
Input Operating Voltage  
Range5  
VS = 4 V to 18 V  
−VS + 2.8  
+VS − 2.5  
−VS + 2.8  
+VS − 2.5  
OUTPUT  
Output Swing  
Over Temperature  
Output Swing  
Over Temperature  
Short-Circuit Current  
REFERENCE INPUT  
RIN  
RL = 2 kΩ  
−VS + 1.8  
−VS + 1.9  
−VS + 1.7  
−VS + 1.8  
+Vs − 1.2  
+Vs − 1.3  
+Vs − 1.1  
+Vs − 1.2  
−VS + 1.8  
−VS + 1.9  
−VS + 1.7  
−VS + 1.8  
+Vs − 1.2  
+Vs − 1.3  
+Vs − 1.1  
+Vs − 1.2  
V
V
RL = 10 kΩ  
V
V
35  
35  
mA  
10  
70  
10  
70  
kΩ  
μA  
V
IIN  
VIN+, VIN− = 0 V  
Voltage Range  
Reference Gain to Output  
Reference Gain Error  
−VS  
+VS  
1
1
V/V  
%
0.01  
0.05  
0.01  
0.05  
Rev. 0 | Page 4 of 20  
AD8429  
A Grade  
Typ  
B Grade  
Typ  
Parameter  
Test Conditions/Comments Min  
Max  
Min  
Max  
Unit  
POWER SUPPLY  
Operating Range  
Quiescent Current  
4
18  
7
4
18  
7
V
6.7  
6.7  
mA  
mA  
T = 125°C  
9
9
TEMPERATURE RANGE  
For Specified Performance  
−40  
+125  
−40  
+125  
°C  
1 Total voltage noise = √(eni2 + (eno/G)2 + eRG2). See the Theory of Operation section for more information.  
2 Total RTI VOS = (VOSI) + (VOSO/G).  
3 These specifications do not include the tolerance of the external gain setting resistor, RG. For G > 1, add RG errors to the specifications given in this table.  
4 Differential and common-mode input impedance can be calculated from the pin impedance: ZDIFF = 2(ZPIN); ZCM = ZPIN/2.  
5 Input voltage range of the AD8429 input stage only. The input range can depend on the common-mode voltage, differential voltage, gain, and reference voltage.  
See the Input Voltage Range section for more details.  
Rev. 0 | Page 5 of 20  
 
 
 
AD8429  
ABSOLUTE MAXIMUM RATINGS  
Table 2.  
THERMAL RESISTANCE  
θJA is specified for a device in free air using a 4-layer JEDEC  
printed circuit board (PCB).  
Parameter  
Rating  
Supply Voltage  
18 V  
Indefinite  
VS  
Output Short-Circuit Current Duration  
Maximum Voltage at –IN, +IN1  
Differential Input Voltage1  
Gain ≤ 4  
Table 3.  
Package  
8-Lead SOIC  
θJA  
Unit  
121  
°C/W  
VS  
4 > Gain > 50  
Gain ≥ 50  
50 V/gain  
1 V  
ESD CAUTION  
Maximum Voltage at REF  
Storage Temperature Range  
Specified Temperature Range  
Maximum Junction Temperature  
ESD  
VS  
−65°C to +150°C  
−40°C to +125°C  
140°C  
Human Body Model  
Charge Device Model  
Machine Model  
3.0 kV  
1.5 kV  
0.2 kV  
1 For voltages beyond these limits, use input protection resistors. See the  
Theory of Operation section for more information.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Rev. 0 | Page 6 of 20  
 
 
 
AD8429  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
AD8429  
1
2
3
4
8
7
6
5
–IN  
+V  
S
R
R
V
OUT  
G
G
REF  
–V  
+IN  
S
TOP VIEW  
(Not to Scale)  
Figure 3. Pin Configuration  
Table 4. Pin Function Descriptions  
Pin No. Mnemonic Description  
1
2, 3  
4
5
6
−IN  
RG  
Negative Input Terminal.  
Gain Setting Terminals. Place resistor across the RG pins to set the gain. G = 1 + (6 kΩ/RG).  
Positive Input Terminal.  
Negative Power Supply Terminal.  
Reference Voltage Terminal. Drive this terminal with a low impedance voltage source to level shift the output.  
+IN  
−VS  
REF  
VOUT  
+VS  
7
8
Output Terminal.  
Positive Power Supply Terminal.  
Rev. 0 | Page 7 of 20  
 
