AD8221 [ADI]

Precision Instrumentation Amplifier; 精密仪表放大器器
AD8221
型号: AD8221
厂家: ADI    ADI
描述:

Precision Instrumentation Amplifier
精密仪表放大器器

仪表放大器
文件: 总20页 (文件大小:1116K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Precision Instrumentation Amplifier  
AD8221  
CONNECTION DIAGRAM  
FEATURES  
Available in space-saving MSOP package  
Gain set with 1 external resistor (gain range 1 to 1000)  
Wide power supply range: ±2.3 V to ±18 V  
Temperature range for specified performance:  
–40°C to +85°C  
1
2
3
4
8
7
6
5
+V  
–IN  
S
R
R
V
OUT  
G
G
REF  
–V  
+IN  
S
AD8221  
TOP VIEW  
Operational up to 125°C1  
EXCELLENT AC SPECIFICATONS  
80 dB min CMRR to 10 kHz ( G = 1)  
825 kHz –3 dB bandwidth (G = 1)  
2 V/µs slew rate  
Figure 1. SOIC and MSOP Connection Diagram  
LOW NOISE  
120  
110  
100  
90  
8 nV/√Hz, @ 1 kHz, max input voltage noise  
0.25 µV p-p input noise (0.1 Hz to 10 Hz)  
HIGH ACCURACY DC PERFORMANCE (AD8221BR)  
90 dB min CMRR (G = 1)  
25 µV max input offset voltage  
0.3 µV/°C max input offset drift  
0.4 nA max input bias current  
AD8221  
COMPETITOR 1  
80  
70  
APPLICATIONS  
Weigh scales  
60  
COMPETITOR 2  
Industrial process controls  
Bridge amplifiers  
50  
40  
Precision data acquisition systems  
Medical instrumentation  
Strain gages  
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
Figure 2. Typical CMRR vs. Frequency for G = 1  
Transducer interfaces  
GENERAL DESCRIPTION  
Programmable gain affords the user design flexibility. A single  
resistor sets the gain from 1 to 1000. The AD8221 operates on  
both single and dual supplies, and is well suited for applications  
where 10 V input voltages are encountered.  
The AD8221 is a gain programmable, high performance instru-  
mentation amplifier that delivers the industrys highest CMRR  
over frequency. The CMRR of instrumentation amplifiers on  
the market today falls off at 200 Hz. In contrast, the AD8221  
maintains a minimum CMRR of 80 dB to 10 kHz for all grades  
at G = 1. High CMRR over frequency allows the AD8221 to  
reject wideband interference and line harmonics, greatly  
simplifying filter requirements. Possible applications include  
precision data acquisition, biomedical analysis, and aerospace  
instrumentation.  
The AD8221 is available in low cost 8-lead SOIC and MSOP  
packages, both of which offer the industrys best performance.  
The MSOP requires half the board space of the SOIC, making it  
ideal for multichannel or space-constrained applications.  
Performance is specified over the entire industrial temperature  
range of –40°C to +85°C for all grades. Furthermore, the  
AD8221 is operational from –40°C to +125°C1.  
Low voltage offset, low offset drift, low gain drift, high gain  
accuracy, and high CMRR make this part an excellent choice in  
applications that demand the best dc performance possible,  
such as bridge signal conditioning.  
1 See Typical Performance Curves for expected operation from 85°C to 125°C.  
Rev. A  
Information furnished by Analog Devices is believed to be accurate and reliable.  
However, no responsibility is assumed by Analog Devices for its use, nor for any  
infringements of patents or other rights of third parties that may result from its use.  
Specifications subject to change without notice. No license is granted by implication  
or otherwise under any patent or patent rights of Analog Devices. Trademarks and  
registered trademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.326.8703  
www.analog.com  
© 2003 Analog Devices, Inc. All rights reserved.  
 
