AD822-EP [ADI]

Sinle-Supply, Rail-to-Rail Low Power FET-Input Op Amp; Sinle电源,轨到轨,低功耗, FET输入运算放大器
AD822-EP
型号: AD822-EP
厂家: ADI    ADI
描述:

Sinle-Supply, Rail-to-Rail Low Power FET-Input Op Amp
Sinle电源,轨到轨,低功耗, FET输入运算放大器

运算放大器
文件: 总20页 (文件大小:320K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Single-Supply, Rail-to-Rail  
Low Power FET-Input Op Amp  
AD822-EP  
CONNECTION DIAGRAM  
FEATURES  
True single-supply operation  
Input voltage range extends below ground  
Output swings rail-to-rail  
Single-supply capability from 5 V to 30 V  
Dual-supply capability from 2.5 V to 15 V  
High load drive  
Capacitive load drive of 350 pF, G = +1  
Minimum output current of 15 mA  
Excellent ac performance for low power  
800 μA maximum quiescent current per amplifier  
Unity-gain bandwidth: 1.8 MHz  
Slew rate of 3 V/ꢀs  
8
7
6
5
OUT1  
–IN1  
+IN1  
1
2
3
4
V+  
OUT2  
–IN2  
V–  
+IN2  
AD822-EP  
Figure 1. 8-Lead SOIC_N (R Suffix)  
GENERAL DESCRIPTION  
The AD822-EP is a dual precision, low power FET input op  
amp that can operate from a single supply of 5 V to 30 V or dual  
supplies of ±2ꢀ5 V to ±±5 VIt has true single-supply capability  
with an input voltage range extending below the negative rail,  
allowing the AD822 to accommodate input signals below  
ground in the single-supply modeꢀ Output voltage swing  
extends to within ±0 mV of each rail, providing the maximum  
output dynamic rangeꢀ  
Good dc performance  
800 μV maximum input offset voltage  
2 μV/°C typical offset voltage drift  
25 pA maximum input bias current  
Low noise  
100  
13 nV/√Hz @ 10 kHz  
No phase inversion  
ENHANCED PRODUCT FEATURES  
Supports defense and aerospace applications (AQEC  
standard)  
10  
Military temperature range (−55°C to +125°C)  
Controlled manufacturing baseline  
One assembly/test site  
One fabrication site  
Enhanced product change notification  
Qualification data available on request  
1
10  
APPLICATIONS  
100  
FREQUENCY (Hz)  
10k  
1k  
Photodiode preamps  
Active filters  
Figure 2. Input Voltage Noise vs. Frequency  
Offset voltage of 800 μV maximum, offset voltage drift of 2 μV/°C,  
input bias currents below 25 pA, and low input voltage noise  
provide dc precision with source impedances up to a gigaohmꢀ  
The ±ꢀ8 MHz unity-gain bandwidth, –93 dB THD at ±0 kHz,  
and 3 V/μs slew rate are provided with a low supply current of  
800 μA per amplifierꢀ  
12-bit to 14-bit data acquisition systems  
Low power references and regulators  
Rev. 0  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2010 Analog Devices, Inc. All rights reserved.  
 
AD822-EP  
TABLE OF CONTENTS  
Features ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ ±  
Absolute Maximum Ratings ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ ±0  
Thermal Resistanceꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ ±0  
ESD Cautionꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ ±0  
Typical Performance Characteristics ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ ±±  
Outline Dimensionsꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ ±8  
Ordering Guide ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ ±8  
Enhanced Product Features ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ ±  
Applicationsꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ ±  
Connection Diagram ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ ±  
General Descriptionꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ ±  
Revision History ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ 2  
Specificationsꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ 4  
REVISION HISTORY  
6/10—Revision 0: Initial Version  
Rev. 0 | Page 2 of 20  
 
AD822-EP  
The AD822-EP drives up to 350 pF of direct capacitive load as a  
follower and provides a minimum output current of ±5 mAꢀ  
This allows the amplifier to handle a wide range of load conditionsꢀ  
Its combination of ac and dc performance, plus the outstanding  
load drive capability, results in an exceptionally versatile amplifier  
for the single-supply userꢀ  
1V  
. . . . . . . .  
20µs  
. . . . . . . . . . . .  
1V  
. . . .  
. . . . . . . . . . . . . . . .  
100  
90  
5V  
.