AD8429  
TYPICAL PERFORMANCE CHARACTERISTICS  
T = 25°C, VS = 15, VREF = 0, RL = 10 kꢀ, unless otherwise noted.  
15  
160  
140  
120  
100  
80  
GAIN = 1000  
GAIN = 100  
GAIN = 10  
GAIN = 1  
V
= ±15V  
S
G = 1  
10  
5
V
= ±12V  
S
V
= ±5V  
0
S
60  
–5  
–10  
–15  
40  
20  
0
1
10  
100  
1k  
10k  
100k  
1M  
–15  
–10  
–5  
0
5
10  
15  
OUTPUT VOLTAGE (V)  
FREQUENCY (Hz)  
Figure 7. Positive PSRR vs. Frequency  
Figure 4. Input Common-Mode Voltage vs. Output Voltage,  
Dual Supply, VS = 5 V, 12 V, 15 V (G = 1)  
160  
140  
120  
100  
80  
15  
GAIN = 1000  
V
= ±15V  
S
G = 100  
GAIN = 100  
GAIN = 10  
GAIN = 1  
10  
5
V
= ±12V  
S
V
= ±5V  
0
S
60  
–5  
–10  
–15  
40  
20  
0
1
10  
100  
1k  
10k  
100k  
1M  
–15  
–10  
–5  
0
5
10  
15  
OUTPUT VOLTAGE (V)  
FREQUENCY (Hz)  
Figure 5. Input Common-Mode Voltage vs. Output Voltage,  
Dual Supply, VS = 5 V, 12 V, 15 V (G = 100)  
Figure 8. Negative PSRR vs. Frequency  
0
70  
60  
V
= ±15V  
S
GAIN = 1000  
GAIN = 100  
GAIN = 10  
GAIN = 1  
–5  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–45  
–50  
50  
40  
–12.28V  
30  
20  
+12.60V  
10  
0
–10  
–20  
–30  
–14 –12 –10 –8 –6 –4 –2  
0
2
4
6
8
10 12 14  
100  
1k  
10k  
100k  
1M  
10M  
100M  
COMMON-MODE VOLTAGE (V)  
FREQUENCY (Hz)  
Figure 6. Input Bias Current vs. Common-Mode Voltage  
Figure 9. Gain vs. Frequency  
Rev. 0 | Page 8 of 20  
 
 
 
 
AD8429  
40  
30  
3.0  
160  
140  
120  
100  
80  
I
I
I
+
B
B
G = 1k  
OS  
G = 100  
G = 10  
2.5  
2.0  
1.5  
1.0  
0.5  
0
20  
G = 1  
BANDWIDTH  
LIMITED  
10  
60  
0
40  
–10  
20  
–20  
0
1
10  
100  
1k  
10k  
100k  
1M  
–45 –30 –15  
0
15 30 45 60 75 90 105 120 135  
TEMPERATURE (°C)  
FREQUENCY (Hz)  
Figure 13. Input Bias Current and Input Offset Current vs. Temperature  
Figure 10. CMRR vs. Frequency  
40  
140  
120  
100  
80  
GAIN = 1  
G = 100  
G = 1k  
G = 10  
30  
20  
10  
G = 1  
0
BANDWIDTH  
LIMITED  
–10  
–20  
–30  
–40  
60  
40  
20  
–50  
NORMALIZED AT 25°C  
–60  
0
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
1
10  
100  
1k  
10k  
100k  
1M  
TEMPERATURE (°C)  
FREQUENCY (Hz)  
Figure 14. CMRR vs. Temperature (G = 1), Normalized at 25°C  
Figure 11. CMRR vs. Frequency, 1 kΩ Source Imbalance  
12  
10  
8
10.0  
9.5  
9.0  
8.5  
8.0  
7.5  
7.0  
6.5  
6.0  
5.5  
5.0  
6
4
2
0
0
100  
200  
300  
400  
500  
600  
700  
–50  
–30  
–10  
10  
30  
50  
70  
90  
110  
130  
TEMPERATURE (°C)  
WARM-UP TIME (s)  
Figure 15. Supply Current vs. Temperature (G = 1)  
Figure 12. Change in Input Offset Voltage (VOSI) vs. Warm-Up Time  
Rev. 0 | Page 9 of 20  
 
