AD8219 [ADI]

Zero Drift, Unidirectional Current Shunt Monitor; 零漂移,单向电流分流监控器
AD8219
型号: AD8219
厂家: ADI    ADI
描述:

Zero Drift, Unidirectional Current Shunt Monitor
零漂移,单向电流分流监控器

监控
文件: 总16页 (文件大小:282K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Zero Drift, Unidirectional  
Current Shunt Monitor  
AD8219  
FUNCTIONAL BLOCK DIAGRAM  
FEATURES  
V
S
High common-mode voltage range  
4 V to 80 V operating  
R4  
−0.3 V to +85 V survival  
Buffered output voltage  
Gain = 60 V/V  
Wide operating temperature range: −40°C to +125°C  
Excellent ac and dc performance  
100 nV/°C typical offset drift  
50 µV/°C typical offset  
LDO  
R1  
R2  
–IN  
+IN  
OUT  
R3  
AD8219  
GND  
Figure 1.  
5 ppm/°C typical gain drift  
110 dB typical CMRR at dc  
APPLICATIONS  
High-side current sensing  
48 V telecom  
Power management  
Base stations  
Unidirectional motor control  
Precision high voltage current sources  
GENERAL DESCRIPTION  
The AD8219 is a high voltage, high resolution, current shunt  
amplifier. It features a set gain of 60 V/V, with a maximum  
0.3% gain error over the entire temperature range. The  
buffered output voltage directly interfaces with any typical  
converter. The AD8219 offers excellent input common-mode  
rejection from 4 V to 80 V. The AD8219 performs unidirectional  
current measurements across a shunt resistor in a variety of  
industrial and telecom applications including motor control,  
power management, and base station power amplifier bias  
control.  
The AD8219 offers breakthrough performance throughout  
the −40°C to +125°C temperature range. It features a zero  
drift core, which leads to a typical offset drift of 100 nV/°C  
throughout the operating temperature and common-mode  
voltage range. Special attention is devoted to output linearity  
being maintained throughout the input differential voltage range,  
regardless of the common-mode voltage present, while the  
typical input offset voltage is 50 µ V.  
The AD8219 is offered in a 8-lead MSOP package.  
Rev. 0  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2011 Analog Devices, Inc. All rights reserved.  
 
 
 
 
AD8219  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Amplifier Core............................................................................ 10  
Supply Connections ................................................................... 10  
Output Clamping ....................................................................... 10  
Application Information................................................................ 11  
Output Linearity......................................................................... 11  
Applications Information.............................................................. 12  
High-Side Current Sensing....................................................... 12  
Motor Control Current Sensing ............................................... 12  
Outline Dimensions....................................................................... 13  
Ordering Guide .......................................................................... 13  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Absolute Maximum Ratings............................................................ 4  
ESD Caution.................................................................................. 4  
Pin Configuration and Function Descriptions............................. 5  
Typical Performance Characteristics ............................................. 6  
Theory of Operation ...................................................................... 10  
REVISION HISTORY  
1/11—Revision 0: Initial Version  
Rev. 0 | Page 2 of 16  
 
