AD7625BCPZ [ADI]

16-Bit, 6 MSPS, PulSAR Differential ADC;
AD7625BCPZ
型号: AD7625BCPZ
厂家: ADI    ADI
描述:

16-Bit, 6 MSPS, PulSAR Differential ADC

转换器
文件: 总25页 (文件大小:1008K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
16-Bit, 6 MSPS, PulSAR  
Differential ADC  
AD7625  
Data Sheet  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
REFIN REF VCM  
Throughput: 6 MSPS  
SNR: 93 dB  
1.2V  
BAND GAP  
VIO  
÷2  
CLOCK  
INL: 0.45 LSB typical, 1 LSB maximum  
DNL: 0.3 LSB typical, 0.5 LSB maximum  
Power dissipation: 135 mW  
32-lead LFCSP (5 mm × 5 mm)  
SAR architecture  
No latency/no pipeline delay  
16-bit resolution with no missing codes  
Zero error: 1.5 LSB  
LOGIC  
IN+  
IN–  
CAP  
DAC  
CNV+, CNV–  
D+, D–  
SERIAL  
LVDS  
SAR  
DCO+, DCO–  
CLK+, CLK–  
AD7625  
Figure 1.  
GENERAL DESCRIPTION  
Differential input voltage: 4.096 V  
Serial LVDS interface  
The AD7625 is a 16-bit, 6 MSPS, charge redistribution successive  
approximation register (SAR) based architecture analog-to-digital  
converter (ADC). SAR architecture allows unmatched perfor-  
mance both in noise (93 dB SNR) and in linearity (1 LSB). The  
AD7625 contains a high speed, 16-bit sampling ADC, an internal  
conversion clock, and an internal buffered reference. On the  
CNV rising edge, it samples the voltage difference between the  
IN+ and IN− pins. The voltages on these pins swing in opposite  
phase between 0 V and REF. The 4.096 V reference voltage, REF,  
can be generated internally or applied externally.  
Self-clocked mode  
Echoed-clock mode  
Can use LVDS or CMOS for conversion control (CNV signal)  
Reference options  
Internal: 4.096 V  
External (1.2 V) buffered to 4.096 V  
External: 4.096 V  
APPLICATIONS  
High dynamic range telecommunications  
Receivers  
Digital imaging systems  
High speed data acquisition  
Spectrum analysis  
All converted results are available on a single LVDS self-clocked  
or echoed-clock serial interface, reducing external hardware  
connections.  
The AD7625 is housed in a 32-lead, 5 mm × 5 mm LFCSP with  
operation specified from −40°C to +85°C.  
Test equipment  
Table 1. Fast PulSAR® ADC Selection  
Input Type  
Resolution (Bits)  
1 MSPS to <2 MSPS  
AD7653  
2 MSPS to 3 MSPS  
5 MSPS  
6 MSPS  
10 MSPS  
Differential (Ground Sense)  
16  
AD7985  
AD7667  
AD7980  
AD7983  
True Bipolar  
Differential (Antiphase)  
16  
16  
AD7671  
AD7677  
AD7621  
AD7622  
AD7641  
AD7986  
AD7625  
AD7626  
AD7623  
AD7643  
AD7982  
AD7961  
AD7960  
18  
AD7984  
Rev. B  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 ©2009–2015 Analog Devices, Inc. All rights reserved.  
Technical Support  
www.analog.com  
 
 
 
 
AD7625* PRODUCT PAGE QUICK LINKS  
Last Content Update: 02/23/2017  
COMPARABLE PARTS  
View a parametric search of comparable parts.  
DESIGN RESOURCES  
AD7625 Material Declaration  
PCN-PDN Information  
Quality And Reliability  
Symbols and Footprints  
EVALUATION KITS  
AD7625 Evaluation Kit  
DOCUMENTATION  
Data Sheet  
DISCUSSIONS  
View all AD7625 EngineerZone Discussions.  
AD7625: 16-Bit, 6MSPS, PulSAR Differential ADC Data  
Sheet  
SAMPLE AND BUY  
Visit the product page to see pricing options.  
User Guides  
UG-745: Evaluating the AD7625/AD7626 16-Bit, 6 MSPS/  
10 MSPS PulSAR Differential ADC  
TECHNICAL SUPPORT  
Submit a technical question or find your regional support  
number.  
REFERENCE DESIGNS  
CN0080  
CN0307  
DOCUMENT FEEDBACK  
Submit feedback for this data sheet.  
REFERENCE MATERIALS  
Technical Articles  
MS-2210: Designing Power Supplies for High Speed ADC  
This page is dynamically generated by Analog Devices, Inc., and inserted into this data sheet. A dynamic change to the content on this page will not  
trigger a change to either the revision number or the content of the product data sheet. This dynamic page may be frequently modified.  
AD7625  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Circuit Information.................................................................... 13  
Converter Information .............................................................. 13  
Transfer Functions ..................................................................... 14  
Analog Inputs ............................................................................. 14  
Typical Connection Diagram ................................................... 15  
Driving the AD7625................................................................... 16  
Voltage Reference Options........................................................ 17  
Power Supply............................................................................... 18  
Digital Interface.......................................................................... 19  
Applications Information.............................................................. 21  
Layout, Decoupling, and Grounding....................................... 21  
Outline Dimensions....................................................................... 22  
Ordering Guide .......................................................................... 22  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Timing Specifications .................................................................. 5  
Absolute Maximum Ratings............................................................ 6  
Thermal Resistance ...................................................................... 6  
ESD Caution.................................................................................. 6  
Pin Configuration and Function Descriptions............................. 7  
Typical Performance Characteristics ............................................. 9  
Terminology .................................................................................... 12  
Theory of Operation ...................................................................... 13  
REVISION HISTORY  
10/15—Rev. A to Rev. B  
7/12—Rev. 0 to Rev. A  
Changes to Table 1............................................................................ 1  
Added Aperture Delay Parameter and Current Drain Parameter,  
Table 2 ................................................................................................ 3  
Changes to CLK Period Parameter and Endnote 2, Table 3 ... 5  
Changes to Figure 32 Caption and Ordering Guide.................. 22  
Change to Table 5 ..............................................................................6  
Changes to Figure 2...........................................................................7  
Updated Outline Dimensions (Changed CP-32-2 to CP-32-7) .... 22  
Changes to Ordering Guide.......................................................... 22  
1/09—Revision 0: Initial Version  
Rev. B | Page 2 of 24  
 
