AD842JRZ-16 [ADI]

Wideband, High Output Current, Fast Settling Op Amp;
AD842JRZ-16
型号: AD842JRZ-16
厂家: ADI    ADI
描述:

Wideband, High Output Current, Fast Settling Op Amp

放大器 光电二极管
文件: 总16页 (文件大小:362K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Wideband, High Output Current  
Fast Settling Op Amp  
Data Sheet  
AD842  
FEATURES  
CONNECTION DIAGRAMS  
NIC  
1
2
3
4
5
6
7
NIC  
14  
13  
12  
AC performance  
AD842  
NIC  
BALANCE  
NIC  
TOP VIEW  
Gain bandwidth product: 80 MHz (gain = 2)  
Fast settling: 100 ns to 0.01% for a 10 V step  
Slew rate: 375 V/µs  
Stable at gains of 2 or greater  
Full power bandwidth: 6 MHz for 20 V p-p  
DC performance  
BALANCE  
–INPUT  
+INPUT  
V–  
11 V+  
+
10 OUTPUT  
9
8
NIC  
NIC  
(Not to Scale)  
NIC  
NOTES  
1. NIC = NOT INTERNALLY CONNECTED.  
Input offset voltage: 1.5 mV maximum  
Input offset drift: 14 µV/°C  
Figure 1. PDIP (N-14) and CERDIP (Q-14)  
Input voltage noise: 9 nV/√Hz  
Open-loop gain: 90 V/mV into a 499 Ω load  
Output current: 100 mA minimum  
Quiescent supply current: 14 mA maximum  
NIC  
BALANCE  
–INPUT  
NIC  
1
2
3
4
5
6
7
8
16 NIC  
AD842  
TOP VIEW  
15  
BALANCE  
(Not to Scale)  
14 +V  
S
13 NIC  
+INPUT  
NIC  
12 OUTPUT  
+
APPLICATIONS  
11  
NIC  
–V  
S
10 NIC  
Line drivers  
DAC and ADC buffers  
NIC  
9
NIC  
Video and pulse amplifiers  
MIL-STD-883B parts available, see military data sheet  
NOTES  
1. NIC = NOT INTERNALLY CONNECTED.  
Figure 2. SOIC_W (RW-16)  
GENERAL DESCRIPTION  
The AD842 is a member of the Analog Devices, Inc. family of  
wide bandwidth operational amplifiers. This device is fabricated  
using the Analog Device junction isolated complementary  
bipolar (CB) process. This process permits a combination of dc  
precision and wideband ac performance previously unobtain-  
able in a monolithic op amp. In addition to its 80 MHz gain  
bandwidth product, the AD842 offers extremely fast settling  
characteristics, typically settling to within 0.01% of final value  
in less than 100 ns for a 10 V step.  
acquisition applications requiring 12-bit accuracy. The AD842  
is also appropriate for other applications, such as high speed  
DAC and ADC buffer amplifiers and other wide bandwidth  
circuitry.  
PRODUCT HIGHLIGHTS  
1. The high slew rate and fast settling time of the AD842  
make it ideal for DAC and ADC buffers amplifiers, line  
drivers, and all types of video instrumentation circuitry.  
2. The AD842 is a precision amplifier. It offers accuracy to  
0.01% or better and wide bandwidth, performance  
previously available only in hybrids.  
3. Laser-wafer trimming reduces the input offset voltage of  
1.5 mV maximum, thus eliminating the need for external  
offset nulling in many applications.  
The AD842 also offers a low quiescent current of 13 mA, a high  
output current drive capability (100 mA minimum), a low input  
voltage noise of 9 nV√Hz, and a low input offset voltage  
(1.5 mV maximum).  
The 375 V/µs slew rate of the AD842, along with its 80 MHz  
gain bandwidth product, ensures excellent performance in  
video and pulse amplifier applications. This amplifier is ideally  
suited for use in high frequency signal conditioning circuits and  
wide bandwidth active filters. The extremely rapid settling time  
of the AD842 makes this amplifier the preferred choice for data  
4. Full differential inputs provide outstanding performance in  
all standard high frequency op amp applications where the  
circuit gain is 2 or greater.  
Rev. F  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rightsof third parties that may result fromits use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks andregisteredtrademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 ©1988–2014 Analog Devices, Inc. All rights reserved.  
Technical Support  
www.analog.com  
 