V
OUT  
The AD822-EP operates over the military temperature range of  
−55°C to +±25°Cꢀ  
10  
. . . . . . . .  
. . . .  
. . . . . . . . . . . .  
. . . . . . . . . . . . . . . .  
0%  
The AD822-EP is offered in an 8-lead SOIC_N packageꢀ  
0V  
(GND)  
1V  
Full details about this enhanced product are available in the  
AD822 data sheet, which should be consulted in conjunction  
with this data sheetꢀ  
Figure 3. Gain-of-2 Amplifier; VS = 5 V, 0 V,  
VIN = 2.5 V Sine Centered at 1.25 V, RL = 100 Ω  
Rev. 0 | Page 3 of 20  
AD822-EP  
SPECIFICATIONS  
VS = 0 V, 5 V @ TA = 25°C, VCM = 0 V, VOUT = 0ꢀ2 V, unless otherwise notedꢀ  
Table 1.  
T Grade  
Typ  
Parameter  
Test Conditions/Comments  
Min  
Max  
Unit  
DC PERFORMANCE  
Initial Offset  
0.1  
0.5  
2
2
0.5  
2
0.8  
1.2  
mV  
mV  
μV/°C  
pA  
nA  
pA  
Maximum Offset Over Temperature  
Offset Drift  
Input Bias Current  
At TMAX  
Input Offset Current  
At TMAX  
VCM = 0 V to 4 V  
25  
6
20  
0.5  
nA  
Open-Loop Gain  
VOUT = 0.2 V to 4 V  
RL = 100 kΩ  
500  
400  
80  
80  
15  
1000  
150  
30  
V/mV  
V/mV  
V/mV  
V/mV  
V/mV  
V/mV  
TMIN to TMAX  
TMIN to TMAX  
RL = 10 kΩ  
RL = 1 kΩ  
TMIN to TMAX  
NOISE/HARMONIC PERFORMANCE  
Input Voltage Noise  
f = 0.1 Hz to 10 Hz  
f = 10 Hz  
10  
2
μV p-p  
nV/√Hz  
nV/√Hz  
nV/√Hz  
nV/√Hz  
25  
21  
16  
13  
f = 100 Hz  
f = 1 kHz  
f = 10 kHz  
Input Current Noise  
f = 0.1 Hz to 10 Hz  
f = 1 kHz  
18  
0.8  
fA p-p  
fA/√Hz  
Harmonic Distortion  
f = 10 kHz  
RL = 10 kΩ to 2.5 V  
VOUT = 0.25 V to 4.75 V  
−93  
dB  
DYNAMIC PERFORMANCE  
Unity-Gain Frequency  
Full Power Response  
Slew Rate  
1.8  
210  
3
MHz  
kHz  
V/μs  
VOUT p-p = 4.5 V  
Settling Time  
To 0.1%  
To 0.01%  
VOUT = 0.2 V to 4.5 V  
VOUT = 0.2 V to 4.5 V  
1.4  
1.8  
μs  
μs  
MATCHING CHARACTERISTICS  
Initial Offset  
1.0  
1.6  
mV  
mV  
μV/°C  
pA  
dB  
dB  
Maximum Offset Over Temperature  
Offset Drift  
Input Bias Current  
Crosstalk @ f = 1 kHz  
Crosstalk @ f = 100 kHz  
3
20  
RL = 5 kΩ  
RL = 5 kΩ  
−130  
−93  
Rev. 0 | Page 4 of 20  
 
AD822-EP  
T Grade  
Typ  
Parameter  
Test Conditions/Comments  
Min  
Max  
Unit  
INPUT CHARACTERISTICS  
Input Voltage Range1, TMIN to TMAX  
Common-Mode Rejection Ratio (CMRR)  
TMIN to TMAX  
−0.2  
66  
66  
+4  
V
dB  
dB  
VCM = 0 V to 2 V  
VCM = 0 V to 2 V  
80  
Input Impedance  
Differential  
Common Mode  
OUTPUT CHARACTERISTICS  
Output Saturation Voltage2  
VOL − VEE  
1013||0.5  
1013||2.8  
Ω||pF  
Ω||pF  
ISINK = 20 μA  
ISOURCE = 20 μA  
ISINK = 2 mA  
5
7
10  
14  
20  
55  
80  
110  
160  
500  
1000  
1500  
1900  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mA  
mA  
pF  
TMIN to TMAX  
VCC − VOH  
TMIN to TMAX  
VOL − VEE  
TMIN to TMAX  
VCC − VOH  
TMIN to TMAX  
VOL – VEE  
TMIN to TMAX  
VCC − VOH  
TMIN to TMAX  
Operating Output Current  
TMIN to TMAX  
10  
40  
80  
300  
800  
ISOURCE = 2 mA  
ISINK = 15 mA  
ISOURCE = 15 mA  
15  
12  
Capacitive Load Drive  
POWER SUPPLY  
Quiescent Current, TMIN to TMAX  
Power Supply Rejection  
TMIN to TMAX  
350  
1.24  
80  
1.6  
mA  
dB  
dB  
V+ = 5 V to 15 V  
66  
66  
1 This is a functional specification. Amplifier bandwidth decreases when the input common-mode voltage is driven in the range (V+ − 1 V) to V+. Common-mode error  
voltage is typically less than 5 mV with the common-mode voltage set at 1 V below the positive supply.  