Data Sheet  
AD7625  
SPECIFICATIONS  
VDD1 = 5 V; VDD2 = 2.5 V; VIO = 2.5 V; REF = 4.096 V; all specifications TMIN to TMAX, unless otherwise noted.  
Table 2.  
Parameter  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
RESOLUTION  
16  
Bits  
ANALOG INPUT  
Voltage Range  
VIN+ − VIN−  
−VREF  
+VREF  
V
Operating Input Voltage  
Common-Mode Input Range  
Common-Mode Rejection Ratio  
Input Current  
VIN+, VIN− to GND  
−0.1  
VREF/2 − 0.05  
VREF + 0.1  
VREF/2 + 0.05  
V
V
dB  
μA  
VREF/2  
60  
77  
fIN = 1 MHz  
Midscale input  
THROUGHPUT  
Complete Cycle  
Throughput Rate  
DC ACCURACY  
166  
6
ns  
MSPS  
0.1  
Integral Linearity Error  
No Missing Codes  
Differential Linearity Error  
Transition Noise  
Zero Error  
Zero Error Drift  
−1  
16  
−0.5  
0.45  
+1  
LSB  
Bits  
LSB  
LSB  
LSB  
ppm/°C  
LSB  
0.3  
0.6  
1.5  
0.5  
8
+0.5  
+4  
TMIN to TMAX  
TMIN to TMAX  
−4  
Gain Error  
20  
Gain Error Drift  
Power Supply Sensitivity1  
0.4  
0.4  
0.2  
ppm/°C  
LSB  
LSB  
VDD1 = 5 V 5%  
VDD2 = 2.5 V 5%  
AC ACCURACY  
External Reference  
fIN = 20 kHz  
Dynamic Range  
92.5  
92  
93.2  
93  
106  
−105.5  
92  
dB  
dB  
dB  
dB  
dB  
Signal-to-Noise Ratio  
Spurious-Free Dynamic Range  
Total Harmonic Distortion  
Signal-to-(Noise + Distortion)  
Internal Reference  
91.5  
fIN = 20 kHz  
Dynamic Range  
92.5  
91.5  
93.2  
92.9  
106  
−105.5  
92.5  
100  
dB  
dB  
dB  
dB  
dB  
MHz  
ns  
Signal-to-Noise Ratio  
Spurious-Free Dynamic Range  
Total Harmonic Distortion  
Signal-to-(Noise + Distortion)  
−3 dB Input Bandwidth  
Aperture Delay  
91  
1.5  
Aperture Jitter  
0.25  
ps rms  
INTERNAL REFERENCE  
Output Voltage  
Temperature Drift  
REFIN @ 25°C  
−40°C to +85°C  
1.2  
15  
V
ppm/°C  
REFERENCE BUFFER  
REFIN Input Voltage Range  
REF Output Voltage Range  
Line Regulation  
1.2  
4.096  
5
V
V
mV  
4.076  
4.116  
VDD1 5%, VDD2 5%  
EXTERNAL REFERENCE  
Voltage Range  
Current Drain  
REF  
6 MSPS  
4.096  
590  
V
μA  
Rev. B | Page 3 of 24  
 
AD7625  
Data Sheet  
Parameter  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
VCM PIN  
@ 25°C  
Output Voltage  
Output Impedance  
LVDS I/O (ANSI-644)  
Data Format  
REF/2  
5
V
kΩ  
4
6
Serial LVDS twos complement  
Differential Output Voltage, VOD  
Common-Mode Output Voltage, VOCM  
Differential Input Voltage, VID  
Common-Mode Input Voltage, VICM  
POWER SUPPLIES  
Specified Performance  
VDD1  
RL = 100 Ω  
RL = 100 Ω  
200  
850  
100  
800  
350  
1250  
454  
1375  
650  
mV  
mV  
mV  
mV  
2
1575  
4.75  
2.37  
2.37  
5
2.5  
2.5  
5.25  
2.63  
2.63  
V
V
V
VDD2  
VIO  
Operating Currents  
Static—Not Converting  
VDD1  
4.5  
17  
11  
7.8  
22.7  
13  
mA  
mA  
mA  
VDD2  
VIO  
Self-clocked mode and echoed-  
clock mode  
With Internal Reference  
6 MSPS throughput  
VDD1  
VDD2  
VIO  
11  
21.5  
13.5  
15.4  
28.3  
16  
mA  
mA  
mA  
Self-clocked mode and echoed-  
clock mode  
Without Internal Reference  
6 MSPS throughput  
VDD1  
VDD2  
VIO  
9
21  
13.5  
12.1  
26  
16  
mA  
mA  
mA  
Self-clocked mode and echoed-  
clock mode  
Power Dissipation3  
Static—Not Converting  
With Internal Reference  
Without Internal Reference  
Energy per Conversion  
TEMPERATURE RANGE  
Specified Performance  
95  
130  
190  
165  
mW  
mW  
mW  
nJ/sample  
6 MSPS throughput  
6 MSPS throughput  
6 MSPS throughput  
145  
135  
22  
TMIN to TMAX  
−40  
+85  
°C  
1 Using an external reference.  
2 The ANSI-644 LVDS specification has a minimum output common mode (VOCM) of 1125 mV.  
3 Power dissipation is for the AD7625 device only. In self-clocked interface mode, 9 mW is dissipated in the 100 Ω terminator. In echoed-clock interface mode, 18 mW is  
dissipated in two 100 Ω terminators.  
Rev. B | Page 4 of 24  
Data Sheet  
AD7625  
TIMING SPECIFICATIONS  
VDD1 = 5 V; VDD2 = 2.5 V; VIO = 2.37 V to 2.63 V; REF = 4.096 V; all specifications TMIN to TMAX, unless otherwise noted.  
Table 3.  
Parameter  
Symbol  
tCYC  
Min  
166  
40  
Typ  
Max  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
MHz  
ns  
ns  
Time Between Conversions1  
10,000  
Acquisition Time  
CNV High Time  
CNV to D (MSB) Delay  
CNV to Last CLK (LSB) Delay  
CLK Period2  
tACQ  
tCNVH  
tMSB  
tCLKL  
tCLK  
fCLK  
tDCO  
tD  
10  
40  
145  
110  
3.33  
300  
7
(tCYC − tMSB + tCLKL)/n  
4
250  
4
0
4
CLK Frequency  
CLK to DCO Delay (Echoed-Clock Mode)  
DCO to D Delay (Echoed-Clock Mode)  
CLK to D Delay  
0
0
1
7
tCLKD  
ns  
1 The maximum time between conversions is 10,000 ns. If CNV is left idle for a time greater than the maximum value of tCYC, the subsequent conversion result is invalid.  
2 For the minimum CLK period, the window available to read data is tCYC − tMSB + tCLKL. Divide this time by the number of bits (n) that are read. In echoed-clock interface  
mode, n = 16; in self-clocked interface mode, n = 18.  
Rev. B | Page 5 of 24  
 