AD8429  
+V  
50  
40  
S
+125°C  
+85°C  
+25°C  
–40°C  
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
I
SHORT+  
30  
20  
10  
0
+2.5  
+2.0  
+1.5  
+1.0  
+0.5  
–10  
–20  
–30  
–40  
–50  
I
SHORT–  
–V  
S
4
6
8
10  
12  
14  
16  
18  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
SUPPLY VOLTAGE (±V )  
TEMPERATURE (°C)  
S
Figure 16. Short-Circuit Current vs. Temperature (G = 1)  
Figure 19. Input Voltage Limit vs. Supply Voltage  
30  
25  
20  
15  
10  
5
+V  
S
–0.4  
–0.8  
–1.2  
–SR  
+SR  
+2.0  
+1.6  
+1.2  
+0.8  
+0.4  
+125°C  
+85°C  
+25°C  
–40°C  
0
–V  
S
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
4
6
8
10  
12  
14  
16  
18  
SUPPLY VOLTAGE (±V )  
TEMPERATURE (°C)  
S
Figure 17. Slew Rate vs. Temperature, VS = 15 V (G = 1)  
Figure 20. Output Voltage Swing vs. Supply Voltage, RL = 10 kΩ  
+V  
S
25  
20  
15  
10  
5
–0.4  
–0.8  
–1.2  
–SR  
+SR  
+2.0  
+1.6  
+1.2  
+125°C  
+85°C  
+25°C  
–40°C  
+0.8  
+0.4  
–V  
S
0
4
6
8
10  
12  
14  
16  
18  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
SUPPLY VOLTAGE (±V )  
TEMPERATURE (°C)  
S
Figure 21. Output Voltage Swing vs. Supply Voltage, RL = 2 kΩ  
Figure 18. Slew Rate vs. Temperature, VS = 5 V (G = 1)  
Rev. 0 | Page 10 of 20  
AD8429  
15  
10  
5
10  
8
V
= ±15V  
S
GAIN = 1000  
6
4
2
+125°C  
+85°C  
+25°C  
–40°C  
0
0
–2  
–4  
–6  
–8  
–10  
–5  
–10  
–15  
–10  
–8  
–6  
–4  
–2  
0
2
4
6
8
10  
100  
1k  
10k  
100k  
LOAD ()  
OUTPUT VOLTAGE (V)  
Figure 25. Gain Nonlinearity (G = 1000), RL = 10 kΩ  
Figure 22. Output Voltage Swing vs. Load Resistance  
+V  
1000  
100  
10  
S
V
= ±15V  
S
–0.4  
–0.8  
–1.2  
–1.6  
G = 1  
+2.0  
+1.6  
+1.2  
+0.8  
+0.4  
G = 10  
G = 100  
G = 1k  
1
+125°C  
+85°C  
+25°C  
–40°C  
–V  
S
10µ  
0.1  
1
10  
100  
1k  
10k  
100k  
100µ  
1m  
10m  
OUTPUT CURRENT (A)  
FREQUENCY (Hz)  
Figure 23. Output Voltage Swing vs. Output Current  
Figure 26. RTI Voltage Noise Spectral Density vs. Frequency  
10  
8
GAIN = 1  
GAIN = 1000, 100nV/DIV  
6
4
2
GAIN = 1, 2μV/DIV  
0
–2  
–4  
–6  
–8  
–10  
1s/DIV  
–10  
–8  
–6  
–4  
–2  
0
2
4
6
8
10  
OUTPUT VOLTAGE (V)  
Figure 24. Gain Nonlinearity (G = 1), RL = 10 kΩ  
Figure 27. 0.1 Hz to 10 Hz RTI Voltage Noise (G = 1, G = 1000)  
Rev. 0 | Page 11 of 20  
AD8429  
16  
15  
14  
13  
12  
11  
10  
9
5V/DIV  
750ns TO 0.01%  
872ns TO 0.001%  
8
7
6
0.002%/DIV  
5
4
3
2µs/DIV  
2
1
1
TIME (µs)  
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
Figure 28. Current Noise Spectral Density vs. Frequency  
Figure 31. Large Signal Pulse Response and Settling Time (G = 1), 10 V Step,  
VS = 15 V  
5V/DIV  
640ns TO 0.01%  
896ns TO 0.001%  
0.002%/DIV  
50pA/DIV  
1s/DIV  
2µs/DIV  
TIME (µs)  
Figure 29. 0.1 Hz to 10 Hz Current Noise  
Figure 32. Large Signal Pulse Response and Settling Time (G = 10), 10 V Step,  
VS = 15 V  
30  
25  
20  
15  
10  
5
G = 1  
V
= ±15V  
S
5V/DIV  
840ns TO 0.01%  
1152ns TO 0.001%  
0.002%/DIV  
V
= ±5V  
S
2µs/DIV  
0
100  
1k  
10k  
100k  
1M  
10M  
TIME (µs)  
FREQUENCY (Hz)  
Figure 30. Large Signal Frequency Response  
Figure 33. Large Signal Pulse Response and Settling Time (G = 100),  
10 V Step, VS = 15 V  
Rev. 0 | Page 12 of 20  
AD8429  
G = 100  
5V/DIV  
5.04µs TO 0.01%  
6.96µs TO 0.001%  
0.002%/DIV  
20mV/DIV  
1µs/DIV  
10µs/DIV  
TIME (µs)  
Figure 37. Small Signal Response (G = 100), RL = 10 kΩ, CL = 100 pF  
Figure 34. Large Signal Pulse Response and Settling Time (G = 1000),  
10 V Step, VS = 15 V  
G = 1000  
G = 1  
20mV/DIV  
10µs/DIV  
50mV/DIV  
1µs/DIV  
Figure 35. Small Signal Response (G = 1), RL = 10 kΩ, CL = 100 pF  
Figure 38. Small Signal Response (G = 1000), RL = 10 kΩ, CL = 100 pF  
G = 10  
G = 1  
NO LOAD  
C
C
= 100pF  
= 147pF  
L
L
20mV/DIV  
1µs/DIV  
50mV/DIV  
1µs/DIV  
Figure 39. Small Signal Response with Various Capacitive Loads (G = 1),  
RL = Infinity  
Figure 36. Small Signal Response (G = 10), RL = 10 kΩ, CL = 100 pF  
Rev. 0 | Page 13 of 20  
AD8429  
1400  
1200  
1000  
800  
1
0.1  
NO LOAD  
2kLOAD  
600LOAD  
G = 1000, SECOND HARMONIC  
= 10V p-p  
V
OUT  