2 VOL − VEE is defined as the difference between the lowest possible output voltage (VOL) and the negative voltage supply rail (VEE). VCC − VOH is defined as the difference  
between the highest possible output voltage (VOH) and the positive supply voltage (VCC).  
Rev. 0 | Page 5 of 20  
AD822-EP  
VS = ±5 V @ TA = 25°C, VCM = 0 V, VOUT = 0 V, unless otherwise notedꢀ  
Table 2.  
T Grade  
Typ  
Parameter  
Test Conditions/Comments  
Min  
Max  
Unit  
DC PERFORMANCE  
Initial Offset  
0.1  
0.5  
2
2
0.5  
2
0.8  
1.5  
mV  
mV  
μV/°C  
pA  
nA  
pA  
Maximum Offset Over Temperature  
Offset Drift  
Input Bias Current  
At TMAX  
Input Offset Current  
At TMAX  
VCM = −5 V to +4 V  
25  
6
20  
0.5  
nA  
Open-Loop Gain  
VOUT = −4 V to +4 V  
RL = 100 kΩ  
400  
400  
80  
80  
20  
1000  
150  
30  
V/mV  
V/mV  
V/mV  
V/mV  
V/mV  
V/mV  
TMIN to TMAX  
TMIN to TMAX  
RL = 10 kΩ  
RL = 1 kΩ  
TMIN to TMAX  
10  
NOISE/HARMONIC PERFORMANCE  
Input Voltage Noise  
f = 0.1 Hz to 10 Hz  
f = 10 Hz  
2
μV p-p  
nV/√Hz  
nV/√Hz  
nV/√Hz  
nV/√Hz  
25  
21  
16  
13  
f = 100 Hz  
f = 1 kHz  
f = 10 kHz  
Input Current Noise  
f = 0.1 Hz to 10 Hz  
f = 1 kHz  
18  
0.8  
fA p-p  
fA/√Hz  
Harmonic Distortion  
f = 10 kHz  
RL = 10 kΩ  
VOUT = 4.5 V  
−93  
dB  
DYNAMIC PERFORMANCE  
Unity-Gain Frequency  
Full Power Response  
Slew Rate  
1.9  
105  
3
MHz  
kHz  
V/μs  
VOUT p-p = 9 V  
Settling Time  
to 0.1%  
to 0.01%  
VOUT = 0 V to 4.5 V  
VOUT = 0 V to 4.5 V  
1.4  
1.8  
μs  
μs  
MATCHING CHARACTERISTICS  
Initial Offset  
1.0  
3
mV  
mV  
μV/°C  
pA  
dB  
dB  
Maximum Offset Over Temperature  
Offset Drift  
3
Input Bias Current  
Crosstalk @ f = 1 kHz  
Crosstalk @ f = 100 kHz  
INPUT CHARACTERISTICS  
Input Voltage Range1, TMIN to TMAX  
Common-Mode Rejection Ratio (CMRR)  
TMIN to TMAX  
25  
RL = 5 kΩ  
RL = 5 kΩ  
−130  
−93  
−5.2  
66  
66  
+4  
V
dB  
dB  
VCM = −5 V to +2 V  
VCM = −5 V to +2 V  
80  
Input Impedance  
Differential  
Common Mode  
1013||0.5  
1013||2.8  
Ω||pF  
Ω||pF  
Rev. 0 | Page 6 of 20  
AD822-EP  
T Grade  
Typ  
Parameter  
Test Conditions/Comments  
Min  
Max  
Unit  
OUTPUT CHARACTERISTICS  
Output Saturation Voltage2  
VOL − VEE  
ISINK = 20 μA  
ISOURCE = 20 μA  
ISINK = 2 mA  
5
7
10  
14  
20  
55  
80  
110  
160  
500  
1000  
1500  
1900  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mA  
mA  
pF  
TMIN to TMAX  
VCC − VOH  
TMIN to TMAX  
VOL − VEE  
TMIN to TMAX  
VCC − VOH  
TMIN to TMAX  
VOL − VEE  
TMIN to TMAX  
VCC − VOH  
TMIN to TMAX  
Operating Output Current  
TMIN to TMAX  
10  
40  
80  
300  
800  
ISOURCE = 2 mA  
ISINK = 15 mA  
ISOURCE = 15 mA  
15  
12  
Capacitive Load Drive  