AD7625  
Data Sheet  
ABSOLUTE MAXIMUM RATINGS  
THERMAL RESISTANCE  
Table 4.  
θJA is specified for the worst-case conditions, that is, a device  
soldered in a circuit board for surface-mount packages.  
Parameter  
Rating  
Analog Inputs/Outputs  
IN+, IN− to GND1  
−0.3 V to REF + 0.3 V  
or 130 mA  
−0.3 V to +6 V  
−0.3 V to +6 V  
−0.3 V to +2.7 V  
Table 5. Thermal Resistance  
REF2 to GND  
Package Type  
θJA  
θJC  
Unit  
32-Lead LFCSP_WQ  
40  
4
°C/W  
VCM, CAP2 to GND  
CAP1, REFIN to GND  
Supply Voltage  
VDD1  
VDD2, VIO  
Digital Inputs to GND  
Digital Outputs to GND  
Input Current to Any Pin Except Supplies3  
ESD CAUTION  
−0.3 V to +6 V  
−0.3 V to +3 V  
−0.3 V to VIO + 0.3 V  
−0.3 V to VIO + 0.3 V  
10 mA  
Operating Temperature Range  
(Commercial)  
−40°C to +85°C  
Storage Temperature Range  
Junction Temperature  
ESD  
−65°C to +150°C  
150°C  
1 kV  
1 See the Analog Inputs section.  
2 Keep CNV+/CNV− low for any external REF voltage > 4.3 V applied  
to the REF pin.  
3 Transient currents of up to 100 mA do not cause SCR latch-up.  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
Rev. B | Page 6 of 24  
 
 
 
Data Sheet  
AD7625  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
VDD1 1  
24 GND  
23  
2
VDD2  
IN+  
CAP1 3  
REFIN 4  
22 IN–  
21 VCM  
AD7625  
TOP VIEW  
5
6
20  
19  
EN0  
EN1  
VDD1  
VDD1  
(Not to Scale)  
VDD2 7  
CNV– 8  
18 VDD2  
17 CLK+  
NOTES  
1. CONNECT THE EXPOSED PAD TO THE GROUND  
PLANE OF THE PCB USING MULTIPLE VIAS.  
Figure 2.  
Table 6. Pin Function Descriptions  
Pin No.  
Mnemonic  
Type1  
Description  
Analog 5 V Supply. Decouple the 5 V supply with a 100 nF capacitor.  
Analog 2.5 V Supply. Decouple this pin with a 100 nF capacitor. The 2.5 V supply source should  
supply this pin first and then be traced to the other VDD2 pins (Pin 7 and Pin 18).  
1
2
VDD1  
VDD2  
P
P
3
4
CAP1  
REFIN  
AO  
AI/O  
Connect this pin to a 10 nF capacitor.  
Prebuffer Reference Voltage. When using the internal reference, this pin outputs the band gap voltage  
and is nominally at 1.2 V. It can be overdriven with an external reference voltage such as the ADR280.  
In either internal or external reference mode, a 10 ꢀF capacitor is required. If using an external 4.096 V  
reference (connected to REF), this pin is a no connect and does not require any capacitor.  
5, 6  
EN0, EN1  
DI  
Enable Pins. The logic levels of these pins set the operation of the device as follows:  
EN1 = 0, EN0 = 0: Illegal state.  
EN1 = 0, EN0 = 1: Enable internal buffer, disable internal reference. An external 1.2 V reference  
connected to the REFIN pin is required.  
EN1 = 1, EN0 = 0: Disable internal reference and reference buffer. An external 4.096 V reference  
connected to the REF pin is required.  
EN1 = 1, EN0 = 1: Enable internal reference and reference buffer.  
7
VDD2  
P
Digital 2.5 V Supply. Decouple this pin with a 100 nF capacitor.  
8, 9  
CNV−, CNV+  
DI  
Convert Input. These pins act as the conversion control pin. On the rising edge of these pins, the  
analog inputs are sampled and a conversion cycle is initiated. CNV+ works as a CMOS input when  
CNV− is grounded; otherwise, CNV+ and CNV− are differential LVDS inputs.  
10, 11  
12  
13  
D−, D+  
VIO  
GND  
DO  
P
P
LVDS Data Outputs. The conversion data is output serially on these pins.  
Input/Output Interface Supply. Use a 2.5 V supply and decouple this pin with a 100 nF capacitor.  
Ground. Return path for the 100 nF capacitor connected to Pin 12.  
14, 15  
DCO−, DCO+ DO  
LVDS Buffered Clock Outputs. When DCO+ is grounded, the self-clocked interface mode is selected.  
In this mode, the 16-bit results on D are preceded by a 2-bit header (10) to allow synchronization of  
the data by the digital host with simple logic. When DCO+ is not grounded, the echoed-clock inter-  
face mode is selected. In this mode, DCO is a copy of CLK . The data bits are output on the falling  
edge of DCO+ and can be latched in the digital host on the next rising edge of DCO+.  
16, 17  
18  
CLK−, CLK+  
VDD2  
DI  
P
LVDS Clock Inputs. This clock shifts out the conversion results on the falling edge of CLK+.  
Analog 2.5 V Supply. Decouple this pin with a 100 nF capacitor.  
19, 20  
VDD1  
P
Analog 5 V Supply. Isolate these pins from Pin 1 with a ferrite bead and decouple them with a 100 nF  
capacitor.  
21  
VCM  
AO  
Common-Mode Output. When using any reference scheme, this pin produces one-half the voltage  
present on the REF pin, which can be useful for driving the common mode of the input amplifiers.  
22  
23  
24  
IN−  
IN+  
GND  
AI  
AI  
P
Differential Negative Analog Input. Referenced to and must be driven 180° out of phase with IN+.  
Differential Positive Analog Input. Referenced to and must be driven 180° out of phase with IN−.  
Ground.  
Rev. B | Page 7 of 24  
 