AD8219  
SPECIFICATIONS  
TOPR = −40°C to +125°C, TA = 25°C, RL = 25 kΩ, input common-mode voltage (VCM) = 4 V (RL is the output load resistor), unless  
otherwise noted.  
Table 1.  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
GAIN  
Initial  
Accuracy  
60  
±0.1  
V/V  
%
VO ≥ 0.1 V dc, TA  
Accuracy over Temperature  
Gain vs. Temperature  
±0.3  
%
TOPR  
TOPR  
±±  
ppm/°C  
VOLTAGE OFFSET  
Offset Voltage (RTI1)  
Over Temperature (RTI1)  
Offset Drift  
±200  
±300  
µV  
µV  
nV/°C  
2±°C  
TOPR  
TOPR  
±100  
130  
INPUT  
Bias Current2  
µA  
µA  
V
mV  
dB  
TA, input common mode = 4 V, VS = 4 V  
TOPR  
Common-mode continuous  
Differential input voltage  
TOPR  
220  
80  
83  
Common-Mode Input Voltage Range  
Differential Input Voltage Range3  
Common-Mode Rejection (CMRR)  
4
0
94  
110  
OUTPUT  
Output Voltage Range Low4  
Output Voltage Range High4  
Output Impedance  
0.01  
V
V
TA  
TA  
VS − 0.1  
2
DYNAMIC RESPONSE  
Small Signal −3 dB Bandwidth  
Slew Rate  
±00  
1
kHz  
V/µs  
NOISE  
0.1 Hz to 10 Hz, (RTI1)  
Spectral Density, 1 kHz, (RTI1)  
POWER SUPPLY  
2.3  
110  
µV p-p  
nV/√Hz  
VS input range  
TOPR  
Operating Range  
4
80  
800  
V
µA  
dB  
Quiescent Current Over Temperature±  
Power Supply Rejection Ratio (PSRR)  
TEMPERATURE RANGE  
For Specified Performance  
100  
−40  
110  
+12±  
°C  
1 RTI = referred to input.  
2 Refer to Figure 8 for further information on the input bias current. This current varies based on the input common-mode voltage. Additionally, the input bias current  
flowing to the +IN pin is also the supply current to the internal LDO.  
3 The differential input voltage is specified as 83 mV maximum because the output is internally clamped to ±.6 V. See the Output Clamping section.  
4 See Figure 19 and Figure 20 for further information on the output range of the AD8219 with various loads. The AD8219 output clamps to a maximum voltage of ±.6 V  
when the voltage at Pin +IN is greater than ±.6 V. When the voltage at +IN is less than ±.6 V, the output reaches a maximum value of (VS − 100 mV).  
± VS (Pin 2) can be connected to a separate supply ranging from 4 V to 80 V, or it can be connected to the positive input pin (+IN) of the AD8219. In this mode, the  
current drawn varies with increasing voltage. See Figure 9.  
Rev. 0 | Page 3 of 16  
 
 
AD8219  
ABSOLUTE MAXIMUM RATINGS  
Table 2.  
Parameter  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Rating  
Maximum Input Voltage ( +IN, −IN to GND)  
Differential Input Voltage (+IN to –IN)  
Human Body Model (HBM) ESD Rating  
Operating Temperature Range (TOPR  
Storage Temperature Range  
−0.3 V to +8± V  
±± V  
±1000 V  
−40°C to +12±°C  
−6±°C to +1±0°C  
Indefinite  
)
Output Short-Circuit Duration  
ESD CAUTION  
Rev. 0 | Page 4 of 16  
 
 
AD8219  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
+IN  
1
2
3
4
8
7
6
5
–IN  
NC  
AD8219  
TOP VIEW  
(Not to Scale)  
V
S
NC  
NC  
GND  
OUT  
NC = NO CONNECT.  
DO NOT CONNECT TO THIS PIN.  
Figure 2. Pin Configuration  
Table 3. Pin Function Descriptions  
Pin No.  
Mnemonic  
Description  
1
2
3
4
±
6
7
8
+IN  
VS  
NC  
GND  
OUT  
NC  
NC  
−IN  
Noninverting Input.  
Supply Pin. Bypass with a standard 0.1 μF capacitor.  
Do Not Connect to This Pin.  
Ground.  
Output.  
Do Not Connect to This Pin.  
Do Not Connect to This Pin.  
Inverting Input.  
Rev. 0 | Page ± of 16  
 
