AD8402AN1 [ADI]

1-/2-/4-Channel Digital Potentiometers; 单/双/四通道数字电位器
AD8402AN1
型号: AD8402AN1
厂家: ADI    ADI
描述:

1-/2-/4-Channel Digital Potentiometers
单/双/四通道数字电位器

转换器 电位器 数字电位计 电阻器 光电二极管
文件: 总20页 (文件大小:497K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
1-/2-/4-Channel  
Digital Potentiometers  
a
AD8400/AD8402/AD8403  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
256 Position  
Replaces 1, 2 or 4 Potentiometers  
1 k, 10 k, 50 k, 100 k⍀  
Power Shut Down—Less than 5 A  
3-Wire SPI Compatible Serial Data Input  
10 MHz Update Data Loading Rate  
+2.7 V to +5.5 V Single-Supply Operation  
Midscale Preset  
RDAC1  
8
A1  
W1  
B1  
8-BIT  
LATCH  
AD8403  
V
DD  
CK  
SHDN  
RS  
AGND1  
DGND  
1
2
3
4
DAC  
SELECT  
RDAC2  
8
A2  
8-BIT  
LATCH  
W2  
B2  
A1, A0  
2
CK  
RS  
SHDN  
AGND2  
APPLICATIONS  
RDAC3  
8
Mechanical Potentiometer Replacement  
Programmable Filters, Delays, Time Constants  
Volume Control, Panning  
Line Impedance Matching  
Power Supply Adjustment  
A3  
8
8
10-BIT  
SERIAL  
LATCH  
8-BIT  
LATCH  
W3  
B3  
CK  
SHDN  
RS  
AGND3  
D
SDI  
CLK  
CS  
CK  
Q
RS  
RDAC4  
A4  
8-BIT  
LATCH  
W4  
B4  
GENERAL DESCRIPTION  
CK  
SHDN  
SHDN  
RS  
AGND4  
The AD8400/AD8402/AD8403 provide a single, dual or quad  
channel, 256 position digitally controlled variable resistor (VR)  
device. These devices perform the same electronic adjustment  
function as a potentiometer or variable resistor. The AD8400  
contains a single variable resistor in the compact SO-8 package.  
The AD8402 contains two independent variable resistors in  
space saving SO-14 surface mount package. The AD8403 con-  
tains four independent variable resistors in 24-lead PDIP, SOIC  
and TSSOP packages. Each part contains a fixed resistor with a  
wiper contact that taps the fixed resistor value at a point deter-  
mined by a digital code loaded into the controlling serial input  
register. The resistance between the wiper and either endpoint  
of the fixed resistor varies linearly with respect to the digital  
code transferred into the VR latch. Each variable resistor offers  
a completely programmable value of resistance, between the A  
terminal and the wiper or the B terminal and the wiper. The  
fixed A to B terminal resistance of 1 k, 10 k, 50 kor 100 kΩ  
has a ±1% channel-to-channel matching tolerance with a nominal  
temperature coefficient of 500 ppm/°C. A unique switching cir-  
cuit minimizes the high glitch inherent in traditional switched  
resistor designs avoiding any make-before-break or break-before-  
make operation.  
SDO  
RS  
The reset (RS) pin forces the wiper to the midscale position by  
loading 80H into the VR latch. The SHDN pin forces the resis-  
tor to an end-to-end open circuit condition on the A terminal  
and shorts the wiper to the B terminal, achieving a microwatt  
power shutdown state. When SHDN is returned to logic high,  
the previous latch settings put the wiper in the same resistance  
setting prior to shutdown. The digital interface is still active in  
shutdown so that code changes can be made which will produce  
new wiper positions when the device is taken out of shutdown.  
The AD8400 is available in both the SO-8 surface mount and  
the 8-lead plastic DIP package.  
The AD8402 is available in both surface mount (SO-14) and  
the 14-lead plastic DIP package, while the AD8403 is available  
in a narrow body 24-lead plastic DIP and the 24-lead surface  
mount package. The AD8402/AD8403 are also offered in the  
1.1 mm thin TSSOP-14/TSSOP-24 package for PCMCIA ap-  
plications. All parts are guaranteed to operate over the extended  
industrial temperature range of –40°C to +85°C.  
Each VR has its own VR latch that holds its programmed  
resistance value. These VR latches are updated from an SPI  
compatible serial-to-parallel shift register that is loaded from a  
standard 3-wire serial-input digital interface. Ten data bits make  
up the data word clocked into the serial input register. The data  
word is decoded where the first two bits determine the address  
of the VR latch to be loaded, the last eight bits are data. A serial  
data output pin at the opposite end of the serial register allows  
simple daisy-chaining in multiple VR applications without addi-  
tional external decoding logic.  
REV. B  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, nor for any infringements of patents or other rights of third parties  
which may result from its use. No license is granted by implication or  
otherwise under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 617/329-4700  
Fax: 617/326-8703  
World Wide Web Site: http://www.analog.com  
© Analog Devices, Inc., 1997  
AD8400/AD8402/AD8403–SPECIFICATIONS  
10 kVERSION  
ELECTRICAL CHARACTERISTICS otherwise noted)  
(VDD = +3 V ؎ 10% or + 5 V ؎ 10%, VA = +VDD, VB = 0 V, –40؇C TA +85؇C unless  
Parameter  
Symbol  
Conditions  
Min  
Typ1  
Max  
Units  
DC CHARACTERISTICS RHEOSTAT MODE Specifications Apply to All VRs  
Resistor Differential NL2  
Resistor Nonlinearity2  
Nominal Resistance3  
Resistance Tempco  
Wiper Resistance  
Nominal Resistance Match  
R-DNL  
R-INL  
R
RAB/T  
RW  
RWB, VA = NC  
RWB, VA = NC  
TA = +25°C, Model: AD840XYY10  
VAB = VDD, Wiper = No Connect  
IW = 1 V/R  
–1  
–2  
8
±1/4  
±1/2  
10  
500  
50  
+1  
+2  
12  
LSB  
LSB  
kΩ  
ppm/°C  
100  
1
R/RO  
CH 1 to 2, 3, or 4, VAB = VDD, TA = +25°C  
0.2  
%
DC CHARACTERISTICS POTENTIOMETER DIVIDER Specifications Apply to All VRs  
Resolution  
N
INL  
8
Bits  
Integral Nonlinearity4  
Differential Nonlinearity4  
–2  
–1  
–1  
–1.5  
±1/2  
±1/4  
±1/4  
±1/2  
15  
+2  
+1  
+1  
+1.5  
LSB  
LSB  
LSB  
LSB  
ppm/°C  
LSB  
LSB  
DNL  
DNL  
DNL  
VW/T  
VWFSE  
VWZSE  
VDD = +5 V  
VDD = +3 V  
TA = +25°C  
TA = –40°C, +85°C  
V
DD = +3 V  
Voltage Divider Tempco  
Full-Scale Error  
Zero-Scale Error  
Code = 80H  
Code = FFH  
Code = 00H  
–4  
0
–2.8  
+1.3  
0
+2  
RESISTOR TERMINALS  
Voltage Range5  
VA, B, W  
CA, B  
CW  
IA_SD  
RW_SD  
0
VDD  
V
Capacitance6 Ax, Bx  
Capacitance6 Wx  
f = 1 MHz, Measured to GND, Code = 80H  
f = 1 MHz, Measured to GND, Code = 80H  
VA = VDD, VB = 0 V, SHDN = 0  
75  
pF  
pF  
µA  
120  
0.01  
100  
Shutdown Current7  
Shutdown Wiper Resistance  
5
200  
VA = VDD, VB = 0 V, SHDN = 0, VDD = +5 V  
DIGITAL INPUTS & OUTPUTS  
Input Logic High  
Input Logic Low  
Input Logic High  
Input Logic Low  
VIH  
VIL  
VIH  
VIL  
VOH  
VOL  
IIL  
VDD = +5 V  
VDD = +5 V  
VDD = +3 V  
VDD = +3 V  
RL = 1 kto VDD  
IOL = 1.6 mA, VDD = +5 V  
VIN = 0 V or +5 V, VDD = +5 V  
2.4  
V
V
V
V
V
V
µA  
pF  
0.8  
0.6  
2.1  
Output Logic High  
Output Logic Low  
Input Current  
VDD–0.1  
0.4  
±1  
Input Capacitance6  
CIL  
5
POWER SUPPLIES  
Power Supply Range  
VDD Range  
IDD  
IDD  
PDISS  
PSS  
2.7  
5.5  
5
4
V
Supply Current (CMOS)  
Supply Current (TTL)8  
Power Dissipation (CMOS)9  
Power Supply Sensitivity  
VIH = VDD or VIL = 0 V  
VIH = 2.4 V or 0.8 V, VDD = +5.5 V  