AD7625  
Data Sheet  
Pin No.  
Mnemonic  
Type1  
Description  
25, 26, 28 CAP2  
AO  
Connect all three CAP2 pins together and decouple them with the shortest trace possible to a single  
10 ꢀF, low ESR, low ESL capacitor. The other side of the capacitor must be placed close to Pin 27 (GND).  
27  
GND  
P
Ground. Return path for the 10 ꢀF capacitor connected to Pin 25, Pin 26, and Pin 28.  
29, 30, 32 REF  
AI/O  
Buffered Reference Voltage. When using the internal reference or the 1.2 V external reference (REFIN  
input), the 4.096 V system reference is produced at this pin. When using an external reference, such  
as the ADR434 or the ADR444, the internal reference buffer must be disabled. In either case, connect  
all three REF pins together and decouple them with the shortest trace possible to a single 10 ꢀF, low  
ESR, low ESL capacitor. The other side of the capacitor must be placed close to Pin 31 (GND).  
31  
EP  
GND  
Exposed Pad  
P
Ground. Return path for the 10 ꢀF capacitor connected to Pin 29, Pin 30, and Pin 32.  
The exposed pad is located on the underside of the package. Connect the exposed pad to the  
ground plane of the PCB using multiple vias. See the Exposed Pad section for more information.  
1 AI = analog input; AI/O = bidirectional analog; AO = analog output; DI = digital input; DO = digital output; P = power.  
Rev. B | Page 8 of 24  
Data Sheet  
AD7625  
TYPICAL PERFORMANCE CHARACTERISTICS  
0
0
–20  
INPUT TONE = 2kHz  
SNR = 93.16dB  
SINAD = 92.09dB  
THD = –110.45dB  
SFDR = 111.37dB  
–20  
–40  
–40  
–60  
–60  
–80  
–80  
–100  
–120  
–140  
–160  
–180  
–100  
–120  
–140  
–160  
–180  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
FREQUENCY (MHz)  
FREQUENCY (kHz)  
Figure 3. FFT 2 kHz Input Tone, Full View  
Figure 6. FFT 2 kHz Input Tone, Zoom In on Input Tone and Harmonics  
0
0
–20  
INPUT TONE = 100kHz  
SNR = 92.91dB  
INPUT TONE = 50kHz  
SNR = 93.04dB  
SINAD = 92.63dB  
THD = –103.57dB  
SFDR = –102.69dB  
–20  
SINAD = 92.55dB  
THD = –103.11dB  
SFDR = –103.41dB  
–40  
–40  
–60  
–80  
–60  
–80  
–100  
–120  
–140  
–160  
–180  
–100  
–120  
–140  
–160  
–180  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 4. FFT 50 kHz Input Tone  
Figure 7. FFT 100 kHz Input Tone  
1.0  
0.8  
0.5  
0.4  
0.6  
0.3  
0.4  
0.2  
0.2  
0.1  
0
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
0
16,384  
32,768  
CODE  
49,152  
65,536  
0
16,384  
32,768  
CODE  
49,152  
65,536  
Figure 5. Differential Nonlinearity vs. Code  
Figure 8. Integral Nonlinearity vs. Code  
Rev. B | Page 9 of 24  
 
AD7625  
Data Sheet  
–94  
–96  
–100.5  
–101.0  
–101.5  
–102.0  
–102.5  
–103.0  
–103.5  
–0.5dBFS  
–98  
–100  
–102  
–104  
–106  
–108  
–110  
–112  
–114  
INTERNAL REF  
–3dBFS  
–1dBFS  
–10dBFS  
EXTERNAL REF  
–5dBFS  
–116  
0
20  
40  
60  
80  
100  
120  
–60  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
INPUT FREQUENCY (kHz)  
TEMPERATURE (°C)  
Figure 9. THD at Input Amplitudes of −0.5 dBFS to −10 dBFS vs. Frequency  
Figure 12. THD vs. Temperature (−0.5 dB, 20 kHz Input Tone)  
93.8  
93.2  
93.6  
93.0  
92.8  
92.6  
92.4  
92.2  
92.0  
91.8  
91.6  
DYNR vs. TEMP INTERNAL REF  
DYNR vs. TEMP EXTERNAL REF  
93.4  
SINAD vs. TEMP EXTERNAL REF  
93.2  
93.0  
92.8  
SINAD vs. TEMP INTERNAL REF  
SNR vs. TEMP EXTERNAL REF  
SNR vs. TEMP INTERNAL REF  
92.6  
92.4  
92.2  
–60  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
–60  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 10. Dynamic Range and SNR vs. Temperature  
(−0.5 dB, 20 kHz Input Tone)  
Figure 13. SINAD vs. Temperature  
(−0.5 dB, 20 kHz Input Tone)  
120  
100  
80  
12  
10  
8
IN+  
60  
40  
GAIN ERROR  
6
20  
IN–  
0
4
–20  
–40  
–60  
2
ZERO ERROR  
0
–60  
–6  
–4  
–2  
0
2
4
6
–40  
–20  
0
20  
40  
60  
80  
100  
120  
DIFFERENTIAL INPUT VOLTAGE (V)  
TEMPERATURE (°C)  
Figure 11. Input Current (IN+, IN−) vs. Differential Input Voltage (6 MSPS)  
Figure 14. Zero Error and Gain Error vs. Temperature  
Rev. B | Page 10 of 24  
Data Sheet  
AD7625  
250,000  
140,000  
120,000  
100,000  
80,000  
60,000  
40,000  
20,000  
0
262,144 SAMPLES  
STD DEVIATION = 0.4829  
129,601  
262,144 SAMPLES  
STD DEVIATION = 0.5329  
128,084  
201,320  
200,000  
150,000  
100,000  
50,000  
0
30,651  
30,073  
FECB  
2329  
0
2130  
54  
46  
0
0
0
FEC6  
FEC7  
FEC8  
FEC9  
FECA  
FECB  
FEC7  
FEC8  
FEC9  
FECA  
FECC  
FECD  
CODE (HEX)  
CODE (HEX)  
Figure 15. Histogram of 262,144 Conversions of a DC Input  
at the Code Center (Internal Reference)  
Figure 17. Histogram of 262,144 Conversions of a DC Input  
at the Code Transition (Internal Reference)  
250,000  
262,144 SAMPLES  
STD DEVIATION = 0.4814  
201,614  
200,000  
150,000  
100,000  
50,000  
0
30,250  
30,206  
FECA  
41  
33  
0
0
FEC8  
FEC9  
FECB  
FECC  
FECD  
FECE  
CODE (HEX)  
Figure 16. Histogram of 262,144 Conversions of a DC Input  
at the Code Center (External Reference)  
Rev. B | Page 11 of 24  
AD7625  
Data Sheet  
TERMINOLOGY  
Power Supply Rejection Ratio (PSRR)  
Common-Mode Rejection Ratio (CMRR)  
Variations in power supply affect the full-scale transition but not  
the linearity of the converter. PSRR is the maximum change in  
the full-scale transition point due to a change in power supply  
voltage from the nominal value.  
CMRR is defined as the ratio of the power in the ADC output at  
full-scale frequency, f, to the power of an 80 mV p-p sine wave  
applied to the common-mode voltage of VIN+ and VIN− at  
frequency fS.  
Reference Voltage Temperature Coefficient  
CMRR (dB) = 10log(Pf/PfS)  
The reference voltage temperature coefficient is derived from the  
typical shift of output voltage at 25°C on a sample of parts at the  
maximum and minimum reference output voltage (VREF) meas-  
ured at TMIN, T(25°C), and TMAX. It is expressed in ppm/°C as  
where:  
Pf is the power at frequency f in the ADC output.  
PfS is the power at frequency fS in the ADC output.  
Differential Nonlinearity (DNL) Error  
V
REF (Max)–VREF (Min)  
TCVREF (ppm/C)   
106  
In an ideal ADC, code transitions are 1 LSB apart. Differential  
nonlinearity is the maximum deviation from this ideal value. It  
is often specified in terms of resolution for which no missing  
codes are guaranteed.  
VREF (25C) (TMAX TMIN  
)
where:  
V
V
V
REF (Max) = maximum VREF at TMIN, T(25°C), or TMAX.  
REF (Min) = minimum VREF at TMIN, T(25°C), or TMAX  
.
Integral Nonlinearity (INL) Error  
REF (25°C) = VREF at 25°C.  
Linearity error refers to the deviation of each individual code  
from a line drawn from negative full scale through positive full  
scale. The point used as negative full scale occurs ½ LSB before  
the first code transition. Positive full scale is defined as a level  
1½ LSB beyond the last code transition. The deviation is meas-  
ured from the middle of each code to the true straight line.  
T
MAX = +85°C.  
TMIN = −40°C.  
Signal-to-Noise Ratio (SNR)  
SNR is the ratio of the rms value of the actual input signal to  
the rms sum of all other spectral components below the Nyquist  
frequency, excluding harmonics and dc. The value for SNR is  
expressed in decibels.  
Dynamic Range  
Dynamic range is the ratio of the rms value of the full scale to  
the rms noise measured for an input typically at −60 dB. The  
value for dynamic range is expressed in decibels.  
Signal-to-(Noise + Distortion) (SINAD) Ratio  
SINAD is the ratio of the rms value of the actual input signal to  
the rms sum of all other spectral components below the Nyquist  
frequency, including harmonics but excluding dc. The value for  
SINAD is expressed in decibels.  
Effective Number of Bits (ENOB)  
ENOB is a measurement of the resolution with a sine wave  
input. It is related to SINAD and is expressed in bits by  
Spurious-Free Dynamic Range (SFDR)  
ENOB = [(SINADdB − 1.76)/6.02]  
SFDR is the difference, in decibels, between the rms amplitude  
of the input signal and the peak spurious signal.  
Gain Error  
The first transition (from 100 … 000 to 100 …001) should occur  
at a level ½ LSB above nominal negative full scale (−4.0959375 V  
for the 4.096 V range). The last transition (from 011 … 110 to  
011 … 111) should occur for an analog voltage 1½ LSB below  
the nominal full scale (+4.0959375 V for the 4.096 V range).  
The gain error is the deviation of the difference between the  
actual level of the last transition and the actual level of the first  
transition from the difference between the ideal levels.  
Total Harmonic Distortion (THD)  
THD is the ratio of the rms sum of the first five harmonic  
components to the rms value of a full-scale input signal and  
is expressed in decibels.  
Zero Error  
Zero error is the difference between the ideal midscale input  
voltage (0 V) and the actual voltage producing the midscale  
output code.  
Least Significant Bit (LSB)  
The least significant bit, or LSB, is the smallest increment that  
can be represented by a converter. For a fully differential input  
ADC with N bits of resolution, the LSB expressed in volts is  
VIN p-p  
LSB (V)   
2N  
Rev. B | Page 12 of 24  
 