 
 
 
 
AD842  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Typical Performance Characteristics ..............................................5  
Theory of Operation .........................................................................9  
Offset Nulling ................................................................................9  
Settling Time..................................................................................9  
Grounding and Bypassing......................................................... 10  
Capacitive Load Driving Ability............................................... 10  
Using a Heat Sink ....................................................................... 10  
Terminated Line Driver............................................................. 10  
Overdrive Recovery ................................................................... 11  
Outline Dimensions....................................................................... 12  
Ordering Guide .......................................................................... 13  
Applications....................................................................................... 1  
Connection Diagrams...................................................................... 1  
General Description......................................................................... 1  
Product Highlights ........................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Electrical Characteristics− 15 V Operation ............................ 3  
Absolute Maximum Ratings............................................................ 4  
Thermal Characteristics .............................................................. 4  
ESD Caution.................................................................................. 4  
Metalization Photograph............................................................. 4  
REVISION HISTORY  
2/14—Rev. E to Rev. F  
Changes to Figure 18.........................................................................7  
Changes to Figure 22 Caption, Figure 23 Caption, Figure 24,  
and Figure 27......................................................................................8  
Changes to Figure 28.........................................................................9  
Changes to Using a Heat Sink Section and Figure 32................ 10  
Changes to Figure 34...................................................................... 11  
Updated Outline Dimensions....................................................... 12  
Added Ordering Guide.................................................................. 13  
Updated Format..................................................................Universal  
Deleted 20-Terminal LCC and 12-Pin TO-8 ..................Universal  
Changed NC Pin to NIC Pin Throughout .................................... 1  
Changes to Features, General Description, Connection  
Diagrams, and Product Highlights Sections................................. 1  
Changes to Table 1............................................................................ 3  
Changes to Table 2, Thermal Characteristics Section, Table 3,  
and Figure 3....................................................................................... 4  
Changes to Figure 11, Figure 13, Figure 14, and Figure 15 ........ 6  
3/00—Rev. D to Rev. E  
Rev. F | Page 2 of 16  
 