POWER SUPPLY  
Quiescent Current, TMIN to TMAX  
Power Supply Rejection  
TMIN to TMAX  
350  
1.3  
80  
1.6  
mA  
dB  
dB  
VSY = 5 V to 15 V  
66  
66  
1 This is a functional specification. Amplifier bandwidth decreases when the input common-mode voltage is driven in the range (V+ − 1 V) to V+. Common-mode error  
voltage is typically less than 5 mV with the common-mode voltage set at 1 V below the positive supply.  
2 VOL − VEE is defined as the difference between the lowest possible output voltage (VOL) and the negative voltage supply rail (VEE). VCC − VOH is defined as the difference  
between the highest possible output voltage (VOH) and the positive supply voltage (VCC).  
Rev. 0 | Page 7 of 20  
AD822-EP  
VS = ±±5 V @ TA = 25°C, VCM = 0 V, VOUT = 0 V, unless otherwise notedꢀ  
Table 3.  
T Grade  
Typ  
Parameter  
Test Conditions/Comments  
Min  
Max  
Unit  
DC PERFORMANCE  
Initial Offset  
0.4  
0.5  
2
2
3
mV  
mV  
μV/°C  
pA  
Maximum Offset Over Temperature  
Offset Drift  
Input Bias Current  
VCM = 0 V  
2
25  
VCM = −10 V  
VCM = 0 V  
40  
0.5  
2
pA  
nA  
pA  
nA  
At TMAX  
Input Offset Current  
At TMAX  
6
20  
0.5  
Open-Loop Gain  
VOUT = −10 V to +10 V  
RL = 100 kΩ  
500  
500  
100  
100  
30  
2000  
500  
45  
V/mV  
V/mV  
V/mV  
V/mV  
V/mV  
V/mV  
TMIN to TMAX  
TMIN to TMAX  
RL = 10 kΩ  
RL = 1 kΩ  
TMIN to TMAX  
20  
NOISE/HARMONIC PERFORMANCE  
Input Voltage Noise  
f = 0.1 Hz to 10 Hz  
f = 10 Hz  
2
μV p-p  
nV/√Hz  
nV/√Hz  
nV/√Hz  
nV/√Hz  
25  
21  
16  
13  
f = 100 Hz  
f = 1 kHz  
f = 10 kHz  
Input Current Noise  
f = 0.1 Hz to 10 Hz  
f = 1 kHz  
18  
0.8  
fA p-p  
fA/√Hz  
Harmonic Distortion  
f = 10 kHz  
RL = 10 kΩ  
VOUT = 10 V  
−85  
dB  
DYNAMIC PERFORMANCE  
Unity-Gain Frequency  
Full Power Response  
Slew Rate  
1.9  
45  
3
MHz  
kHz  
V/μs  
VOUT p-p = 20 V  
Settling Time  
to 0.1%  
to 0.01%  
VOUT = 0 V to 10 V  
VOUT = 0 V to 10 V  
4.1  
4.5  
μs  
μs  
MATCHING CHARACTERISTICS  
Initial Offset  
3
4
mV  
mV  
μV/°C  
pA  
dB  
dB  
Maximum Offset Over Temperature  
Offset Drift  
3
Input Bias Current  
Crosstalk @ f = 1 kHz  
Crosstalk @ f = 100 kHz  
INPUT CHARACTERISTICS  
Input Voltage Range1, TMIN to TMAX  
Common-Mode Rejection Ratio (CMRR)  
TMIN to TMAX  
25  
RL = 5 kΩ  
RL = 5 kΩ  
−130  
−93  
−15.2  
70  
70  
+14  
V
dB  
dB  
VCM = −15 V to +12 V  
VCM = −15 V to +12 V  
80  
Input Impedance  
Differential  
Common Mode  
1013||0.5  
1013||2.8  
Ω||pF  
Ω||pF  
Rev. 0 | Page 8 of 20  
AD822-EP  
T Grade  
Typ  
Parameter  
Test Conditions/Comments  
Min  
Max  
Unit  
OUTPUT CHARACTERISTICS  
Output Saturation Voltage2  
VOL − VEE  
ISINK = 20 μA  
ISOURCE = 20 μA  