AD8221  
TABLE OF CONTENTS  
Specifications..................................................................................... 3  
Input Protection ......................................................................... 15  
RF Interference ........................................................................... 16  
Precision Strain Gage................................................................. 16  
Absolute Maximum Ratings............................................................ 5  
ESD Caution.................................................................................. 5  
Typical Performance Characteristics ............................................. 6  
Theory of Operation ...................................................................... 13  
Gain Selection............................................................................. 14  
Layout........................................................................................... 14  
Reference Terminal .................................................................... 15  
Power Supply Regulation and Bypassing ................................ 15  
Input Bias Current Return Path................................................ 15  
Conditioning 10 V Signals for a +5 V Differential Input  
ADC ............................................................................................. 17  
AC-Coupled Instrumentation Amplifier ................................ 17  
Outline Dimensions....................................................................... 18  
Ordering Guide .......................................................................... 18  
REVISION HISTORY  
Revision A  
11/03—Data Sheet Changed from Rev. 0 to Rev. A  
Change  
Page  
Changes to Features...............................................................................1  
Changes to Specifications section .......................................................4  
Change to Theory of Operation section...........................................13  
Change to Gain Selection section......................................................14  
Rev. A | Page 2 of 20  
AD8221  
SPECIFICATIONS  
Table 1. VS = 15 V, VREF = 0 V, TA = +25°C, G = 1, RL = 2 kΩ, unless otherwise noted  
AR Grade  
BR Grade  
ARM Grade  
Parameter  
Conditions  
Min Typ Max Min Typ Max Min Typ Max Unit  
COMMON-MODE  
REJECTION RATIO (CMRR)  
CMRR DC to 60 Hz with  
1 kΩ Source Imbalance  
VCM = –10 V to +10 V  
G = 1  
80  
90  
80  
dB  
dB  
dB  
dB  
G = 10  
100  
120  
130  
110  
130  
140  
100  
120  
130  
G = 100  
G = 1000  
CMRR at 10 kHz  
G = 1  
VCM = –10 V to +10 V  
80  
80  
80  
dB  
dB  
dB  
dB  
G = 10  
90  
100  
110  
110  
90  
G = 100  
G = 1000  
100  
100  
100  
100  
eNI2 + (eNO/G)2  
RTI noise =  
NOISE  
Voltage Noise, 1 kHz  
Input Voltage Noise, eNI  
Output Voltage Noise, eNO  
RTI  
VIN+, VIN–, VREF = 0  
f = 0.1 Hz to 10 Hz  
8
8
8
nV/√Hz  
nV/√Hz  
75  
75  
75  
G = 1  
2
2
2
µV p-p  
µV p-p  
µV p-p  
fA/√Hz  
pA p-p  
G = 10  
0.5  
0.25  
40  
6
0.5  
0.25  
40  
6
0.5  
0.25  
40  
6
G = 100 to 1000  
Current Noise  
f = 1 kHz  
f = 0.1 Hz to 10 Hz  
VOLTAGE OFFSET1  
Input Offset, VOSI  
Over Temperature  
Average TC  
VS = 5 V to 15 V  
T = –40°C to +85°C  
60  
25  
70  
µV  
86  
45  
135  
0.9  
600  
1.00  
9
µV  
0.4  
300  
0.66  
6
0.3  
200  
0.45  
5
µV/°C  
µV  
Output Offset, VOSO  
Over Temperature  
Average TC  
VS = 5 V to 15 V  
T = –40°C to +85°C  
mV  
µV/°C  
Offset RTI vs. Supply (PSR)  
G = 1  
VS = 2.3 V to 18 V  
90  
110  
120  
130  
140  
94  
110  
130  
140  
150  
90  
100  
120  
140  
140  
dB  
dB  
dB  
dB  
G = 10  
110  
124  
130  
114  
130  
140  
100  
120  
120  
G = 100  
G = 1000  
INPUT CURRENT  
Input Bias Current  
Over Temperature  
Average TC  
0.5  
1.5  
2.0  
0.2  
0.4  
1
0.5  
2
3
nA  
T = –40°C to +85°C  
T = –40°C to +85°C  
nA  
1
1
3
pA/°C  
nA  
Input Offset Current  
Over Temperature  
Average TC  
0.2  
0.6  
0.8  
0.1  
0.4  
0.6  
0.3  
1
1.5  
nA  
1
1
3
pA/°C  
REFERENCE INPUT  
RIN  
20  
50  
20  
50  
20  
50  
kΩ  
µA  
V
IIN  
VIN+, VIN–, VREF = 0  
60  
60  
60  
Voltage Range  
Gain to Output  
–VS  
2.3  
+VS  
–VS  
2.3  
+VS  
–VS  
2.3  
+VS  
V/V  
1 ± 0.0001  
1 ± 0.0001  
1 ± 0.0001  
POWER SUPPLY  
Operating Range  
Quiescent Current  
Over Temperature  
VS = 2.3 V to 18 V  
T = –40°C to +85°C  
18  
1
18  
1
18  
1
V
0.9  
1
0.9  
1
0.9  
1
mA  
mA  
1.2  
1.2  
1.2  
Rev. A | Page 3 of 20  
 