Data Sheet  
AD842  
SPECIFICATIONS  
ELECTRICAL CHARACTERISTICS— 15 V OPERATION  
TA = 25°C, unless otherwise specified. All minimum and maximum specifications are guaranteed. Specifications shown in boldface are  
tested on all production units.  
Table 1.  
AD842JN/AD842JQ/AD842JR1  
AD842KN/AD842KQ  
AD842SQ  
Typ  
Test Conditions/  
Comments  
Parameter  
INPUT OFFSET VOLTAGE2  
Min  
Typ  
Max  
Min  
Typ  
Max  
1.0  
Min  
Max  
1.5  
3.5  
Unit  
mV  
mV  
µV/°C  
µA  
0.5  
1.5  
0.3  
0.5  
TMIN to TMAX  
2.5/2.5/3  
1.5  
Offset Drift  
14  
14  
14  
INPUT BIAS CURRENT  
4.2  
8
3.5  
5
4.2  
8
TMIN to TMAX  
10  
0.4  
0.5  
6
0.2  
0.3  
12  
0.4  
0.6  
µA  
Input Offset Current  
0.1  
0.05  
0.1  
µA  
TMIN to TMAX  
µA  
INPUT CHARACTERISTICS  
Input Resistance  
Input Capacitance  
Differential mode  
100  
2.0  
100  
2.0  
100  
2.0  
kΩ  
pF  
INPUT VOLTAGE RANGE  
Common Mode  
10  
86  
10  
90  
10  
86  
V
Common-Mode Rejection  
VCM  
=
10 V  
115  
115  
115  
dB  
TMIN to TMAX  
f = 1 kHz  
10 Hz to 10 MHz  
80  
86  
80  
dB  
INPUT VOLTAGE NOISE  
Wideband Noise  
9
28  
9
28  
9
28  
nV/√Hz  
µV rms  
OPEN-LOOP GAIN  
VOUT = 10 V  
RLOAD ≥ 499 Ω  
TMIN to TMAX  
40/40/30  
20/20/15  
90  
50  
25  
90  
40  
20  
90  
V/mV  
V/mV  
OUTPUT CHARACTERISTICS  
Voltage  
Current  
RLOAD ≥ 499 Ω  
10  
100  
10  
100  
10  
100  
V
VOUT  
=
10 V  
mA  
Ω
Open loop  
5
5
5
FREQUENCY RESPONSE  
Gain Bandwidth Product  
VOUT = 90 mV,  
80  
6
80  
6
80  
6
MHz  
MHz  
A
VCL = 2  
VOUT = 20 V p-p,  
LOAD ≥ 499 Ω  
Full Power Bandwidth3  
4.7  
4.7  
4.7  
R
Rise Time  
AVCL = −2  
AVCL = −2  
AVCL = −2  
10 V step  
To 0.1%  
10  
20  
375  
10  
20  
375  
10  
20  
375  
ns  
%
V/µs  
Overshoot  
Slew Rate  
Settling Time4  
300  
300  
300  
80  
80  
80  
ns  
To 0.01%  
f = 4.4 MHz  
f = 4.4 MHz  
100  
0.015  
0.035  
100  
0.015  
0.035  
100  
0.015  
0.035  
ns  
%
Degree  
Differential Gain  
Differential Phase  
POWER SUPPLY  
Rated Performance  
Operating Range  
Quiescent Current  
15  
15  
13  
15  
13  
V
5
18  
5
18  
14  
16  
5
18  
14  
19  
V
13/13/14  
100  
14/14/16  
16/16/19.5  
mA  
mA  
dB  
TMIN to TMAX  
VS = 5 V to  
18 V  
Power Supply Rejection  
Ratio  
105  
100  
86  
90  
86  
86  
80  
TMIN to TMAX  
80  
dB  
1 AD842JR specifications differ from those of the AD842JN and AD842JQ due to the thermal characteristics of the SOIC package.  
2 Input offset voltage specifications are guaranteed after 5 minutes at TA = 25°C.  
3 Full power bandwidth = slew rate/2 π V peak.  
4 Refer to Figure 29 and Figure 30.  
Rev. F | Page 3 of 16  
 
 
 
 
 
AD842  
Data Sheet  
ABSOLUTE MAXIMUM RATINGS  
Table 2.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Parameter  
Rating  
Supply Voltage  
18 V  
Internal Power Dissipation1  
PDIP (N-14), SOIC_W (RW-16)  
CERDIP (Q-14)  
1.3 W  
1.1 W  
VS  
Input Voltage  
THERMAL CHARACTERISTICS  
Differential Input Voltage  
Operating Temperature Range  
CERDIP (Q-14, AD842SQ Only)  
PDIP (N-14), SOIC_W (RW-16),  
CERDIP (Q-14, AD842JQ and  
AD842KQ Only)  
Storage Temperature Range  
CERDIP (Q-14, All Models)  
PDIP (N-14), SOIC_W (RW-16)  
Junction Temperature  
6 V  
Table 3.  
−55°C to +125°C  
0°C to 70°C  
Package  
θJC  
30  
30  
30  
θJA  
θSA  
Unit  
°C/W  
°C/W  
°C/W  
14-Lead PDIP  
14-Lead CERDIP  
16-Lead SOIC_W  
100  
110  
100  
38  
−65°C to +150°C  
−65°C to +125°C  
175°C  
ESD CAUTION  
Lead Temperature (Soldering 60 sec)  
300°C  
1 Maximum internal power dissipation is specified so that TJ does not exceed  
150°C at an ambient temperature of 25°C.  
METALIZATION PHOTOGRAPH  
0.106 (2.68)  
BALANCE  
V+  
BALANCE  
–INPUT  
OUTPUT  
0.067  
(1.69)  
+INPUT  
V–  
Figure 3. Contact Factory for Latest Dimensions,  
Dimensions Shown in Inches and (Millimeters)  
Rev. F | Page 4 of 16  
 
