AD8421TRMZ-EP-R7 [ADI]

3 nV /√Hz, Low Power Instrumentation Amplifier;
AD8421TRMZ-EP-R7
型号: AD8421TRMZ-EP-R7
厂家: ADI    ADI
描述:

3 nV /√Hz, Low Power Instrumentation Amplifier

放大器 光电二极管
文件: 总20页 (文件大小:541K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
3 nV/√Hz, Low Power  
Instrumentation Amplifier  
AD8421-EP  
Enhanced Product  
FEATURES  
PIN CONNECTION DIAGRAM  
Specified from −55°C to 125°C  
AD8421-EP  
1
2
3
4
8
7
6
5
–IN  
+V  
S
0.9 μV/°C maximum input offset voltage drift  
5 ppm/°C maximum gain drift (G = 1)  
Low power  
2.3 mA maximum supply current  
Low noise  
3.2 nV/√Hz maximum input voltage noise at 1 kHz  
200 fA/√Hz current noise at 1 kHz  
Excellent ac specifications  
R
R
V
OUT  
G
G
REF  
–V  
+IN  
S
TOP VIEW  
(Not to Scale)  
Figure 1.  
10µ  
1µ  
G = 100  
2 MHz bandwidth (G = 100)  
BEST AVAILABLE  
7mA LOW NOISE IN-AMP  
0.6 μs settling time to 0.001% (G = 10)  
80 dB minimum CMRR at 20 kHz (G = 1)  
High precision dc performance  
84 dB CMRR minimum (G = 1)  
2 nA maximum input bias current  
Inputs protected to 40 V from opposite supply  
Gain set with a single resistor (G = 1 to 10,000)  
100n  
10n  
BEST AVAILABLE  
1mA LOW POWER IN-AMP  
ENHANCED PRODUCT FEATURES  
AD8421  
Supports defense and aerospace applications (AQEC standard)  
Military temperature range (−55°C to +125°C)  
Controlled manufacturing baseline  
One assembly/test site  
R
NOISE ONLY  
S
1n  
100  
1k  
10k  
100k  
1M  
SOURCE RESISTANCE, R ()  
S
Figure 2. Noise Density vs. Source Resistance  
One fabrication site  
Enhanced product change notification  
Qualification data available on request  
The AD8421-EP delivers 3 nV/√Hz input voltage noise and  
200 fA/√Hz current noise with only 2 mA quiescent current,  
making it an ideal choice for measuring low level signals. For  
applications with high source impedance, the AD8421-EP employs  
innovative process technology and design techniques to provide  
noise performance that is limited only by the sensor.  
GENERAL DESCRIPTION  
The AD8421-EP is a low cost, low power, extremely low noise,  
ultralow bias current, high speed instrumentation amplifier that  
is ideally suited for a broad spectrum of signal conditioning and  
data acquisition applications. This product features extremely  
high CMRR, allowing it to extract low level signals in the presence  
of high frequency common-mode noise over a wide  
temperature range.  
The AD8421-EP uses unique protection methods to ensure robust  
inputs while still maintaining very low noise. This protection  
allows input voltages up to 40 V from the opposite supply rail  
without damage to the part.  
The 10 MHz bandwidth, 35 V/μs slew rate, and 0.6 μs settling  
time to 0.001% (G = 10) allow the AD8421-EP to amplify high  
speed signals and excel in applications that require high channel  
count, multiplexed systems. Even at higher gains, the current  
feedback architecture maintains high performance; for example,  
at G = 100, the bandwidth is 2 MHz and the settling time is  
0.8 μs. The AD8421-EP has excellent distortion performance,  
making it suitable for use in demanding applications such as  
vibration analysis.  
A single resistor sets the gain from 1 to 10,000. The reference  
pin can be used to apply a precise offset to the output voltage.  
The AD8421-EP is specified over the military temperature range of  
−55°C to +125°C. It is available in an 8-lead MSOP package.  
Additional application and technical information can be found  
in the AD8421 data sheet.  
Rev. 0  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Technical Support  
©2013 Analog Devices, Inc. All rights reserved.  
www.analog.com  
 