SETTLED TO 0.001%  
0.01  
SETTLED TO 0.01%  
600  
400  
0.001  
0.0001  
200  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
10  
100  
1k  
10k  
100k  
STEP SIZE (V)  
FREQUENCY (Hz)  
Figure 40. Settling Time vs. Step Size (G = 1)  
Figure 43. Second Harmonic Distortion vs. Frequency (G = 1000)  
1
1
0.1  
NO LOAD  
2kLOAD  
600LOAD  
NO LOAD  
2kLOAD  
600LOAD  
G = 1, SECOND HARMONIC  
= 10V p-p  
G = 1000, THIRD HARMONIC  
= 10V p-p  
V
V
OUT  
OUT  
0.1  
0.01  
0.01  
0.001  
0.0001  
0.001  
0.0001  
0.00001  
10  
10  
100  
1k  
10k  
100k  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 41. Second Harmonic Distortion vs. Frequency (G = 1)  
Figure 44. Third Harmonic Distortion vs. Frequency (G = 1000)  
1
1
NO LOAD  
2kLOAD  
600LOAD  
G = 1, THIRD HARMONIC  
= 10V p-p  
V
R
= 10V p-p  
OUT  
2kꢀ  
V
OUT  
L
0.1  
0.01  
0.1  
0.01  
GAIN = 100  
0.001  
0.001  
GAIN = 1000  
GAIN = 10  
GAIN = 1  
0.0001  
0.0001  
0.00001  
0.00001  
10  
100  
1k  
10k  
100k  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
FREQUENCY (Hz)  
Figure 42. Third Harmonic Distortion vs. Frequency (G = 1)  
Figure 45. THD vs. Frequency  
Rev. 0 | Page 14 of 20  
AD8429  
THEORY OF OPERATION  
I
V
I
B
I
I
B
B
COMPENSATION  
COMPENSATION  
R3  
5k  
A1  
A2  
+V  
–V  
C1  
C2  
S
R4  
5kꢀ  
NODE 1  
V
A3  
OUT  
NODE 2  
+V  
–V  
R5  
5kꢀ  
S
+V  
–V  
+V  
–V  
S
S
R1  
3kꢀ  
R2  
3kꢀ  
R6  
5kꢀ  
S
+V  
–V  
+V  
S
S
REF  
Q1  
Q2  
–IN  
+IN  
R
G
S
S
S
RG–  
RG+  
–V  
S
S
Figure 46. Simplified Schematic  
ARCHITECTURE  
Table 5. Gains Achieved Using 1% Resistors  
The AD8429 is based on the classic 3-op-amp topology. This  
topology has two stages: a preamplifier to provide differential  
amplification followed by a difference amplifier that removes  
the common-mode voltage and provides additional amplifica-  
tion. Figure 46 shows a simplified schematic of the AD8429.  
1% Standard Table Value of RG  
Calculated Gain  
6.04 kΩ  
1.5 kΩ  
665 Ω  
316 Ω  
121 Ω  
60.4 Ω  
30.1 Ω  
12.1 Ω  
6.04 Ω  
3.01 Ω  
1.993  
5.000  
10.02  
19.99  
50.59  
100.3  
200.3  
496.9  
994.4  
1994  
The first stage works as follows. To keep its two inputs matched,  
Amplifier A1 must keep the collector of Q1 at a constant voltage.  
It does this by forcing RG− to be a precise diode drop from –IN.  
Similarly, A2 forces RG+ to be a constant diode drop from +IN.  
Therefore, a replica of the differential input voltage is placed  
across the gain setting resistor, RG. The current that flows through  
this resistance must also flow through the R1 and R2 resistors,  
creating a gained differential signal between the A2 and A1  
outputs.  
The AD8429 defaults to G = 1 when no gain resistor is used.  
Add the tolerance and gain drift of the RG resistor to the  
specifications of the AD8429 to determine the total gain accu-  
racy of the system. When the gain resistor is not used, gain  
error and gain drift are minimal.  
The second stage is a G = 1 difference amplifier, composed of  
Amplifier A3 and the R3 through R6 resistors. This stage removes  
the common-mode signal from the amplified differential signal.  
RG Power Dissipation  
The transfer function of the AD8429 is  
The AD8429 duplicates the differential voltage across its inputs  
onto the RG resistor. Choose an RG resistor size sufficient to  
handle the expected power dissipation.  
V
OUT = G × (VIN+ VIN−) + VREF  
where:  
6 kΩ  
REFERENCE TERMINAL  
G =1+  
RG  
The output voltage of the AD8429 is developed with respect to  
the potential on the reference terminal. This is useful when the  
output signal must be offset to a precise midsupply level. For  
example, a voltage source can be tied to the REF pin to level  
shift the output, allowing the AD8429 to drive a single-supply  
ADC. The REF pin is protected with ESD diodes and should  
not exceed either +VS or −VS by more than 0.3 V.  
GAIN SELECTION  
Placing a resistor across the RG terminals sets the gain of the  
AD8429, which can be calculated by referring to Table 5 or by  
using the following gain equation:  
6 kΩ  
RG  
=
G 1  
Rev. 0 | Page 15 of 20  
 