ISINK = 2 mA  
5
7
10  
14  
20  
55  
80  
110  
160  
500  
1000  
1500  
1900  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mA  
mA  
pF  
TMIN to TMAX  
VCC − VOH  
TMIN to TMAX  
VOL − VEE  
TMIN to TMAX  
VCC − VOH  
TMIN to TMAX  
VOL − VEE  
TMIN to TMAX  
VCC − VOH  
TMIN to TMAX  
Operating Output Current  
TMIN to TMAX  
10  
40  
80  
300  
800  
ISOURCE = 2 mA  
ISINK = 15 mA  
ISOURCE = 15 mA  
20  
15  
Capacitive Load Drive  
POWER SUPPLY  
Quiescent Current, TMIN to TMAX  
Power Supply Rejection  
TMIN to TMAX  
350  
1.4  
80  
1.8  
mA  
dB  
dB  
VSY = 5 V to 15 V  
70  
70  
1 This is a functional specification. Amplifier bandwidth decreases when the input common-mode voltage is driven in the range (V+ − 1 V) to V+. Common-mode error  
voltage is typically less than 5 mV with the common-mode voltage set at 1 V below the positive supply.  
2 VOL − VEE is defined as the difference between the lowest possible output voltage (VOL) and the negative voltage supply rail (VEE). VCC − VOH is defined as the difference  
between the highest possible output voltage (VOH) and the positive supply voltage (VCC).  
Rev. 0 | Page 9 of 20  
AD822-EP  
ABSOLUTE MAXIMUM RATINGS  
Table 4.  
THERMAL RESISTANCE  
θJA is specified for the worst-case conditions, that is, a device  
soldered in a circuit board for surface-mount packagesꢀ  
Parameter  
Rating  
Supply Voltage  
18 V  
Internal Power Dissipation  
8-Lead SOIC_N (R)  
Table 5. Thermal Resistance  
Package Type  
8-lead SOIC_N (R)  
Observe Maximum  
Junction Temperature  
((V+) + 0.2 V) to  
((V−) − 20 V)  
θJA  
θJC  
Unit  
160  
43  
°C/W  
Input Voltage  
Output Short-Circuit Duration  
Differential Input Voltage  
Indefinite  
30 V  
ESD CAUTION  
Storage Temperature Range (R)  
Operating Temperature Range  
Maximum Junction Temperature  
–65°C to +150°C  
−55°C to +125°C  
150°C  
Lead Temperature  
(Soldering, 60 sec)  
260°C  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the deviceꢀ This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not impliedꢀ Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliabilityꢀ  
Rev. 0 | Page 10 of 20  
 
AD822-EP  
TYPICAL PERFORMANCE CHARACTERISTICS  
70  
5
V
= 0V, 5V  
S
60  
50  
40  
30  
20  
10  
0
V
= 0V, +5V AND ±5V  
S
V
= ±5V  
S
0
–5  
–5  
–0.5 –0.4 –0.3 –0.2 –0.1  
0
0.1  
0.2  
0.3  
0.4  
0.5  
5
–4  
–3  
–2  
COMMON-MODE VOLTAGE (V)  
–1  
0
1
2
3
4
OFFSET VOLTAGE (mV)  
Figure 4. Typical Distribution of Offset Voltage (390 Units)  
Figure 7. Input Bias Current vs. Common-Mode Voltage; VS = 5 V, 0 V, and  
VS = 5 V  
16  
14  
12  
10  
8
1k  
100  
10  
V
V
= ±5V  
= ±15V  
S
S
6
1
4
2
0.1  
–16  
0
–12  
–8  