AD8221  
AR Grade  
Typ  
BR Grade  
Typ  
ARM Grade  
Parameter  
DYNAMIC RESPONSE  
Small Signal –3 dB  
Bandwidth  
Conditions  
Min  
Max  
Min  
Max  
Min  
Typ  
Max  
Unit  
G = 1  
825  
562  
100  
14.7  
825  
562  
100  
14.7  
825  
562  
100  
14.7  
kHz  
kHz  
kHz  
kHz  
G = 10  
G = 100  
G = 1000  
Settling Time 0.01%  
G = 1 to 100  
G = 1000  
10 V Step  
10 V Step  
10  
80  
10  
80  
10  
80  
µs  
µs  
Settling Time 0.001%  
G = 1 to 100  
G = 1000  
13  
110  
2
13  
110  
2
13  
110  
2
µs  
µs  
Slew Rate  
G = 1  
1.5  
2
1.5  
2
1.5  
2
V/µs  
V/µs  
G = 5–100  
2.5  
2.5  
2.5  
GAIN  
G = 1 + (49.4 kΩ/RG)  
Gain Range  
Gain Error  
G = 1  
1
1000  
1
1000  
1
1000  
V/V  
VOUT 10 V  
0.03  
0.3  
0.02  
0.15  
0.15  
0.15  
0.1  
0.3  
0.3  
0.3  
%
%
%
%
G = 10  
G = 100  
0.3  
G = 1000  
0.3  
Gain Nonlinearity  
G = 1 to 10  
G = 100  
VOUT = –10 V to +10 V  
RL = 10 kΩ  
3
10  
15  
40  
95  
3
10  
15  
40  
95  
5
15  
ppm  
ppm  
ppm  
ppm  
RL = 10 kΩ  
5
5
7
20  
G = 1000  
RL = 10 kΩ  
10  
10  
10  
10  
10  
15  
50  
G = 1 to 100  
Gain vs. Temperature  
G = 1  
RL = 2 kΩ  
100  
3
10  
2
5
3
10  
ppm/°C  
ppm/°C  
G > 12  
–50  
–50  
–50  
INPUT  
Input Impedance  
Differential  
Common Mode  
100||2  
100||2  
100||2  
100||2  
100||2  
100||2  
GΩ||pF  
GΩ||pF  
V
Input Operating  
Voltage Range3  
VS = 2.3 V to 5 V  
–VS + 1.9  
+VS – 1.1  
–VS + 1.9  
+VS – 1.1  
–VS + 1.9  
+VS – 1.1  
Over Temperature  
T = –40°C to +85°C  
VS = 5 V to 18 V  
–VS + 2.0  
–VS + 1.9  
+VS – 1.2  
+VS – 1.2  
–VS + 2.0  
–VS + 1.9  
+VS – 1.2  
+VS – 1.2  
–VS + 2.0  
–VS + 1.9  
+VS – 1.2  
+VS – 1.2  
V
V
Input Operating  
Voltage Range  
Over Temperature  
OUTPUT  
T = –40°C to +85°C  
RL = 10 kΩ  
–VS + 2.0  
+VS – 1.2  
–VS + 2.0  
+VS – 1.2  
–VS + 2.0  
+VS – 1.2  
V
Output Swing  
VS = 2.3 V to 5 V  
T = –40°C to +85°C  
VS = 5 V to 18 V  
T = –40°C to +85°C  
–VS + 1.1  
–VS + 1.4  
–VS + 1.2  
–VS + 1.6  
+VS – 1.2  
+Vs – 1.3  
+VS – 1.4  
+VS – 1.5  
–VS + 1.1  
–VS + 1.4  
–VS + 1.2  
–VS + 1.6  
+VS – 1.2  
+Vs – 1.3  
+VS – 1.4  
+VS – 1.5  
–VS + 1.1  
–VS + 1.4  
–VS + 1.2  
–VS + 1.6  
+VS – 1.2  
+Vs – 1.3  
+VS – 1.4  
+VS – 1.5  
V
Over Temperature  
Output Swing  
V
V
Over Temperature  
Short-Circuit Current  
TEMPERATURE RANGE  
Specified Performance  
Operational4  
V
18  
18  
18  
mA  
–40  
–40  
+85  
–40  
–40  
+85  
–40  
–40  
+85  
°C  
°C  
+125  
+125  
+125  
1 Total RTI VOS = (VOSI) + (VOSO/G).  
2 Does not include the effects of external resistor RG.  
3 One input grounded. G = 1.  
4 See Typical Performance Curves for expected operation between 85°C to 125°C.  
Rev. A | Page 4 of 20  
 
 
AD8221  
ABSOLUTE MAXIMUM RATINGS  
Table 2. AD8221 Absolute Maximum Ratings  
Stresses above those listed under Absolute Maximum Ratings  
Parameter  
Rating  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions may affect device reliability.  
Supply Voltage  
18 V  
Internal Power Dissipation  
Output Short Circuit Current  
Input Voltage (Common-Mode)  
Differential Input Voltage  
Storage Temperature  
200 mW  
Indefinite  
VS  
Vs  
Specification is for device in free air:  
–65°C to +150°C  
Operational* Temperature Range –40°C to +125°C  
SOIC θJA (4 Layer JEDEC Board) = 121°C/W.  
MSOP θJA (4 Layer JEDEC Board) = 135°C/W.  
*Temperature range for specified performance is –40°C to +85°C. See Typical  
Performance Curves for expected operation from +85°C to +125°C.  
ESD CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumu-  
late on the human body and test equipment and can discharge without detection. Although this  
product features proprietary ESD protection circuitry, permanent damage may occur on devices  
subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recom-  
mended to avoid performance degradation or loss of functionality.  
Rev. A | Page 5 of 20  
 
AD8221  
TYPICAL PERFORMANCE CHARACTERISTICS  
(@+25°C, VS = 15 V, RL = 10 kΩ, unless otherwise noted.)  
3500  
3000  
2500  
2000  
1500  
1000  
500  
1600  
1400  
1200  
1000  
800  
600  
400  
200  
0
0
–0.9  
–0.6  
–0.3  
0
0.3  
0.6  
0.9  
–150  
–100  
–50  
0
50  
100  
150  
INPUT OFFSET CURRENT (nA)  
CMR (µV/V)  
Figure 6. Typical Distribution of Input Offset Current  
Figure 3. Typical Distribution for CMR (G = 1)  
15  
10  
5
2400  
2100  
1800  
1500  
1200  
900  
600  
300  
0
V
= ±15V  
S
0
V
= ±5V  
S
–5  
–10  
–15  
–60  
–40  
–20  
0
20  
40  
60  
–15  
–10  
–5  
0
5
10  
15  
OUTPUT VOLTAGE (V)  
INPUT OFFSET VOLTAGE (µV)  
Figure 7. Input Common-Mode Range vs. Output Voltage, G = 1  
Figure 4. Typical Distribution of Input Offset Voltage  
15  
10  
3000  
2500  
2000  
1500  
1000  
500  
V
= ±15V  
S
5
0
V
= ±5V  
S
–5  
–10  
–15  
0
–1.5  
–1.0  
–0.5  
0
0.5  
1.0  
1.5  
–15  
–10  
–5  
0
5
10  
15  
OUTPUT VOLTAGE (V)  
INPUT BIAS CURRENT (nA)  
Figure 5. Typical Distribution of Input Bias Current  
Figure 8. Input Common-Mode Range vs. Output Voltage, G = 100  
Rev. A | Page 6 of 20  
 
