AD8401 [ADI]

8-Bit, 4-Channel Data Acquisition System; 8位, 4通道数据采集系统
AD8401
型号: AD8401
厂家: ADI    ADI
描述:

8-Bit, 4-Channel Data Acquisition System
8位, 4通道数据采集系统

文件: 总12页 (文件大小:227K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
8-Bit, 4-Channel Data  
Acquisition System  
a
AD8401  
FUNCTIO NAL BLO CK D IAGRAM  
FEATURES  
2 s ADC w ith T/ H  
4-Channel MUX  
A0 A1  
V
(+5.0V)  
DD  
AD899 Com patible  
+5 Volt Operation  
On-Chip Reference  
4 s Voltage Output DAC  
Fast Bus Access Tim e—75 ns  
V
A
IN  
M
U
X
V
V
B
C
D
8-BIT  
DAC  
IN  
8-BIT ADC  
V
OUT  
T/H  
IN  
IN  
V
1.25 REF  
APPLICATIONS  
Servo Controls  
Digitally Controlled Calibration  
Process Control Equipm ent  
RS  
DAC REG  
ADC REG  
INT  
AD8401  
CONTROL LOGIC  
BUSY  
ST  
DGND  
AG  
AG  
ADC  
DATA I/O  
(8 BITS)  
RD CLK CS WR  
DAC  
GENERAL D ESCRIP TIO N  
T he input multiplexer addressing is designed for direct interface  
to the AD899 hard-disk drive, read-channel device with no extra  
hardware or special software. Analog input range levels are like-  
wise compatible with the AD899.  
T he AD8401 is a complete data acquisition and control system  
containing ADC, DAC, 4-channel MUX, and internal voltage  
reference. Built using CBCMOS, this monolithic circuit offers  
the user a complete system with very high package density and  
reliability.  
T he AD8401 is designed to operate from a single +5 volt sup-  
ply, which will give an ADC input range of 0 V to 3.0 V, and  
DAC output range of 0 V to 2.5 V.  
T he converter is a successive approximation ADC with T /H,  
and is capable of operating with conversion times as short as  
2 µs. Analog input bandwidth is 200 kHz, and DAC output volt-  
age settling time is less than 4 µs, making the AD8401 capable  
of controlling servo loops with speed and precision.  
T he AD8401 is offered in the SOIC-28 surface mount package,  
and is guaranteed to operate over the extended industrial tem-  
perature range of –40°C to +85°C.  
T he 8-bit data interface provides both read and write operation  
for parallel bus interfaces to microcontrollers and DSP proces-  
sors. An external 5 MHz clock sets the 2 µs conversion rate.  
Slower clocks reduce the conversion time and the internal power  
dissipation. T he standard control lines: Reset, Busy, Interrupt,  
Read and Write complete the handshaking signals for micro-  
processor communication. A start trigger ST input allows pre-  
cise sampling intervals in synchronous sampling applications.  
REV. 0  
Inform ation furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assum ed by Analog Devices for its  
use, nor for any infringem ents of patents or other rights of third parties  
which m ay result from its use. No license is granted by im plication or  
otherwise under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norw ood, MA 02062-9106, U.S.A.  
Tel: 617/ 329-4700  
Fax: 617/ 326-8703  
AD8401–SPECIFICATIONS  
(@ V = +5.0 V ؎ 5%, AGDAC = AGADC = 0.0 V; fCLK = 5 MHz; –40؇C T +85؇C,  
DD  
A
ADC ELECTRICAL CHARACTERISTICS  
unless otherwise noted)  
P aram eter  
Sym bol  
Conditions  
Min  
Typ  
Max  
Units  
ST AT IC PERFORMANCE  
Resolution  
N
8
Bits  
T otal Unadjusted Error  
Relative Accuracy  
Differential Nonlinearity  
Offset Error  
T UE  
INL  
DNL  
VOSE  
±3  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
–1  
–1  
–4  
–6  
–4  
–6  
+1  
+1  
+4  
+6  
+4  
+6  
1
TA = +25°C  
T
A = Full T emp Range  
TA = +25°C  
A = Full T emp Range  
Full-Scale Error  
AE  
T
Full-Scale/VDD  
TA = +25°C  