–4  
0
4
8
12  
16  
–12 –10 –8  
–6  
–4  
–2  
0
2
4
6
8
10  
COMMON-MODE VOLTAGE (V)  
OFFSET VOLTAGE DRIFT (µV/°C)  
Figure 5. Typical Distribution of Offset Voltage Drift (100 Units)  
Figure 8. Input Bias Current vs. Common-Mode Voltage; VS = 15 V  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
100k  
10k  
1k  
100  
10  
1
0.1  
20  
0
40  
60  
80  
100  
120  
140  
0
1
2
3
4
5
6
7
8
9
10  
TEMPERATURE (°C)  
INPUT BIAS CURRENT (pA)  
Figure 6. Typical Distribution of Input Bias Current (213 Units)  
Figure 9. Input Bias Current vs. Temperature; VS = 5 V, VCM = 0 V  
Rev. 0 | Page 11 of 20  
 
AD822-EP  
10M  
40  
20  
POS RAIL  
NEG RAIL  
R = 2k  
L
R
= 20kΩ  
V
= ±15V  
L
S
1M  
V
= 0V, +5V  
S
POS RAIL  
0
POS  
RAIL  
V
= 0V, +3V  
100k  
S
–20  
–40  
NEG RAIL  
NEG RAIL  
R
= 100kΩ  
L
10k  
100  
1k  
10k  
100k  
0
60  
120  
180  
240  
300  
LOAD RESISTANCE ()  
OUTPUT VOLTAGE FROM SUPPLY RAILS (mV)  
Figure 10. Open-Loop Gain vs. Load Resistance  
Figure 13. Input Error Voltage with Output Voltage Within 300 mV of Either  
Supply Rail for Various Resistive Loads; VS = 5 V  
10M  
1M  
1k  
100  
10  
R
= 100k  
L
V
= ±15V  
S
V
= 0V, +5V  
S
V
= ±15V  
R
= 10kΩ  
S
L
V
V
= 0V, +5V  
S
100k  
10k  
V
= ±15V  
S
R
= 600Ω  
L
= 0V, +5V  
S
1
–60 –40 –20  
0
20  
40  
60  
80  
100 120 140  
1
10  
100  
1k  
10k  
TEMPERATURE (°C)  
FREQUENCY (Hz)  
Figure 14. Input Voltage Noise vs. Frequency  
Figure 11. Open-Loop Gain vs. Temperature  
300  
200  
100  
–40  
–50  
R
A
= 10k  
L
= –1  
CL  
–60  
R
= 10k  
L
R
= 100kΩ  
V
= 0V, +3V; V = 2.5V p-p  
OUT  
L
S
–70  
0
–100  
–200  
–80  
V
= ±15V; V = 20V p-p  
OUT  
S
–90  
V
= ±5V; V = 9V p-p  
OUT  
S
R
= 600Ω  
L
–100  
–110  
V
= 0V, +5V; V = 4.5V p-p  
OUT  
S
–300  
100  
1k  
10k  
FREQUENCY (Hz)  
100k  
–16  
–12  
–8  
–4  
0
4
8
12  
16  
OUTPUT VOLTAGE (V)  
Figure 12. Input Error Voltage vs. Output Voltage for Resistive Loads  
Figure 15. Total Harmonic Distortion (THD) vs. Frequency  
Rev. 0 | Page 12 of 20  
AD822-EP  
100  
80  
60  
40  
20  
0
100  
80  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
= ±15V  
S
PHASE  
60  
GAIN  
V
= 0V, +5V  
S
V
= 0V, +3V  
40  
S
20  
0
R
C
= 2k  
= 100pF  
L
L
–20  
10M  
–20  
10  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
10  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
Figure 16. Open-Loop Gain and Phase Margin vs. Frequency  
Figure 19. Common-Mode Rejection vs. Frequency  
1k  
5
4
3
2
1
0
A
= +1  
= ±15V  
CL  
V
S
NEGATIVE  
RAIL  
POSITIVE  
RAIL  
100  
10  
+25°C  
–55°C  
1
+125°C  
0.1  
0.01  
–55°C  
+125°C  
100  
1k  
10k  
100k  
1M  
10M  
–1  
0
1
2
3
FREQUENCY (Hz)  