AD8221  
180  
160  
140  
120  
100  
80  
0.80  
0.75  
0.70  
0.65  
0.60  
0.55  
0.50  
0.45  
0.40  
GAIN = 1000  
GAIN = 100  
V
= ±15V  
S
GAIN = 10  
GAIN = 1  
GAIN = 1000  
V
= ±5V  
S
60  
40  
20  
0.1  
1
10  
100  
1k  
10k  
100k  
1M  
–15  
–10  
–5  
0
5
10  
15  
COMMON-MODE VOLTAGE (V)  
FREQUENCY (Hz)  
Figure 9. IBIAS vs. CMV  
Figure 12. Positive PSRR vs. Frequency, RTI (G = 1 to 1000)  
180  
160  
140  
120  
100  
80  
2.00  
1.75  
1.50  
1.25  
1.00  
0.75  
0.50  
0.25  
0
GAIN = 1000  
GAIN = 100  
GAIN = 10  
GAIN = 1  
60  
40  
20  
0.1  
1
10  
100  
1k  
10k  
100k  
1M  
0.01  
0.1  
1
10  
WARM-UP TIME (min)  
FREQUENCY (Hz)  
Figure 10. Change in Input Offset Voltage vs. Warm-Up Time  
Figure 13. Negative PSRR vs. Frequency, RTI (G = 1 to 1000)  
100k  
10k  
1k  
5.0  
4.0  
3.0  
V
= ±15V  
S
2.0  
BEST AVAILABLE FET  
INPUT IN-AMP GAIN = 1  
1.0  
INPUT OFFSET CURRENT  
INPUT BIAS CURRENT  
BEST AVAILABLE FET  
INPUT IN-AMP GAIN = 1000  
0
–1.0  
–2.0  
–3.0  
–4.0  
–5.0  
AD8221 GAIN = 1  
100  
10  
AD8221 GAIN = 1000  
10  
100  
1k  
10k  
100k  
1M  
10M  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
140  
SOURCE RESISTANCE ()  
TEMPERATURE (°C)  
Figure 11. Input Bias Current and Offset Current vs. Temperature  
Figure 14. Total Drift vs. Source Resistance  
Rev. A | Page 7 of 20  
AD8221  
100  
80  
70  
GAIN = 1000  
60  
50  
60  
GAIN = 100  
GAIN = 10  
GAIN = 1  
40  
40  
20  
30  
0
20  
–20  
–40  
–60  
–80  
–100  
10  
0
–10  
–20  
–30  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
140  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
TEMPERATURE (°C)  
Figure 18. CMR vs. Temperature  
Figure 15. Gain vs. Frequency  
+V –0.0  
S
160  
140  
120  
100  
80  
GAIN = 1000  
GAIN = 100  
GAIN = 10  
–0.4  
–0.8  
–1.2  
–1.6  
–2.0  
–2.4  
GAIN = 1000  
GAIN = 1  
+2.4  
+2.0  
+1.6  
+1.2  
+0.8  
+0.4  
GAIN = 10  
GAIN = 100  
60  
–V +0.0  
S
40  
0.1  
0
5
10  
15  
20  
1
10  
100  
1k  
10k  
100k  
1M  
± SUPPLY VOLTAGE (V)  
FREQUENCY (Hz)  
Figure 16. CMRR vs. Frequency, RTI  
Figure 19. Input Voltage Limit vs. Supply Voltage, G = 1  
+V –0.0  
S
160  
140  
120  
100  
80  
–0.4  
–0.8  
–1.2  
–1.6  
–2.0  
GAIN = 1000  
GAIN = 100  
GAIN = 10  
GAIN = 1  
R
R
= 10k  
= 2kΩ  
L
L
GAIN = 100  
+2.0  
+1.6  
+1.2  
+0.8  
+0.4  
GAIN = 1000  
R
R
= 2kΩ  
L
L
60  
= 10kΩ  
GAIN = 10  
10k  
–V +0.0  
S
40  
0.1  
0
5
10  
± SUPPLY VOLTAGE (V)  
15  
20  
1
10  
100  
1k  
100k  
1M  
FREQUENCY (Hz)  
Figure 20. Output Voltage Swing vs. Supply Voltage, G = 1  
Figure 17. CMRR vs. Frequency, RTI, 1 kΩ Source Imbalance  
Rev. A | Page 8 of 20  
AD8221  
30  
20  
10  
0
V
= ±15V  
V
= ±15V  
S
S
1
10  
100  
1k  
10k  
–10  
–8  
–6  
–4  
–2  
0
2
4
6
8
10  
LOAD RESISTANCE ()  
OUTPUT VOLTAGE (V)  
Figure 21. Output Voltage Swing vs. Load Resistance  
Figure 24. Gain Nonlinearity, G = 100, RL = 10 kΩ  
+V –0  
S
V
= ±15V  
S
–1  
–2  
–3  
SOURCING  
+3  
+2  
+1  
SINKING  
–V +0  
S
0
1
2
3
4
5
6
7
8
9
10 11 12  
–10  
–8  
–6  
–4  
–2  
0
2
4
6
8
10  
OUTPUT CURRENT (mA)  
OUTPUT VOLTAGE (V)  
Figure 22. Output Voltage Swing vs. Output Current, G = 1  
Figure 25. Gain Nonlinearity, G = 1000, RL = 10 kΩ  
1k  
V
= ±15V  
S
GAIN = 1  
100  
10  
1
GAIN = 10  
GAIN = 100  
GAIN = 1000  
GAIN = 1000  
BW LIMIT  
1
10  
100  
1k  
10k  
100k  
–10  
–8  
–6  
–4  
–2  
0
2
4
6
8
10  
FREQUENCY (Hz)  
OUTPUT VOLTAGE (V)  
Figure 26. Voltage Noise Spectral Density vs. Frequency (G = 1 to 1000)  
Figure 23. Gain Nonlinearity, G = 1, RL = 10 kΩ  
Rev. A | Page 9 of 20  
AD8221  
2µV/DIV  
1s/DIV  
5pA/DIV  
1s/DIV  
Figure 27. 0.1 Hz to 10 Hz RTI Voltage Noise (G = 1)  
Figure 30. 0.1 Hz to 10 Hz Current Noise  
30  
25  
20  
15  
10  
5
V
= ±15V  
S
GAIN = 1  
GAIN = 10, 100, 1000  
0
1k  
10k  
100k  
1M  
0.1µV/DIV  
1s/DIV  
FREQUENCY (Hz)  
Figure 28. 0.1 Hz to 10 Hz RTI Voltage Noise (G = 1000)  
Figure 31. Large Signal Frequency Response  
1k  
100  
10  
5V/DIV  
7.9  
8.5  
µ
s TO 0.01%  
10mV/DIV  
µs TO 0.001%  
1
10  
100  
1k  
10k  
20µs/DIV  