 
AD8421-EP  
Enhanced Product  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
ESD Caution...................................................................................6  
Pin Configuration and Function Descriptions..............................7  
Typical Performance Characteristics ..............................................8  
Outline Dimensions....................................................................... 18  
Ordering Guide .......................................................................... 18  
General Description ......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Absolute Maximum Ratings............................................................ 6  
Thermal Resistance ...................................................................... 6  
REVISION HISTORY  
5/13—Revision 0: Initial Version  
Rev. 0 | Page 2 of 20  
 
Enhanced Product  
AD8421-EP  
SPECIFICATIONS  
VS = 15 V, VREF = 0 V, TA = 25°C, G = 1, RL = 2 kΩ, unless otherwise noted.  
Table 1.  
Parameter  
Test Conditions/ Comments  
Min  
Typ  
Max  
Unit  
COMMON-MODE REJECTION RATIO (CMRR)  
CMRR DC to 60 Hz with 1 kΩ Source Imbalance  
G = 1  
VCM = −10 V to +10 V  
84  
dB  
dB  
dB  
dB  
dB  
G = 10  
G = 100  
G = 1000  
Over Temperature, G = 1  
CMRR at 20 kHz  
G = 1  
G = 10  
G = 100  
104  
124  
134  
80  
TA = −55°C to +125°C  
VCM = −10 V to +10 V  
80  
90  
100  
100  
dB  
dB  
dB  
dB  
G = 1000  
NOISE  
Voltage Noise, 1 kHz1  
Input Voltage Noise, eni  
Output Voltage Noise, eno  
Peak to Peak, RTI  
G = 1  
G = 10  
G = 100 to 1000  
Current Noise  
VIN+, VIN− = 0 V  
3
3.2  
60  
nV/√Hz  
nV/√Hz  
f = 0.1 Hz to 10 Hz  
2
0.5  
0.07  
µV p-p  
µV p-p  
µV p-p  
Spectral Density  
Peak to Peak, RTI  
VOLTAGE OFFSET2  
Input Offset Voltage, VOSI  
Over Temperature  
Average TC  
Output Offset Voltage, VOSO  
Over Temperature  
Average TC  
f = 1 kHz  
f = 0.1 Hz to 10 Hz  
200  
18  
fA/√Hz  
pA p-p  
VS = 5 V to 15 V  
TA = −55°C to +125°C  
70  
µV  
µV  
µV/°C  
µV  
mV  
160  
0.9  
600  
1.5  
9
TA = −55°C to +125°C  
VS = 2.5 V to 18 V  
µV/°C  
Offset RTI vs. Supply (PSR)  
G = 1  
G = 10  
G = 100  
G = 1000  
90  
120  
120  
130  
140  
dB  
dB  
dB  
dB  
110  
124  
130  
INPUT CURRENT  
Input Bias Current  
Over Temperature  
Average TC  
Input Offset Current  
Over Temperature  
Average TC  
1
2
8
nA  
nA  
pA/°C  
nA  
nA  
TA = −55°C to +125°C  
TA = −55°C to +125°C  
50  
0.5  
2
3
1
pA/°C  
Rev. 0 | Page 3 of 20  
 