COMMON-MODE VOLTAGE FROM SUPPLY RAILS (V)  
Figure 20. Absolute Common-Mode Error vs. Common-Mode Voltage from  
Figure 17. Output Impedance vs. Frequency  
Supply Rails (VS − VCM  
)
1000  
100  
10  
16  
12  
8
1%  
4
V
– V  
OH  
S
0.01%  
ERROR  
0.1%  
0
0.01%  
V
– V  
S
–4  
–8  
OL  
1%  
–12  
–16  
0
0.001  
0.01  
0.1  
1
10  
100  
0
1
2
3
4
5
LOAD CURRENT (mA)  
SETTLING TIME (µs)  
Figure 18. Output Swing and Error vs. Settling Time  
Figure 21. Output Saturation Voltage vs. Load Current  
Rev. 0 | Page 13 of 20  
AD822-EP  
1000  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
I
I
= 10mA  
SOURCE  
= 10mA  
SINK  
+PSRR  
100  
10  
1
I
= 1mA  
= 10µA  
SOURCE  
I
I
I
= 1mA  
SINK  
–PSRR  
SOURCE  
= 10µA  
SINK  
10  
100  
1k  
10k  
100k  
1M  
10M  
60  
TEMPERATURE (°C)  
–60 –40 –20  
0
20  
40  
80  
100 120 140  
FREQUENCY (Hz)  
Figure 22. Output Saturation Voltage vs. Temperature  
Figure 25. Power Supply Rejection vs. Frequency  
80  
70  
60  
50  
40  
30  
20  
10  
0
30  
25  
20  
15  
10  
5
V
= ±15V  
R
= 2k  
S
L
V
= ±15V  
S
–OUT  
+
V
= ±15V  
S
V
= 0V, +5V  
S
V
= 0V, +3V  
S
V
= 0V, +5V  
= 0V, +3V  
S
+
+
V
= 0V, +5V  
S
V
= 0V, +3V  
S
V
S
0
10k  
100k  
FREQUENCY (Hz)  
1M  
10M  
–60 –40 –20  
0
20  
40  
60  
80  
100 120 140  
TEMPERATURE (°C)  
Figure 23. Short-Circuit Current Limit vs. Temperature  
Figure 26. Large Signal Frequency Response  
1600  
1400  
1200  
1000  
800  
600  
400  
200  
0
T = +125°C  
T = +25°C  
T = –55°C  
0
4
8
12  
16  
20  
24  
28  
32  
36  
TOTAL SUPPLY VOLTAGE (V)  
Figure 24. Quiescent Current vs. Supply Voltage vs. Temperature  
Rev. 0 | Page 14 of 20  
AD822-EP  
–70  
–80  
5V  
5µs  
100  
90  
–90  
–100  
–110  
–120  
10  
0%  
–130  
–140  
300  
1k  
3k  
10k  
30k  
100k  
300k  
1M  
Figure 3±. Large Signal Response Unity-Gain Follower; VS = ± ±5 V, RL = ±0 kΩ  
FREQUENCY (Hz)  
Figure 27. Crosstalk vs. Frequency  
10mV  
500ns  
V+  
0.01µF  
100  
90  
8
+
1/2  
V
IN  
AD822-EP  
V
OUT  
100pF  
R
L
0.01µF  
4
10  
0%  
Figure 28. Unity-Gain Follower  
Figure 32. Small Signal Response Unity-Gain Follower; VS = ± ±5 V, RL = ±0 kΩ  
5V  
10µs  
100  
90  
1V  
2µs  
100  
90  
10  
0%  
10  
0%  
GND  
Figure 29. 20 V p-p, 25 kHz Sine Wave Input; Unity-Gain Follower; VS = ±±5 V,  
RL = 600 Ω  
V
OUT  
Figure 33. VS = 5 V, 0 V; Unity-Gain Follower Response to 0 V to 4 V Step  
V+  
20k  
2.2kΩ  
V+  
0.01µF  
0.1µF  
1µF  
8
8
2
3
6
5
1/2  
AD822-EP  
1/2  
AD822-EP  
V
IN  
+
1
7
5kΩ  
1/2  
AD822-EP  
20V p-p  
+
+
5kΩ  
V
OUT  
100pF  
R
L
4
V
IN  
0.1µF  
1µF  
V
OUT  
10V  
CROSSTALK = 20 log  
IN  
V–  
Figure 34. Unity-Gain Follower  
Figure 30. Crosstalk Test Circuit  