 
 
 
Data Sheet  
AD842  
TYPICAL PERFORMANCE CHARACTERISTICS  
TA = 25°C and VS = 15 V, unless otherwise noted.  
20  
18  
16  
14  
12  
10  
15  
10  
V
IN  
5
0
0
5
10  
SUPPLY VOLTAGE (±V)  
15  
20  
0
5
10  
15  
20  
SUPPLY VOLTAGE (±V)  
Figure 4. Input Common-Mode Range vs. Supply Voltage  
Figure 7. Quiescent Current vs. Supply Voltage  
20  
15  
10  
5
–5  
–4  
–3  
–2  
±V  
OUT  
0
0
5
10  
SUPPLY VOLTAGE (±V)  
15  
20  
–60 –40 –20  
0
20  
40  
60  
80 100 120 140  
TEMPERATURE (°C)  
Figure 5. Output Voltage Swing vs. Supply Voltage  
Figure 8. Input Bias Current vs. Temperature  
30  
25  
20  
15  
10  
5
100  
10  
±15V SUPPLIES  
1
0.1  
0.01  
0
10  
100  
1k  
10k  
10k  
100k  
1M  
10M  
100M  
LOAD RESISTANCE (Ω)  
FREQUENCY (Hz)  
Figure 6. Output Voltage Swing vs. Load Resistance  
Figure 9. Output Impedance vs. Frequency  
Rev. F | Page 5 of 16  
 
AD842  
Data Sheet  
18  
17  
16  
15  
14  
13  
12  
11  
10  
120  
100  
80  
60  
40  
20  
0
100  
80  
60  
40  
20  
0
499Ω LOAD  
–60 –40 –20  
0
20  
40  
60  
80 100 120 140  
100  
1k  
10k  
100k  
1M  
10M  
100M  
TEMPERATURE (°C)  
FREQUENCY (Hz)  
Figure 10. Quiescent Current vs. Temperature  
Figure 13. Open-Loop Gain and Phase Margin vs. Frequency  
300  
275  
250  
225  
200  
175  
150  
125  
100  
110  
105  
100  
95  
+OUTPUT CURRENT  
–OUTPUT CURRENT  
499Ω LOAD  
90  
–60 –40 –20  
0
20  
40  
60  
80 100 120 140  
0
5
10  
SUPPLY VOLTAGE (±V)  
15  
20  
TEMPERATURE (°C)  
Figure 14. Open-Loop Gain vs. Supply Voltage  
Figure 11. Short-Circuit Current Limit vs. Temperature  
85  
80  
75  
70  
65  
120  
100  
80  
60  
40  
20  
0
+V  
S
–V  
S
–60 –40 –20  
0
20  
40  
60  
80 100 120 140  
100  
1k  
10k  
100k  
1M  
10M  
100M  
TEMPERATURE (°C)  
FREQUENCY (Hz)  
Figure 12. Gain Bandwidth Product vs. Temperature  
Figure 15. Power Supply Rejection vs. Frequency  
Rev. F | Page 6 of 16  
Data Sheet  
AD842  
120  
100  
80  
–80  
–90  
3V rms  
= 1kΩ  
V
V
T
= ±15V  
S
R
L
= 1V p-p  
CM  
= 25°C  
A
–100  
–110  
–120  
–130  
–140  
SECOND HARMONIC  
60  
40  
THIRD HARMONIC  
10k  
20  
1k  
10k  
100k  
1M  
10M  
100M  
100M  
110  
100  
1k  
100k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 16. Common-Mode Rejection vs. Frequency  
Figure 19. Harmonic Distortion vs. Frequency  
30  
25  
20  
15  
10  
5
50  
40  
30  
20  
10  
R
= 1kΩ  
= 25°C  
= ±15V  
L
T
A
V
S
0
0
10  
100  
1k  
10k  
100k  
1M  
10M  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 17. Large Signal Frequency Response  
Figure 20. Input Voltage vs. Frequency  
10  
550  
500  
450  
400  
350  
300  
250  
8
6
4
2
0
0.1%  
0.1%  
0.01%  
0.01%  
–2  
–4  
–6  
–8  
–10  
–60 –40 –20  
0
20  
40  
60  
80 100 120 140  
30  
40  
50  
60  
70  
80  
90  
100  
SETTLING TIME (ns)  
TEMPERATURE (°C)  
Figure 18. Output Swing vs. Settling Time  
Figure 21. Slew Rate vs. Temperature  
Rev. F | Page 7 of 16  
AD842  
Data Sheet  
2V  
2V  
50ns  
50ns  
100%  
90%  
100%  
90%  
10%  
0%  
10%  
0%  
Figure 22. Inverting Large Signal Pulse Response (see Figure 24)  
Figure 25. Noninverting Large Signal Pulse Response (see Figure 27)  
50mV  
50mV  
50ns  
50ns  
100%  
90%  
100%  
90%  
10%  
0%  
10%  
0%  
Figure 23. Inverting Small Signal Pulse Response (see Figure 24)  
Figure 26. Noninverting Small Signal Pulse Response (see Figure 27)  
R
= 1kΩ  
R
= 205Ω  
R
= 205Ω  
F
F
F
0.1µF  
2.2µF  
0.1µF  
2.2µF  
+V  
+V  
S
S
R
=
IN  
499Ω  
FUNCTION  
GENERATOR  
11  
AD842  
6
11  
AD842  
6
4
4
5
V
V
OUT  
OUT  
10  
10  
49.9Ω  
V
100Ω  
FUNCTION  
GENERATOR  
IN  
5
499Ω  
499Ω  
332Ω  
0.1µF  
2.2µF  
49.9Ω  
0.1µF  
2.2µF  
–V  
–V  
S
S
Figure 27. Noninverting Amplifier Configuration (PDIP)  
Figure 24. Inverting Amplifier Configuration (PDIP)  
Rev. F | Page 8 of 16  
 