DYNAMIC PERFORMANCE  
Signal-to-Noise Ratio  
SNR  
T HD  
IMD  
44  
48  
60  
0.1  
200  
dB  
dB  
dB  
dB  
ns  
T otal Harmonic Distortion  
Intermodulation Distortion  
Frequency Response  
0 to 200 kHz  
T rack/Hold Acquisition T ime  
tAQ  
ANALOG INPUT S (Applies to Inputs A, B. C, D)  
Unipolar Input Range  
Input Current  
Input Capacitance  
VIN  
IIN  
CIN  
0
3
V
µA  
pF  
–500  
+500  
10  
LOGIC INPUT S  
Clock Input Current Low  
Clock Input Current High  
Input Leakage Current  
ICKL  
ICKH  
IL  
VIN = 0 V  
VIN = VDD  
CS, RD, RS, ST  
1.6  
4.0  
mA  
µA  
µA  
40  
10  
LOGIC OUT PUT S (Applies to Outputs DB0–DB7, INT, BUSY)  
Logic Output Low Voltage  
Logic Output High Voltage  
Output Leakage Current  
Output Capacitance  
VOL  
VOH  
IOZ  
IOL = 1.6 mA  
IOH = 200 µA  
CS = 1 (Except INT & BUSY)  
CS = 1 (Except INT & BUSY)  
0.4  
V
V
µA  
pF  
10  
10  
COZ  
CONVERSION T IME  
tC  
External Clock  
2
µs  
Specifications subject to change without notice.  
Table I. Multiplexer Address Input D ecode  
A1  
A0  
Input Selected  
VIN  
0
0
1
1
0
1
0
1
A
V
V
INB  
INC  
VIN  
D
–2–  
REV. 0  
AD8401  
DAC = AGADC = 0.0 V; R = 2 k, C = 100 pF  
to AG ; 40؇C T +85؇C, unless otherwise noted)  
DAC A  
DAC ELECTRICAL CHARACTERISTICS (@ V = +5.0 V ؎ 5%, AG  
DD  
L
L
P aram eter  
Sym bol  
Conditions  
Min  
Typ  
Max  
Units  
ST AT IC PERFORMANCE  
Resolution  
N
8
Bits  
T otal Unadjusted Error  
Relative Accuracy  
Differential Nonlinearity  
Offset Error  
T UE  
INL  
DNL  
VOSE  
±2  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
–1  
–1  
–2  
–2.5  
–3  
–4  
–0.5  
–0.2  
+1  
+1  
+2  
+2.5  
+3  
+4  
+0.5  
+0.2  
TA = +25°C  
TA = Full T emp Range  
TA = +25°C  
TA = Full T emp Range  
TA = +25°C  
Full-Scale Error  
AE  
Full-Scale/VDD  
Load Regulation at Full-Scale  
DYNAMIC PERFORMANCE  
Signal-to-Noise Ratio  
SNR  
T HD  
44  
48  
dB  
dB  
T otal Harmonic Distortion  
ANALOG OUT PUT  
Output Voltage Range  
OVR  
0
+2.5  
0.8  
V
LOGIC INPUT S (Applies to DB0–DB7, CS, WR, RD, RS)  
Logic Input Low Voltage  
Logic Input High Voltage  
Input Leakage Current  
Input Capacitance  
VIL  
VIH  
IL  
V
V
µA  
pF  
2.4  
–10  
10  
10  
CIL  
AC CHARACT ERIST ICS  
Voltage Output Settling T ime  
Positive Full-Scale Change  
Negative Full-Scale Change  
DAC Glitch Impulse  
tS  
tPOS  
tNEG  
T o ±1/2 LSB of Final Value  
10% to 90%  
90% to 10%  
2
1
2
15  
1
4
2
4
µs  
µs  
µs  
nV s  
nV s  
dB  
Digital Feedthrough  
VIN to VOUT Isolation  
f = 50 kHz  
No Load  
60  
POWER REQUIREMENT S  
Positive Supply Current  
IDD  
13  
mA  
Specifications subject to change without notice.  
REV. 0  
–3–  
AD8401  
(@ V = +5.0 V ؎ 5%, AG = AG = 0.0 V; fCLK = 5 MHz; –40؇C T +85؇C,  
DD  
DAC  
ADC  
A
TIMING ELECTRICAL SPECIFICATIONS  
unless otherwise noted)  
P aram eters1, 2, 3  
Sym bol  
Condition  
Min  
Typ  
Max  
Units  
DAC T IMING (See Figure 8 T iming Diagram)  
WR Pulse Width  
t1  
t2  
t3  
t4  
t5  
50  
0
0
60  
0
ns  
ns  
ns  
ns  
ns  
CS to WR Setup T ime  
CS to WR Hold T ime  
Data Setup T ime  
Data Hold T ime  
ADC T IMING (See Figures 6 and 7 T iming Diagrams)  
ST Pulse Width  
t6  
t7  
t8  
t9  
40  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ST to BUSY Delay  
BUSY to INT Delay  
BUSY to CS Delay  
110  
30  
0
0
CS to RD Setup T ime  
t10  
t11  
t12  
t13  
t13  
t14  
t15  
t16  
t17  
t17  
RD Pulse Width4  
75  
0
10  
10  
10  
CS to RD Hold T ime  
Data Access after RD  
Data Access after RD  
Bus Relinquish after RD  
RD to INT Delay  