VIH = VDD or VIL = 0 V, VDD = +5.5 V  
0.01  
0.9  
µA  
mA  
µW  
27.5  
V
DD = +5 V ± 10%  
0.0002 0.001 %/%  
PSS  
VDD = +3 V ± 10%  
0.006 0.03  
%/%  
DYNAMIC CHARACTERISTICS6, 10  
Bandwidth –3 dB  
Total Harmonic Distortion  
BW_10K  
THDW  
tS  
eNWB  
CT  
R = 10 kΩ  
600  
0.003  
2
9
–65  
kHz  
%
µs  
nV/Hz  
dB  
VA = 1 V rms + 2 V dc, VB = 2 V dc, f = 1 kHz  
VA = VDD, VB = 0 V, ±1% Error Band  
RWB = 5 k, f = 1 kHz, RS = 0  
VA = VDD, VB = 0 V  
V
W Settling Time  
Resistor Noise Voltage  
Crosstalk11  
NOTES FOR 10 kVERSION  
1 Typicals represent average readings at +25°C and VDD = +5 V.  
2 Resistor position nonlinearity error R-INL is the deviation from an ideal value measured between the maximum resistance and the minimum resistance wiper  
positions. R-DNL measures the relative step change from ideal between successive tap positions. Parts are guaranteed monotonic. See Figure 30 test circuit.  
IW = 50 µA for VDD = +3 V and IW = 400 µA for VDD = +5 V for the 10 kversions.  
3 VAB = VDD, Wiper (VW) = No Connect.  
4 INL and DNL are measured at VW with the RDAC configured as a potentiometer divider similar to a voltage output D/A converter. VA = VDD and VB = 0 V.  
DNL Specification limits of ±1 LSB maximum are Guaranteed Monotonic operating conditions. See Figure 29 test circuit.  
5 Resistor terminals A, B, W have no limitations on polarity with respect to each other.  
6 Guaranteed by design and not subject to production test. Resistor-terminal capacitance tests are measured with 2.5 V bias on the measured terminal. The remaining  
resistor terminals are left open circuit.  
7 Measured at the Ax terminals. All Ax terminals are open circuited in shutdown mode.  
8Worst case supply current consumed when input logic level at 2.4 V, standard characteristic of CMOS logic. See Figure 21 for a plot of I DD versus logic voltage.  
9 PDISS is calculated from (IDD × VDD). CMOS logic level inputs result in minimum power dissipation.  
10 All Dynamic Characteristics use VDD = +5 V.  
11 Measured at a VW pin where an adjacent VW pin is making a full-scale voltage change.  
Specifications subject to change without notice.  
REV. B  
–2–  
SPECIFICATIONS  
AD8400/AD8402/AD8403  
50 k& 100 kVERSION  
ELECTRICAL CHARACTERISTICS  
(VDD = +3 V ؎ 10% or + 5 V ؎ 10%, VA = +VDD, VB = 0 V, –40؇C TA +85؇C unless  
otherwise noted)  
Parameter  
Symbol  
Conditions  
Min  
Typ1  
Max  
Units  
DC CHARACTERISTICS RHEOSTAT MODE Specifications Apply to All VRs  
Resistor Differential NL2  
Resistor Nonlinearity2  
Nominal Resistance3  
R-DNL  
R-INL  
R
RWB, VA = NC  
RWB, VA = NC  
TA = +25°C, Model: AD840XYY50  
TA = +25°C, Model: AD840XYY100  
VAB = VDD, Wiper = No Connect  
IW = 1 V/R  
–1  
–2  
35  
70  
±1/4  
±1/2  
50  
100  
500  
53  
+1  
+2  
65  
LSB  
LSB  
kΩ  
kΩ  
ppm/°C  
R
130  
Resistance Tempco  
Wiper Resistance  
Nominal Resistance Match  
RAB/T  
RW  
100  
1
R/RO  
CH 1 to 2, 3, or 4, VAB = VDD, TA = +25°C  
0.2  
%
DC CHARACTERISTICS POTENTIOMETER DIVIDER Specifications Apply to All VRs  
Resolution  
N
INL  
8
Bits  
Integral Nonlinearity4  
Differential Nonlinearity4  
–4  
–1  
–1  
–1.5  
±1  
+4  
+1  
+1  
+1.5  
LSB  
LSB  
LSB  
LSB  
ppm/°C  
LSB  
LSB  
DNL  
DNL  
DNL  
VW/T  
VWFSE  
VWZSE  
VDD = +5 V  
VDD = +3 V  
±1/4  
±1/4  
±1/2  
15  
–0.25  
+0.1  
TA = +25°C  
TA = –40°C, +85°C  
VDD = +3 V  
Voltage Divider Tempco  
Full-Scale Error  
Zero-Scale Error  
Code = 80H  
Code = FFH  
Code = 00H  
–1  
0
0
+1  
RESISTOR TERMINALS  
Voltage Range5  
VA, B, W  
CA, B  
CW  
IA_SD  
RW_SD  
0
VDD  
V
Capacitance6 Ax, Bx  
Capacitance6 Wx  
f = 1 MHz, Measured to GND, Code = 80H  
f = 1 MHz, Measured to GND, Code = 80H  
VA = VDD, VB = 0 V, SHDN = 0  
15  
80  
0.01  
100  
pF  
pF  
µA  
Shutdown Current7  
Shutdown Wiper Resistance  
5
200  
VA = VDD, VB = 0 V, SHDN = 0, VDD = +5 V  
DIGITAL INPUTS & OUTPUTS  
Input Logic High  
Input Logic Low  
Input Logic High  
Input Logic Low  
VIH  
VIL  
VIH  
VIL  
VOH  
VOL  
IIL  
VDD = +5 V  
VDD = +5 V  
VDD = +3 V  
VDD = +3 V  
RL = 1 kto VDD  
IOL = 1.6 mA, VDD = +5 V  
VIN = 0 V or +5 V, VDD = +5 V  
2.4  
V
V
V
V
V
V
µA  
pF  
0.8  
0.6  
2.1  
Output Logic High  
Output Logic Low  
Input Current  
VDD–0.1  
0.4  
±1  
Input Capacitance6  
CIL  
5
POWER SUPPLIES  
Power Supply Range  
VDD Range  
IDD  
IDD  
PDISS  
PSS  
2.7  
5.5  
5
4
V
Supply Current (CMOS)  
Supply Current (TTL)8  
Power Dissipation (CMOS)9  
Power Supply Sensitivity  
VIH = VDD or VIL = 0 V  
VIH = 2.4 V or 0.8 V, VDD = +5.5 V  
VIH = VDD or VIL = 0 V, VDD = +5.5 V  
0.01  
0.9  
µA  
mA  
µW  
27.5  
V
DD = +5 V ± 10%  
0.0002 0.001 %/%  
PSS  
VDD = +3 V ± 10%  
0.006 0.03  
%/%  
DYNAMIC CHARACTERISTICS6, 10  
Bandwidth –3 dB  
BW_50K  
BW_100K  
THDW  
tS_50K  
tS_100K  
R = 50 kΩ  
R = 100 kΩ  
VA = 1 V rms + 2 V dc, VB = 2 V dc, f = 1 kHz  
VA = VDD, VB = 0 V, ±1% Error Band  
VA = VDD, VB = 0 V, ±1% Error Band  
RWB = 25 k, f = 1 kHz, RS = 0  
125  
71  
0.003  
9
18  
20  
kHz  
kHz  
%
µs  
µs  
nV/Hz  
nV/Hz  
dB  
Total Harmonic Distortion  
VW Settling Time  
Resistor Noise Voltage  
e
NWB_50K  
eNWB_100K RWB = 50 k, f = 1 kHz, RS = 0  
CT VA = VDD, VB = 0 V  
29  
–65  
Crosstalk11  
NOTES FOR 50 kand 100 kVERSIONS  
1 Typicals represent average readings at +25°C and VDD = +5 V.  
2 Resistor position nonlinearity error R-INL is the deviation from an ideal value measured between the maximum resistance and the minimum resistance wiper  
positions. R-DNL measures the relative step change from ideal between successive tap positions. Parts are guaranteed monotonic. See Figure 30 test circuit.  
IW = VDD/R for VDD = +3 V or +5 V for the 50 kand 100 kversions.  
3 VAB = VDD, Wiper (VW) = No Connect.  
4 INL and DNL are measured at VW with the RDAC configured as a potentiometer divider similar to a voltage output D/A converter. VA = VDD and VB = 0 V.  
DNL Specification limits of ±1 LSB maximum are Guaranteed Monotonic operating conditions. See Figure 29 test circuit.  
5 Resistor terminals A, B, W have no limitations on polarity with respect to each other.  
6 Guaranteed by design and not subject to production test. Resistor-terminal capacitance tests are measured with 2.5 V bias on the measured terminal. The remaining  
resistor terminals are left open circuit.  
7 Measured at the Ax terminals. All Ax terminals are open circuited in shutdown mode.  
8Worst case supply current consumed when input logic level at 2.4 V, standard characteristic of CMOS logic. See Figure 21 for a plot of I DD versus logic voltage.  
9 PDISS is calculated from (IDD × VDD). CMOS logic level inputs result in minimum power dissipation.  
10 All Dynamic Characteristics use VDD = +5 V.  
11 Measured at a VW pin where an adjacent VW pin is making a full-scale voltage change.  
Specifications subject to change without notice.  
REV. B  
–3–  
AD8400/AD8402/AD8403–SPECIFICATIONS  
1 kVERSION  
ELECTRICAL CHARACTERISTICS otherwise noted)  