FREQUENCY (Hz)  
Figure 29. Current Noise Spectral Density vs. Frequency  
Figure 32. Large Signal Pulse Response and Settling Time (G = 1), 0.002%/div  
Rev. A | Page 10 of 20  
AD8221  
5V/div  
4.9  
5.6  
µ
s TO 0.01%  
10mV/div  
µs TO 0.001%  
20mV/DIV  
20  
µs/div  
4µ  
s/DIV  
Figure 33. Large Signal Pulse Response and Settling Time (G = 10),  
0.002%/div  
Figure 36. Small Signal Response, G = 1, RL = 2 kΩ, CL = 100 pF  
5V/DIV  
10.3  
13.4  
µ
µ
s TO 0.01%  
s TO 0.001%  
10mV/DIV  
20mV/DIV  
20µ  
s/DIV  
4µs/DIV  
Figure 34. Large Signal Pulse Response and Settling Time (G = 100),  
0.002%/div  
Figure 37. Small Signal Response, G = 10, RL = 2 kΩ, CL = 100 pF  
5V/DIV  
83  
112  
µ
s TO 0.01%  
10mV/DIV  
µs TO 0.001%  
20mV/DIV  
20µ  
s/DIV  
10µs/DIV  
Figure 35. Large Signal Pulse Response and Settling Time (G = 1000),  
0.002%/div  
Figure 38. Small Signal Response, G = 100, RL = 2 kΩ, CL = 100 pF  
Rev. A | Page 11 of 20  
AD8221  
1k  
100  
10  
2
SETTLED TO 0.001%  
SETTLED TO 0.01%  
20mV/DIV  
1
1
10  
100  
1k  
100µs/DIV  
GAIN  
Figure 41. Settling Time vs. Gain for a 10 V Step  
Figure 39. Small Signal Response, G = 1000, RL = 2 kΩ, CL = 100 pF  
15  
10  
SETTLED TO 0.001%  
SETTLED TO 0.01%  
5
0
0
5
10  
15  
20  
OUTPUT VOLTAGE STEP SIZE (V)  
Figure 40. Settling Time vs. Step Size (G = 1)  
Rev. A | Page 12 of 20  
AD8221  
THEORY OF OPERATION  
V
I
I
B
A1  
A2  
I
COMPENSATION  
I
COMPENSATION  
B
B
10k  
C1  
C2  
+V  
–V  
S
10kΩ  
10kΩ  
OUTPUT  
A3  
+V  
S
+V  
S
+V  
–V  
R2  
+V  
S
R1 24.7kΩ  
24.7kΩ  
S
400Ω  
+V  
400Ω  
S
S
Q2  
–IN  
Q1  
+IN  
REF  
10kΩ  
R
G
–V  
–V  
S
S
S
–V  
–V  
S
S
Figure 42. Simplified Schematic  
The AD8221 is a monolithic instrumentation amplifier based  
on the classic 3-op amp topology. Input transistors Q1 and Q2  
are biased at a fixed current, so that any differential input signal  
will force the output voltages of A1 and A2 to change accor-  
dingly. A signal applied to the input creates a current through  
RG, R1, and R2, such that the outputs of A1 and A2 deliver the  
correct voltage. Topologically, Q1, A1, R1 and Q2, A2, R2 can be  
viewed as precision current feedback amplifiers. The amplified  
differential and common-mode signals are applied to a dif-  
ference amplifier that rejects the common-mode voltage but  
amplifies the differential voltage. The difference amplifier  
employs innovations that result in low output offset voltage as  
well as low output offset voltage drift. Laser-trimmed resistors  
allow for a highly accurate in-amp with gain error typically less  
than 20 ppm and CMRR that exceeds 90 dB (G = 1).  
Since the input amplifiers employ a current feedback architec-  
ture, the AD8221s gain-bandwidth product increases with gain,  
resulting in a system that does not suffer from the expected  
bandwidth loss of voltage feedback architectures at higher gains.  
In order to maintain precision even at low input levels, special  
attention was given to the AD8221s design and layout, resulting  
in an in-amp whose performance satisfies the most demanding  
applications.  
A unique pinout enables the AD8221 to meet a CMRR  
specification of 80 dB at 10 kHz (G = 1) and 110 dB at 1 kHz  
(G = 1000). The balanced pinout, shown in Figure 43, reduces  
the parasitics that had, in the past, adversely affected CMRR  
performance. In addition, the new pinout simplifies board  
layout because associated traces are grouped together. For  
example, the gain setting resistor pins are adjacent to the inputs,  
and the reference pin is next to the output.  
Using superbeta input transistors and an IB compensation  
scheme, the AD8221 offers extremely high input impedance,  
low IB, low IB drift, low IOS, low input bias current noise, and  
extremely low voltage noise of 8 nV/√Hz.  
1
2
3
4
8
7
6
5
+V  
V
–IN  
S
R
G
OUT  
The transfer function of the AD8221 is  
R
REF  
G
+IN  
–V  
S
AD8221  
49.4kΩ  
G =1+  
TOP VIEW  
RG  
Figure 43. Pinout Diagram  
Users can easily and accurately set the gain using a single,  
standard resistor.  
Rev. A | Page 13 of 20  
 