RD to BUSY Delay  
Data Valid after BUSY  
Data Valid after BUSY  
CL = 20 pF  
CL = 100 pF  
75  
135  
70  
85  
110  
90  
CL = 20 pF  
CL = 100 pF  
135  
NOT ES  
1All input control signals are specified with tR = tF = 5 ns (10% to 90% of +5 V) and timed from a voltage level of 1.6 V.  
2t13 and t17 are measured with the load circuits of Figure 1 and defined as the time required for an output to cross either 0.8 V or 2.4 V.  
3t14 is defined as the time required for the data line to change 0.5 V when loaded with the circuit of Figure 2.  
4t15 is determined by t13  
.
+5V  
+5V  
3kΩ  
3kΩ  
DBN  
DBN  
3kΩ  
DBN  
DBN  
CL  
CL  
10pF  
10pF  
3kΩ  
DGND  
DGND  
DGND  
DGND  
b. VOL to High Z  
b. High Z to VOL  
a. VOH to High Z  
a. High Z to VOH  
Figure 2. Load Circuits for Bus Relinquish Tim e Test  
Figure 1. Load Circuits for Data Access Tim e Test  
ABSO LUTE MAXIMUM RATINGS*  
Supply Voltage (VDD  
) . . . . . . . . . . . . . . . . . . . . . . . . . . . +8 V  
Input Voltages . . . . . . . . . . . . . . . . . . . –0.3 V to VDD + 0.3 V  
Output Short-Circuit Duration . . . . . . . . . . . . . . . . Indefinite  
Package Power Dissipation . . . . . . . . . . . . . . (T J max–TA)/θJA  
T hermal Resistance θJA  
28-Lead SOIC (R) . . . . . . . . . . . . . . . . . . . . . . . . . 53°C/W  
Storage T emperature Range . . . . . . . . . . . . –65°C to +150°C  
Operating T emperature Range . . . . . . . . . . . . –40°C to +85°C  
Junction T emperature Range (TJ max) . . . . –65°C to +150°C  
Lead T emperature Range (Soldering, 60 sec) . . . . . . +300°C  
O RD ERING GUID E  
Tem perature  
Range  
P ackage  
D escription  
P ackage  
O ption  
Model*  
AD8401AR  
–40°C to +85°C 28-Lead SOIC SOL-28  
AD8401Chips +25°C  
Die  
*T he AD8401 contains 1257 transistors.  
*Stresses above those listed under “Absolute Maximum Ratings” may cause  
permanent damage to the device. T his is a stress rating only and functional  
operation of the device at these or any other conditions above those indicated in the  
operational sections of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect device reliability.  
CAUTIO N  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection.  
Although the AD8401 features proprietary ESD protection circuitry, permanent damage may  
occur on devices subjected to high energy electrostatic discharges. T herefore, proper ESD  
precautions are recommended to avoid performance degradation or loss of functionality.  
WARNING!  
ESD SENSITIVE DEVICE  
REV. 0  
–4–  
AD8401  
P IN CO NFIGURATIO N  
D ICE CH ARACTERISTICS  
1
A0  
1
2
28  
27  
26  
25  
24  
23  
22  
21  
20  
V
DD  
27  
26  
25  
28  
3
2
V
IN  
A
AG  
V
DAC  
3
4
5
6
7
8
9
V
IN  
V
IN  
V
IN  
B
C
D
OUT  
NC  
24  
23  
A1  
RS  
AG  
ADC  
DB7  
CLK  
INT  
AD8401AR  
Top View  
(Not to Scale)  
22  
21  
5
DB6  
DB5  
BUSY  
ST  
6
10  
11  
12  
13  
14  
19  
18  
17  
16  
DB4  
DB3  
7
8
9
RD  
20  
DB2  
CS  
19  
18  
DGND  
DB1  
WR  
DB0  
15  
10  
11 12 13 14 15 16 17  
Die Size 91 X 121 mil = 11,011 sq mil  
NC = NO CONNECT  
P IN D ESCRIP TIO NS  
P in#  
Nam e  
D escription  
Positive Supply. Nominal value +5 volts. T his pad requires 2 bonds for die assembly.  
1
VDD  
T he substrate is common with VDD  
.
2
3
4
5
6
AGDAC  
VOUT  
Analog Ground for the DAC. T here is a separate analog ground for the ADC.  
Voltage Output from the DAC.  
NC  
No Connect.  
A1  
Address Input that controls multiplexer. See T able I for address decode.  
RESET (RS)  