 
Data Sheet  
AD842  
THEORY OF OPERATION  
OFFSET NULLING  
10V  
10mV  
20ns  
100%  
90%  
The input offset voltage of the AD842 is very low for a high  
speed op amp, but if additional nulling is required, the circuit  
shown in Figure 28 can be used.  
OUTPUT:  
10V/DIV  
SETTLING TIME  
OUTPUT  
ERROR:  
0.02%/DIV  
Figure 29 and Figure 31 show the settling performance of the  
AD842 in the test circuit shown in Figure 30.  
Settling time is the interval of time from the application of an  
ideal step function input until the closed-loop amplifier output  
enters and remains within a specified error band.  
10%  
0%  
This definition encompasses the major components that  
comprise settling time. They include the following:  
Figure 29. 0.01% Settling Time  
Figure 30 shows how measurement of the AD842 0.01% settling  
in 100 ns is accomplished by amplifying the error signal from a  
false summing junction with a very high speed proprietary  
hybrid error amplifier specially designed to enable testing of  
small settling errors. Under test, the device drives a 300 Ω load.  
The input to the error amp is clamped to avoid possible  
problems associated with the overdrive recovery of the  
oscilloscope input amplifier. The error amp gains the error from  
the false summing junction by 15, and it contains a gain vernier  
to fine trim the gain.  
Propagation delay through the amplifier.  
Slewing time to approach the final output value.  
Time of recovery from the overload associated with  
slewing.  
Linear settling to within the specified error band.  
Expressed in these terms, the measurement of settling time  
must be accurate to assure the user that the amplifier is worth  
consideration for the application.  
+V  
S
10kΩ  
0.1µF  
2.2µF  
Figure 31 shows the long-term stability of the settling  
3
4
5
characteristics of the AD842 output after a 10 V step. There is  
no evidence of settling tails after the initial transient recovery  
time. The use of a junction isolated process, together with  
careful layout, avoids these problems by minimizing the effects  
of transistor isolation capacitance discharge and thermally  
induced shifts in circuit operating points. These problems do  
not occur even under high output current conditions.  
13  
11  
V
OUT  
10  
V
AD842  
IN  
6
R
L
0.1µF  
2.2µF  
–V  
S
Figure 28. Offset Nulling (PDIP)  
ERROR  
AMP  
(×15)  
TEK  
7A13  
TEK  
7603  
OSCILLOSCOPE  
TEK  
7A16  
HP6263  
DDD5109  
FLAT-TOP  
PULSE  
499Ω  
499Ω  
1kΩ  
1kΩ  
GENERATOR  
0.1µF  
2.2µF  
50Ω  
+15V  
11  
4
5
FET PROBE  
TEK P6201  
10  
AD842  
499Ω  
0.1µF  
6
499Ω  
2.2µF  
–15V  
Figure 30. Settling Time Test Circuit (PDIP)  
Rev. F | Page 9 of 16  
 