 
 
AD8221  
Grounding  
GAIN SELECTION  
The AD8221s output voltage is developed with respect to the  
potential on the reference terminal. Care should be taken to tie  
REF to the appropriate “local ground.”  
Placing a resistor across the RG terminals will set the AD8221s  
gain, which may be calculated by referring to Table 3 or by  
using the gain equation  
In mixed-signal environments, low level analog signals need to  
be isolated from the noisy digital environment. Many ADCs  
have separate analog and digital ground pins. Although it is  
convenient to tie both grounds to a single ground plane, the  
current traveling through the ground wires and PC board may  
cause hundreds of millivolts of error. Therefore, separate analog  
and digital ground returns should be used to minimize the  
current flow from sensitive points to the system ground. An  
example layout is shown in Figure 44 and Figure 45.  
49.4kΩ  
G 1  
RG =  
Table 3. Gains Achieved Using 1% Resistors  
1% Std Table Value of RG (Ω)  
Calculated Gain  
49.9 k  
12.4 k  
5.49 k  
2.61 k  
1.00 k  
499  
1.990  
4.984  
9.998  
19.93  
50.40  
100.0  
249  
199.4  
100  
495.0  
49.9  
991.0  
The AD8221 defaults to G = 1 when no gain resistor is used.  
Gain accuracy is determined by the absolute tolerance of RG.  
The TC of the external gain resistor will increase the gain drift  
of the instrumentation amplifier. Gain error and gain drift are  
kept to a minimum when the gain resistor is not used.  
LAYOUT  
Careful board layout maximizes system performance. Traces  
from the gain setting resistor to the RG pins should be kept as  
short as possible to minimize parasitic inductance. To ensure  
the most accurate output, the trace from the REF pin should  
either be connected to the AD8221s local ground as shown in  
Figure 47, or connected to a voltage that is referenced to the  
AD8221s local ground.  
Figure 44.Top Layer of the AD8221-EVAL  
Common-Mode Rejection  
One benefit of the AD8221s high CMRR over frequency is that  
it has greater immunity to disturbances such as line noise and  
its associated harmonics than do typical in-amps. These,  
typically, have CMRR fall-off at 200 Hz; common-mode filters  
are often used to compensate for this shortcoming. The AD8221  
is able to reject CMRR over a greater frequency range, reducing  
the need for filtering.  
A well implemented layout helps to maintain the AD8221s high  
CMRR over frequency. Input source impedance and capacitance  
should be closely matched. In addition, source resistance and  
capacitance should be placed as close to the inputs as  
permissible.  
Figure 45.Bottom Layer of the AD8221-EVAL  
Rev. A | Page 14 of 20  
 
 
 