Data Sheet  
AD7625  
THEORY OF OPERATION  
IN+  
GND  
LSB  
SWITCHES  
CONTROL  
SW+  
MSB  
32,768C 16,384C  
4C  
4C  
2C  
2C  
C
C
C
C
REF  
(4.096V)  
CLK+, CLK–  
DCO+, DCO–  
D+, D–  
DATA TRANSFER  
CONTROL  
LOGIC  
COMP  
GND  
OUTPUT CODE  
32,768C 16,384C  
MSB  
SW–  
LSB  
CNV+, CNV–  
LVDS INTERFACE  
GND  
CONVERSION  
CONTROL  
IN–  
Figure 18. ADC Simplified Schematic  
When the conversion phase begins, SW+ and SW− are opened  
first. The two capacitor arrays are then disconnected from the  
inputs and connected to the GND input. Therefore, the differential  
voltage between the inputs (IN+ and IN−) captured at the end  
of the acquisition phase is applied to the comparator inputs,  
causing the comparator to become unbalanced. By switching  
each element of the capacitor array between GND and 4.096 V  
(the reference voltage), the comparator input varies by binary  
weighted voltage steps (VREF/2, VREF/4 … VREF/65,536). The  
control logic toggles these switches, MSB first, to bring the  
comparator back into a balanced condition. At the completion  
of this process, the control logic generates the ADC output code.  
CIRCUIT INFORMATION  
The AD7625 is a 6 MSPS, high precision, power efficient, 16-bit  
ADC that uses SAR based architecture to provide performance  
of 93 dB SNR, 0.45 LSB INL, and 0.3 LSB DNL.  
The AD7625 is capable of converting 6,000,000 samples per  
second (6 MSPS). The device typically consumes 135 mW. The  
AD7625 offers the added functionality of a high performance  
on-chip reference and on-chip reference buffer.  
The AD7625 is specified for use with 5 V and 2.5 V supplies  
(VDD1, VDD2). The interface from the digital host to the AD7625  
uses 2.5 V logic only. The AD7625 uses an LVDS interface to  
transfer data conversions. The CNV+ and CNV− inputs to the  
device activate the conversion of the analog input. The CNV+  
and CNV− pins can be applied using a CMOS or LVDS source.  
The AD7625 digital interface uses low voltage differential  
signaling (LVDS) to enable high data transfer rates.  
The AD7625 conversion result is available for reading after tMSB  
(time from the conversion start until MSB is available) has  
elapsed. The user must apply a burst LVDS CLK signal to the  
AD7625 to transfer data to the digital host.  
The AD7625 is housed in a space-saving, 32-lead, 5 mm ×  
5 mm LFCSP.  
CONVERTER INFORMATION  
The CLK signal outputs the ADC conversion result onto the  
data output D . The bursting of the CLK signal is illustrated  
in Figure 29 and Figure 30 and is characterized as follows: The  
differential voltage on CLK should be held to create logic low  
The AD7625 is a 6 MSPS ADC that uses SAR based architecture  
incorporating a charge redistribution DAC. Figure 18 shows a  
simplified schematic of the ADC. The capacitive DAC consists  
of two identical arrays of 16 binary weighted capacitors that are  
connected to the two comparator inputs.  
in the time between tCLKL and tMSB  
.
The AD7625 has two data read modes. For more information  
about the echoed-clock and self-clocked interface modes, see  
the Digital Interface section.  
During the acquisition phase, the terminals of the array tied  
to the input of the comparator are connected to GND via SW+  
and SW−. All independent switches are connected to the analog  
inputs. In this way, the capacitor arrays are used as sampling  
capacitors and acquire the analog signal on the IN+ and IN−  
inputs. A conversion phase is initiated when the acquisition  
phase is complete and the CNV input goes logic high. Note  
that the AD7625 can receive a CMOS (CNV+) or LVDS format  
(CNV ) signal.  
Rev. B | Page 13 of 24  
 
 
 
 
AD7625  
Data Sheet  
TRANSFER FUNCTIONS  
ANALOG INPUTS  
The AD7625 uses a 4.096 V reference. The AD7625 converts the  
differential voltage of the antiphase analog inputs (IN+ and  
IN−) into a digital output. The analog inputs, IN+ and IN−,  
require a 2.048 V common-mode voltage (REF/2).  
The analog inputs, IN+ and IN−, applied to the AD7625 must be  
180° out of phase with each other. Figure 20 shows an equivalent  
circuit of the input structure of the AD7625.  
The two diodes provide ESD protection for the analog inputs,  
IN+ and IN−. Care must be taken to ensure that the analog input  
signal does not exceed the reference voltage by more than 0.3 V.  
If the analog input signal exceeds this level, the diodes become  
forward-biased and start conducting current. These diodes can  
handle a forward-biased current of 130 mA maximum. However,  
if the supplies of the input buffer (for example, the supplies of  
the ADA4899-1 in Figure 24) are different from those of the  
reference, the analog input signal may eventually exceed the  
supply rails by more than 0.3 V. In such a case (for example, an  
input buffer with a short circuit), the current limitation can be  
used to protect the device.  
The 16-bit conversion result is in MSB first, twos complement  
format.  
The ideal transfer functions for the AD7625 are shown in Figure 19  
and Table 7.  
011 ... 111  
011 ... 110  
011 ... 101  
VDD1  
CNV  
25pF  
IN+  
OR  
IN–  
250  
100 ... 010  
100 ... 001  
100 ... 000  
–FSR  
–FSR + 1LSB  
+FSR – 1LSB  
+FSR – 1.5LSB  
–FSR + 0.5LSB  
Figure 20. Equivalent Analog Input Circuit  
ANALOG INPUT  
The analog input structure allows the sampling of the true  
differential signal between IN+ and IN−. By using these differ-  
ential inputs, signals common to both inputs are rejected. The  
AD7625 shows some degradation in THD with higher analog  
input frequencies.  
Figure 19. ADC Ideal Transfer Functions (FSR = Full-Scale Range)  
Table 7. Output Codes and Ideal Input Voltages  
Analog Input  
(IN+ − IN−)  
Digital Output Code  
Description  
REF = 4.096 V  
Twos Complement (Hex)  
85  
FSR − 1 LSB  
+4.0959375 V  
0x1FFF  
0x0001  
0x0000  
0xFFFF  
0x1001  
0x1000  
80  
75  
70  
65  
60  
55  
50  
45  
40  
Midscale + 1 LSB +62.5 ꢀV  
Midscale 0 V  
Midscale − 1 LSB −62.5 ꢀV  
−FSR + 1 LSB  
−FSR  
−4.0959375 V  
−4.096 V  
1
10  
100  
1k  
10k  
100k  
1M  
10M  
INPUT COMMON-MODE FREQUENCY (Hz)  
Figure 21. Analog Input CMRR vs. Frequency  
Rev. B | Page 14 of 24  
 
 
 
 
 
Data Sheet  
AD7625  
TYPICAL CONNECTION DIAGRAM  
8
V+  
ADR434  
ADR444  
CAPACITOR ON OUTPUT  
FOR STABILITY  
C
10µF  
REF  
1, 2  
1
10µF  
VDD1  
(5V)  
100nF  
VDD2  
(2.5V)  
32  
31  
30  
29  
28  
27  
26  
25  
100nF  
24  
GND  
1
2
VDD1  
VDD2  
CAP1  
REFIN  
EN0  
10nF  
23  
22  
IN+  
IN–  
IN+  
IN–  
8
ADR280  
PADDLE  
SEE THE DRIVING  
THE AD7625 SECTION  
7
3
4
10µF  
VCM  
21  
20  
VCM  
VIO  
AD7625  
3
10kΩ  
10kΩ  
5
6
VDD1  
(5V)  
CONTROL FOR  
ENABLE  
VDD1  
FERRITE  
BEAD  
PINS  
100nF  
6
EN1  
19  
18  
VDD1  
VDD2  
VDD2  
(2.5V)  
7
VDD2  
VDD2  
(2.5V)  
100nF  
100nF  
4
CONVERSION  
CONTROL  
CMOS (CNV+ ONLY)  
OR  
8
9
10  
11  
12  
13  
14  
15  
16  
100Ω  
17  
LVDS CNV+ AND CNV–  
USING 100Ω  
5
TERMINATION RESISTOR  
100Ω  
VIO  
(2.5V)  
100Ω  
100Ω  
DIGITAL INTERFACE SIGNALS  
DIGITAL HOST  
LVDS TRANSMIT AND RECEIVE  
1
SEE THE LAYOUT, DECOUPLING, AND GROUNDING SECTION.  
2
3
C
IS USUALLY A 10µF CERAMIC CAPACITOR WITH LOW ESR AND ESL.  
REF  
USE PULL-UP OR PULL-DOWN RESISTORS TO CONTROL EN0, EN1 DURING POWER-UP. EN0 AND EN1 INPUTS CAN BE  
FIXED IN HARDWARE OR CONTROLLED USING A DIGITAL HOST (EN0 = 0 AND EN1 = 0 IS AN ILLEGAL STATE).  
OPTION TO USE A CMOS (CNV+) OR LVDS (CNV±) INPUT TO CONTROL CONVERSIONS.  
4
5
6
7
8
TO ENABLE SELF-CLOCKED MODE, TIE DCO+ TO GND USING A PULL-DOWN RESISTOR.  
CONNECT PIN 19 AND PIN 20 TO VDD1 SUPPLY; ISOLATE FROM PIN 1 USING A FERRITE BEAD SIMILAR TO WURTH 74279266.  
SEE THE DRIVING THE AD7625 SECTION FOR DETAILS ON AMPLIFIER CONFIGURATIONS.  
SEE THE VOLTAGE REFERENCE OPTIONS SECTION FOR DETAILS.  
Figure 22. Typical Application Diagram  
Rev. B | Page 15 of 24  
 
AD7625  
Data Sheet  
DRIVING THE AD7625  
Differential Analog Input Source  
ADA4899-1  
U1  
ANALOG INPUT  
(UNIPOLAR 0V TO 4.096V)  
Figure 24 shows an ADA4899-1 driving each differential input  
to the AD7625.  
590  
590Ω  
33Ω  
Single-Ended-to-Differential Driver  
56pF  
For applications using unipolar analog signals, a single-ended-  
to-differential driver, as shown in Figure 23, allows for a differ-  
ential input into the device. This configuration, when provided  
with an input signal of 0 V to 4.096 V, produces a differential  
4.096 V with midscale at 2.048 V. The one-pole filter using  
R = 33 Ω and C = 56 pF provides a corner frequency of 86 MHz.  
The VCM output of the AD7625 can be buffered and then used  
to provide the required 2.048 V common-mode voltage.  
IN+  
AD7625  
IN–  
VCM  
33Ω  
ADA4899-1  
U2  
56pF  
100nF  
100nF  
V+  
V–  
50Ω  
AD8031, AD8032  
Figure 23. Single-Ended-to-Differential Driver Circuit  
1
1
REF  
REF  
C
10µF  
C
10µF  
REF  
REF  
2
2
+V  
S
33  
0V TO V  
REF  
REF  
REFIN  
56pF  
IN+  
IN–  
ADA4899-1  
–V  
S
AD7625  
+V  
S
VCM  
2.048V  
33Ω  
GND  
V
TO 0V  
REF  
56pF  
–V  
ADA4899-1  
S
+V  
–V  
S
VCM  
BUFFERED VCM PIN OUTPUT  
GIVES THE REQUIRED 2.048V  
COMMON-MODE SUPPLY FOR  
ANALOG INPUTS.  
0.1µF  
AD8031, AD8032  
S
1
2
SEE THE VOLTAGE REFERENCE OPTIONS SECTION. CONNECTION TO EXTERNAL REFERENCE SIGNALS  
IS DEPENDENT ON THE EN1 AND EN0 SETTINGS.  
C
IS USUALLY A 10µF CERAMIC CAPACITOR WITH LOW ESL AND ESR.  
REF  
THE REF AND REFIN PINS ARE DECOUPLED REGARDLESS OF EN1 AND EN0 SETTINGS.  
Figure 24. Driving the AD7625 from a Differential Analog Source  
Rev. B | Page 16 of 24  
 
 
 
Data Sheet  
AD7625  
Table 8. Voltage Reference Options1  
VOLTAGE REFERENCE OPTIONS  
Option EN1  
EN0  
Reference Mode  
The AD7625 allows flexible options for creating and buffering  
the reference voltage. The AD7625 conversions refer to 4.096 V  
only. The various options creating this 4.096 V reference are  
controlled by the EN1 and EN0 pins (see Table 8).  
A
1
1
Use internal reference and internal  
reference buffer (both are enabled).  
Use external 1.2 V reference with  
internal reference buffer enabled.  
The internal reference is disabled.  
Use external 4.096 V reference with  
an external reference buffer. The  
internal reference and reference  
buffer are disabled.  
B
0
1
0
C
1
1 EN1 = 0 and EN0 = 0 is an illegal state.  
A
SETTING EN1 = 1 AND EN0 = 1 ENABLES THE INTERNAL  
REFERENCE AND REFERENCE BUFFER. DECOUPLE  
THE REF AND REFIN PINS EXTERNALLY.  
V+  
V+  
ADR280  
ADR434  
V+  
ADR444  
10µF  
10µF  
V–  
C
B
SETTING EN1 = 1 AND EN0 = 0  
DISABLES THE INTERNAL REFERENCE  
AND REFERENCE BUFFER. CONNECT THE  
BUFFERED 4.096V SIGNAL TO  
SETTING EN1 = 0 AND EN0 = 1  
DISABLES THE INTERNAL REFERENCE  
AND ENABLES THE INTERNAL REFERENCE BUFFER.  
CONNECT A 1.2V REFERENCE TO THE REFIN PIN. THE 1.2V  
APPLIED TO THE REFIN PIN IS BUFFERED INTERNALLY  
TO CREATE A 4.096V REFERENCE FOR THE ADC.  
REF REFIN  
IN+  
IN–  
THE REF PIN.  
AD7625  
Figure 25. Voltage Reference Options  
Rev. B | Page 17 of 24  
 
 
AD7625  
Data Sheet  
After VIO is established, apply the 2.5 V VDD2 supply to the  
device followed by the 5 V VDD1 supply and then an external  
reference (depending on the reference setting being used).  
Finally, apply the analog inputs to the ADC.  
25  
POWER SUPPLY  
The AD7625 uses both 5 V (VDD1) and 2.5 V (VDD2) power  
supplies, as well as a digital input/output interface supply (VIO).  
VIO allows a direct interface with 2.5 V logic only. VIO and  
VDD2 can be taken from the same 2.5 V source; however, it is  
best practice to isolate the VIO and VDD2 pins using separate  
traces and also to decouple each pin separately.  
VDD2 INTERNAL REF  
20  
The 5 V and 2.5 V supplies required for the AD7625 can be  
VDD2 EXTERNAL REF  
generated using Analog Devices, Inc., low dropout regulators  
(LDOs) such as the ADP3330-2.5, ADP3330-5, ADP3334, and  
15  
VIO  
ADP1708.  
10  
90  
VDD1 INTERNAL REF  
VDD2  
85  
5
VDD1 EXTERNAL REF  
80  
VDD1  
75  
0
0
1000  
2000  
3000  
4000  
5000  
6000  
7000  
SAMPLING RATE (kSPS)  
70  
65  
60  
Figure 27. Current Consumption vs. Sampling Rate  
150  
140  
130  
120  
110  
100  
90  
55  
INTERNAL REFERENCE USED  
50  
1
10  
100  
1k  
10k  
INTERNAL REF  
SUPPLY FREQUENCY (Hz)  
Figure 26. PSRR vs. Supply Frequency  
(350 mV pp Ripple on VDD2, 600 mV Ripple on VDD1)  
EXTERNAL REF  
Power-Up  
When powering up the AD7625 device, first apply the VIO  
voltage to the device so that the EN1 and EN0 values can be set  
for the reference option in use. Connect the EN0 and EN1 pins  
to pull-up/pull-down resistors to ensure that one or both of  
these pins is set to a nonzero value. EN0 = 0 and EN1 = 0 is an  
illegal state that must be avoided.  
80  
70  
60  
0
1000  
2000  
3000  
4000  
5000  
6000  
7000  
SAMPLING RATE (kSPS)  
Figure 28. Power Dissipation vs. Sampling Rate  
Rev. B | Page 18 of 24  
 