 
 
 
AD8429  
For best performance, maintain a source impedance to the REF  
terminal that is well below 1 ꢀ. As shown in Figure 46, the  
reference terminal, REF, is at one end of a 5 kΩ resistor.  
Additional impedance at the REF terminal adds to this 5 kΩ  
resistor and results in amplification of the signal connected to  
the positive input. The amplification from the additional RREF  
can be calculated as follows:  
source resistance in the input path (for example, for input  
protection) close to the in-amp inputs, which minimizes their  
interaction with parasitic capacitance from the PCB traces.  
Parasitic capacitance at the gain setting pins can also affect CMRR  
over frequency. If the board design has a component at the gain  
setting pins (for example, a switch or jumper), choose a component  
such that the parasitic capacitance is as small as possible.  
2(5 kΩ + RREF)/(10 kΩ + RREF  
)
Power Supplies and Grounding  
Only the positive signal path is amplified; the negative path  
is unaffected. This uneven amplification degrades CMRR.  
Use a stable dc voltage to power the instrumentation amplifier.  
Noise on the supply pins can adversely affect performance. See  
the PSRR performance curves in Figure 9 and Figure 10 for more  
information.  
INCORRECT  
CORRECT  
Place a 0.1 μF capacitor as close as possible to each supply pin.  
Because the length of the bypass capacitor leads is critical at  
high frequency, surface-mount capacitors are recommended. A  
parasitic inductance in the bypass ground trace works against  
the low impedance created by the bypass capacitor. As shown in  
Figure 49, a 10 μF capacitor can be used farther away from the  
device. For larger value capacitors, intended to be effective at  
lower frequencies, the current return path distance is less critical.  
In most cases, this capacitor can be shared by other precision  
integrated circuits.  
AD8429  
AD8429  
REF  
REF  
V
V
+
OP1177  
Figure 47. Driving the Reference Pin  
INPUT VOLTAGE RANGE  
+V  
S
Figure 4 and Figure 5 show the allowable common-mode input  
voltage ranges for various output voltages and supply voltages.  
The 3-op-amp architecture of the AD8429 applies gain in the  
first stage before removing common-mode voltage with the  
difference amplifier stage. Internal nodes between the first and  
second stages (Node 1 and Node 2 in Figure 46) experience a  
combination of a gained signal, a common-mode signal, and a  
diode drop. This combined signal can be limited by the voltage  
supplies even when the individual input and output signals are  
not limited.  
0.1µF  
10µF  
+IN  
–IN  
V
OUT  
R
G
AD8429  
LOAD  
REF  
0.1µF  
10µF  
LAYOUT  
–V  
S
To ensure optimum performance of the AD8429 at the PCB  
level, care must be taken in the design of the board layout. The  
pins of the AD8429 are arranged in a logical manner to aid in  
this task.  
Figure 49. Supply Decoupling, REF, and Output Referred to Local Ground  
A ground plane layer is helpful to reduce parasitic inductances.  
This minimizes voltage drops with changes in current. The area  
of the current path is directly proportional to the magnitude of  
parasitic inductances and, therefore, the impedance of the path  
at high frequency. Large changes in currents in an inductive  
decoupling path or ground return create unwanted effects, due  
to the coupling of such changes into the amplifier inputs.  
1
8
7
6
5
+V  
V
–IN  
S
2
3
4
R
G
OUT  
R
REF  
G
+IN  
–V  
S
AD8429  
TOP VIEW  
(Not to Scale)  
Because load currents flow from the supplies, the load should  
be connected at the same physical location as the bypass capa-  
citor grounds.  
Figure 48. Pinout Diagram  
Common-Mode Rejection Ratio over Frequency  
Reference Pin  
Poor layout can cause some of the common-mode signals to be  
converted to differential signals before reaching the in-amp.  
Such conversions occur when one input path has a frequency  
response that is different from the other. To maintain high  
CMRR over frequency, closely match the input source  
impedance and capacitance of each path. Place additional  
The output voltage of the AD8429 is developed with respect to  
the potential on the reference terminal. Ensure that REF is tied  
to the appropriate local ground.  
Rev. 0 | Page 16 of 20  
 