AD8219  
TYPICAL PERFORMANCE CHARACTERISTICS  
40  
30  
–19.0  
–19.5  
–20.0  
–20.5  
–21.0  
–21.5  
–22.0  
–22.5  
–23.0  
–23.5  
–24.0  
20  
10  
0
–10  
–20  
–30  
–40  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
140  
1k  
10k  
100k  
1M  
10M  
TEMPERATURE (°C)  
FREQUENCY (Hz)  
Figure 3. Typical Input Offset vs. Temperature  
Figure 6. Typical Small Signal Bandwidth (VOUT = 200 mV p-p)  
120  
7
6
110  
100  
90  
5
4
3
2
80  
1
70  
0
60  
–1  
–2  
50  
100  
1k  
10k  
100k  
1M  
0
1
2
3
4
5
6
7
8
9
10  
FREQUENCY (Hz)  
DIFFERENTIAL INPUT VOLTAGE (mV)  
Figure 4. Typical CMRR vs. Frequency  
Figure 7. Typical Output Error vs. Differential Input Voltage  
300  
0
–50  
250  
200  
150  
100  
50  
–100  
–150  
–200  
–250  
–300  
–350  
–400  
–450  
–500  
+IN  
–IN  
0
–40  
–20  
0
20  
40  
60  
80  
100  
120  
140  
0
5
10 15 20 25 30 35 40 45 50 55 60 65 70 75 80  
INPUT COMMON-MODE VOLTAGE (V)  
TEMPERATURE (°C)  
Figure 5. Typical Gain Error vs. Temperature  
Figure 8. Input Bias Current vs. Input Common-Mode Voltage  
(Differential Input Voltage = 5 mV) (VS = 5 V)  
Rev. 0 | Page 6 of 16  
 
 
AD8219  
550  
500  
450  
400  
350  
300  
V
= 5V  
CM  
INPUT  
50mV/DIV  
V
= 80V  
CM  
OUTPUT  
2V/DIV  
0
5
10 15 20 25 30 35 40 45 50 55 60 65 70 75 80  
SUPPLY VOLTAGE (V)  
5µs/DIV  
Figure 9. Typical Supply Current vs. Supply Voltage (VS Connected to +IN)  
Figure 12. Rise Time (Differential Input = 50 mV)  
550  
500  
450  
400  
350  
300  
250  
200  
INPUT  
5mV/DIV  
OUTPUT  
200mV/DIV  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
140  
TEMPERATURE (°C)  
1µs/DIV  
Figure 13. Fall Time (Differential Input = 5 mV)  
Figure 10. Typical Supply Current Change over Temperature (VS = 5 V)  
INPUT  
50mV/DIV  
INPUT  
5mV/DIV  
OUTPUT  
2V/DIV  
OUTPUT  
200mV/DIV  
5µs/DIV  
1µs/DIV  
Figure 14. Fall Time (Differential Input = 50 mV)  
Figure 11. Rise Time (Differential Input = 5 mV)  
Rev. 0 | Page 7 of 16  
 
AD8219  
7.0  
6.5  
6.0  
5.5  
5.0  
4.5  
4.0  
INPUT  
100mV/DIV  
OUTPUT  
2V/DIV  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
5µs/DIV  
TEMPERATURE (°C)  
Figure 15. Differential Overload Recovery, Falling  
Figure 18. Maximum Output Source Current vs. Temperature  
5.0  
+125°C  
+25°C  
–40°C  
4.8  
4.5  
4.3  
4.0  
3.8  
3.5  
3.3  
3.0  
INPUT  
100mV/DIV  
OUTPUT  
2V/DIV  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
5µs/DIV  
SOURCE CURRENT (mA)  
Figure 16. Differential Overload Recovery, Rising  
Figure 19. Output Voltage Range vs. Output Source Current (VS = 5 V)  
12  
11  
10  
9
0.40  
+125°C  
+25°C  
–40°C  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0
8
7
6
5
–40  
–20  
0
20  
40  
60  
80  
100  
120  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
TEMPERATURE (°C)  
SINK CURRENT (mA)  
Figure 17. Maximum Output Sink Current vs. Temperature  
Figure 20. Output Voltage Range From Ground vs. Output Sink Current (VS = 5 V)  
Rev. 0 | Page 8 of 16  
 