Active Low Digital Input that clears the DAC register to zero, setting the DAC to mini-  
mum scale. It also asynchronously clears the INT line of the ADC.  
7–12, 14, 15  
DB7 to DB0  
Digital I/O Lines. DB7 (7) is the Most Significant Bit (MSB), for both the ADC and  
the DAC, and DB0 (15) is the Least Significant Bit (LSB).  
13  
16  
17  
18  
DGND  
WR  
Digital Ground.  
Rising Edge T riggered Write Input. Used to load data into the DAC register.  
Chip Select. Active Low Input  
CS  
RD  
Active Low Read Input. When this input is active, ADC data can be read from the  
part. RD going low starts the ADC conversion.  
19  
ST  
Falling Edge T riggered Start Input. Used for applications requiring precise sample tim-  
ing. T he falling edge of ST starts the conversion and sets the BUSY low. T he ST is not  
gated by CS.  
20  
21  
BUSY  
INT  
ADC Active Low, Status Output. When the ADC is performing a conversion, the  
BUSY output is low.  
Active Low Output. T he Interrupt output notifies the system that the ADC has com-  
pleted its conversion. INT goes high on the rising edge of CS or RD. It will also be  
forced high when RESET is asserted.  
22  
CLK  
External Clock Input Pin. Accepts a T T L or 5 V CMOS input logic levels.  
Analog ADC Ground  
23  
AGADC  
VINA, B, C, D  
A0  
27–24  
28  
Four Analog Inputs  
Address input that controls multiplexer. See T able I for address decode.  
REV. 0  
–5–  
AD8401  
O P ERATIO N  
Figure 4 shows the wave forms for a conversion cycle. T he track  
and hold begins holding the input voltage VIN approximately  
50 ns after the falling edge of the Start command. T he MSB de-  
cision is made approximately 50 ns after the second falling edge  
of the CLK. If tX is greater than 50 ns, then the falling edge of  
the CLK will be seen as the first falling clock edge. If tX is less  
than 50 ns, the first MSB conversion will not occur until one  
clock cycle later. T he following bits will each be converted in a  
similar manner 50 ns after each CLK edge until all eight bits  
have been converted. After the end of conversion the contents of  
the ADC SAR register are transferred to the output data latch,  
the track and hold is returned to the track mode, INT goes low  
and the SAR is reset.  
T he AD8401 is a complete data acquisition and control system.  
It contains the DAC, a four channel input multiplexer, a track/  
hold, an ADC, as well as an internal bandgap reference. It inter-  
faces to the microcontroller via an 8-bit digital I/O port.  
D /A CO NVERTER SECTIO N  
T he DAC is an 8-bit voltage mode DAC with an output that  
swings from AGDAC to the 1.25 volt bandgap voltage. It uses an  
R-2R ladder fed by PNP current sources which allow the output  
to swing to ground so that the DAC operates in a unipolar mode.  
AMP LIFIER SECTIO N  
T he DACs output is buffered by an internal high speed op  
amp. T he op amps output range is set at 0 V to 2.5 V. T he op  
amp has a 500 ns typical settling time to 0.2% for positive  
slewing signals. T here are differences in settling time for nega-  
tive slewing signals. Signals going to zero volts will settle slightly  
slower to ground than is seen in the positive direction.  
CS , RD  
OR ST  
BUSY  
100ns  
TYP  
50ns TYP  
V
IN  
50ns TYP  
V
DD  
CLK  
t
x
LSB DECISION  
DB0  
MSB DECISION  
DB7  
20Ω  
V
OUT  
20Ω  
Figure 4. Operating Waveform s Using the External Clock  
n-CH  
ANALO G INP UT  
T he analog inputs of the AD8401 are fed into resistor voltage  
divider networks with a typical value of 8.5 k. T he amplifiers  