 
 
AD8429  
Noise sensitive applications may require a lower protection resis-  
tance. Low leakage diode clamps, such as the BAV199, can be used  
at the inputs to shunt current away from the AD8429 inputs,  
thereby allowing smaller protection resistor values. To ensure  
current flows primarily through the external protection diodes,  
place a small value resistor, such as a 33 Ω, between the diodes and  
the AD8429.  
INPUT BIAS CURRENT RETURN PATH  
The input bias current of the AD8429 must have a return path to  
ground. When using a floating source without a current return  
path, such as a thermocouple, create a current return path, as  
shown in Figure 50.  
INCORRECT  
CORRECT  
+V  
+V  
S
S
+V  
S
+V  
+V  
S
S
R
+
IN+  
R
PROTECT  
I
33  
PROTECT  
I
+
IN+  
V
V
–V  
+V  
S
AD8429  
AD8429  
AD8429  
AD8429  
S
R
R
REF  
REF  
REF  
REF  
PROTECT  
33ꢀ  
PROTECT  
+
IN–  
+
IN–  
–V  
S
–V  
S
V
V
–V  
S
–V  
–V  
S
S
SIMPLE METHOD  
LOW NOISE METHOD  
TRANSFORMER  
TRANSFORMER  
Figure 51. Protection for Voltages Beyond the Rails  
+V  
+V  
S
S
Large Differential Input Voltage at High Gain  
If large differential voltages at high gain are expected, use an  
external resistor in series with each input to limit current during  
overload conditions. The limiting resistor at each input can be  
computed by using the following equation:  
AD8429  
AD8429  
REF  
10Mꢀ  
VDIFF 1V  
1
2
RPROTECT  
RG  
–V  
S
–V  
S
IMAX  
THERMOCOUPLE  
THERMOCOUPLE  
Noise sensitive applications may require a lower protection resis-  
tance. Low leakage diode clamps, such as the BAV199, can be used  
across the inputs to shunt current away from the AD8429 inputs  
and, therefore, allow smaller protection resistor values.  
+V  
+V  
S
S
C
C
C
R
R
1
R
R
PROTECT  
fHIGH-PASS  
=
PROTECT  
AD8429  
2πRC  
AD8429  
I
I
C
+
+
REF  
V
V
DIFF  
DIFF  
AD8429  
AD8429  
R
PROTECT  
R
PROTECT  
–V  
–V  
S
S
CAPACITIVELY COUPLED  
CAPACITIVELY COUPLED  
SIMPLE METHOD  
LOW NOISE METHOD  
Figure 50. Creating an Input Bias Current Return Path  
Figure 52. Protection for Large Differential Voltages  
INPUT PROTECTION  
IMAX  
Do not allow the inputs of the AD8429 to exceed the ratings  
stated in the Absolute Maximum Ratings section of this data  
sheet. If this cannot be done, protection circuitry can be added  
in front of the AD8429 to limit the current into the inputs to a  
The maximum current into the AD8429 inputs, IMAX, depends  
on time and temperature. At room temperature, the device can  
withstand a current of 10 mA for at least one day. This time is  
cumulative over the life of the device.  
maximum current, IMAX  
.
RADIO FREQUENCY INTERFERENCE (RFI)  
Input Voltages Beyond the Rails  
RF rectification is often a problem when amplifiers are used in  
applications that have strong RF signals. The disturbance can  
appear as a small dc offset voltage. High frequency signals can  
be filtered with a low-pass RC network placed at the input of  
the instrumentation amplifier, as shown in Figure 53.  
If voltages beyond the rails are expected, use an external resistor  
in series with each input to limit current during overload condi-  
tions. The limiting resistor at the input can be computed from  
|VIN VSUPPLY  
|
RPROTECT  
IMAX  
Rev. 0 | Page 17 of 20  
 
 
AD8429  
+V  
S
at the amplifier input. To calculate the noise referred to the  
amplifier output (RTO), simply multiply the RTI noise by the  
gain of the instrumentation amplifier.  
0.1µF  
+IN  
10µF  
C
1nF  
C
Source Resistance Noise  
R
Any sensor connected to the AD8429 has some output resistance.  
There may also be resistance placed in series with inputs for pro-  
tection from either overvoltage or radio frequency interference.  
This combined resistance is labeled R1 and R2 in Figure 54. Any  
resistor, no matter how well made, has an intrinsic level of noise.  
This noise is proportional to the square root of the resistor value.  
At room temperature, the value is approximately equal to  
4 nV/√Hz × √(resistor value in kΩ).  
4.02kꢀ  
V
C
D
10nF  
OUT  
R
G
AD8429  
R
REF  
–IN  
4.02kꢀ  
C
C
1nF  
0.1µF  
10µF  
–V  
S
Figure 53. RFI Suppression  
For example, assuming that the combined sensor and protec-  
tion resistance on the positive input is 4 kΩ, and on the negative  
input is 1 kΩ, the total noise from the input resistance is  
The filter limits the input signal bandwidth, according to the  
following relationship:  
2
2
1
(
4× 4  
)
+
(
4× 1  
)
= 64 +16 = 8.9 nV/√Hz  
FilterFrequencyDIFF  
FilterFrequencyCM  
=
R(2CD +CC )  
Voltage Noise of the Instrumentation Amplifier  
1
=
RCC  
The voltage noise of the instrumentation amplifier is calculated  
using three parameters: the device input noise, output noise,  
and the RG resistor noise. It is calculated as follows:  
where CD 10 CC.  
CD affects the difference signal, and CC affects the common-mode  
signal. Choose values of R and CC that minimize RFI. A mismatch  
between R × CC at the positive input and R × CC at the negative  
input degrades the CMRR of the AD8429. By using a value of  
CD that is one magnitude larger than CC, the effect of the  
mismatch is reduced, and performance is improved.  
Total Voltage Noise =  
2
2
2
(
OutputNoise/G  
)
+
(
InputNoise  
)
+
(
Noise of RG Resistor  
)
For example, for a gain of 100, the gain resistor is 60.4 Ω. There-  
fore, the voltage noise of the in-amp is  
Resistors add noise; therefore, the choice of resistor and capacitor  
values depends on the desired tradeoff between noise, input  
impedance at high frequencies, and RFI immunity. The resistors  
used for the RFI filter can be the same as those used for input  
protection.  
2
2
(
45/100  
)
+12 +  
(
4× 0.0604  
)
= 1.5 nV/√Hz  
Current Noise of the Instrumentation Amplifier  
Current noise is calculated by multiplying the source resistance  
by the current noise.  
CALCULATING THE NOISE OF THE INPUT STAGE  
SENSOR  
For example, if the R1 source resistance in Figure 54 is 4 kΩ,  
and the R2 source resistance is 1 kΩ, the total effect from the  
current noise is calculated as follows:  
R
2
2
R1  
G
AD8429  
(
(
4×1.5  
)
+
(
1×1.5  
)
)
= 6.2 nV/√Hz  
Total Noise Density Calculation  
R2  
To determine the total noise of the in-amp, referred to input,  
combine the source resistance noise, voltage noise, and current  
noise contribution by the sum of squares method.  
Figure 54. Source Resistance from Sensor and Protection Resistors  
The total noise of the amplifier front end depends on much  
more than the 1 nV/√Hz specification of this data sheet. There  
are three main contributors: the source resistance, the voltage  
noise of the instrumentation amplifier, and the current noise of  
the instrumentation amplifier.  
For example, if the R1 source resistance in Figure 54 is 4 kΩ, the  
R2 source resistance is 1 kΩ, and the gain of the in-amps is 100,  
the total noise, referred to input, is  
8.92 +1.52 + 6.22 = 11.0 nV/√Hz  
In the following calculations, noise is referred to the input  
(RTI). In other words, everything is calculated as if it appeared  
Rev. 0 | Page 18 of 20  
 
 
 
AD8429  
OUTLINE DIMENSIONS  
5.00 (0.1968)  
4.80 (0.1890)  
8
1
5
4
6.20 (0.2441)  
5.80 (0.2284)  
4.00 (0.1574)  
3.80 (0.1497)  
0.50 (0.0196)  
0.25 (0.0099)  
1.27 (0.0500)  
BSC  
45°  
1.75 (0.0688)  
1.35 (0.0532)  
0.25 (0.0098)  
0.10 (0.0040)  
8°  
0°  
0.51 (0.0201)  
0.31 (0.0122)  
COPLANARITY  
0.10  
1.27 (0.0500)  
0.40 (0.0157)  
0.25 (0.0098)  
0.17 (0.0067)  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MS-012-AA  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 55. 8-Lead Standard Small Outline Package [SOIC_N]  
Narrow Body  
(R-8)  
Dimensions shown in millimeters and (inches)  
ORDERING GUIDE  
Model1  
Temperature Range  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
Package Description  
Package Option  
AD8429ARZ  
AD8429ARZ-R7  
AD8429BRZ  
AD8429BRZ-R7  
8-Lead SOIC_N  
8-Lead SOIC_N, 7”Tape and Reel  
8-Lead SOIC_N  
R-8  
R-8  
R-8  
R-8  
8-Lead SOIC_N, 7”Tape and Reel  
1 Z = RoHS Compliant Part.  
Rev. 0 | Page 19 of 20  
 
 
AD8429  
NOTES  
©2011 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D09730-0-4/11(0)  
Rev. 0 | Page 20 of 20  

相关型号:

AD842JCHIPS

Wideband, High Output Current, Fast Settling Op Amp
ADI

AD842JH

Wideband, High Output Current, Fast Settling Op Amp
ADI

AD842JHZ

IC OP-AMP, 2500 uV OFFSET-MAX, 80 MHz BAND WIDTH, MBCY12, METAL CAN, TO-8, 12 PIN, Operational Amplifier
ADI

AD842JN

Wideband, High Output Current, Fast Settling Op Amp
ADI

AD842JNZ

Wideband, High Output Current Fast Settling Op Amp
ADI

AD842JQ

Wideband, High Output Current, Fast Settling Op Amp
ADI

AD842JR

IC OP-AMP, 1500 uV OFFSET-MAX, 80 MHz BAND WIDTH, PDSO16, SOIC-16, Operational Amplifier
ADI

AD842JR-16

Wideband, High Output Current, Fast Settling Op Amp
ADI

AD842JR-16-REEL

Wideband, High Output Current, Fast Settling Op Amp
ADI

AD842JR-16-REEL7

Wideband, High Output Current, Fast Settling Op Amp
ADI

AD842JRZ-16

Wideband, High Output Current, Fast Settling Op Amp
ADI

AD842JRZ-16-REEL7

IC OP-AMP, 3000 uV OFFSET-MAX, 80 MHz BAND WIDTH, PDSO16, SOIC-16, Operational Amplifier
ADI