Rev. 0 | Page 15 of 20  
AD822-EP  
10k  
20kΩ  
V
IN  
V
OUT  
V+  
10mV  
2µs  
0.01µF  
100  
90  
8
1/2  
AD822-EP  
+
100pF  
R
L
4
10  
Figure 35. Gain-of-Two Inverter  
0%  
GND  
1V  
2µs  
Figure 38. VS = 5 V, 0 V; Gain-of-2 Inverter Response to 20 mV Step,  
Centered 20 mV Below Ground, RL = 10 kΩ  
100  
90  
1V  
2µs  
100  
10  
0%  
GND  
10  
Figure 36. VS = 5 V, 0 V; Unity-Gain Follower Response to 0 V to 5 V Step  
GND  
Figure 39. VS = 5 V, 0 V; Gain-of-2 Inverter Response to 2.5 V Step,  
Centered −1.25 V Below Ground, RL = 10 kΩ  
10mV  
2µs  
100  
90  
500mV  
10µs  
100  
90  
10  
0%  
GND  
10  
0%  
Figure 37. VS = 5 V, 0 V; Unity-Gain Follower Response to 40 mV Step,  
Centered 40 mV above Ground, RL = 10 kΩ  
GND  
Figure 40. VS = 3 V, 0 V; Gain-of-2 Inverter, VIN = 1.25 V, 25 kHz, Sine Wave  
Centered at −0.75 V, RL = 600 Ω  
Rev. 0 | Page 16 of 20  
AD822-EP  
1V  
10µs  
. . . .  
. . . . . . . .  
. . . . . . . . . . . . . . . .  
. . . . . . . . . . . .  
100  
90  
10  
. . . . . . . .  
. . . .  
. . . . . . . . . . . . . . . .  
. . . . . . . . . . . .  
0%  
GND  
1V  
(a)  
10µs  
1V  
1V  
. . . . . . . . . . .  
. . .  
. . . . . . . . . . . .  
. . . .  
. . . .  
. . . .  
100  
90  
+V  
s
10  
. . . .  
0% . . . .  
. . . . . . . . . . . . . . . .  
. . . . . . . . . . . .  
. . . .  
GND  
1V  
(b)  
5V  
R
P
V
IN  
V
OUT  
Figure 41. (a) Response with RP = 0; VIN from 0 V to +VS  
(b) VIN = 0 V to +VS + 200 mV  
VOUT = 0 V to +VS  
RP = 49.9 kΩ  
Rev. 0 | Page 17 of 20  
AD822-EP  
OUTLINE DIMENSIONS  
5.00 (0.1968)  
4.80 (0.1890)  
8
1
5
4
6.20 (0.2441)  
5.80 (0.2284)  
4.00 (0.1574)  
3.80 (0.1497)  
0.50 (0.0196)  
0.25 (0.0099)  
1.27 (0.0500)  
BSC  
45°  
1.75 (0.0688)  
1.35 (0.0532)  
0.25 (0.0098)  
0.10 (0.0040)  
8°  
0°  
0.51 (0.0201)  
0.31 (0.0122)  
COPLANARITY  
0.10  
1.27 (0.0500)  
0.40 (0.0157)  
0.25 (0.0098)  
0.17 (0.0067)  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MS-012-AA  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 42. 8-Lead Standard Small Outline Package [SOIC_N]  
Narrow Body  
(R-8)  
Dimensions shown in millimeters and (inches)  
ORDERING GUIDE  
Model1  
Temperature Range  
−55°C to +125°C  
−55°C to +125°C  
Package Description  
Package Option  
AD822TRZ-EP  
AD822TRZ-EP-R7  
8-Lead SOIC_N  
8-Lead SOIC_N  
R-8  
R-8  
1 Z = RoHS Compliant Part.  
SPICE model is available at wwwꢀanalogꢀcomꢀ  
Rev. 0 | Page 18 of 20  
 
AD822-EP  
NOTES  
Rev. 0 | Page 19 of 20  
AD822-EP  
NOTES  
©2010 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D09208-0-6/10(0)  
Rev. 0 | Page 20 of 20  
 
 
 

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY