AD7625 [ADI]

16-Bit, 6MSPS PulSAR Differential ADC; 16位, 6MSPS的PulSAR差分ADC
AD7625
型号: AD7625
厂家: ADI    ADI
描述:

16-Bit, 6MSPS PulSAR Differential ADC
16位, 6MSPS的PulSAR差分ADC

文件: 总11页 (文件大小:159K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
16-Bit, 6MSPS PulSAR  
Differential ADC  
Preliminary Technical Data  
AD7625  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
REFIN REF VCM  
Throughput: 6 MSPS  
SAR architecture  
16-bit resolution with no missing codes  
SNR: 92 dB Typ, 90dB Min @ 1MHz  
INL: 1 LSB Typ, 2 LSB Max  
DNL: 0.3 LSB Typ, 1 LSB Max  
Differential input range: 4.096V  
No latency/no pipeline delay (SAR architecture)  
Serial LVDS interface:  
1.2V  
BANDGAP  
VIO  
2
CLOCK  
LOGIC  
IN+  
IN-  
CNV  
CAP DAC  
D
SERIAL  
LVDS  
SAR  
DCO  
CLK  
AD7626  
Self-clocked mode  
Echoed-clock mode  
Figure 1.  
Reference:  
Internal 4.096 V  
External (1.2V) buffered to 4.096 V  
External 4.096 V  
Power dissipation 150 mW  
32-Lead LFCSP package (5 mm x 5 mm)  
GENERAL DESCRIPTION  
The AD7625 is a 16-bit, 6MSPS, charge redistribution successive  
approximation register (SAR) architecture, analog-to-digital  
converter (ADC). SAR architecture allows unmatched  
performance both in noise – 92dB SNR - and in linearity –  
1LSB. The AD7625 contains a high speed 16-bit sampling ADC,  
an internal conversion clock, and an internal buffered reference.  
On the CNV edge, it samples the voltage difference between  
IN+ and IN− pins. The voltages on these pins swing in opposite  
phase between 0 V and REF. The 4.096V reference voltage, REF,  
can be generated internally or applied externally.  
APPLICATIONS  
High dynamic range telecommunications  
Receivers  
Digital imaging systems  
High-speed data acquisition  
Spectrum analysis  
All converted results are available on a single LVDS self-clocked  
or echoed-clock serial interface reducing external hardware  
connections.  
Test equipment  
Table 1. Fast PulSAR ADC Selection  
The AD7625 is housed in a 32-lead LFCSP (5mm by 5mm) with  
operation specified from −40°C to +85°C.  
1 MSPS  
to  
< 2MSPS  
Res  
(Bit  
s)  
2 MSPS  
to  
3 MSPS  
10  
MSPS  
Input Type  
6 MSPS  
Differential  
(ground  
sense)  
16  
AD7653  
AD7667  
AD7980  
AD7983  
AD7985  
True Bipolar  
16  
16  
AD7671  
Differential  
(anti-phase)  
AD7677  
AD7623  
AD7621  
AD7622  
AD7625 AD7626  
Differential  
(anti-phase)  
18  
AD7643  
AD7982  
AD7984  
AD7641  
AD7986  
Rev. PrB  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2008 Analog Devices, Inc. All rights reserved.  
AD7625  
Preliminary Technical Data  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Thermal Resistance.......................................................................5  
ESD Caution...................................................................................5  
Pin Configuration and Function Descriptions..............................6  
Terminology.......................................................................................8  
Theory of Operation.........................................................................9  
Outline Dimensions....................................................................... 11  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description......................................................................... 1  
Specifications..................................................................................... 3  
Timing Specifications .................................................................. 4  
Absolute Maximum Ratings............................................................ 5  
Rev. PrB | Page 2 of 11  
Preliminary Technical Data  
AD7625  
SPECIFICATIONS  
VDD1 = 5 V; VDD2 = 2.5 V; VIO = 2.5 V; VREF = 4.096 V; all specifications TMIN to TMAX, unless otherwise noted.  
Table 2.  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
RESOLUTION  
16  
Bits  
ANALOG INPUT  
Voltage Range  
VIN+ − VIN−  
−VREF  
+VREF  
V
Operating Input Voltage  
Common Mode Input Range  
Analog Input CMRR  
Input Current  
VIN+, VIN− to AGND  
−0.1  
VREF/2 – 0.1  
+VREF + 0.1  
VREF/2 + 0.1  
V
V
dB  
μA  
VREF/2  
60  
350  
fIN = 1 MHz  
6 MSPS throughput  
THROUGHPUT SPEED  
Complete Cycle  
Throughput Rate  
DC ACCURACY  
166  
6
ns  
MSPS  
0.001  
Integral Linearity Error  
No Missing Codes  
Differential Linearity Error  
Transition Noise  
Zero Error, TMIN to TMAX  
Zero Error Drift  
Gain Error, TMIN to TMAX  
Gain Error Drift  
Power Supply Sensitivity  
-2  
16  
-1  
1
+2  
+1  
LSB  
Bits  
LSB  
LSB  
0.3  
0.6  
100  
1
μV  
ppm/°C  
ppm of FS  
ppm/°C  
LSB  
50  
1
VDD1 = 5 V 5%  
VDD2 = 2.5 V 5%  
TBD  
TBD  
LSB  
AC ACCURACY  
Dynamic Range  
Signal-to-Noise  
Spurious-Free Dynamic Range  
90  
90  
92  
92  
110  
90  
dB  
dB  
dB  
dB  
fIN = 250 kHz  
fIN = 250 kHz  
fIN = TBD  
Total Harmonic Distortion  
fIN = 250 kHz  
fIN = TBD  
fIN = 250 kHz  
-110  
-90  
92  
dB  
dB  
dB  
MHz  
ns  
Signal-to-(Noise + Distortion)  
−3 dB Input Bandwidth  
Aperture Delay  
100  
Aperture jitter  
5
50  
ps rms  
ns  
Transient Response  
INTERNAL REFERENCE  
Output Voltage  
Temperature Drift  
REFERENCE BUFFER  
REFIN Input Voltage Range  
REF Output Voltage range  
EXTERNAL REFERENCE  
Voltage Range  
Full-Scale Step  
REFIN @ 25°C  
−40°C to +85°C  
1.2  
7
V
ppm/°C  
1.2  
4.096  
V
V
REF  
4.096  
V
VCM  
@ 25°C  
Output Voltage  
Output Impedance  
VREF/2  
5
VREF/2  
kΩ  
4
6
Rev. PrB | Page 3 of 11  
AD7625  
Preliminary Technical Data  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
LVDS I/O, (ANSI-644)  
Data Format  
Serial LVDS Two’s complement  
VOD  
Differential Output Voltage,  
RL=100 Ω  
Common mode Output Voltage,  
RL=100Ω  
247  
350  
454  
mV  
mV  
VOCM  
1125  
1250  
1375  
VID  
VICM  
Differential Input Voltage  
Common mode Input Voltage  
100  
800  
650  
1575  
mV  
mV  
POWER SUPPLIES  
Specified Performance  
VDD1  
4.75V  
2.37  
2.3  
5
2.5  
2.5  
5.25V  
2.63  
2.7  
V
V
V
VDD2  
VIO  
Operating Currents  
VDD1  
VDD2  
VIO  
VIO  
10  
25  
14  
18  
mA  
mA  
mA  
mA  
Self-clocked mode  
Echoed-clock mode  
Power Dissipation1  
With Internal Reference  
Without Internal Reference  
Energy per conversion  
TEMPERATURE RANGE  
Specified Performance  
6 MSPS throughput  
6 MSPS throughput  
6 MSPS throughput  
140  
120  
10  
mW  
mW  
nJ/sample  
TMIN to TMAX  
−40  
+85  
°C  
1 Power dissipation is for the AD7626 only. In self-clocked interface, 9mW is dissipated in the 100 ohm terminator. In echoed-clock interface, 18mW is dissipated in (2)  
100 ohm terminators.  
TIMING SPECIFICATIONS  
VDD1 = 5 V; VDD2 = 2.5 V; VIO = 2.3V to 2.7 V; VREF = 4.096 V; all specifications TMIN to TMAX, unless otherwise noted.  
Table 3.  
Parameter  
Symbol  
tCYC  
Min  
100  
40  
Typ  
Max  
Unit  
ns  
ns  
ns  
ns  
Time between conversion  
Acquisition time  
CNV high time  
CNV to D (MSB) delay  
CNV to last CLK (LSB) delay  
CLK period  
tACQ  
tCNVH  
tMSB  
tCLKL  
tCLK  
10000  
40  
166  
120  
10  
ns  
ns  
TBD  
4
CLK frequency  
fCLK  
tDCO  
tD  
250  
4
0
400  
7
1
MHz  
ns  
ns  
CLK to DCO delay (echoed-clock mode)  
DCO to D delay (echoed-clock mode)  
CLK to D delay  
0
-1  
0
tCLKD  
4
7
ns  
Rev. PrB | Page 4 of 11  
Preliminary Technical Data  
AD7625  
maximum rating conditions for extended periods may affect  
device reliability.  
ABSOLUTE MAXIMUM RATINGS  
Table 4.  
Parameter  
THERMAL RESISTANCE  
With  
Respect to  
Rating  
θJA is specified for the worst-case conditions, that is, a device  
soldered in a circuit board for surface-mount packages.  
Analog Inputs/Outputs  
CAP1, REFIN  
IN+, IN-, REF, REF/2,  
CAP2  
GND  
GND  
-0.3V to 2.7V  
-0.3V to 6V  
Table 5. Thermal Resistance  
Package Type  
θJA  
θJC  
Unit  
Digital Inputs/Outputs  
Supply Voltage  
VDD1  
GND  
-0.3V to 2.7V  
GND  
GND  
-0.3V to 6V  
-0.3V to 2.7V  
ESD CAUTION  
VDD2, VIO  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
Rev. PrB | Page 5 of 11  
AD7625  
Preliminary Technical Data  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
VDD1  
VDD2  
CAP1  
REFIN  
EN0  
EN1  
VDD2  
CNV-  
1
2
3
4
5
6
7
8
24 GND  
23 IN+  
22 IN-  
21 REF/2  
20 VDD1  
19 VDD1  
18 VDD2  
17 CLK+  
PIN 1  
INDICATOR  
TOP VIEW  
Figure 2.  
Table 6. Pin Function Descriptions  
Pin No. Mnemonic  
Type1 Description  
1
VDD1  
P
Analog 5V Supply.  
Decouple with 10uF and 100nF capacitors.  
Analog 2.5V Supply.  
2
VDD2  
P
The system 2.5V supply should supply this pin first, decoupled with 10uF and 100nF capacitors, then  
starred off to other VDD2 pins.  
3
4
CAP1  
REFIN  
AO  
AI/O  
Connect to a 10nF capacitor.  
Pre-Buffer Reference Voltage.  
When using the internal reference, this pin outputs the band-gap voltage and is nominally at 1.2V. It can  
be overdriven with an external reference voltage like the ADR280.  
In either mode, a 10uF capacitor is required. If using an external 4.096V reference (connected to REF), this  
pin is a no connect and does not require any capacitor.  
5, 6  
EN0, EN1  
DI  
Enable Pins.  
EN1  
0
EN0  
0
Operation  
Power down all; ADC, internal reference and reference buffer.  
0
1
Enable internal buffer, disable internal reference. An external 1.2V reference  
connected to REFIN pin is required.  
1
0
Disable internal reference and buffer. An external reference connected to the REF  
pin is required.  
1
1
Enable all; ADC, internal reference and reference buffer.  
7
VDD2  
P
Digital 2.5V supply.  
8, 9  
CNV-, CNV+  
DI  
Convert Input.  
This input has multiple functions. On its rising edge, it samples the analog inputs and initiates a  
conversion cycle. CNV+ works as a CMOS input when CNV- is grounded otherwise CNV+, CNV- are LVDS  
inputs.  
10, 11  
D-, D+  
D0  
LVDS Data Outputs.  
The conversion data is output serially on these pins.  
Input/Output Interface Supply. Nominally 2.5V.  
Ground.  
12  
13  
VIO  
GND  
P
P
14, 15  
DCO-, DCO+  
DI/O  
LVDS Buffered Clock Outputs.  
When DCO+ is grounded, the self-clock interface mode is selected. In this mode, the 16 bit results on D  
is preceded by a three bit header (010) to allow synchronization of the data by the digital host with  
simple logic.  
When DCO+ is not grounded, the echoed clock interface mode is selected. In this mode, DCO is a copy  
of CLK . The data bits are output on the falling edge of DCO+ and can be latched in the digital host on  
the next rising edge of DCO+.  
16, 17  
CLK-, CLK+  
DI  
LVDS Clock Inputs.  
This clock shifts out the conversion results on the negative edge of CLK+.  
Rev. PrB | Page 6 of 11  
Preliminary Technical Data  
AD7625  
Pin No. Mnemonic  
Type1 Description  
18  
19, 20  
21  
VDD2  
VDD1  
VCM  
P
P
AO  
Analog 2.5V Supply.  
Analog 5V supply. Isolate from Pin 1 with a ferrite bead.  
Common Mode Output.  
When using any reference scheme, this pin produces ½ of the voltage present on the REF pin which can  
be useful for driving the common mode of the input amplifiers.  
22  
23  
24  
IN-  
AI  
AI  
Differential Negative Analog Input.  
Referenced to and must be driven 180° out of phase with IN+.  
Differential Positive Analog Input.  
IN+  
Referenced to and must be driven 180° out of phase with IN-.  
GND  
P
Ground.  
25, 26,  
28  
CAP2  
AO  
Connect all three pins to a single 10uF X5R capacitor with the shortest distance. The other side of the  
capacitor must be placed close to pin 27 (GND).  
27  
GND  
REF  
P
Ground.  
Return path for 10uF capacitor connected to pins 25, 26, and 28.  
Buffered Reference Voltage.  
When using the internal reference or 1.2V external reference (REFIN input), the 4.096V system reference  
is produced at this pin.  
29, 30,  
32  
AI/O  
When using an external reference, like the ADR434 or ADR444, the internal reference buffer must be  
disabled.  
In either case, connect all three pins to a single 10uF X5R capacitor with the shortest distance. The other  
side of the capacitor must be placed close to pin 31 (GND)  
31  
GND  
P
Ground.  
Return path for 10uF capacitor connected to pins 29, 30, and 32.  
1 AI = analog input; AI/O = bidirectional analog; AO = analog output; DI = digital input; DI/O = bidirectional digital; DO = digital output; P = power.  
Rev. PrB | Page 7 of 11  
AD7625  
Preliminary Technical Data  
TERMINOLOGY  
Total Harmonic Distortion (THD)  
Least Significant Bit (LSB)  
THD is the ratio of the rms sum of the first five harmonic  
components to the rms value of a full-scale input signal and  
is expressed in decibels.  
The least significant bit, or LSB, is the smallest increment that  
can be represented by a converter. For a fully differential input  
ADC with N bits of resolution, the LSB expressed in volts is  
Signal-to-(Noise + Distortion) Ratio (SINAD)  
VINp-p  
LSB (V) =  
2N  
SINAD is the ratio of the rms value of the actual input signal to  
the rms sum of all other spectral components below the Nyquist  
frequency, including harmonics but excluding dc. The value for  
SINAD is expressed in decibels.  
Integral Nonlinearity Error (INL)  
Linearity error refers to the deviation of each individual code  
from a line drawn from negative full scale through positive full-  
scale. The point used as negative full scale occurs a ½ LSB before  
the first code transition. Positive full scale is defined as a level  
1½ LSBs beyond the last code transition. The deviation is meas-  
ured from the middle of each code to the true straight line.  
Spurious-Free Dynamic Range (SFDR)  
The difference, in decibels (dB), between the rms amplitude of  
the input signal and the peak spurious signal.  
Effective Number of Bits (ENOB)  
Differential Nonlinearity Error (DNL)  
ENOB is a measurement of the resolution with a sine wave  
input. It is related to SINAD and is expressed in bits by  
In an ideal ADC, code transitions are 1 LSB apart. Differential  
nonlinearity is the maximum deviation from this ideal value. It  
is often specified in terms of resolution for which no missing  
codes are guaranteed.  
ENOB = [(SINADdB − 1.76)/6.02]  
Aperture Delay  
Aperture delay is a measure of the acquisition performance  
Zero Error  
CNVST  
measured from the falling edge of the  
input to when  
The difference between the ideal midscale input voltage (0 V)  
and the actual voltage producing the midscale output code.  
the input signal is held for a conversion.  
Transient Response  
Gain Error  
The time required for the AD7634 to achieve its rated accuracy  
after a full-scale step function is applied to its input.  
The first transition (from 100 ... 00 to 100 ... 01) should occur at  
a level ½ LSB above nominal negative full scale (−4.095938 V  
for the 4.096V V range). The last transition (from 011 … 10 to  
011 … 11) should occur for an analog voltage 1½ LSB below the  
nominal full scale (+4.095813 V for the 4.096V range). The  
gain error is the deviation of the difference between the actual  
level of the last transition and the actual level of the first  
transition from the difference between the ideal levels.  
Reference Voltage Temperature Coefficient  
Reference voltage temperature coefficient is derived from the  
typical shift of output voltage at 25°C on a sample of parts at  
the maximum and minimum reference output voltage (VREF  
)
measured at TMIN, T(25°C), and TMAX. It is expressed in ppm/°C as  
VREF (Max)–VREF (Min)  
TCVREF (ppm/°C) =  
×106  
Dynamic Range  
VREF (25°C) × (TMAX –TMIN  
)
Dynamic range is the ratio of the rms value of the full scale to  
the rms noise measured for an input typically at −60 dB. The  
value for dynamic range is expressed in decibels.  
where:  
V
V
V
REF (Max) = maximum VREF at TMIN, T(25°C), or TMAX.  
REF (Min) = minimum VREF at TMIN, T(25°C), or TMAX  
REF (25°C) = VREF at 25°C.  
.
Signal-to-Noise Ratio (SNR)  
T
T
MAX = +85°C.  
MIN = –40°C.  
SNR is the ratio of the rms value of the actual input signal to  
the rms sum of all other spectral components below the Nyquist  
frequency, excluding harmonics and dc. The value for SNR is  
expressed in decibels.  
Rev. PrB | Page 8 of 11  
Preliminary Technical Data  
AD7625  
THEORY OF OPERATION  
Echoed-Clock Interface Mode  
Conversions are initiated by a CNV pulse. The CNV must be  
returned low ≤ tCNVH(max) for valid operation. Once a  
The AD7626 digital operation in “echoed-clock interface mode”  
is shown in Figure 3. This interface mode, requiring just a shift  
register on the digital host, can be used with many digital hosts  
(FPGA, shift register, microprocessor, etc.). It requires 3 LVDS  
pairs (D , CLK , and DCO ) between each AD7626 and the  
digital host.  
conversion has begun, it continues until completion. Additional  
CNV pulses are ignored during the conversion phase. After the  
time tMSB elapses, the host should begin to burst the CLK. Note  
that tMSB is the maximum time for the MSB of the new  
conversion result and should be used as the gating device for  
CLK. The echoed clock, DCO, and data, D, will be driven in  
phase with D being updated on the DCO+ falling edge and the  
host should use the DCO+ rising edge to capture D. The only  
requirement is that the 16 CLK pulses finish before the time  
The clock DCO is a buffered copy of CLK and synchronous to  
the data, D, which is updated on DCO+ falling edge (tD). By  
keeping good propagation delay matching between D and DCO  
through the board and the digital host, DCO can be can be used  
to latch D with good timing margin for the shift register.  
t
CLKL elapses of the next conversion phase or the data will be lost.  
From the time tCLKL to tMSB, D and DCO will be driven to 0s.  
SAMPLE N  
SAMPLE N+1  
T
CYC  
T
CNVH  
CNV-  
CNV+  
T
ACQ  
ACQUISITION  
CLK  
ACQUISITION  
ACQUISITION  
T
CLKL  
15  
T
1
15  
15  
16  
1
2
16  
2
3
CLK-  
CLK+  
T
DCO  
1
16  
1
2
15  
16  
2
3
DCO-  
DCO+  
T
MSB  
T
D
T
CLKD  
D+  
D-  
D13  
N+1  
D0  
N
D15  
N+1  
D14  
N+1  
D1  
N-1  
D0  
N-1  
D15  
N
D14  
N
D1  
N
0
0
Figure 3. Echoed-Clock Interface Mode Timing Diagram  
Rev. PrB | Page 9 of 11  
AD7625  
Preliminary Technical Data  
Self Clocked Mode  
between the state machine clock and D including any board  
propagation time allowing to use the best clock signal to latch  
the following bits of the conversion result.  
The AD7626 digital operation in “self-clocked interface mode”  
is shown in Figure 4. This interface mode reduces the number  
of wires between ADCs and the digital host to 2 LVDS pairs per  
AD7626, CLK and D or a single pair if sharing a common  
CLK using multiple AD7626s. This considerably eases the  
design of a system using multiple AD7626s since the interface  
can tolerate several CLK cycles of propagation delay mismatch  
between the different AD7626 devices and the digital host.  
Conversions are initiated by a CNV pulse. The CNV must be  
returned low ≤ tCNVH(max) for valid operation. Once a  
conversion has begun, it continues until completion. Additional  
CNV pulses are ignored during the conversion phase. After the  
time tMSB elapses, the host should begin to burst the CLK. Note  
that tMSB is the maximum time for the first bit of the header and  
should be used as the gating device for CLK. CLK is also used  
internally on the host to begin the internal synchronization  
state machine. The next header bit and conversion results are  
output on subsequent falling edges of CLK. The only  
The “self-clocked interface mode” consists of preceding each  
ADC word results by a header of 2 bits on the data, D This  
header is used to synchronize D of each conversion in the  
digital host. Synchronization is accomplished by one simple  
state machine per AD7626 device. The state machine is running,  
for instance, at the same speed as CLK with 3 phases. The state  
machine measures when the first “one” of the header occurs.  
This provides the value of the actual propagation delay delta  
requirement is that the 18 CLK pulses finish before the time  
tCLKL elapses of the next conversion phase or the data will be  
lost.  
SAMPLE N  
SAMPLE N+1  
T
CYC  
T
CNVH  
CNV-  
CNV+  
T
ACQ  
ACQUISITION  
ACQUISITION  
ACQUISITION  
T
T
CLKL  
CLK  
1
17  
18  
1
2
3
4
17  
18  
2
3
CLK-  
CLK+  
T
MSB  
T
CLKD  
D+  
*1  
1
0
0
0
D0  
N
0
D15  
N+1  
D1  
N-1  
D0  
N-1  
D15  
N
D14  
N
D1  
N
1
D-  
Figure 4. Self-Clocked Interface Mode Timing Diagram1  
1 This timing is for silicon rev 1 or above. For silicon rev 0, there is an extra bit (a zero) in front on the bit with value 1. Therefore, silicon rev 0 needs 19 clock pulses.  
Rev. PrB | Page 10 of 11  
Preliminary Technical Data  
OUTLINE DIMENSIONS  
AD7625  
5.00  
0.60 MAX  
BSC SQ  
0.60 MAX  
PIN 1  
INDICATOR  
25  
24  
32  
1
PIN 1  
INDICATOR  
0.50  
BSC  
EXPOSED  
PAD  
(BOTTOM VIEW)  
3.45  
3.30 SQ  
3.15  
TOP  
VIEW  
4.75  
BSC SQ  
0.50  
0.40  
0.30  
17  
16  
8
9
0.25 MIN  
3.50 REF  
0.80 MAX  
0.65 TYP  
12° MAX  
0.05 MAX  
0.02 NOM  
1.00  
0.85  
0.80  
0.30  
0.23  
0.18  
COPLANARITY  
0.08  
0.20 REF  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MO-220-VHHD-2  
Figure 5.32-Lead Lead Frame Chip Scale package [LFCSP_VQ]  
5 mm × 5 mm Body, Very Thin Quad  
(CP-32-3)  
©2008 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
PR07652-0-6/08(PrB)  

相关型号:

AD7625BCPZ

16-Bit, 6 MSPS, PulSAR Differential ADC
ADI

AD7625BCPZRL7

16-Bit, 6 MSPS, PulSAR Differential ADC
ADI

AD7625_17

16-Bit, 6 MSPS, PulSAR Differential ADC
ADI

AD7626

16-Bit, 10MSPS PulSAR Differential ADC
ADI

AD7626BCPZ

16-Bit, 10 MSPS, PulSAR Differential ADC
ADI

AD7626BCPZ-RL7

16-Bit, 10 MSPS, PulSAR Differential ADC
ADI

AD7626_09

16-Bit, 10 MSPS, PulSAR Differential ADC
ADI

AD7626_10

16-Bit, 10 MSPS, PulSAR Differential ADC
ADI

AD7628

CMOS Dual 8-Bit Buffered Multiplying DAC
ADI

AD7628BFN

8-Bit Digital-to-Analog Converter
ETC

AD7628BN

8-Bit Digital-to-Analog Converter
ETC

AD7628BQ

CMOS Dual 8-Bit Buffered Multiplying DAC
ADI