driving these inputs must have an output resistance low enough  
to drive these nodes without losing accuracy. T aps from the  
voltage dividers are connected to the track and hold amplifier by  
the multiplexer switches.  
AG  
DAC  
Figure 3. Equivalent Am plifier Output Stage  
Current sinking capability is also limited near zero volts in single  
supply operation. Figure 3 provides an equivalent amplifier out-  
put stage schematic.  
INTERNAL REFERENCE  
5kΩ  
An on-chip bandgap is provided as a voltage reference to both  
the DAC and the ADC. T his reference is internal to the  
AD8401 and is not accessible to the user. It is laser trimmed for  
both absolute accuracy and temperature coefficients. T he refer-  
ence is internally buffered by a separate control amplifier for both  
the DAC and ADC to improve isolation between the converters.  
V
A
IN  
3.57kΩ  
MUX  
T/H  
V
D
IN  
5kΩ  
3.57kΩ  
AGADC  
D IGITAL I/O  
T he 8-bit parallel data I/O port on the AD8401 provides access  
to both the DAC and the ADC. T his port is T T L/CMOS com-  
patible with three-state outputs that are ESD protected.  
Figure 5. Equivalent Analog Input Circuit  
TRACK-AND -H O LD AMP LIFIER  
T he data format is binary. T his data coding applies to both the  
DAC and the ADC. See the applications information section.  
Following the resistive divider at the input of the AD8401 is a  
track-and-hold amplifier that captures input signals accurately  
up to the 200 kHz Nyquist frequency of the ADC. T o attain this  
performance the T /H amplifier must have a much greater band-  
width than the signal of interest. Because of this the user must  
be careful to band limit the input signal to avoid aliasing high  
frequency components and noise into the passband.  
AD C SECTIO N  
A fast successive approximation ADC is used to attain a conver-  
sion time of 2 microseconds. Start of conversion is initiated by  
CS and RD. Following a Start command the BUSY signal will  
become active and another Start command should not be given  
until the conversion is complete.  
T he track-and-hold amplifier is internally controlled by the Start  
command and is not directly available to the user. After the  
Start command signal the track-and-hold is placed into the hold  
mode; it returns to the track mode after the conversion is  
complete.  
T he RESET (RS) input does not affect A/D conversion, but the  
INT (Interrupt or conversion complete) which normally goes  
active low at the end of a conversion will be forced high by  
RESET asynchronously.  
REV. 0  
–6–  
AD8401  
CLO CK  
t9  
T he AD8401 uses an external clock that is T T L or 5 V CMOS  
compatible. T he external clock speed is 5 MHz and the duty  
cycle may vary from 30% to 70%. T he external clock can be  
continuously operated between conversions.  
CS  
RD  
t10  
t12  
t11  
t16  
D IGITAL INTERFACE: AD C TIMING AND CO NTRO L  
T wo basic ADC operating modes are available with the  
AD8401. T he first mode uses the Start (ST) pin to trigger a  
synchronized A/D conversion. As soon as the ST pin is asserted,  
the T /H switches from tracking to the hold mode capturing the  
present analog input-voltage sample. With the T /H holding the  
analog sample the successive-approximation analog-to-digital  
conversion is completed on that sample value. At the end of  
conversion the T /H returns to the tracking mode. T his mode of  
conversion is ideal for digital signal processing applications  
where precise interval sampling is necessary to minimize errors  