AD8421-EP  
Enhanced Product  
Parameter  
DYNAMIC RESPONSE  
Small Signal Bandwidth  
G = 1  
Test Conditions/ Comments  
Min  
Typ  
Max  
Unit  
−3 dB  
10  
10  
2
MHz  
MHz  
MHz  
MHz  
G = 10  
G = 100  
G = 1000  
0.2  
Settling Time 0.01%  
G = 1  
G = 10  
G = 100  
G = 1000  
Settling Time 0.001%  
G = 1  
G = 10  
G = 100  
G = 1000  
10 V step  
10 V step  
0.7  
0.4  
0.6  
5
µs  
µs  
µs  
µs  
1
µs  
µs  
µs  
µs  
0.6  
0.8  
6
Slew Rate  
G = 1 to 100  
GAIN3  
Gain Range  
Gain Error  
G = 1  
G = 10 to 1000  
Gain Nonlinearity  
G = 1  
35  
V/µs  
V/V  
G = 1 + (9.9 kΩ/RG)  
VOUT = 10 V  
1
10,000  
0.05  
0.3  
%
%
VOUT = −10 V to +10 V  
RL ≥ 2 kΩ  
RL = 600 Ω  
RL ≥ 600 Ω  
VOUT = −5V to +5 V  
1
3
50  
10  
ppm  
ppm  
ppm  
ppm  
1
30  
5
G = 10 to 1000  
Gain vs. Temperature3  
G = 1  
G > 1  
5
−80  
ppm/°C  
ppm/°C  
INPUT  
Input Impedance  
Differential  
Common Mode  
Input Operating Voltage Range4  
Over Temperature  
30||3  
30||3  
GΩ||pF  
GΩ||pF  
V
V
V
VS = 2.5 V to 18 V  
TA = −55°C  
TA = +125°C  
−VS + 2.3  
−VS + 2.5  
−VS + 2.1  
+VS − 1.8  
+VS − 2.0  
+VS − 1.8  
OUTPUT  
RL = 2 kΩ  
Output Swing  
Over Temperature  
Short-Circuit Current  
REFERENCE INPUT  
RIN  
VS = 2.5 V to 18 V  
TA = −55°C to +125°C  
−VS + 1.2  
−VS + 1.4  
+VS − 1.7  
+VS − 1.9  
V
V
mA  
65  
20  
20  
kΩ  
µA  
V
IIN  
VIN+, VIN− = 0 V  
24  
+VS  
Voltage Range  
Reference Gain to Output  
−VS  
1
V/V  
0.0001  
Rev. 0 | Page 4 of 20  
Enhanced Product  
AD8421-EP  
Parameter  
Test Conditions/ Comments  
Min  
Typ  
Max  
Unit  
POWER SUPPLY  
Operating Range  
Dual supply  
Single supply  
2.5  
5
18  
36  
V
V
Quiescent Current  
Over Temperature  
2
2.3  
2.8  
mA  
mA  
TA = −55°C to +125°C  
TEMPERATURE RANGE  
For Specified Performance  
−55  
+125  
°C  
1 Total voltage noise = √(eni2 + (eno/G)2 + eRG2). See the AD8421 data sheet for more information.  
2 Total RTI VOS = (VOSI) + (VOSO/G).  
3 These specifications do not include the tolerance of the external gain setting resistor, RG. For G > 1, add RG errors to the specifications given in this table.  
4 Input voltage range of the AD8421-EP input stage only. The input range can depend on the common-mode voltage, differential voltage, gain, and reference voltage.  
See the Typical Performance Characteristics section for more information.  
Rev. 0 | Page 5 of 20  
 
AD8421-EP  
Enhanced Product  
ABSOLUTE MAXIMUM RATINGS  
Table 2.  
THERMAL RESISTANCE  
θJA is specified for a device in free air using a 4-layer JEDEC  
printed circuit board (PCB).  
Parameter  
Rating  
Supply Voltage  
18 V  
Output Short-Circuit Current Duration  
Maximum Voltage at −IN or +IN1  
Minimum Voltage at −IN or +IN  
Maximum Voltage at REF2  
Minimum Voltage at REF  
Storage Temperature Range  
Operating Temperature Range  
Maximum Junction Temperature  
ESD  
Indefinite  
Table 3.  
Package  
−VS + 40 V  
+VS − 40 V  
+VS + 0.3 V  
−VS − 0.3 V  
−65°C to +150°C  
−55°C to +125°C  
150°C  
θJA  
Unit  
8-Lead MSOP  
138.6  
°C/W  
ESD CAUTION  
Human Body Model  
2 kV  
Charged Device Model  
Machine Model  
1.25 kV  
0.2 kV  
1 For voltages beyond these limits, use input protection resistors. See the  
AD8421 data sheet for more information.  
2 There are ESD protection diodes from the reference input to each supply, so  
REF cannot be driven beyond the supplies in the same way that +IN and −IN  
can. See the AD8421 data sheet for more information.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Rev. 0 | Page 6 of 20  
 
 
 
 
Enhanced Product  
AD8421-EP  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
AD8421-EP  
1
2
3
4
8
7
6
5
–IN  
+V  
S
R
R
V
OUT  
G
G
REF  
–V  
+IN  
S
TOP VIEW  
(Not to Scale)  
Figure 3. Pin Configuration  
Table 4. Pin Function Descriptions  
Pin No. Mnemonic Description  
1
2, 3  
4
5
6
−IN  
RG  
Negative Input Terminal.  
Gain Setting Terminals. Place resistor across the RG pins to set the gain. G = 1 + (9.9 kΩ/RG).  
Positive Input Terminal.  
Negative Power Supply Terminal.  
Reference Voltage Terminal. Drive this terminal with a low impedance voltage source to level shift the output.  
+IN  
−VS  
REF  
VOUT  
+VS  
7
8
Output Terminal.  
Positive Power Supply Terminal.  
Rev. 0 | Page 7 of 20  
 
AD8421-EP  
Enhanced Product  
TYPICAL PERFORMANCE CHARACTERISTICS  
TA = 25°C, VS = ±±5 V, VREF = 0 V, RL = 2 kΩ, unless otherwise noted.  
600  
600  
500  
400  
300  
200  
100  
0
500  
400  
300  
200  
100  
0
–60  
–40  
–20  
0
20  
40  
60  
–400  
–300  
–200  
–100  
0
100  
200  
300  
400  
INPUT OFFSET VOLTAGE (µV)  
OUTPUT OFFSET VOLTAGE (µV)  
Figure 4. Typical Distribution of Input Offset Voltage  
Figure 7. Typical Distribution of Output Offset Voltage  
1800  
1500  
1200  
900  
600  
300  
0
1200  
1000  
800  
600  
400  
200  
0
–2.0  
–1.5  
–1.0  
–0.5  
0
0.5  
1.0  
1.5  
2.0  
–2.0  
–1.5  
–1.0  
–0.5  
0
0.5  
1.0  
1.5  
2.0  
INPUT BIAS CURRENT (nA)  
INPUT OFFSET CURRENT (nA)  
Figure 5. Typical Distribution of Input Bias Current  
Figure 8. Typical Distribution of Input Offset Current  
1600  
1400  
1200  
1000  
800  
600  
400  
200  
0
1400  
1200  
1000  
800  
600  
400  
200  
0
–20  
–15  
–10  
–5  
0
5
10  
15  
20  
–120  
–90  
–60  
–30  
0
30  
60  
90  
120  
PSRR (µV/V)  
CMRR (µV/V)  
Figure 6. Typical Distribution of PSRR (G = 1)  
Figure 9. Typical Distribution of CMRR (G = 1)  
Rev. 0 | Page 8 of 20  
 
Enhanced Product  
AD8421-EP  
15  
4
3
G = 1  
V
= ±15V  
G = 100  
S
10  
5
V
= ±5V  
S
2
V
= ±12V  
S
1
V
= ±2.5V  
S
0
0
–1  
–2  
–3  
–4  
–5  
–10  
–15  
–15  
–10  
–5  
0
5
10  
15  
–4  
–3  
–2  
–1  
0
1
2
3
4
OUTPUT VOLTAGE (V)  
OUTPUT VOLTAGE (V)  
Figure 10. Input Common-Mode Voltage vs. Output Voltage;  
VS = 12 V and 15 V (G = 1)  
Figure 13. Input Common-Mode Voltage vs. Output Voltage;  
VS = 2.5 V and 5 V (G = 100)  
4
40  
G = 1  
V
G = 1  
= 5V  
S
V
= ±5V  
S
30  
20  
3
2
1
0
10  
V
= ±2.5V  
S
0
–10  
–20  
–30  
–40  
–1  
–2  
–3  
–4  
–3  
–2  
–1  
0
1
2
3
4
–35 –30 –25 –20 –15 –10 –5  
0
5
10 15 20 25 30 35 40  
OUTPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
Figure 11. Input Common-Mode Voltage vs. Output Voltage;  
VS = 2.5 V and 5 V (G = 1)  
Figure 14. Input Overvoltage Performance; G = 1, +VS = 5 V, −VS = 0 V  
15  
30  
V
G = 1  
= ±15V  
V
= ±15V  
G = 100  
S
S
20  
10  
10  
5
V
= ±12V  
S
0
0
–10  
–20  
–30  
–5  
–10  
–15  
–15  
–10  
–5  
0
5
10  
15  
–25 –20 –15 –10  
–5  
0
5
10  
15  
20  
25  
OUTPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
Figure 12. Input Common-Mode Voltage vs. Output Voltage;  
VS = 12 V and 15 V (G = 100)  
Figure 15. Input Overvoltage Performance; G = 1, VS = 15 V  
Rev. 0 | Page 9 of 20  
AD8421-EP  
Enhanced Product  
40  
160  
140  
120  
100  
V
= 5V  
GAIN = 1000  
GAIN = 100  
GAIN = 10  
S
G = 100  
30  
20  
10  
GAIN = 1  
0
80  
60  
40  
20  
0
–10  
–20  
–30  
–40  
–35 –30 –25 –20 –15 –10 –5  
0
5
10 15 20 25 30 35 40  
0.1  
1
10  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
INPUT VOLTAGE (V)  
Figure 19. Positive PSRR vs. Frequency  
Figure 16. Input Overvoltage Performance; +VS = 5 V, −VS = 0 V, G = 100  
160  
140  
120  
100  
80  
30  
GAIN = 1000  
GAIN = 100  
V
= ±15V  
S
G = 100  
20  
10  
GAIN = 10  
GAIN = 1  
0
60  
–10  
–20  
–30  
40  
20  
0
0.1  
1
10  
100  
1k  
10k  
100k  
1M  
–25 –20 –15 –10  
–5  
0
5
10  
15  
20  
25  
FREQUENCY (Hz)  
INPUT VOLTAGE (V)  
Figure 20. Negative PSRR vs. Frequency  
Figure 17. Input Overvoltage Performance; VS = 15 V, G = 100  
70  
2.5  
2.0  
GAIN = 1000  
60  
50  
1.5  
1.0  
GAIN = 100  
GAIN = 10  
GAIN = 1  
40  
30  
0.5  
20  
0
10  
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
0
–10  
–20  
–30  
100  
1k  
10k  
100k  
1M  
10M  
–12 –10 –8 –6 –4 –2  
0
2
4
6
8
10 12 14  
FREQUENCY (Hz)  
COMMON-MODE VOLTAGE (V)  
Figure 21. Gain vs. Frequency  
Figure 18. Input Bias Current vs. Common-Mode Voltage  
Rev. 0 | Page 10 of 20  
Enhanced Product  
AD8421-EP  
6
4
160  
GAIN = 1000  
REPRESENTATIVE SAMPLES  
GAIN = 100  
140  
2
GAIN = 10  
120  
0
GAIN = 1  
100  
–2  
–4  
–6  
–8  
80  
60  
40  
–55 –40 –25 –10  
5
20 35 50 65 80 95 110 125  
TEMPERATURE (°C)  
0.1  
1
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
Figure 25. Input Bias Current vs. Temperature  
Figure 22. CMRR vs. Frequency  
100  
80  
160  
REPRESENTATIVE SAMPLES  
GAIN = 1  
GAIN = 1000  
140  
120  
100  
80  
60  
GAIN = 100  
GAIN = 10  
40  
20  
0
GAIN = 1  
–20  
–40  
–60  
–80  
–100  
60  
40  
0.1  
–55 –40 –25 –10  
5
20 35 50 65 80 95 110 125  
TEMPERATURE (°C)  
1
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
Figure 26. Gain vs. Temperature (G = 1)  
Figure 23. CMRR vs. Frequency, 1 kΩ Source Imbalance  
15  
10  
5
2.0  
1.5  
1.0  
0.5  
0
REPRESENTATIVE SAMPLES  
GAIN = 1  
0
–5  
–10  
–15  
–0.5  
–55 –40 –25 –10  
5
20 35 50 65 80 95 110 125  
TEMPERATURE (°C)  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
WARM-UP TIME (Seconds)  
Figure 27. CMRR vs. Temperature (G = 1)  
Figure 24. Change in Input Offset Voltage (VOSI) vs. Warm-Up Time  
Rev. 0 | Page 11 of 20  
AD8421-EP  
Enhanced Product  
3.0  
45  
40  
35  
30  
25  
20  
15  
10  
5
V
= ±15V  
S
2.5  
2.0  
1.5  
1.0  
0.5  
0
–SR  
+SR  
0
–55 –40 –25 –10  
5
20 35 50 65 80 95 110 125  
TEMPERATURE (°C)  
–55 –40 –25 –10  
5
20 35 50 65 80 95 110 125  
TEMPERATURE (°C)  
Figure 28. Supply Current vs. Temperature (G = 1)  
Figure 31. Slew Rate vs. Temperature, VS = 5 V (G = 1)  
+V  
80  
60  
S
–55°C  
–40°C  
+25°C  
+85°C  
+105°C  
+125°C  
–0.5  
–1.0  
I
SHORT+  
40  
–1.5  
–2.0  
20  
0
–2.5  
–20  
–40  
–60  
–80  
–100  
–120  
+2.5  
+2.0  
+1.5  
+1.0  
+0.5  
I
SHORT–  
–V  
S
2
4
6
8
10  
12  
14  
16  
18  
–55 –40 –25 –10  
5
20 35 50 65 80 95 110 125  
TEMPERATURE (°C)  
SUPPLY VOLTAGE (±V )  
S
Figure 32. Input Voltage Limit vs. Supply Voltage  
Figure 29. Short-Circuit Current vs. Temperature (G = 1)  
15  
10  
5
40  
35  
30  
25  
20  
15  
10  
5
–SR  
+SR  
+125°C  
+105°C  
+85°C  
+25°C  
–40°C  
–55°C  
0
–5  
–10  
–15  
100  
0
1k  
10k  
100k  
–55 –40 –25 –10  
5
20 35 50 65 80 95 110 125  
TEMPERATURE (°C)  
LOAD ()  
Figure 33. Output Voltage Swing vs. Load Resistance  
Figure 30. Slew Rate vs. Temperature, VS = 15 V (G = 1)  
Rev. 0 | Page 12 of 20  
Enhanced Product  
AD8421-EP  
100  
80  
+V  
S
–55°C  
–40°C  
+25°C  
+85°C  
+105°C  
+125°C  
GAIN = 1000  
–2  
60  
–4  
–6  
40  
20  
R
= 600  
L
0
–20  
–40  
–60  
–80  
–100  
+6  
+4  
+2  
–V  
S
0
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10  
OUTPUT CURRENT (A)  
–10  
–8  
–6  
–4  
–2  
0
2
4
6
8
10  
OUTPUT VOLTAGE (V)  
Figure 34. Output Voltage Swing vs. Output Current  
Figure 37. Gain Nonlinearity (G = 1000), RL = 600 Ω, VOUT  
=
10 V  
5
100  
GAIN = 1  
GAIN = 1000  
4
3
80  
60  
2
40  
1
20  
R
= 600Ω  
L
0
0
–1  
–2  
–3  
–4  
–5  
–20  
–40  
–60  
–80  
–100  
R
R
= 2kΩ  
= 10kΩ  
L
L
–10  
–8  
–6  
–4  
–2  
0
2
4
6
8
10  
–5  
–4  
–3  
–2  
–1  
0
1
2
3
4
5
OUTPUT VOLTAGE (V)  
OUTPUT VOLTAGE (V)  
Figure 35. Gain Nonlinearity (G = 1), RL = 10 kΩ, 2 kΩ  
Figure 38. Gain Nonlinearity (G = 1000), RL = 600 Ω, VOUT  
=
5 V  
5
4
1k  
GAIN = 1  
3
2
100  
1
GAIN = 1  
R
= 600Ω  
L
0
–1  
–2  
–3  
–4  
–5  
GAIN = 10  
10  
GAIN = 100  
GAIN = 1000  
1
–10  
–8  
–6  
–4  
–2  
0
2
4
6
8
10  
1
10  
100  
1k  
10k  
100k  
OUTPUT VOLTAGE (V)  
FREQUENCY (Hz)  
Figure 36. Gain Nonlinearity (G = 1), RL = 600 Ω  
Figure 39. RTI Voltage Noise Spectral Density vs. Frequency  
Rev. 0 | Page 13 of 20  
AD8421-EP  
Enhanced Product  
30  
25  
20  
15  
10  
5
G = 1000, 40nV/DIV  
G = 1, 1µV/DIV  
1s/DIV  
0
10  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
Figure 40. 0.1 Hz to 10 Hz RTI Voltage Noise (G = 1, G = 1000)  
Figure 43. Large Signal Frequency Response  
10k  
1k  
100  
10  
5V/DIV  
720ns TO 0.01%  
1.12µs TO 0.001%  
0.002%/DIV  
1µs/DIV  
0.1  
1
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
Figure 41. Current Noise Spectral Density vs. Frequency  
Figure 44. Large Signal Pulse Response and Settling Time (G = 1),  
10 V Step, VS = 15 V, RL = 2 kΩ, CL = 100 pF  
5V/DIV  
420ns TO 0.01%  
604ns TO 0.001%  
0.002%/DIV  
5pA/DIV  
1s/DIV  
1µs/DIV  
Figure 42. 0.1 Hz to 10 Hz Current Noise  
Figure 45. Large Signal Pulse Response and Settling Time (G = 10),  
10 V Step, VS = 15 V, RL = 2 kΩ, CL = 100 pF  
Rev. 0 | Page 14 of 20  
Enhanced Product  
AD8421-EP  
GAIN = 1  
5V/DIV  
704ns TO 0.01%  
764ns TO 0.001%  
0.002%/DIV  
50mV/DIV  
1µs/DIV  
1µs/DIV  
Figure 46. Large Signal Pulse Response and Settling Time (G = 100),  
10 V Step, VS = 15 V, RL = 2 kΩ, CL = 100 pF  
Figure 49. Small Signal Pulse Response (G = 1), RL = 600 Ω, CL = 100 pF  
GAIN = 10  
5V/DIV  
3.8µs TO 0.01%  
5.76µs TO 0.001%  
0.002%/DIV  
50mV/DIV  
1µs/DIV  
4µs/DIV  
Figure 47. Large Signal Pulse Response and Settling Time (G = 1000),  
10 V Step, VS = 15 V, RL = 2 kΩ, CL = 100 pF  
Figure 50. Small Signal Pulse Response (G = 10), RL = 600 Ω, CL = 100 pF  
2500  
2000  
1500  
GAIN = 100  
SETTLED TO 0.001%  
1000  
500  
0
SETTLED TO 0.01%  
20mV/DIV  
1µs/DIV  
GAIN = 1  
18 20  
2
4
6
8
10  
12  
14  
16  
STEP SIZE (V)  
Figure 51. Small Signal Pulse Response (G = 100), RL = 600 Ω, CL = 100 pF  
Figure 48. Settling Time vs. Step Size (G = 1), RL = 2 kΩ, CL = 100 pF  
Rev. 0 | Page 15 of 20  
AD8421-EP  
Enhanced Product  
–40  
–50  
NO LOAD  
V
= 10V p-p  
GAIN = 1000  
OUT  
R
R
= 2kΩ  
= 600Ω  
L
L
–60  
–70  
–80  
–90  
–100  
–110  
–120  
–130  
–140  
20mV/DIV  
2µs/DIV  
–150  
10  
100  
1k  
10k  
FREQUENCY (Hz)  
Figure 52. Small Signal Pulse Response (G = 1000), RL = 600 Ω, CL = 100 pF  
Figure 55. Third Harmonic Distortion vs. Frequency (G = 1)  
–40  
100pF  
G = 1  
NO LOAD  
V
= 10V p-p  
OUT  
50pF  
20pF  
NO LOAD  
R
R
= 2kΩ  
= 600Ω  
L
L
–50  
–60  
–70  
–80  
–90  
–100  
–110  
–120  
50mV/DIV  
1µs/DIV  
10  
100  
1k  
10k  
FREQUENCY (Hz)  
Figure 53. Small Signal Response with Various Capacitive Loads (G = 1),  
RL = Infinity  
Figure 56. Second Harmonic Distortion vs. Frequency (G = 1000)  
–40  
–40  
R
600Ω  
V
= 10V p-p  
L
OUT  
V
= 10V p-p  
R
600Ω  
OUT  
L
–50  
–60  
–50  
–60  
–70  
–80  
–70  
–90  
–80  
–100  
–110  
–120  
–130  
–140  
–150  
–90  
–100  
–110  
–120  
10  
100  
1k  
10k  
10  
100  
1k  
10k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 54. Second Harmonic Distortion vs. Frequency (G = 1)  
Figure 57. Third Harmonic Distortion vs. Frequency (G = 1000)  
Rev. 0 | Page 16 of 20  
Enhanced Product  
AD8421-EP  
–20  
G = 1  
G = 10  
V
= 10V p-p  
OUT  
–30  
R = 2k  
L
G = 100  
–40  
G = 1000  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
–120  
–130  
–140  
10  
100  
1k  
10k  
FREQUENCY (Hz)  
Figure 58. THD vs. Frequency  
Rev. 0 | Page 17 of 20  
AD8421-EP  
Enhanced Product  
OUTLINE DIMENSIONS  
3.20  
3.00  
2.80  
8
1
5
4
5.15  
4.90  
4.65  
3.20  
3.00  
2.80  
PIN 1  
IDENTIFIER  
0.65 BSC  
0.95  
0.85  
0.75  
15° MAX  
1.10 MAX  
0.80  
0.55  
0.40  
0.15  
0.05  
0.23  
0.09  
6°  
0°  
0.40  
0.25  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-187-AA  
Figure 59. 8-Lead Mini Small Outline Package [MSOP]  
(RM-8)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
Temperature Range  
Package Description  
Package Option  
Branding  
Y4T  
Y4T  
AD8421TRMZ-EP  
AD8421TRMZ-EP-R7  
−55°C to +125°C  
−55°C to +125°C  
8-Lead Mini Small Outline Package [MSOP]  
8-Lead Mini Small Outline Package [MSOP]  
RM-8  
RM-8  
1 Z = RoHS Compliant Part.  
Rev. 0 | Page 18 of 20  
 