(VDD = +3 V ؎ 10% or + 5 V ؎ 10%, VA = +VDD, VB = 0 V, –40؇C TA +85؇C unless  
Parameter  
Symbol  
Conditions  
Min  
Typ1  
Max  
Units  
DC CHARACTERISTICS RHEOSTAT MODE Specifications Apply to All VRs  
Resistor Differential NL2  
Resistor Nonlinearity2  
Nominal Resistance3  
Resistance Tempco  
Wiper Resistance  
Nominal Resistance Match  
R-DNL  
R-INL  
R
RAB/T  
RW  
RWB, VA = NC  
RWB, VA = NC  
TA = +25°C, Model: AD840XYY1  
VAB = VDD, Wiper = No Connect  
IW = 1 V/RAB  
–5  
–4  
0.8  
–1  
+3  
+4  
1.5  
LSB  
LSB  
kΩ  
ppm/°C  
±1.5  
1.2  
700  
53  
100  
2
R/RO  
CH 1 to 2, VAB = VDD, TA = +25°C  
0.75  
%
DC CHARACTERISTICS POTENTIOMETER DIVIDER Specifications Apply to All VRs  
Resolution  
N
8
Bits  
Integral Nonlinearity4  
Differential Nonlinearity4  
INL  
DNL  
DNL  
–6  
–4  
–5  
±2  
–1.5  
–2  
25  
–12  
6
+6  
+2  
+5  
LSB  
LSB  
LSB  
ppm/°C  
LSB  
LSB  
VDD = +5 V  
VDD = +3 V, TA = +25°C  
Code = 80H  
Code = FFH  
Code = 00H  
Voltage Divider Temperature Coefficent VW/T  
Full-Scale Error  
Zero-Scale Error  
VWFSE  
VWZSE  
–20  
0
0
10  
RESISTOR TERMINALS  
Voltage Range5  
VA, B, W  
CA, B  
CW  
IDD_SD  
RW_SD  
0
VDD  
V
Capacitance6 Ax, Bx  
Capacitance6 Wx  
f = 1 MHz, Measured to GND, Code = 80H  
f = 1 MHz, Measured to GND, Code = 80H  
VA = VDD, VB = 0 V, SHDN = 0  
75  
pF  
pF  
µA  
120  
0.01  
50  
Shutdown Supply Current7  
Shutdown Wiper Resistance  
5
100  
VA = VDD, VB = 0 V, SHDN = 0, VDD = +5 V  
DIGITAL INPUTS & OUTPUTS  
Input Logic High  
Input Logic Low  
Input Logic High  
Input Logic Low  
VIH  
VIL  
VIH  
VIL  
VOH  
VOL  
IIL  
VDD = +5 V  
VDD = +5 V  
VDD = +3 V  
VDD = +3 V  
RL = 1 kto VDD  
IOL = 1.6 mA, VDD = +5 V  
VIN = 0 V or +5 V, VDD = +5 V  
2.4  
V
V
V
V
V
V
µA  
pF  
0.8  
0.6  
2.1  
Output Logic High  
Output Logic Low  
Input Current  
VDD–0.1  
0.4  
±1  
Input Capacitance6  
CIL  
5
POWER SUPPLIES  
Power Supply Range  
VDD Range  
IDD  
IDD  
PDISS  
PSS  
2.7  
5.5  
5
4
V
Supply Current (CMOS)  
Supply Current (TTL)8  
Power Dissipation (CMOS)9  
Power Supply Sensitivity  
VIH = VDD or VIL = 0 V  
0.01  
0.9  
µA  
mA  
µW  
VIH = 2.4 V or 0.8 V, VDD = +5.5 V  
VIH = VDD or VIL = 0 V, VDD = +5.5 V  
VDD = +5 V ± 10%  
27.5  
0.0035 0.008 %/%  
PSS  
VDD = +3 V ± 10%  
0.05  
0.13  
%/%  
DYNAMIC CHARACTERISTICS6, 10  
Bandwidth –3 dB  
Total Harmonic Distortion  
BW_1K  
THDW  
tS  
eNWB  
CT  
R = 1 kΩ  
5,000  
0.015  
0.5  
3
–65  
kHz  
%
µs  
nV/Hz  
dB  
VA = 1 V rms + 2 V dc, VB = 2 V dc, f = 1 kHz  
VA = VDD, VB = 0 V, ±1% Error Band  
RWB = 500 , f = 1 kHz, RS = 0  
VA = VDD, VB = 0 V  
V
W Settling Time  
Resistor Noise Voltage  
Crosstalk11  
NOTES FOR 1 kVERSION  
1 Typicals represent average readings at +25°C and VDD = +5 V.  
2 Resistor position nonlinearity error R-INL is the deviation from an ideal value measured between the maximum resistance and the minimum resistance wiper  
positions. R-DNL measures the relative step change from ideal between successive tap positions. See Figure 30 test circuit.  
IW = 500 µA for VDD = +3 V and IW = 4 mA for VDD = +5 V for 1 kversion.  
3 VAB = VDD, Wiper (VW) = No Connect.  
4 INL and DNL are measured at VW with the RDAC configured as a potentiometer divider similar to a voltage output D/A converter. VA = VDD and VB = 0 V.  
DNL Specification limits of ±1 LSB maximum are Guaranteed Monotonic operating conditions. See Figure 29 test circuit.  
5 Resistor terminals A, B, W have no limitations on polarity with respect to each other.  
6 Guaranteed by design and not subject to production test. Resistor-terminal capacitance tests are measured with 2.5 V bias on the measured terminal. The remaining  
resistor terminals are left open circuit.  
7 Measured at the Ax terminals. All Ax terminals are open circuited in shutdown mode.  
8Worst case supply current consumed when input logic level at 2.4 V, standard characteristic of CMOS logic. See Figure 21 for a plot of I DD versus logic voltage.  
9 PDISS is calculated from (IDD × VDD). CMOS logic level inputs result in minimum power dissipation.  
10 All Dynamic Characteristics use VDD = +5 V.  
11 Measured at a VW pin where an adjacent VW pin is making a full-scale voltage change.  
Specifications subject to change without notice.  
REV. B  
–4–  
AD8400/AD8402/AD8403–SPECIFICATIONS  
All VERSIONS  
(VDD = +3 V ؎ 10% or + 5 V ؎ 10%, VA = +VDD, VB = 0 V, –40؇C TA +85؇C unless  
otherwise noted)  
ELECTRICAL CHARACTERISTICS  
Parameter  
Symbol  
Conditions  
Min  
Typ1  
Max  
Units  
SWITCHING CHARACTERISTICS2, 3  
Input Clock Pulse Width  
Data Setup Time  
tCH, tCL  
tDS  
tDH  
Clock Level High or Low  
10  
5
5
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Data Hold Time  
CLK to SDO Propagation Delay4  
CS Setup Time  
tPD  
RL = 1 kto +5 V, CL 20 pF  
1
25  
tCSS  
tCSW  
tRS  
tCSH  
tCS1  
10  
10  
50  
0
CS High Pulse Width  
Reset Pulse Width  
CLK Fall to CS Rise Hold Time  
CS Rise to Clock Rise Setup  
10  
NOTES  
1Typicals represent average readings at +25°C and VDD = +5 V.  
2Guaranteed by design and not subject to production test. Resistor-terminal capacitance tests are measured with 2.5 V bias on the measured terminal. The remaining  
resistor terminals are left open circuit.  
3See timing diagram for location of measured values. All input control voltages are specified with tR = tF = 1 ns (10% to 90% of VDD) and timed from a voltage level  
of 1.6 V. Switching characteristics are measured using VDD = +3 V or +5 V. To avoid false clocking a minimum input logic slew rate of 1 V/µs should be maintained.  
4Propagation Delay depends on value of VDD, RL and CL–see applications text.  
Specifications subject to change without notice.  
tRS  
1
1
0
A1 A0 D7 D6 D5 D4 D3 D2 D1 D0  
SDI  
RS  
0
1
tS  
CLK  
V
DD  
0
V
±1%  
OUT  
V
/2  
DAC REGISTER LOAD  
DD  
±1% ERROR BAND  
1
0
CS  
V
DD  
Figure 1c. Reset Timing Diagram  
ABSOLUTE MAXIMUM RATINGS*  
V
OUT  
0V  
(T = +25°C, unless otherwise noted)  
Figure 1a. Timing Diagram  
A
VDD to GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V, +8 V  
VA, VB, VW to GND . . . . . . . . . . . . . . . . . . . . . . . . . . 0 V, VDD  
AX–BX, AX–WX, BX–WX . . . . . . . . . . . . . . . . . . . . . . ±20 mA  
Digital Input and Output Voltage to GND . . . . . . . 0 V, +8 V  
Operating Temperature Range . . . . . . . . . . . . –40°C to +85°C  
Maximum Junction Temperature (TJ max) . . . . . . . . . +150°C  
Storage Temperature . . . . . . . . . . . . . . . . . . –65°C to +150°C  
Lead Temperature (Soldering, 10 sec) . . . . . . . . . . . . . +300°C  
Package Power Dissipation . . . . . . . . . . . . . . (TJ max–TA)/θJA  
Thermal Resistance JA)  
P-DIP (N-14) . . . . . . . . . . . . . . . . . . . . . . . . . . . . +83°C/W  
P-DIP (N-24) . . . . . . . . . . . . . . . . . . . . . . . . . . . . +63°C/W  
SOIC (SO-14) . . . . . . . . . . . . . . . . . . . . . . . . . . . +70°C/W  
SOIC (SOL-24) . . . . . . . . . . . . . . . . . . . . . . . . . +120°C/W  
TSSOP-14 (RU-14) . . . . . . . . . . . . . . . . . . . . . . +180°C/W  
TSSOP-24 (RU-24) . . . . . . . . . . . . . . . . . . . . . . +143°C/W  
1
0
SDI  
(DATA IN)  
Ax OR Dx  
Ax OR Dx  
tDS  
tDH  
1
0
SDO  
(DATA OUT)  
A'x OR D'x  
tPD_MIN  
A'x OR D'x  
tPD_MAX  
tCS1  
tCH  
1
0
1
0
CLK  
tCL  
tCSS  
tCSH  
tCSW  
tS  
CS  
V
DD  
±1 %  
V
OUT  
0V  
±1 % ERROR BAND  
*Stresses above those listed under “Absolute Maximum Ratings” may cause  
permanent damage to the device. This is a stress rating only; functional operation  
of the device at these or any other conditions above those listed in the operational  
sections of this specification is not implied. Exposure to absolute maximum rating  
conditions for extended periods may affect device reliability.  
Figure 1b. Detail Timing Diagram  
CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection.  
Although the AD8400/AD8402/AD8403 feature proprietary ESD protection circuitry, perma-  
nent damage may occur on devices subjected to high energy electrostatic discharges. Therefore,  
proper ESD precautions are recommended to avoid performance degradation or loss of functionality.  
WARNING!  
ESD SENSITIVE DEVICE  
REV. B  
–5–  
AD8400/AD8402/AD8403  
ORDERING GUIDE  
Table I. Serial Data Word Format  
#CHs/  
k  
Temperature  
Range  
Package  
Description Option*  
Package  
ADDR  
B9  
DATA  
Model  
B8  
B7 B6 B5 B4 B3 B2 B1 B0  
AD8400AN10  
AD8400AR10  
AD8402AN10  
AD8402AR10  
AD8402ARU10  
AD8403AN10  
AD8403AR10  
AD8403ARU10  
X1/10  
X1/10  
X2/10  
X2/10  
X2/10  
X4/10  
X4/10  
X4/10  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
PDIP-8  
SO-8  
PDIP-14  
SO-14  
TSSOP-14 RU-14  
PDIP-24  
SOIC-24  
N-8  
A1  
A0  
D7 D6 D5 D4 D3 D2 D1 D0  
SO-8  
N-14  
SO-14  
MSB  
LSB MSB  
LSB  
29  
28 27  
20  
N-24  
SOL-24  
PIN CONFIGURATIONS  
TSSOP-24 RU-24  
A1  
8
AD8400AN50  
AD8400AR50  
AD8402AN50  
AD8402AR50  
AD8403AN50  
AD8403AR50  
X1/50  
X1/50  
X2/50  
X2/50  
X4/50  
X4/50  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
PDIP-8  
SO-8  
PDIP-14  
SO-14  
PDIP-24  
SOIC-24  
N-8  
1
2
3
4
B1  
SO-8  
N-14  
SO-14  
N-24  
SOL-24  
AD8400  
TOP VIEW  
(Not to Scale)  
7
6
5
GND  
W1  
V
CS  
DD  
SDI  
CLK  
AD8400AN100  
AD8400AR100  
AD8402AN100  
AD8402AR100  
AD8402ARU100 X2/100  
AD8403AN100  
AD8403AR100  
X1/100  
X1/100  
X2/100  
X2/100  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
PDIP-8  
SO-8  
PDIP-14  
SO-14  
TSSOP-14 RU-14  
PDIP-24  
SOIC-24  
N-8  
B1  
A1  
W1  
14  
13  
12  
11  
10  
9
1
2
3
4
5
6
7
AGND  
B2  
SO-8  
N-14  
SO-14  
A2  
AD8402  
TOP VIEW  
(Not to Scale)  
V
W2  
DD  
X4/100  
X4/100  
N-24  
SOL-24  
DGND  
SHDN  
CS  
RS  
CLK  
SDI  
AD8403ARU100 X4/100  
TSSOP-24 RU-24  
8
AD8400AN1  
AD8400AR1  
AD8402AN1  
AD8402AR1  
AD8403AN1  
AD8403AR1  
AD8403ARU1  
X1/1  
X1/1  
X2/1  
X2/1  
X4/1  
X4/1  
X4/1  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
PDIP-8  
SO-8  
PDIP-14  
SO-14  
PDIP-24  
SOIC-24  
TSSOP-24 RU-24  
N-8  
SO-8  
N-14  
SO-14  
N-24  
SOL-24  
AGND2  
B2  
1
2
24  
23  
B1  
A1  
A2  
3
22 W1  
4
W2  
AGND4  
B4  
21 AGND1  
5
20  
19  
18  
17  
16  
B3  
AD8403  
TOP VIEW  
(Not to Scale)  
6
A3  
*N = Plastic DIP; SO = Small Outline; RU = Thin Shrink SO.  
The AD8400, AD8402 and the AD8403 contain 720 transistors.  
A4  
7
W3  
W4  
8
AGND3  
DGND  
SHDN  
9
V
DD  
10  
11  
12  
15 RS  
14  
CS  
CLK  
13 SDO  
SDI  
–6–  
REV. B  
AD8400/AD8402/AD8403  
AD8400 PIN DESCRIPTIONS  
Description  
AD8403 PIN DESCRIPTIONS  
Pin  
Name  
Pin  
Name  
Description  
1
2
3
B1  
Terminal B RDAC  
Ground  
1
2
AGND2 Analog Ground #2*  
GND  
CS  
B2  
A2  
W2  
Terminal B RDAC #2  
Terminal A RDAC #2  
Wiper RDAC #2, addr = 012  
Chip Select Input, Active Low. When CS  
returns high data in the serial input register is  
loaded into the DAC register.  
3
4
5
AGND4 Analog Ground #4*  
4
5
6
SDI  
CLK  
VDD  
Serial Data Input  
6
B4  
Terminal B RDAC #4  
Terminal A RDAC #4  
Wiper RDAC #4, addr = 112  
Digital Ground*  
Serial Clock Input, positive edge triggered  
7
A4  
Positive power supply, specified for operation  
at both +3 V and +5 V.  
8
W4  
9
DGND  
SHDN  
7
8
W1  
A1  
Wiper RDAC, addr = 002  
Terminal A RDAC  
10  
Active Low Input. Terminal A open circuit.  
Shutdown controls variable resistors #1  
through #4  
11  
CS  
Chip Select Input, Active Low. When CS  
returns high data in the serial input register  
is decoded based on the address bits and  
loaded into the target DAC register.  
AD8402 PIN DESCRIPTIONS  
Description  
Pin Name  
1
2
3
4
5
6
AGND  
B2  
Analog Ground*  
12  
13  
SDI  
Serial Data Input  
Terminal B RDAC #2  
Terminal A RDAC #2  
Wiper RDAC #2, Addr = 012  
Digital Ground*  
SDO  
Serial Data Output, Open Drain transistor  
requires pull-up resistor  
A2  
14  
15  
CLK  
Serial Clock Input, positive edge triggered  
W2  
RS  
Active low reset to midscale; sets RDAC  
registers to 80H  
DGND  
SHDN  
Terminal A open circuit. Shutdown controls  
Variable Resistors #1 and #2  
16  
VDD  
Positive power supply, specified for  
operation at both +3 V and +5 V  
7
CS  
Chip Select Input, Active Low. When CS  
returns high data in the serial input register is  
decoded based on the address bits and loaded  
into the target DAC register.  
17  
18  
19  
20  
21  
22  
23  
24  
AGND3 Analog Ground #3*  
W3  
A3  
B3  
Wiper RDAC #3, addr = 102  
Terminal A RDAC #3  
Terminal B RDAC #3  
8
9
SDI  
CLK  
RS  
Serial Data Input  
Serial Clock Input, positive edge triggered  
AGND1 Analog Ground #1*  
10  
Active low reset to midscale; sets RDAC  
registers to 80H  
W1  
A1  
B1  
Wiper RDAC #1, addr = 002  
Terminal A RDAC #1  
Terminal B RDAC #1  
11  
VDD  
Positive power supply, specified for operation  
at both +3 V and +5 V  
*All AGNDs must be connected to DGND.  
12  
13  
14  
W1  
A1  
B1  
Wiper RDAC #1, addr = 002  
Terminal A RDAC #1  
Terminal B RDAC #1  
*All AGNDs must be connected to DGND.  
–7–  
REV. B  
AD8400/AD8402/AD8403–Typical Performance Characteristics  
10  
5
4
3
60  
48  
36  
24  
12  
0
80  
SS = 184 UNITS  
V
= +3V OR +5V  
H
DD  
FF  
V
= 4.5V  
H
DD  
= +25°C  
T
8
A
40  
H
20  
H
6
CODE = 10  
H
4
2
1
0
2
R
R
WA  
05  
T = +25°C  
A
WB  
H
V
= +5V  
DD  
0
40.0 42.5 45.0 47.5 50.0 52.5 55.0 57.5 60.0 62.5 65.0  
0
32  
64  
96 128 160 192 224 256  
CODE – Decimal  
0
1
2
I
3
4
5
6
7
WIPER RESISTANCE – Ω  
CURRENT – mA  
WA  
Figure 2. Wiper to End Terminal  
Resistance vs. Code  
Figure 3. Resistance Linearity vs.  
Conduction Current  
Figure 4. 100 kWiper-Contact-  
Resistance Histogram  
1
60  
10  
SS = 1205 UNITS  
V
= +5V  
DD  
V
= 4.5V  
R
(END-TO-END)  
DD  
= +25°C  
AB  
T
A
48  
36  
24  
12  
0
8
6
4
2
0
0.5  
0
T
= +85°C  
= +25°C  
A
T
= –40°C  
R
(WIPER-TO-END)  
A
WB  
T
CODE = 80  
A
H
–0.5  
–1  
0
32  
64  
96 128 160 192 224 256  
DIGITAL INPUT CODE – Decimal  
40.0 42.5 45.0 47.5 50.0 52.5 55.0 57.5 60.0 62.5 65.0  
–75 –50 –25  
0
25  
50  
75 100 125  
WIPER RESISTANCE – Ω  
TEMPERATURE – °C  
Figure 5. Resistance Step Position  
Nonlinearity Error vs. Code  
Figure 6. 10 kWiper-Contact-  
Resistance Histogram  
Figure 7. Nominal Resistance vs.  
Temperature  
1
70  
60  
V
= +5V  
V
T
= +5V  
SS = 184 UNITS  
DD  
DD  
V
= 4.5V  
60  
50  
40  
30  
20  
10  
0
= –40°C/+85°C  
= 2.00V  
DD  
= +25°C  
A
T
V
V
48  
36  
24  
12  
0
A
A
0.5  
0
= 0V  
B
T
= +25°C  
A
T
= –40°C  
A
–0.5  
T
A
= +85°C  
–1  
–10  
0
32  
64  
96 128 160 192 224 256  
35 37 39 41 43 45 47 49 51 53 55  
0
32  
64  
96 128 160 192 224 256  
CODE – DECIMAL  
DIGITAL INPUT CODE – Decimal  
WIPER RESISTANCE – Ω  
Figure 8. Potentiometer Divider  
Nonlinearity Error vs. Code  
Figure 9. 50 kWiper-Contact-  
Resistance Histogram  
Figure 10. VWB /T Potentiometer  
Mode Tempco  
–8–  
REV. B  
AD8400/AD8402/AD8403  
700  
600  
500  
400  
300  
200  
100  
0
6
V
T
= +5V  
CODE = FF  
80  
DD  
0
–6  
= –40°C/+85°C  
= NO CONNECT  
MEASURED  
A
V
A
40  
R
WB  
–12  
RW  
20  
(20mV/DIV)  
–18  
10  
–24  
08  
04  
02  
–30  
–36  
–42  
CS  
(5V/DIV)  
01  
T
= +25°C  
A
–48  
–54  
SEE TEST FIGURE 33  
100 1k  
FREQUENCY – Hz  
–100  
0
32  
64  
96 128 160 192 224 256  
CODE – DECIMAL  
10  
10k  
100k  
1M  
TIME 500ns/DIV  
Figure 11. RWB /T Rheostat Mode  
Tempco  
Figure 12. One Position Step Change  
at Half-Scale (Code 7FH to 80H)  
Figure 13. Gain vs. Frequency for  
R = 10 kΩ  
6
0.75  
CODE = FF  
H
CODE = 80  
H
0
V
= +5V  
DD  
SS = 158 UNITS  
0.5  
0.25  
0
–6  
80  
H
–12  
AVG + 2 SIGMA  
AVG  
OUTPUT  
40  
H
–18  
20  
H
–24  
10  
H
–30  
08  
H
–0.25  
–0.5  
–0.75  
–36  
AVG – 2 SIGMA  
04  
H
–42  
INPUT  
02  
H
–48  
01  
H
–54  
0
100  
200  
300  
400  
500  
600  
TIME = 5µs/DIV  
1k  
10k  
100k  
1M  
HOURS OF OPERATION AT 150°C  
FREQUENCY – Hz  
Figure 15. Large Signal Settling  
Time  
Figure 14. Long-Term Drift  
Accelerated by Burn-In  
Figure 16. 50 kGain vs. Fre-  
quency vs. Code  
6
10  
CODE = FF  
H
FILTER = 22kHz  
0
–6  
V
= +5V  
80  
40  
20  
10  
08  
04  
02  
01  
DD  
= +25°C  
H
T
A
1
0.1  
H
H
H
H
H
H
H
–12  
–18  
–24  
–30  
–36  
–42  
–48  
–54  
VOUT  
(50mV/DIV)  
SEE TEST CIRCUIT FIGURE 32  
SEE TEST CIRCUIT FIGURE 31  
0.01  
0.001  
1k  
10k  
100k  
1M  
10  
100  
1k  
10k  
100k  
TIME 200ns/DIV  
FREQUENCY – Hz  
FREQUENCY – Hz  
Figure 18. Digital Feedthrough  
vs. Time  
Figure 17. Total Harmonic Distortion  
Plus Noise vs. Frequency  
Figure 19. 100 kGain vs. Fre-  
quency vs. Code  
–9–  
REV. B  
AD8400/AD8402/AD8403  
10  
1
80  
60  
40  
SEE TEST CIRCUIT 33  
V
T
= +5V DC ± 1V p-p AC  
DD  
= +25°C  
T
A
= +25°C  
CODE = 80  
H
A
V
T
= +5V  
DD  
= +25°C  
CODE = 80  
H
A
C
V
= 10pF  
L
= 4V, V = 0V  
A
B
R = 10kΩ  
V
DD  
= +5V  
R = 50kΩ  
0.1  
0.01  
20  
0
SEE TEST CIRCUIT  
FIGURE 32  
V
= +3V  
DD  
R = 100kΩ  
0
1
2
3
4
5
10  
100  
1k  
10k  
100k  
1M  
100  
1k  
10k  
100k  
1M  
INPUT LOGIC VOLTAGE – Volts  
FREQUENCY – Hz  
FREQUENCY – Hz  
Figure 21. Supply Current vs. Logic  
Input Voltage  
Figure 22. Power Supply Rejection  
vs. Frequency  
Figure 20. Normalized Gain Flat-  
ness vs. Frequency  
160  
1200  
12  
T
= +25°C  
T
= +25°C  
A
A
A – V = 5.5V  
DD  
140  
120  
100  
80  
6
0
f
= 700kHz, R = 10kΩ  
–3dB  
CODE = 55  
1000  
800  
600  
400  
200  
0
H
V
= +2.7V  
DD  
B – V = 3.3V  
DD  
CODE = 55  
H
–6  
f
= 71kHz, R = 100kΩ  
C – V = 5.5V  
DD  
–3dB  
–12  
CODE = FF  
H
–18  
–24  
–30  
–36  
–42  
V
= +5.5V  
DD  
D – V = 3.3V  
DD  
60  
f
= 125kHz, R = 50kΩ  
–3dB  
CODE = FF  
H
B
A
40  
V
V
= 100mV rms  
= +5V  
SEE TEST CIRCUIT  
FIGURE 36  
IN  
C
DD  
20  
R
= 1MΩ  
L
D
0
0
1
2
3
4
5
6
1k  
10k  
100k  
FREQUENCY – Hz  
1M  
10M  
1k  
10k  
100k  
1M  
V
DD  
FREQUENCY – Hz  
Figure 24. Supply Current vs.  
Clock Frequency  
Figure 25. AD8403 Incremental  
Wiper ON Resistance vs. VDD  
Figure 23. –3 dB Bandwidths  
1
100  
LOGIC INPUT  
VOLTAGE = 0, V  
V
= +5V  
0
–10  
–20  
DD  
DD  
0.1  
0.01  
0
10  
V
= +5.5V  
DD  
–45  
–90  
V
= +5V  
DD  
= +25°C  
T
A
WIPER SET AT  
HALF-SCALE 80  
H
V
= +3.3V  
DD  
0.001  
1
–55 –35 –15  
100k 200k 400k  
1M  
2M  
4M 6M 10M  
–55 –35 –15  
5
25 45 65 85 105 125  
5
25 45 65 85 105 125  
TEMPERATURE – °C  
TEMPERATURE – °C  
FREQUENCY – Hz  
Figure 28. Supply Current vs.  
Temperature  
Figure 26. 1 kGain and Phase  
vs. Frequency  
Figure 27. Shutdown Current vs.  
Temperature  
–10–  
REV. B  
Parametric Test Circuits–AD8400/AD8402/AD8403  
DUT  
V+ = V  
DD  
DUT  
A
B
1LSB = V+/256  
A
W
+5V  
OP279  
W
V+  
V
V
OUT  
~
IN  
B
V
MS  
OFFSET  
GND  
2.5V DC  
Figure 29. Potentiometer Divider Nonlinearity Error Test  
Circuit (INL, DNL)  
Figure 33. Inverting Programmable Gain Test Circuit  
+5V  
V
NO CONNECT  
OUT  
OP279  
I
V
DUT  
W
IN  
W
~
A
W
A
B
OFFSET  
GND  
B
DUT  
V
2.5V  
MS  
Figure 30. Resistor Position Nonlinearity Error (Rheostat  
Operation; R-INL, R-DNL)  
Figure 34. Noninverting Programmable Gain Test Circuit  
I
+15V  
A
MS  
DUT  
V+  
R
V  
DD  
I
=
1V/R  
NOMINAL  
W
W
V
~
IN  
DUT  
A
V
W
V
– [V  
+ I (R II R )]  
W1 W AW BW  
W2  
W
V
OP42  
= ––––––––––––––––––––––––––  
OUT  
V+  
W
I
B
OFFSET  
GND  
W
B
WHERE V = V  
W1  
WHEN I = 0  
W
MS  
WHEN I = 1/R  
V
MS  
2.5V  
AND V  
= V  
MS  
W2  
W
–15V  
Figure 35. Gain vs. Frequency Test Circuit  
Figure 31. Wiper Resistance Test Circuit  
V
A
0.1V  
R
=
DUT  
SW  
I
SW  
A
V
DD  
V+ = V ± 10%  
CODE = ØØ  
DD  
H
V+  
W
~
W
V  
MS  
PSRR (dB) = 20LOG  
(
–––––  
)
V  
B
B
V
DD  
MS  
I
0.1V  
SW  
V  
%
MS  
PSS (%/%) = –––––––  
V  
%
DD  
0 toV  
DD  
Figure 36. Incremental ON Resistance Test Circuit  
Figure 32. Power Supply Sensitivity Test Circuit (PSS,  
PSRR)  
–11–  
REV. B  
AD8400/AD8402/AD8403  
OPERATION  
PROGRAMMING THE VARIABLE RESISTOR  
The AD8400/AD8402/AD8403 provide a single, dual and quad  
channel, 256 position digitally controlled variable resistor (VR)  
device. Changing the programmed VR settings is accomplished  
by clocking in a 10-bit serial data word into the SDI (Serial  
Data Input) pin. The format of this data word is two address  
bits, MSB first, followed by eight data bits, MSB first. Table I  
provides the serial register data word format. The AD8400/  
AD8402/AD8403 has the following address assignments for the  
ADDR decode, which determines the location of VR latch re-  
ceiving the serial register data in Bits B7 through B0:  
Rheostat Operation  
The nominal resistance of the VR (RDAC) between terminals A  
and B are available with values of 1 k, 10 k, 50 kand 100 k.  
The final digits of the part number determine the nominal resis-  
tance value, e.g., 10 k= 10; 100 k= 100. The nominal resis-  
tance (RAB) of the VR has 256 contact points accessed by the  
wiper terminal, plus the B terminal contact. The 8-bit data word  
in the RDAC latch is decoded to select one of the 256 possible  
settings. The wiper’s first connection starts at the B terminal for  
data 00H. This B terminal connection has a wiper contact resis-  
tance of 50 . The second connection (10 kpart) is the first  
tap point located at 89 [= RBA (nominal resistance)/256 + RW  
= 39 + 50 ] for data 01H. The third connection is the next  
tap point representing 78 + 50 = 128 for data 02H. Each LSB  
data value increase moves the wiper up the resistor ladder until  
the last tap point is reached at 10011 . The wiper does not di-  
rectly connect to the B terminal. See Figure 37 for a simplified  
diagram of the equivalent RDAC circuit.  
VR# = A1 × 2 + A0 + 1  
Equation 1  
The single-channel AD8400 requires A1 = A0 = 0. The dual-  
channel AD8402 requires A1 = 0. VR settings can be changed  
one at a time in random sequence. The serial clock running at  
10 MHz makes it possible to load all 4 VRs in under 4 µs (10 ×  
4 × 100 ns) for the AD8403. The exact timing requirements are  
shown in Figures 1a, 1b and 1c.  
The AD8402/AD8403 resets to midscale by asserting the RS  
pin, simplifying initial conditions at power up. Both parts have a  
power shutdown SHDN pin that places the VR in a zero power  
consumption state where terminals Ax are open circuited and  
the wiper Wx is connected to Bx resulting in only leakage cur-  
rents being consumed in the VR structure. In shutdown mode  
the VR latch settings are maintained so that returning to opera-  
tional mode from power shutdown, the VR settings return to  
their previous resistance values. The digital interface is still ac-  
tive in shutdown, except that SDO is deactivated. Code changes  
in the registers can be made that will produce new wiper posi-  
tions when the device is taken out of shutdown.  
The AD8400 contains one RDAC, the AD8402 contains two  
independent RDACs and the AD8403 contains four independent  
RDACs. The general transfer equation that determines the digi-  
tally programmed output resistance between Wx and Bx is:  
R
WB (Dx) = (Dx)/256 × RBA + RW  
where Dx is the data contained in the 8-bit RDAC# latch, and  
BA is the nominal end-to-end resistance.  
Equation 2  
R
For example, when VB = 0 V and A terminal is open circuit, the  
following output resistance values will be set for the following  
RDAC latch codes (applies to 10 kpotentiometers):  
D
(Dec)  
RWB  
()  
Ax  
Output State  
R
S
SHDN  
255  
128  
1
10011  
5050  
89  
Full Scale  
Midscale (RS = 0 Condition)  
1 LSB  
R
S
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
0
50  
Zero-Scale (Wiper Contact Resistance)  
R
S
Note in the zero-scale condition a finite wiper resistance of 50 Ω  
is present. Care should be taken to limit the current flow be-  
tween W and B in this state to a maximum value of 5 mA to  
avoid degradation or possible destruction of the internal switch  
contact.  
Wx  
RDAC  
LATCH  
&
Like the mechanical potentiometer the RDAC replaces, it is to-  
tally symmetrical. The resistance between the wiper W and ter-  
minal A also produces a digitally controlled resistance RWA  
When these terminals are used the B terminal should be tied to  
the wiper. Setting the resistance value for RWA starts at a maxi-  
mum value of resistance and decreases as the data loaded in the  
RDAC latch is increased in value. The general transfer equation  
for this operation is:  
DECODER  
R
S
Bx  
.
R
= R  
/256  
NOMINAL  
S
Figure 37. AD8402/AD8403 Equivalent VR (RDAC) Circuit  
R
WA (Dx) = (256–Dx)/256 × RBA + RW  
Equation 3  
–12–  
REV. B  
AD8400/AD8402/AD8403  
suitable means. The Figure 38 block diagrams show more detail  
of the internal digital circuitry. When CS is taken active low, the  
clock loads data into the 10-bit serial register on each positive  
clock edge (see Table II).  
where Dx is the data contained in the 8-bit RDAC# latch, and  
BA is the nominal end-to-end resistance. For example, when  
VA = 0 V and B terminal is open circuit, the following output  
resistance values will be set for the following RDAC latch codes  
(applies to 10 kpotentiometers):  
R
VDD  
CS  
D
(Dec)  
RWA  
()  
A1  
W1  
B1  
CLK  
D7  
D0  
Output State  
EN  
R
DAC  
LAT  
#1  
255  
128  
1
89  
Full Scale  
Midscale (RS = 0 Condition)  
1 LSB  
ADDR  
DEC  
A1  
A0  
5050  
10011  
10050  
D7  
0
Zero Scale  
10-BIT  
SER  
REG  
AD8400  
The typical distribution of RBA from channel-to-channel matches  
within ±1%. However, device-to-device matching is process lot  
dependent having a ±20% variation. The change in RBA with  
temperature has a positive 500 ppm/°C temperature coefficient.  
SDI  
DI  
D0  
8
GND  
The wiper-to-end-terminal resistance temperature coefficient  
has the best performance over the 10% to 100% of adjustment  
range where the internal wiper contact switches do not contribute  
any significant temperature related errors. The graph in Figure  
11 shows the performance of RWB tempco vs. code, using the  
trimmer with codes below 32 results in the larger temperature  
coefficients plotted.  
a.  
V
CS  
AD8402  
DD  
A1  
W1  
B1  
CLK  
D7  
EN  
R
DAC  
LAT  
#1  
ADDR  
DEC  
A1  
A0  
D0  
D7  
D0  
PROGRAMMING THE POTENTIOMETER DIVIDER  
Voltage Output Operation  
R
D7  
A4  
W4  
B4  
The digital potentiometer easily generates an output voltage  
proportional to the input voltage applied to a given terminal.  
For example, connecting A terminal to +5 V and B terminal to  
ground produces an output voltage at the wiper starting at zero  
volts up to 1 LSB less than +5 V. Each LSB of voltage is equal  
to the voltage applied across terminal AB divided by the 256  
position resolution of the potentiometer divider. The general  
equation defining the output voltage with respect to ground for  
any given input voltage applied to terminals AB is:  
10-BIT  
SER  
REG  
R
DAC  
LAT  
#2  
SDI  
DI  
D0  
8
R
SHDN  
DGND  
AGND  
RS  
b.  
VW (Dx) = Dx/256 × VAB + VB  
Equation 4  
V
Operation of the digital potentiometer in the divider mode re-  
sults in more accurate operation over temperature. Here the  
output voltage is dependent on the ratio of the internal resistors,  
not the absolute value; therefore, the temperature drift improves  
to 15 ppm/°C.  
CS  
DD  
A1  
W1  
B1  
CLK  
D7  
D0  
EN  
R
DAC  
LAT  
#1  
ADDR  
DEC  
A1  
A0  
D7  
SDO  
DO  
R
At the lower wiper position settings, the potentiometer divider  
temperature coefficient increases due to the contributions of the  
CMOS switch wiper resistance becoming an appreciable portion  
of the total resistance from terminal B to the wiper. See Figure 10  
for a plot of potentiometer tempco performance versus code  
setting.  
SER  
REG  
AD8403  
A4  
W4  
B4  
D7  
D0  
SDI  
DI  
D0  
R
DIGITAL INTERFACING  
DAC  
LAT  
#4  
The AD8400/AD8402/AD8403 contains a standard SPI com-  
patible three-wire serial input control interface. The three inputs  
are clock (CLK), CS and serial data input (SDI). The positive-  
edge sensitive CLK input requires clean transitions to avoid  
clocking incorrect data into the serial input register. For best re-  
sults use logic transitions faster than 1 V/µs. Standard logic  
families work well. If mechanical switches are used for product  
evaluation, they should be debounced by a flip-flop or other  
8
R
SHDN  
DGND  
AGND  
RS  
c.  
Figure 38. Block Diagrams  
–13–  
REV. B  
AD8400/AD8402/AD8403  
Table II. Input Logic Control Truth Table  
AD8403  
RDAC 1  
RDAC 2  
CS  
ADDR  
DECODE  
CLK CS RS SHDN Register Activity  
RDAC 4  
L
P
L
L
H
H
H
H
No SR effect, enables SDO pin.  
CLK  
SDI  
SERIAL  
REGISTER  
Shift One bit in from the SDI pin.  
The tenth previously entered bit is  
shifted out of the SDO pin.  
X
P
H
H
Load SR data into RDAC latch  
based on A1, A0 decode (Table III).  
Figure 39. Equivalent Input Control Logic  
The target RDAC latch is loaded with the last eight bits of the  
serial data word completing one DAC update. In the case of the  
AD8403 four separate 10-bit data words must be clocked in to  
change all four VR settings.  
X
X
H
X
H
L
H
H
No Operation.  
Sets all RDAC latches to midscale,  
wiper centered, and SDO latch  
cleared.  
SHDN  
X
X
H
H
P
H
L
Latches all RDAC latches to 80H.  
CS  
SDO  
H
Open circuits all resistor  
SERIAL  
REGISTER  
A–terminals, connects W to B,  
turns off SDO output transistor.  
SDI  
D
Q
RS  
CK  
CLK  
NOTE: P = positive edge, X = don’t care, SR = shift register.  
RS  
The serial data-output (SDO) pin contains an open drain n-  
channel FET. This output requires a pull-up resistor in order to  
transfer data to the next package’s SDI pin. The pull-up resistor  
termination voltage may be larger than the VDD supply (but less  
than max VDD of +8 V) of the AD8403 SDO output device,  
e.g., the AD8403 could operate at VDD = 3.3 V and the pull-up  
for interface to the next device could be set at +5 V. This allows  
for daisy chaining several RDACs from a single processor serial  
data line. The clock period needs to be increased when using a  
pull-up resistor to the SDI pin of the following device in the  
series. Capacitive loading at the daisy chain node SDO–SDI  
between devices must be accounted for to successfully transfer  
data. When daisy chaining is used, the CS should be kept low  
until all the bits of every package are clocked into their respec-  
tive serial registers insuring that the address bits and data bits  
are in the proper decoding location. This would require 20 bits  
of address and data complying to the word format provided in  
Table I if two AD8403 four-channel RDACs are daisy chained.  
Note, only the AD8403 has a SDO pin. During shutdown  
SHDN the SDO output pin is forced to the off (logic high state)  
to disable power dissipation in the pull up resistor. See Figure 40  
for equivalent SDO output circuit schematic.  
Figure 40. Detail SDO Output Schematic of the AD8403  
All digital pins are protected with a series input resistor and par-  
allel Zener ESD structure shown in Figure 41a. This structure  
applies to digital pins CS, SDI, SDO, RS, SHDN, CLK. The  
digital input ESD protection allows for mixed power supply  
applications where +5 V CMOS logic can be used to drive an  
AD8400/AD8402 or AD8403 operating from a +3 V power sup-  
ply. The analog pins A, B, W are protected with a 20 series  
resistor and parallel Zener, see Figure 41b.  
1k  
DIGITAL  
LOGIC  
PINS  
Figure 41a. Equivalent ESD Protection Circuits  
20Ω  
A, B, W  
The data setup and data hold times in the specification table de-  
termine the data valid time requirements. The last 10 bits of the  
data word entered into the serial register are held when CS re-  
turns high. At the same time CS goes high it gates the address  
decoder, which enables one of the two (AD8402) or four  
(AD8403) positive edge triggered RDAC latches. See Figure 39  
detail and Table III Address Decode Table.  
Figure 41b. Equivalent ESD Protection Circuit (Analog  
Pins)  
RDAC  
10kΩ  
A
B
C
C
A
B
C
W
120pF  
Table III. Address Decode Table  
DW  
256  
DW  
256  
C
= 90.4pF · (1 –  
) + 30pF  
C
= 90.4pF · (  
) + 30pF  
B
A
A1  
A0  
Latch Decoded  
W
0
0
1
1
0
1
0
1
RDAC#1  
RDAC#2  
RDAC#3 AD8403 Only  
RDAC#4 AD8403 Only  
Figure 42. RDAC Circuit Simulation Model for RDAC =  
10 kΩ  
–14–  
REV. B  
AD8400/AD8402/AD8403  
The ac characteristics of the RDACs are dominated by the inter-  
nal parasitic capacitances and the external capacitive loads. The  
–3 dB bandwidth of the AD8403AN10 (10 kresistor) mea-  
sures 600 kHz at half scale as a potentiometer divider. Figure 23  
provides the large signal BODE plot characteristics of the three  
available resistor versions 10 k, 50 k, and 100 k. The gain  
flatness versus frequency graph, Figure 26, predicts filter appli-  
cations performance. A parasitic simulation model has been de-  
veloped, and is shown in Figure 42. Listing I provides a macro  
model net list for the 10 kRDAC:  
Certain boundary conditions must be satisfied for proper  
AD8400/AD8402/AD8403 operation. First, all analog signals  
must remain within the 0 to VDD range used to operate the  
single-supply AD8400/AD8402/AD8403 products. For standard  
potentiometer divider applications, the wiper output can be  
used directly. For low resistance loads, buffer the wiper with a  
suitable rail-to-rail op amp such as the OP291 or the OP279.  
Second, for ac signals and bipolar dc adjustment applications, a  
virtual ground will generally be needed. Whatever method is  
used to create the virtual ground, the result must provide the  
necessary sink and source current for all connected loads, in-  
cluding adequate bypass capacitance. Figure 33 shows one  
channel of the AD8402 connected in an inverting program-  
mable gain amplifier circuit. The virtual ground is set at +2.5 V  
which allows the circuit output to span a ±2.5 volt range with  
respect to virtual ground. The rail-to-rail amplifier capability is  
necessary for the widest output swing. As the wiper is adjusted  
from its midscale reset position (80H) toward the A terminal  
(code FFH), the voltage gain of the circuit is increased in suc-  
cessfully larger increments. Alternatively, as the wiper is ad-  
justed toward the B terminal (code 00H), the signal becomes  
attenuated. The plot in Figure 43 shows the wiper settings for a  
100:1 range of voltage gain (V/V). Note the ±10 dB of pseudo-  
logarithmic gain around 0 dB (1 V/V). This circuit is mainly  
useful for gain adjustments in the range of 0.14 V/V to 4 V/V;  
beyond this range the step sizes become very large and the resis-  
tance of the driving circuit can become a significant term in the  
gain equation.  
Listing I. Macro Model Net List for RDAC  
.PARAM DW=255, RDAC=10E3  
*
.SUBCKT DPOT (A,W,)  
*
CA  
RAW  
CW  
RBW  
CB  
*
A
A
W
W
B
0
W
0
B
0
{DW/256*90.4E-12+30E-12}  
{(1-DW/256)*RDAC+50}  
120E-12  
{DW/256*RDAC+50}  
{(1-DW/256)*90.4E-12+30E-12}  
.ENDS DPOT  
The total harmonic distortion plus noise (THD+N) is measured  
at 0.003% in an inverting op amp circuit using an offset ground  
and a rail-to-rail OP279 amplifier, Figure 33. Thermal noise is  
primarily Johnson noise, typically 9 nV/Hz for the 10 kver-  
sion at f = 1 kHz. For the 100 kdevice, thermal noise becomes  
29 nV/Hz. Channel-to-channel crosstalk measures less than  
–65 dB at f = 100 kHz. To achieve this isolation, the extra ground  
pins provided on the package to segregate the individual RDACs  
must be connected to circuit ground. AGND and DGND pins  
should be at the same voltage potential. Any unused potentio-  
meters in a package should be connected to ground. Power sup-  
ply rejection is typically –35 dB at 10 kHz (care is needed to  
minimize power supply ripple in high accuracy applications).  
256  
224  
192  
160  
128  
96  
APPLICATIONS  
64  
The digital potentiometer (RDAC) allows many of the applica-  
tions of trimming potentiometers to be replaced by a solid-state  
solution offering compact size, freedom from vibration, shock  
and open contact problems encountered in hostile environ-  
ments. A major advantage of the digital potentiometer is its  
programmability. Any settings can be saved for later recall in  
system memory.  
32  
0
0.1  
1.0  
10  
INVERTING GAIN – V/V  
Figure 43. Inverting Programmable Gain Plot  
The two major configurations of the RDAC include the  
potentiometer divider (basic 3-terminal application) and the  
rheostat (2-terminal configuration) connections shown in  
Figures 29 and 30.  
–15–  
REV. B  
AD8400/AD8402/AD8403  
ACTIVE FILTER  
40  
20  
–0.16  
20.0000 k  
One of the standard circuits used to generate a low-pass, high-  
pass or bandpass filter is the state variable active filter. The digi-  
tal potentiometer allows full programmability of the frequency,  
gain and Q of the filter outputs. Figure 44 shows the filter cir-  
cuit using a +2.5 V virtual ground, which allows a ±2.5 VP input  
and output swing. RDAC2 and 3 set the LP, HP and BP cutoff  
and center frequencies respectively. These variable resistors  
should be programmed with the same data (as with ganged po-  
tentiometers) to maintain the best circuit Q. Figure 45 shows  
the measured filter response at the bandpass output as a func-  
tion of the RDAC2 and RDAC3 settings which produce a range  
of center frequencies from 2 kHz to 20 kHz. The filter gain re-  
sponse at the bandpass output is shown in Figure 46. At a cen-  
ter frequency of 2 kHz, the gain is adjusted over a –20 dB to  
+20 dB range determined by RDAC1. Circuit Q is adjusted by  
RDAC4. For more detailed reading on the state variable active  
filter, see Analog Devices’ application note, AN-318.  
0
–20  
–40  
–60  
–80  
200k  
100k  
20  
100  
1k  
FREQUENCY – Hz  
10k  
Figure 45. Programmed Center Frequency Bandpass  
Response  
10k  
40  
HIGH-  
–19.01  
2.00000 k  
PASS  
RDAC4  
B
10k  
0.01µF  
A3  
20  
0
0.01µF  
A4  
~
V
IN  
A1  
B
RDAC1  
B
LOW-  
PASS  
A2  
B
RDAC2  
RDAC3  
±
2.5V  
–20  
–40  
–60  
–80  
BAND-  
PASS  
OP279 × 2  
Figure 44. Programmable State Variable Active Filter  
200k  
100k  
20  
100  
1k  
FREQUENCY – Hz  
10k  
Figure 46. Programmed Amplitude Bandpass Response  
–16–  
REV. B  
AD8400/AD8402/AD8403  
OUTLINE DIMENSIONS  
Dimensions shown in inches and (mm)  
8-Pin Plastic DIP (N-8)  
8-Lead SOIC (SO-8)  
0.1968 (5.00)  
0.1890 (4.80)  
0.430 (10.92)  
0.348 (8.84)  
8
5
4
8
1
5
4
0.280 (7.11)  
0.240 (6.10)  
0.1574 (4.00)  
0.1497 (3.80)  
0.2440 (6.20)  
0.2284 (5.80)  
1
0.325 (8.25)  
0.300 (7.62)  
0.060 (1.52)  
0.015 (0.38)  
PIN 1  
PIN 1  
0.0688 (1.75)  
0.0532 (1.35)  
0.0196 (0.50)  
0.0099 (0.25)  
0.195 (4.95)  
0.115 (2.93)  
x 45°  
0.210 (5.33)  
MAX  
0.0098 (0.25)  
0.0040 (0.10)  
0.130  
(3.30)  
MIN  
0.160 (4.06)  
0.115 (2.93)  
0.015 (0.381)  
0.008 (0.204)  
8°  
0°  
SEATING  
PLANE  
0.0500  
(1.27)  
BSC  
0.0192 (0.49)  
0.0138 (0.35)  
0.100  
(2.54)  
BSC  
0.022 (0.558)  
0.014 (0.356)  
0.070 (1.77)  
0.045 (1.15)  
SEATING  
PLANE  
0.0098 (0.25)  
0.0075 (0.19)  
0.0500 (1.27)  
0.0160 (0.41)  
14-Pin Plastic DIP Package (N-14)  
14-Pin Narrow Body SOIC Package (SO-14)  
14  
1
8
14  
1
8
7
0.280 (7.11)  
0.240 (6.10)  
PIN 1  
0.1574 (4.00)  
0.1497 (3.80)  
7
PIN 1  
0.2440 (6.20)  
0.2284 (5.80)  
0.325 (8.25)  
0.300 (7.62)  
0.795 (20.19)  
0.725 (18.42)  
0.060 (1.52)  
0.015 (0.38)  
0.3444 (8.75)  
0.3367 (8.55)  
0.195 (4.95)  
0.115 (2.93)  
0.210  
(5.33)  
MAX  
0.0196 (0.50)  
0.0099 (0.25)  
x 45  
°
0.0688 (1.75)  
0.0532 (1.35)  
0.130  
(3.30)  
MIN  
0.015 (0.381)  
0.008 (0.204)  
0.160 (4.06)  
0.115 (2.93)  
8
0
°
°
0.0098 (0.25)  
0.0040 (0.10)  
0.0500 (1.27)  
0.0160 (0.41)  
0.0500  
(1.27)  
BSC  
0.0192 (0.49)  
0.0138 (0.35)  
0.0098 (0.25)  
0.0075 (0.19)  
SEATING  
PLANE  
0.022 (0.558)  
0.014 (0.356)  
0.070 (1.77)  
0.045 (1.15)  
0.100  
(2.54)  
BSC  
14-Lead TSSOP  
(RU-14)  
0.201 (5.10)  
0.193 (4.90)  
14  
8
7
1
PIN 1  
0.006 (0.15)  
0.002 (0.05)  
0.0433  
(1.10)  
MAX  
0.028 (0.70)  
0.020 (0.50)  
8°  
0°  
0.0118 (0.30)  
0.0075 (0.19)  
0.0256  
(0.65)  
BSC  
SEATING  
PLANE  
0.0079 (0.20)  
0.0035 (0.090)  
–17–  
REV. B  
AD8400/AD8402/AD8403  
24-Pin Narrow Body Plastic DIP Package (N-24)  
13  
12  
24  
0.280 (7.11)  
0.240 (6.10)  
PIN 1  
1
1.275 (32.30)  
1.125 (28.60)  
0.325 (8.25)  
0.300 (7.62)  
0.015  
(0.38)  
MIN  
0.210  
(5.33)  
MAX  
0.195 (4.95)  
0.115 (2.93)  
0.130  
(3.30)  
MIN  
0.160 (4.06)  
0.115 (2.92)  
0.015 (0.381)  
0.008 (0.203)  
0.022 (0.558)  
0.014 (0.356)  
0.070 (1.77)  
0.045 (1.15)  
0.100 (2.54)  
BSC  
SEATING  
PLANE  
24-Pin SOIC Package (SOL-24)  
24  
13  
0.2992 (7.60)  
0.2914 (7.40)  
0.4193 (10.65)  
PIN 1  
0.3937 (10.00)  
12  
1
0.1043 (2.65)  
0.6141 (15.60)  
0.0926 (2.35)  
0.5985 (15.20)  
0.0291 (0.74)  
0.0098 (0.25)  
x 45  
°
0.0500 (1.27)  
0.0157 (0.40)  
8
0
°
°
0.0118 (0.30)  
0.0040 (0.10)  
0.0192 (0.49)  
0.0138 (0.35)  
0.0500  
(1.27)  
BSC  
0.0125 (0.32)  
0.0091 (0.23)  
24-Lead Thin Surface Mount TSSOP Package (RU-24)  
0.311 (7.90)  
0.303 (7.70)  
24  
13  
12  
1
0.006 (0.15)  
0.002 (0.05)  
PIN 1  
0.0433  
(1.10)  
MAX  
8°  
0°  
0.028 (0.70)  
0.020 (0.50)  
0.0118 (0.30)  
0.0075 (0.19)  
0.0256 (0.65)  
BSC  
SEATING  
PLANE  
0.0079 (0.20)  
0.0035 (0.090)  
–18–  
REV. B  
–19–  
–20–  

相关型号:

AD8402AN10

1-/2-/4-Channel Digital Potentiometers
ADI

AD8402AN10

DUAL 10K DIGITAL POTENTIOMETER, 3-WIRE SERIAL CONTROL INTERFACE, 256 POSITIONS, PDIP14, PLASTIC, MS-001, DIP-14
ROCHESTER

AD8402AN100

1-/2-/4-Channel Digital Potentiometers
ADI

AD8402AN50

1-/2-/4-Channel Digital Potentiometers
ADI

AD8402ANZ10

1-/2-/4-Channel Digital Potentiometers
ADI

AD8402AR1

1-/2-/4-Channel Digital Potentiometers
ADI

AD8402AR1-REEL

1-/2-/4-Channel Digital Potentiometers
ADI

AD8402AR10

1-/2-/4-Channel Digital Potentiometers
ADI

AD8402AR10-REEL

1-/2-/4-Channel Digital Potentiometers
ADI

AD8402AR100

1-/2-/4-Channel Digital Potentiometers
ADI

AD8402AR100-REEL

1-/2-/4-Channel Digital Potentiometers
ADI

AD8402AR50

1-/2-/4-Channel Digital Potentiometers
ADI