 
AD8219  
70  
60  
50  
40  
30  
20  
10  
0
INPUT COMMON MODE  
50V/DIV  
OUTPUT  
200mV/DIV  
–6  
–4  
–2  
0
2
4
6
GAIN DRIFT (ppm/°C)  
2µs/DIV  
Figure 24. Gain Drift Distribution  
Figure 21. Common-Mode Step Response (Falling)  
35  
30  
25  
20  
15  
10  
5
INPUT COMMON MODE  
50V/DIV  
OUTPUT  
200mV/DIV  
0
–0.6  
–0.4  
–0.2  
0
0.2  
0.4  
0.6  
OFFSET DRIFT (µV/°C)  
1µs/DIV  
Figure 25. Input Offset Drift Distribution  
Figure 22. Common-Mode Step Response (Rising)  
50  
40  
30  
20  
10  
0
–150  
–100  
–50  
0
50  
100  
150  
V
(µV)  
OSI  
Figure 23. Input Offset Distribution  
Rev. 0 | Page 9 of 16  
AD8219  
THEORY OF OPERATION  
The AD8219 accurately amplifies the input differential signal,  
rejecting high voltage common modes ranging from 4 V to 80 V.  
AMPLIFIER CORE  
In typical applications, the AD8219 amplifies a small differential  
input voltage generated by the load current flowing through  
a shunt resistor. The AD8219 rejects high common-mode vol-  
tages (up to 80 V) and provides a ground referenced, buffered  
output that interfaces with an analog-to-digital converter (ADC).  
Figure 26 shows a simplified schematic of the AD8219.  
The main amplifier uses a novel zero drift architecture, providing  
the end user with breakthrough temperature stability. The offset  
drift is typically less than 100 nV/°C. This performance leads  
to optimal accuracy and dynamic range.  
SUPPLY CONNECTIONS  
The AD8219 includes an internal LDO, which allows the user  
to connect the VS pin to the inputs, or use a separate supply at  
Pin 2 (VS) to power the device. The input range of the supply  
pin is equivalent to the input common-mode range of 4 V to  
80 V. The user must ensure that VS is always connected to the  
+IN pin or a separate low impedance supply, which can range  
from 4 V to 80 V. The VS pin should not be floating.  
4V TO 80V  
GND  
R4  
V
S
I
LOAD  
V
LDO  
R1  
R2  
–IN  
+IN  
2
1
SHUNT  
OUT  
LOAD  
V
4V  
TO  
80V  
R3  
AD8219  
OUTPUT CLAMPING  
GND  
When the input common-mode voltage in the application is  
above 5.6 V, the internal LDO output of the AD8219 also  
reaches its maximum value of 5.6 V, which is the maximum  
output range of the AD8219. Because in typical applications  
the output interfaces with a converter, clamping the AD8219  
output voltage to 5.6 V ensures the ADC input is not damaged  
due to excessive overvoltage.  
Figure 26. Simplified Schematic  
The AD8219 is configured as a difference amplifier. The  
transfer function is  
OUT = (R4/R1) × (V1 V2)  
Resistors R4 and R1 are matched to within 0.01% and have  
values of 1.5 MΩ and 25 kΩ, respectively, meaning an input  
to output total gain of 60 V/V for the AD8219, while the  
difference at V1 and V2 is the voltage across the shunt resistor  
or VIN. Therefore, the input-to-output transfer function for the  
AD8219 is  
OUT = (20) × (VIN)  
Rev. 0 | Page 10 of 16  
 
 
 
 
 
AD8219  
APPLICATION INFORMATION  
Regardless of the common mode, the AD8219 provides a  
OUTPUT LINEARITY  
correct output voltage when the input differential is at least  
1 mV. The ability of the AD8219 to work with very small  
differential inputs, regardless of the common-mode voltage,  
allows for optimal dynamic range, accuracy, and flexibility in  
any current sensing application.  
In all current sensing applications where the common-mode  
voltage can vary significantly, it is important that the current  
sensor maintain the specified output linearity, regardless of  
the input differential or common-mode voltage. The AD8219  
maintains a very high input-to-output linearity even when the  
differential input voltage is very small.  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0
1
2
3
4
5
6
7
8
9
10  
DIFFERENTIAL INPUT VOLTAGE (mV)  
Figure 27. Typical Gain Linearity at Small Differential Inputs  
(VCM = 4 V to 80 V)  
Rev. 0 | Page 11 of 16  
 