 
AD8221  
+V  
S
REFERENCE TERMINAL  
As shown in Figure 42, the reference terminal, REF, is at one end  
of a 10 kΩ resistor. The instrumentation amplifier’s output is  
referenced to the voltage on the REF terminal; this is useful  
when the output signal needs to be offset to a precise midsupply  
level. For example, a voltage source can be tied to the REF pin to  
level-shift the output so that the AD8221 can interface with an  
ADC. The allowable reference voltage range is a function of the  
gain, input and supply voltage. The REF pin should not exceed  
either +VS or –VS by more than 0.5 V.  
AD8221  
REF  
REF  
REF  
–V  
S
TRANSFORMER  
+V  
S
For best performance, source impedance to the REF terminal  
should be kept low, since parasitic resistance can adversely affect  
CMRR and gain accuracy.  
AD8221  
POWER SUPPLY REGULATION AND BYPASSING  
A stable dc voltage should be used to power the instrumenta-  
tion amplifier. Noise on the supply pins may adversely affect  
performance. Bypass capacitors should be used to decouple the  
amplifier.  
–V  
S
THERMOCOUPLE  
+V  
S
A 0.1 µF capacitor should be placed close to each supply pin. As  
shown in Figure 47, a 10 µF tantalum capacitor may be used  
further away from the part. In most cases, it may be shared by  
other precision integrated circuits.  
C
C
R
R
1
fHIGH-PASS  
=
2πRC  
AD8221  
Figure 46  
–V  
S
+V  
CAPACITOR COUPLED  
S
Figure 48. Creating an IBIAS Path  
0.1µF  
10µF  
INPUT PROTECTION  
+IN  
–IN  
All terminals of the AD8221 are protected against ESD1. In  
addition, the input structure allows for dc overload conditions  
below the negative supply, –Vs. The internal 400 Ω resistors  
limit current in the event of a negative fault condition. However,  
in the case of a dc overload voltage above the positive supply,  
+Vs, a large current would flow directly through the ESD diode  
to the positive rail. Therefore, an external resistor should be  
used in series with the input to limit current for voltages above  
+Vs. In either scenario, the AD8221 can safely handle a  
continuous 6 mA current, I = VIN/REXT for positive overvoltage  
and I = VIN/(400 Ω + REXT) for negative overvoltage.  
V
OUT  
AD8221  
LOAD  
REF  
0.1µF  
10µF  
–V  
S
Figure 47. Supply Decoupling,. REF and Output Referred to Local Ground  
INPUT BIAS CURRENT RETURN PATH  
The AD8221s input bias current must have a return path to  
common. When the source, such as a thermocouple, cannot  
provide a return current path, one should be created, as shown  
in Figure 48.  
For applications where the AD8221 encounters extreme  
overload voltages, as in cardiac defibrillators, external series  
resistors and low leakage diode clamps such as BAV199Ls,  
FJH1100s, or SP720s should be used.  
1 1 kV—Human Body Model.  
Rev. A | Page 15 of 20  
 
 
 
 
AD8221  
RF INTERFERENCE  
RF rectification is often a problem when amplifiers are used in  
applications where there are strong RF signals. The disturbance  
may appear as a small dc offset voltage. High frequency signals  
can be filtered with a low-pass R-C network placed at the input  
of the instrumentation amplifier, as shown in Figure 49. The  
filter limits the input signal bandwidth according to the  
following relationship:  
CD affects the difference signal and CC affects the common-  
mode signal. Values of R and CC should be chosen to minimize  
RFI. Mismatch between the R × CC at the positive input and the  
R × CC at negative input will degrade the AD8221s CMRR. By  
using a value of CD one magnitude larger than CC, the effect of  
the mismatch is reduced, and hence, performance is improved.  
PRECISION STRAIN GAGE  
1
FilterFreqDiff =  
The AD8221s low offset and high CMRR over frequency make  
it an excellent candidate for bridge measurements. As shown in  
Figure 50, the bridge can be directly connected to the inputs of  
the amplifier.  
R(2CD +CC)  
1
FilterFreqCM =  
RCC  
+5V  
10µF  
0.1µF  
where CD 10CC.  
350Ω  
350Ω  
350Ω  
350Ω  
+IN  
–IN  
+
+15V  
R
AD8221  
0.1µF  
10µF  
+2.5V  
C
1nF  
C
D
C
R
+IN  
R1  
Figure 50. Precision Strain Gage  
4.02kΩ  
V
OUT  
C
10nF  
1nF  
AD8221  
499Ω  
R
REF  
–IN  
4.02kΩ  
C
0.1µF  
10µF  
–15V  
Figure 49. RFI Suppression  
Rev. A | Page 16 of 20  
 
 
 
AD8221  
+12V  
+2.5V  
+12V  
R3 1k  
0.1µF  
+5V  
10nF  
+5V  
+12V  
10µF  
0.1µF  
R6 27.4Ω  
AD8022  
C1  
470pF  
(½)  
0.1µF  
+IN  
–IN  
AV  
DD  
DV  
DD  
V
V
IN+  
IN–  
0.1µF  
AD8221  
OP27  
R1  
10kΩ  
–12V  
AD7723  
C2  
REF  
R5  
499Ω  
220µF  
+12V  
R2  
10kΩ  
0.1µF  
AGND VGND REF1 REF2  
0.1µF  
10µF  
0.1µF  
R7 27.4Ω  
–12V  
AD8022  
–12V  
(½)  
R4 1kΩ  
220nF  
10nF  
0.1µF  
2.5V  
22µF  
+5V  
V
V
OUT  
IN  
–12V  
10µF  
0.1µF  
AD780  
GND  
Figure 51. Interfacing to a Differential Input ADC  
CONDITIONING 1ꢀ V SIGNALS FOR A +5 V  
DIFFERENTIAL INPUT ADC  
AC-COUPLED INSTRUMENTATION AMPLIFIER  
Measuring small signals that are in the amplifiers noise or offset  
can be a challenge. Figure 52 shows a circuit that can improve  
the resolution of small ac signals. The large gain reduces the  
referred input noise of the amplifier to 8 nV/√Hz. Thus, smaller  
signals can be measured since the noise floor is lower. DC  
offsets that would have been gained by 100 are eliminated from  
the AD8221s output by the integrator feedback network.  
There is a need in many applications to condition ±10 V signals.  
However, many of today’s ADCs and digital ICs operate on  
much lower, single-supply voltages. Furthermore, new ADCs  
have differential inputs because they provide better common-  
mode rejection, noise immunity, and performance at low supply  
voltages. Interfacing a ±10 V, single-ended instrumentation  
amplifier to a +5 V, differential ADC may be a challenge.  
Interfacing the in-amp to the ADC requires attenuation and a  
level shift. A solution is shown in Figure 51.  
At low frequencies, the OP1177 forces the AD8221s output to  
0 V. Once a signal exceeds fHIGH-PASS, the AD8221 outputs the  
amplified input signal.  
In this topology, an OP27 sets the AD8221s reference voltage.  
The in-amp’s output signal is taken across the OUT pin and the  
REF pin. Two 1 kΩ resistors and a 499 Ω resistor attenuate the  
10 V signal to +4 V. An optional capacitor, C1, may serve as an  
ant aliasing filter. An AD8022 is used to drive the ADC.  
+V  
S
0.1µF  
+IN  
R
1
fHIGH-PASS  
=
2πRC  
This topology has five benefits. In addition to level-shifting and  
attenuation, very little noise is contributed to the system. Noise  
from R1 and R2 is common to both of the ADCs inputs and is  
easily rejected. R5 adds a third of the dominant noise and there-  
fore makes a negligible contribution to the noise of the system.  
The attenuator divides the noise from R3 and R4. Likewise, its  
noise contribution is negligible. The fourth benefit of this inter-  
face circuit is that the AD8221s acquisition time is reduced by a  
factor of 2. With the help of the OP27, the AD8221 only needs  
to deliver one-half of the full swing; therefore, signals can settle  
more quickly. Lastly, the AD8022 settles quickly, which is helpful  
because the shorter the settling time, the more bits that can be  
resolved when the ADC acquires data. This configuration pro-  
vides attenuation, a level-shift, and a convenient interface with a  
differential input ADC while maintaining performance.  
AD8221  
499Ω  
R
REF  
15.8kΩ  
C 1µF  
–IN  
+V  
S
0.1µF  
0.1µF  
–V  
S
OP1177  
+V  
–V  
S
S
10µF  
10µF  
0.1µF  
–V  
S
Figure 52. AC-Coupled Circuit  
Rev. A | Page 17 of 20  
 