due to sampling uncertainty or jitter. A precise clock source can  
be used to drive the ST input.  
BUSY  
t15  
t8  
INT  
t13  
t17  
t14  
DATA  
OLD DATA  
NEW DATA  
HIGH Z  
Figure 7. Mode 2, ADC Interface Tim ing  
Mode 2 Inter face  
T his interface mode can be used with microprocessors that can  
be put into a WAIT state for at least 2 microseconds. T he ST  
pin must be tied to logic high for proper operation. T he micro-  
processor begins a conversion by executing a READ instruction  
that asserts the CS and RD pins at the AD8401s decoded ad-  
dress. T he AD8401 BUSY output then goes low, forcing the  
microprocessor’s READY (or WAIT ) line into a WAIT state.  
T he analog input signal is captured by the T /H on the falling  
edge of RD. When the conversion is complete (8 clocks later),  
the BUSY line returns high, and then the µP completes its  
READ of the new data now on the digital output port of the  
AD8401. Note that while conversion is in progress the ADC  
places the results from the last conversion (Old Data) on the  
data bus. T he Figure 7 timing diagram details the applicable  
timing specification requirements.  
T he second mode of conversion is started by the RD and CS in-  
puts going low, after which the BUSY line puts the micropro-  
cessor into a WAIT state until end of conversion. Mode 2 is  
asserted by connecting the ST pin to logic high. T he major ad-  
vantage of this interface is that a single Read Instruction will  
start and complete a new analog-to-digital conversion without  
the need for carefully tailored software delays that often are not  
portable when software routines are taken to a different proces-  
sor running at a different clock speed.  
t6  
ST  
t7  
D IGITAL INTERFACE: D AC TIMING AND CO NTRO L  
T able II shows the truth table for DAC operation. T he internal  
8-bit DAC register contents are loaded from the data bus when  
both WR and CS are asserted. T he DAC register determines the  
D/A converter analog-output voltage. T he WR input is a posi-  
tive edge triggered input that loads the bus data into the DAC  
register subject to the data setup and data hold timing require-  
ments. When CS and WR are low, the DAC register contents  
will not change with changing data bus values. Figure 8 provides  
the detail timing diagram for write cycle operation.  
tCONVERT  
BUSY  
t8  
INT  
t9  
t15  
CS  
t10  
t12  
t11  
RD  
t14  
t13  
Table II. D AC Register Logic  
DATA  
HIGH Z  
DATA VALID  
CS  
WR  
RS  
D AC Function  
Figure 6. Mode 1, ADC Interface Tim ing  
Mode 1 Inter face  
H
L
L
ٙ
X
H
L
ٙ
L
H
H
H
H
L
No Effect  
No Effect  
DAC Register Updated  
DAC Register Updated  
DAC Register Loaded with all Zeros  
As shown in Figure 6, the falling edge of the ST pulse initiates a  
conversion and puts the T /H amplifier into the hold mode. T he  
BUSY signal goes low during the whole A/D conversion time  
and returns high signaling end of conversion. T he INT line can  
be used to interrupt the microprocessor. When the microproces-  
sor performs a READ to access the AD8401 data, the rising  
edges of CS or RD will reset the INT output to high after the t15  
timing specification. INT can also be used to externally trigger a  
pulse that activates the CS and RD and places the new data into  
a buffer or First In First Out FIFO memory. T he microproces-  
sor can then load a series of readings from this buffer memory at  
a convenient time. Care must be taken not to have the ST input  
high when RD is brought low; otherwise, the AD8401 will not  