 
AD8219  
APPLICATIONS INFORMATION  
HIGH-SIDE CURRENT SENSING  
MOTOR CONTROL CURRENT SENSING  
In this configuration, the shunt resistor is referenced to the  
battery (see Figure 28). High voltage is present at the inputs  
of the current sense amplifier. When the shunt is battery  
referenced, the AD8219 produces a linear ground referenced  
analog output.  
The AD8219 is a practical, accurate solution for high-side  
current sensing in motor control applications. In cases where  
the shunt resistor is referenced to a battery and the current  
flowing is unidirectional (as shown in Figure 30), the AD8219  
monitors the current with no additional supply pin necessary  
provided the battery voltage in the following circuit is in the 4 V  
to 80 V range.  
I
LOAD  
4V  
TO  
BATTERY  
SHUNT  
LOAD  
80V  
I
MOTOR  
–IN  
+IN  
AD8219  
MOTOR  
–IN  
+IN  
V
OUT  
S
GND  
AD8219  
V
OUT  
S
GND  
Figure 28. Battery Referenced Shunt Resistor  
Figure 28 shows the supply pin, VS, connected directly to the  
positive input (+IN) pin. In this mode, the internal LDO powers  
the AD8219 as long as the common-mode voltage at the input  
pins is 4 V to 80 V. Additionally, VS can also be connected to a  
standalone supply that can vary from 4 V to 80 V as shown in  
Figure 29.  
Figure 30. High-Side Current Sensing in Motor Control  
I
LOAD  
4V  
TO  
80V  
SHUNT  
LOAD  
–IN  
+IN  
AD8219  
V
OUT  
S
4V  
TO  
80V  
GND  
Figure 29. Standalone Supply Operation  
Rev. 0 | Page 12 of 16  
 
 
 
 
 
 
AD8219  
OUTLINE DIMENSIONS  
3.20  
3.00  
2.80  
8
1
5
4
5.15  
4.90  
4.65  
3.20  
3.00  
2.80  
PIN 1  
IDENTIFIER  
0.65 BSC  
0.95  
0.85  
0.75  
15° MAX  
1.10 MAX  
0.80  
0.55  
0.40  
0.15  
0.05  
0.23  
0.09  
6°  
0°  
0.40  
0.25  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-187-AA  
Figure 31. 8-Lead Mini Small Outline Package [MSOP]  
(RM-8)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
Temperature Range  
Package Description  
Package Option  
RM-8  
RM-8  
Branding  
Y3S  
Y3S  
AD8219BRMZ  
AD8219BRMZ-RL  
−40°C to +12±°C  
−40°C to +12±°C  
8-Lead Mini Small Outline Package [MSOP]  
8-Lead Mini Small Outline Package [MSOP]  
1 Z = RoHS Compliant Part.  
Rev. 0 | Page 13 of 16  
 
 
 
AD8219  
NOTES  
Rev. 0 | Page 14 of 16  
AD8219  
NOTES  
Rev. 0 | Page 1± of 16  
AD8219  
NOTES  
©2011 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D09415-0-1/11(0)  
Rev. 0 | Page 16 of 16  

相关型号:

AD8219BRMZ

Zero Drift, Unidirectional Current Shunt Monitor
ADI

AD8219BRMZ-RL

Zero Drift, Unidirectional Current Shunt Monitor
ADI

AD821AQ

Voltage-Feedback Operational Amplifier
ETC

AD821BQ

Voltage-Feedback Operational Amplifier
ETC

AD821JN

Voltage-Feedback Operational Amplifier
ETC

AD821JR

Voltage-Feedback Operational Amplifier
ETC

AD821KN

Voltage-Feedback Operational Amplifier
ETC

AD821SQ

Voltage-Feedback Operational Amplifier
ETC

AD822

Single Supply, Rail-to-Rail Low Power FET-Input Op Amp
ADI

AD822-EP

Sinle-Supply, Rail-to-Rail Low Power FET-Input Op Amp
ADI

AD8220

JFET Input Instrumentation Amplifier with Rail-to-Rail Output in MSOP Package
ADI

AD8220-EVAL

JFET Input Instrumentation Amplifier with Rail-to-Rail Output in MSOP Package
ADI