 
 
AD8221  
OUTLINE DIMENSIONS  
3.00  
BSC  
8
5
4
4.90  
BSC  
3.00  
BSC  
PIN 1  
0.65 BSC  
1.10 MAX  
0.15  
0.00  
0.80  
0.60  
0.40  
8°  
0°  
0.38  
0.22  
0.23  
0.08  
COPLANARITY  
0.10  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MO-187AA  
Figure 53. 8-Lead Mini Small Outline Package [MSOP] (RM-8)  
Dimensions shown in millimeters  
5.00 (0.1968)  
4.80 (0.1890)  
8
1
5
4
6.20 (0.2440)  
5.80 (0.2284)  
4.00 (0.1574)  
3.80 (0.1497)  
1.27 (0.0500)  
BSC  
0.50 (0.0196)  
0.25 (0.0099)  
× 45°  
1.75 (0.0688)  
1.35 (0.0532)  
0.25 (0.0098)  
0.10 (0.0040)  
8°  
0.51 (0.0201)  
0.31 (0.0122)  
0° 1.27 (0.0500)  
COPLANARITY  
0.10  
0.25 (0.0098)  
0.17 (0.0067)  
SEATING  
PLANE  
0.40 (0.0157)  
COMPLIANT TO JEDEC STANDARDS MS-012AA  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN  
Figure 54. 8-Lead Shrink Small Outline Package [SOIC] (R-8)  
ORDERING GUIDE  
Temperature Range for  
Specified Performance  
Operational1 Temperature  
Range  
Package  
Option  
Model  
Package Description  
8-Lead SOIC  
13" Tape and Reel  
7" Tape and Reel  
8-Lead MSOP  
13" Tape and Reel  
7" Tape and Reel  
8-Lead SOIC  
13" Tape and Reel  
7" Tape and Reel  
Evaluation Board  
Branding  
AD8221AR  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
R-8  
R-8  
R-8  
RM-8  
RM-8  
RM-8  
R-8  
R-8  
R-8  
AD8221AR-REEL  
AD8221AR-REEL7  
AD8221ARM  
AD8221ARM-REEL  
JLA  
JLA  
JLA  
AD8221ARM-REEL7 –40°C to +85°C  
AD8221BR  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
AD8221BR-REEL  
AD8221BR-REEL7  
AD8221-EVAL  
1 See Typical Performance Curves for expected operation from 85°C to 125°C.  
Rev. A | Page 18 of 20  
 
 
AD8221  
NOTES  
Rev. A | Page 19 of 20  
AD8221  
NOTES  
© 2ꢀꢀ3 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
Cꢀ3149–ꢀ–11/ꢀ3(A)  
Rev. A | Page 20 of 20  

相关型号:

AD8221-EVAL

Precision Instrumentation Amplifier
ADI

AD8221AC-P7

Precision Instrumentation Amplifier
ADI

AD8221AR

Precision Instrumentation Amplifier
ADI

AD8221AR-REEL

Precision Instrumentation Amplifier
ADI

AD8221AR-REEL7

Precision Instrumentation Amplifier
ADI

AD8221ARM

Precision Instrumentation Amplifier
ADI

AD8221ARM-REEL

Precision Instrumentation Amplifier
ADI

AD8221ARM-REEL7

Precision Instrumentation Amplifier
ADI

AD8221ARMREEL7

Precision Instrumentation Amplifier
ADI

AD8221ARMZ

Precision Instrumentation Amplifier
ADI

AD8221ARMZ-R7

Precision Instrumentation Amplifier
ADI

AD8221ARMZ-REEL

INSTRUMENTATION AMPLIFIER, 60uV OFFSET-MAX, 0.825MHz BAND WIDTH, PDSO8, MO-187AA, MSOP-8
ADI