operate properly. Also triggering the ST line a second time be-  
fore conversion is complete will cause erroneous readings.  
X
CS  
t2  
t3  
t1  
WR  
t4  
VALID DATA  
t5  
DATA  
Figure 8. Write Cycle Tim ing  
REV. 0  
–7–  
AD8401  
An active low pulse, at any time, on the RESET pin asynchro-  
nously forces all DAC register bits to zero. T he DAC output  
voltage becomes zero volts and stays at that value until a new  
data word is loaded into the DAC register with a new WR com-  
mand. T he equivalent input logic for the DAC register loading  
is shown in Figure 9.  
TO DAC LADDER  
CS  
D0 D7  
WR  
DAC REGISTER  
RESET  
INPUT DATA  
Figure 9. Equivalent DAC Register Control Logic  
TYP ICAL P ERFO RMANCE CH ARACTERISTICS  
1.0  
120  
SS = 300 UNITS  
T
= +25°C  
A
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
= +5V  
DD  
T
= +25°C  
A
0.5  
0
–0.5  
–0.1  
0
64  
128  
192  
256  
–4.5 –3.5 –2.5 –1.5 –0.5  
0.5  
1.5  
2.5  
3.5  
4.5  
FULL SCALE ERROR – LSB  
DIGITAL INPUT CODE – DECIMAL  
Figure 12. ADC Full-Scale Error Histogram  
Figure 10. ADC Linearity Error vs. Digital Code  
1.0  
2.5  
2.0  
V
= +5V  
DD  
V
= +5V  
DD  
T
= +25°C  
A
1.5  
1.0  
0.5  
0.5  
0
0
–0.5  
–1.0  
–1.5  
–0.5  
–2.0  
–2.5  
–0.1  
–3.0  
0
64  
128  
192  
256  
–50  
–25  
0
25  
50  
75  
100  
DIGITAL INPUT CODE – DECIMAL  
TEMPERATURE – °C  
Figure 11. DAC Linearity Error vs. Digital Code  
Figure 13. ADC Full-Scale Error vs. Tem perature  
REV. 0  
–8–  
AD8401  
240  
220  
200  
180  
160  
140  
120  
100  
80  
TA = +25°C  
V
= +5V  
DD  
2.5  
2.0  
1.5  
1.0  
SS = 300 UNITS  
T
= +25°C  
A
R
TO GND  
L
60  
R
TO V  
DD  
L
40  
0.5  
0
20  
0
–4  
–3  
–2  
–1  
0
1
2
3
4
10  
100  
1k  
LOAD RESISTANCE – Ω  
10k  
100k  
FULL SCALE ERROR – LSB  
Figure 14. DAC Full-Scale Error Histogram  
Figure 17. DAC Output Swing vs. Load Resistance  
3.0  
2.5  
V
= +5V  
DD  
3
2.0  
1.5  
5V  
2
100  
90  
1.0  
1
VOUT  
x +3σ  
0
0.5  
0
5V  
5V  
0
WR  
x
–0.5  
–1.0  
0
10  
5V  
0%  
DATA  
x – 3σ  
–1.5  
–2.0  
0
1V  
5V  
1µS  
TIME – 1µs/DIV  
–2.5  
–50  
–25  
0
25  
50  
75  
100  
Figure 18. DAC Output Slew Rate Positive Transition  
TEMPERATURE – °C  
Figure 15. DAC Full-Scale Error vs. Tem perature  
4
5V  
VDD = +5V  
SS = 135 UNITS  
3
3
2
100  
V
90  
OUT  
2
1
0
1
x +3σ  
0
5V  
0
5V  
0
WR  
x
–1  
10  
0%  
DATA  
x – 3σ  
0
–2  
1V  
5V  
1µS  
–3  
–4  
–5  
TIME – 1µs/DIV  
Figure 19. DAC Output Slew Rate Negative Transition  
0
100  
200  
300  
400  
500  
BURN-IN TIME @ 150°C – HOURS  
Figure 16. DAC Full-Scale Out Change vs Tim e  
Accelerated by Burn-In  
REV. 0  
–9–  
AD8401  
10.0  
9.5  
9.0  
8.5  
8.0  
7.5  
7.0  
6.5  
6.0  
500mV  
V
= +2.4V  
IN  
100  
90  
VDD = +5V  
TA = +25°C  
CL = 1000pF  
V
= +5.25V  
DD  
10  
0%  
20µS  
V
= +4.75V  
DD  
TIME – 20µs /DIV  
Figure 20. DAC Output Swing with Capacitive Load  
–50  
–25  
0
25  
50  
75  
100  
TEMPERATURE – °C  
Figure 21. Supply Current vs. Tem perature  
T
= +25°C  
A
60  
40  
20  
0
OUTPUT = FULL SCALE  
V
= 5V ± 200mV  
DD  
1k  
10k  
100k  
1M  
FREQUENCY – Hz  
Figure 22. Power Supply Rejection Ratio vs. Frequency  
REV. 0  
–10–  
AD8401  
AP P LICATIO NS INFO RMATIO N  
T he software programming needs to format data as defined by  
the transfer equations and Code T ables that follow.  
T he nominal output voltages listed in the Code T able are sub-  
ject to the static performance specifications. T he INL, Zero-  
Scale and Full-Scale errors describe the total specified variation  
that will be encountered from part to part. One LSB of error for  