 
Enhanced Product  
NOTES  
AD8421-EP  
Rev. 0 | Page 19 of 20  
AD8421-EP  
NOTES  
Enhanced Product  
©2013 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D11139-0-5/12(0)  
Rev. 0 | Page 20 of 20  

相关型号:

AD8422

High Performance, Low Power, Rail-to-Rail Precision Instrumentation Amplifier
ADI

AD8422ARMZ

High Performance, Low Power, Rail-to-Rail Precision Instrumentation Amplifier
ADI

AD8422ARMZ-R7

High Performance, Low Power, Rail-to-Rail Precision Instrumentation Amplifier
ADI

AD8422ARMZ-RL

High Performance, Low Power, Rail-to-Rail Precision Instrumentation Amplifier
ADI

AD8422ARZ

High Performance, Low Power, Rail-to-Rail Precision Instrumentation Amplifier
ADI

AD8422ARZ-R7

High Performance, Low Power, Rail-to-Rail Precision Instrumentation Amplifier
ADI

AD8422ARZ-RL

High Performance, Low Power, Rail-to-Rail Precision Instrumentation Amplifier
ADI

AD8422BRMZ

High Performance, Low Power, Rail-to-Rail Precision Instrumentation Amplifier
ADI

AD8422BRMZ-R7

High Performance, Low Power, Rail-to-Rail Precision Instrumentation Amplifier
ADI

AD8422BRMZ-RL

High Performance, Low Power, Rail-to-Rail Precision Instrumentation Amplifier
ADI

AD8422BRZ

High Performance, Low Power, Rail-to-Rail Precision Instrumentation Amplifier
ADI

AD8422BRZ-R7

High Performance, Low Power, Rail-to-Rail Precision Instrumentation Amplifier
ADI