 
 
 
 
 
AD842  
Data Sheet  
the dynamic performance of the device, although instability  
does not occur unless the load exceeds 100 pF.  
GROUNDING AND BYPASSING  
In designing practical circuits with the AD842, the user must  
take some special precautions whenever high frequencies are  
involved.  
USING A HEAT SINK  
The AD842 draws less quiescent power than most precision  
high speed amplifiers and is specified for operation without a  
heat sink. However, when driving low impedance loads, the  
current to the load can be 10 times the quiescent current. This  
creates a noticeable temperature rise. Use of a small heat sink  
improves performance.  
5mV  
2µs  
100%  
90%  
OUTPUT:  
5V/DIV  
OUTPUT  
ERROR:  
0.01%/DIV  
TERMINATED LINE DRIVER  
The AD842 is optimized for high speed line driver applications.  
Figure 32 shows the AD842 driving a doubly terminated cable  
in a gain-of-2 follower configuration. The AD842 maintains a  
typical slew rate of 375 V/μs, which means it can drive a 10 V,  
6.0 MHz signal, or a 3 V, 19.9 MHz signal.  
10%  
0%  
The termination resistor, RT, minimizes reflections from the far  
end of the cable when equal to the characteristic impedance of  
the cable. A back-termination resistor (RBT, also equal to the  
characteristic impedance of the cable) can be placed between  
the AD842 output and the cable to damp any stray signals  
caused by a mismatch between RT and the characteristic  
impedance of the cable. This configuration results in a cleaner  
signal. With this circuit, the voltage on the line equals VIN  
because one half of VOUT is dropped across RBT.  
Figure 31. AD842 Settling Demonstrating No Settling Tails  
Circuits must be built with short interconnect leads. Use large  
ground planes whenever possible to provide a low resistance,  
low inductance circuit path; this also minimizes the effects of  
high frequency coupling. Avoid sockets because the increased  
interlead capacitance can degrade bandwidth.  
Use feedback resistors of low enough value to ensure that the  
time constant formed with the circuit capacitances does not  
limit the amplifier performance. Resistor values of less than  
5 kΩ are recommended. If a larger resistor must be used, a  
small (<10 pF) feedback capacitor connected in parallel with  
the feedback resistor, RF, can be used to compensate for these  
stray capacitances and to optimize the dynamic performance of  
the amplifier in the particular application.  
The AD842 has a 100 mA minimum output current and,  
therefore, can drive 5 V into a 50 Ω cable.  
Choose the feedback resistors, R1 and R2, carefully. Large value  
resistors are desirable to limit the amount of current drawn  
from the amplifier output. Large resistors can cause amplifier  
instability because the parallel resistance of R1||R2 combines  
with the input capacitance (typically 2 pF to 5 pF) to create an  
additional pole. The voltage noise of the AD842 is equivalent to  
a 5 kΩ resistor; these large resistors can significantly increase  
the system noise. Resistor values of 1 kΩ or 2 kΩ are  
recommended.  
Bypass power supply leads to ground as close as possible to the  
amplifier pins. A 2.2 μF capacitor in parallel with a 0.1 μF  
ceramic disk capacitor is recommended.  
CAPACITIVE LOAD DRIVING ABILITY  
Like all wideband amplifiers, the AD842 is sensitive to  
capacitive loading. The AD842 is designed to drive capacitive  
loads of up to 20 pF without degradation of its rated  
performance. Capacitive loads of greater than 20 pF decrease  
If termination is not used, cables appear as capacitive loads and  
can be decoupled from the AD842 by a resistor in series with  
the output.  
0.1µF  
2.2µF  
+V  
S
50Ω OR 75Ω  
CABLE  
11  
AD842  
6
V
5
IN  
R
BT  
10  
TERMINATION  
RESISTOR FOR  
INPUT SIGNAL  
4
0.1µF  
R
T
2.2µF  
R1  
R2  
–V  
S
R
= R = CABLE  
BT  
T
CHARACTERISTIC IMPEDANCE  
Figure 32. Line Driver Configuration (PDIP)  
Rev. F | Page 10 of 16  
 
 
 
 
 
 
Data Sheet  
AD842  
0.1µF  
2.2µF  
OVERDRIVE RECOVERY  
+V  
S
Figure 33 shows the overdrive recovery capability of the AD842.  
Typical recovery time is 80 ns from negative overdrive and  
400 ns from positive overdrive.  
11  
AD842  
6
4
5
PULSE  
GENERATOR  
V
OUT  
10  
1kΩ  
1µs, ±1V  
SQUARE WAVE  
INPUT  
50Ω  
0.1µF  
2.2µF  
10V  
1V  
100ns  
100%  
90%  
–V  
S
OVERDRIVEN  
OUTPUT:  
10V/DIV  
Figure 34. Overdrive Recovery Test Circuit (PDIP)  
INPUT SQUARE  
WAVE:  
1V/DIV  
10%  
0%  
Figure 33. Overdrive Recovery  
Rev. F | Page 11 of 16  
 
 
AD842  
Data Sheet  
OUTLINE DIMENSIONS  
0.775 (19.69)  
0.750 (19.05)  
0.735 (18.67)  
14  
1
8
7
0.280 (7.11)  
0.250 (6.35)  
0.240 (6.10)  
0.325 (8.26)  
0.310 (7.87)  
0.300 (7.62)  
0.100 (2.54)  
BSC  
0.060 (1.52)  
MAX  
0.195 (4.95)  
0.130 (3.30)  
0.115 (2.92)  
0.210 (5.33)  
MAX  
0.015  
(0.38)  
MIN  
0.150 (3.81)  
0.130 (3.30)  
0.110 (2.79)  
0.015 (0.38)  
GAUGE  
0.014 (0.36)  
0.010 (0.25)  
0.008 (0.20)  
PLANE  
SEATING  
PLANE  
0.022 (0.56)  
0.018 (0.46)  
0.014 (0.36)  
0.430 (10.92)  
MAX  
0.005 (0.13)  
MIN  
0.070 (1.78)  
0.050 (1.27)  
0.045 (1.14)  
COMPLIANT TO JEDEC STANDARDS MS-001  
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
CORNER LEADS MAY BE CONFIGURED AS WHOLE OR HALF LEADS.  
Figure 35. 14-Lead Plastic Dual In-Line Package [PDIP]  
Narrow Body  
(N-14)  
Dimensions Shown in Inches and (Millimeters)  
0.098 (2.49) MAX  
8
0.005 (0.13) MIN  
14  
0.310 (7.87)  
0.220 (5.59)  
1
7
PIN 1  
0.100 (2.54) BSC  
0.785 (19.94) MAX  
0.320 (8.13)  
0.290 (7.37)  
0.060 (1.52)  
0.015 (0.38)  
0.200 (5.08)  
MAX  
0.150  
(3.81)  
MIN  
0.200 (5.08)  
0.125 (3.18)  
0.015 (0.38)  
0.008 (0.20)  
SEATING  
PLANE  
15°  
0°  
0.070 (1.78)  
0.030 (0.76)  
0.023 (0.58)  
0.014 (0.36)  
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 36. 14-Lead Ceramic Dual In-Line Package [CERDIP]  
(Q-14)  
Dimensions Shown in Inches and (Millimeters)  
Rev. F | Page 12 of 16  
 