the 2.5 V FS range is 9.766 millivolts (= 2.50/256).  
D AC Tr ansfer Equation  
Although separate AGNDs exist for both the DAC and ADC to  
minimize crosstalk, writing data to the DAC while the ADC is  
performing a conversion may result in an incorrect conversion  
from the ADC due to signal interaction between the DAC and  
ADC. T herefore, to ensure correct operation of the ADC, the  
DAC register should not be updated while the ADC is converting.  
D
256  
255  
256  
VOUT = 2.500 ×  
= 2.500 ×  
for a 2.50 V full scale  
where D is the decimal value 0 through 255 of the 8-bit data  
word.  
T he AD8401 is configured for an input range of +3.0 volts Full  
Scale. T he nominal transfer characteristic for this range is plot-  
ted in Figure 23. T he output coding is natural binary with one  
LSB equal to 11.72 millivolts. Note that the first code transition  
between 0 LSB and 1 LSB occurs at 5.8 mV, one half of the  
11.72 mV LSB step size. T he last code transition occurs at Full  
Scale minus 1.5 LSBs, which is a 2.982 V input.  
Table III. D AC Unipolar Code  
Nom inal  
Analog  
D AC Register Contents  
General Transfer  
Equation  
D ecim al  
Binary  
O utput VO UT  
T he AD8401 is easily interfaced to most microprocessors by us-  
ing either address bits or address decode to select the appropri-  
ate multiplexer channel. Figure 24 shows how easily the AD8401  
interfaces to the AD899. No additional hardware is required.  
255  
2.500 ×  
256  
255  
1111 1111  
2.490 V  
129  
2.500 ×  
256  
129  
128  
127  
1
1000 0001  
1000 0000  
0111 1111  
0000 0001  
0000 0000  
1.260 V  
1.250 V  
1.240 V  
0.010 V  
0.000 V  
OUTPUT  
CODE  
128  
2.500 ×  
256  
FULL SCALE  
TRANSITION  
127  
2.500 ×  
256  
11111111  
11111110  
11111101  
1
2.500 ×  
256  
0
2.500 ×  
256  
0
1LSB = FS  
256  
00000011  
00000010  
FS – 1LSB  
00000001  
00000000  
1
2
3
FS  
VIN INPUT VOLTAGE – LSBs  
Figure 23. ADC 0 V to +3 V Input Transfer Characteristic  
REV. 0  
–11–  
AD8401  
ADDRESS BUS  
VDD (+5.0V)  
A1  
A0  
A1 A0  
1.25V REF  
AD8401  
VIN  
VIN  
VIN  
VIN  
A
A
B
C
D
B
C
D
T/H  
8-BIT ADC  
VOUT  
8-BIT DAC  
AD899  
RESET  
INT  
DAC REG  
CONTROL LOGIC  
ADC REG  
BUSY  
DGND  
DATA I/O AGDAC  
(8 BITS)  
AGADC  
Figure 24. AD8401 Interface to the AD899 Read-Channel Hard Disk Drive Circuit  
O UTLINE D IMENSIO NS  
D imensions shown in inches and (mm).  
28-Lead Wide-Body SO  
(SO L-28)  
0.7125 (18.10)  
0.6969 (17.70)  
28  
15  
1
14  
PIN 1  
0.1043 (2.65)  
0.0926 (2.35)  
0.0291 (0.74)  
0.0098 (0.25)  
x 45°  
0.0500 (1.27)  
0.0157 (0.40)  
8°  
0°  
0.0500  
(1.27)  
BSC  
0.0192 (0.49)  
0.0138 (0.35)  
0.0118 (0.30)  
0.0040 (0.10)  
SEATING  
PLANE  
0.0125 (0.32)  
0.0091 (0.23)  
REV. 0  
–12–  

相关型号:

AD8401AR

8-Bit, 4-Channel Data Acquisition System
ADI

AD8401CHIPS

8-Bit, 4-Channel Data Acquisition System
ADI

AD8402

2-Channel, 256-Position Digital Potentiometer
ADI

AD8402AN1

1-/2-/4-Channel Digital Potentiometers
ADI

AD8402AN10

1-/2-/4-Channel Digital Potentiometers
ADI

AD8402AN10

DUAL 10K DIGITAL POTENTIOMETER, 3-WIRE SERIAL CONTROL INTERFACE, 256 POSITIONS, PDIP14, PLASTIC, MS-001, DIP-14
ROCHESTER

AD8402AN100

1-/2-/4-Channel Digital Potentiometers
ADI

AD8402AN50

1-/2-/4-Channel Digital Potentiometers
ADI

AD8402ANZ10

1-/2-/4-Channel Digital Potentiometers
ADI

AD8402AR1

1-/2-/4-Channel Digital Potentiometers
ADI

AD8402AR1-REEL

1-/2-/4-Channel Digital Potentiometers
ADI

AD8402AR10

1-/2-/4-Channel Digital Potentiometers
ADI