Data Sheet  
AD842  
10.50 (0.4134)  
10.10 (0.3976)  
16  
1
9
8
7.60 (0.2992)  
7.40 (0.2913)  
10.65 (0.4193)  
10.00 (0.3937)  
0.75 (0.0295)  
0.25 (0.0098)  
1.27 (0.0500)  
BSC  
45°  
2.65 (0.1043)  
2.35 (0.0925)  
0.30 (0.0118)  
0.10 (0.0039)  
8°  
0°  
COPLANARITY  
0.10  
SEATING  
PLANE  
0.51 (0.0201)  
0.31 (0.0122)  
1.27 (0.0500)  
0.40 (0.0157)  
0.33 (0.0130)  
0.20 (0.0079)  
COMPLIANT TO JEDEC STANDARDS MS-013-AA  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 37. 16-Lead Standard Small Outline Package [SOIC_W]  
Wide Body  
(RW-16)  
Dimensions Shown in Inches and (Millimeters)  
ORDERING GUIDE  
Model1  
Temperature Range  
0°C to 70°C  
Package Description  
Package Option  
N-14  
AD842JNZ  
14-Lead Plastic Dual In-Line Package [PDIP]  
AD842JQ  
AD842KQ  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
14-Lead Ceramic Dual In-Line Package [CERDIP]  
14-Lead Ceramic Dual In-Line Package [CERDIP]  
16-Lead Standard Small Outline Package [SOIC_W]  
16-Lead Standard Small Outline Package [SOIC_W]  
14-Lead Plastic Dual In-Line Package [PDIP]  
Die  
Q-14  
Q-14  
RW-16  
RW-16  
N-14  
AD842JR-16  
AD842JRZ-16  
AD842KNZ  
AD842SCHIPS  
AD842SQ  
0°C to 70°C  
−55°C to +125°C  
14-Lead Ceramic Dual In-Line Package [CERDIP]  
Q-14  
1 Z = RoHS Compliant Part.  
Rev. F | Page 13 of 16  
 
AD842  
NOTES  
Data Sheet  
Rev. F | Page 14 of 16  
Data Sheet  
NOTES  
AD842  
Rev. F | Page 15 of 16  
AD842  
NOTES  
Data Sheet  
©1988–2014 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D09477-0-2/14(F)  
Rev. F | Page 16 of 16  

相关型号:

AD842JRZ-16-REEL7

IC OP-AMP, 3000 uV OFFSET-MAX, 80 MHz BAND WIDTH, PDSO16, SOIC-16, Operational Amplifier
ADI

AD842KH

Wideband, High Output Current, Fast Settling Op Amp
ADI

AD842KHZ

IC OP-AMP, 1500 uV OFFSET-MAX, 80 MHz BAND WIDTH, MBCY12, METAL CAN, TO-8, 12 PIN, Operational Amplifier
ADI

AD842KN

Wideband, High Output Current, Fast Settling Op Amp
ADI

AD842KNZ

OP-AMP, 1500 uV OFFSET-MAX, 80 MHz BAND WIDTH, PDIP14, PLASTIC, DIP-14
ROCHESTER

AD842KNZ

Wideband, High Output Current Fast Settling Op Amp
ADI

AD842KQ

Wideband, High Output Current, Fast Settling Op Amp
ADI

AD842SCHIPS

Wideband, High Output Current, Fast Settling Op Amp
ADI

AD842SE

IC OP-AMP, 1500 uV OFFSET-MAX, 80 MHz BAND WIDTH, CQCC20, CERAMIC, LCC-20, Operational Amplifier
ADI

AD842SE/883B

Wideband, High Output Current, Fast Settling Op Amp
ADI

AD842SH

Wideband, High Output Current, Fast Settling Op Amp
ADI

AD842SH/883B

IC OP-AMP, 3500 uV OFFSET-MAX, 80 MHz BAND WIDTH, MBCY12, TO-99, 12 PIN, Operational Amplifier
ADI