Data Sheet  
AD7625  
The clock DCO is a buffered copy of CLK and is synchronous  
to the data, D , which is updated on the falling edge of DCO+  
(tD). By maintaining good propagation delay matching between  
DIGITAL INTERFACE  
Conversion Control  
All analog-to-digital conversions are controlled by the CNV  
signal. This signal can be applied in the form of a CNV+/CNV−  
LVDS signal, or it can be applied in the form of a 2.5 V CMOS  
logic signal to the CNV+ pin. The conversion is initiated by the  
rising edge of the CNV signal.  
D
and DCO through the board and the digital host, DCO  
can be used to latch D with good timing margin for the shift  
register.  
Conversions are initiated by a CNV pulse. The CNV pulse  
must be returned low (≤tCNVH maximum) for valid operation.  
After a conversion begins, it continues until completion. Addi-  
tional CNV pulses are ignored during the conversion phase.  
After the time tMSB elapses, the host should begin to burst the  
CLK . Note that tMSB is the maximum time for the MSB of the  
new conversion result and should be used as the gating device  
for CLK . The echoed clock, DCO , and the data, D , are  
driven in phase, with D being updated on the falling edge of  
DCO+; the host should use the rising edge of DCO+ to capture  
D . The only requirement is that the 16 CLK pulses finish  
before the time tCLKL elapses for the next conversion phase or the  
data is lost. From the time tCLKL to tMSB, D and DCO are  
driven to 0s. Set CLK to idle low between CLK bursts.  
After the AD7625 is powered up, the first conversion result  
generated is invalid. Subsequent conversion results are valid  
provided that the time between conversions does not exceed  
the maximum specification for tCYC  
.
The two methods for acquiring the digital data output of the  
AD7625 via the LVDS interface are described in the following  
sections.  
Echoed-Clock Interface Mode  
The digital operation of the AD7625 in echoed-clock interface  
mode is shown in Figure 29. This interface mode, requiring  
only a shift register on the digital host, can be used with many  
digital hosts (FPGA, shift register, microprocessor, and so on).  
It requires three LVDS pairs (D , CLK , and DCO ) between  
each AD7625 and the digital host.  
SAMPLE N  
SAMPLE N + 1  
tCYC  
tCNVH  
CNV–  
CNV+  
tACQ  
ACQUISITION  
ACQUISITION  
ACQUISITION  
tCLKL  
15  
tCLK  
15  
16  
1
2
16  
1
2
3
CLK–  
CLK+  
tDCO  
1
15  
16  
1
2
15  
16  
2
3
DCO–  
DCO+  
tMSB  
tD  
tCLKD  
D+  
D–  
D1  
N – 1  
D0  
N – 1  
D15  
N
D14  
N
D1  
N
D0  
N
D15  
N + 1  
D14  
D13  
0
0
N + 1 N + 1  
Figure 29. Echoed-Clock Interface Mode Timing Diagram  
Rev. B | Page 19 of 24  
 
 
AD7625  
Data Sheet  
Conversions are initiated by a CNV pulse. The CNV pulse  
must be returned low (≤tCNVH maximum) for valid operation.  
After a conversion begins, it continues until completion. Addi-  
tional CNV pulses are ignored during the conversion phase.  
After the time tMSB elapses, the host should begin to burst the  
CLK . Note that tMSB is the maximum time for the first bit of  
the header and should be used as the gating device for CLK .  
CLK is also used internally on the host to begin the internal  
synchronization state machine. The next header bit and conversion  
results are output on subsequent falling edges of CLK . The  
only requirement is that the 18 CLK pulses finish before the  
time tCLKL elapses for the next conversion phase or the data is  
lost. Set CLK to idle high between bursts of 18 CLK pulses.  
Self-Clocked Interface Mode  
The digital operation of the AD7625 in self-clocked interface  
mode is shown in Figure 30. This interface mode reduces the  
number of wires between ADCs and the digital host to two LVDS  
pairs per AD7625 (CLK and D ) or to a single pair if sharing a  
common CLK using multiple AD7625 devices. Self-clocked  
interface mode facilitates the design of boards that use multiple  
AD7625 devices. The digital host can adapt the interfacing  
scheme to account for differing propagation delays between  
each AD7625 device and the digital host.  
The self-clocked interface mode consists of preceding the results  
of each ADC word with a 2-bit header on the data, D . This  
header is used to synchronize D of each conversion in the  
digital host. Synchronization is accomplished by one simple  
state machine per AD7625 device. For example, if the state  
machine is running at the same speed as CLK with three  
phases, the state machine measures when the Logic 1 of the  
header occurs.  
SAMPLE N  
SAMPLE N + 1  
tCYC  
tCNVH  
CNV–  
CNV+  
tACQ  
ACQUISITION  
tCLK  
ACQUISITION  
ACQUISITION  
tCLKL  
1
17  
18  
1
2
3
4
17  
18  
2
3
CLK–  
CLK+  
tMSB  
tCLKD  
D+  
D–  
D15  
N + 1  
D14  
N
D1  
N
D0  
N
D1  
N – 1  
D0  
N – 1  
D15  
N
0
1
0
0
1
0
Figure 30. Self-Clocked Interface Mode Timing Diagram  
Rev. B | Page 20 of 24  
 
Data Sheet  
AD7625  
APPLICATIONS INFORMATION  
supply to Pin 19 and Pin 20 using a 100 nF capacitor to GND.  
This GND connection can be placed a short distance away from  
the exposed pad.  
LAYOUT, DECOUPLING, AND GROUNDING  
When laying out the printed circuit board (PCB) for the AD7625,  
follow the practices described in this section to obtain the maxi-  
mum performance from the converter.  
VIO Supply Decoupling  
Decouple the VIO supply applied to Pin 12 to ground at Pin 13.  
Layout and Decoupling of Pin 25 to Pin 32  
Exposed Pad  
The AD7625 has an exposed pad on the underside of the package.  
Connect the outputs of Pin 25, Pin 26, and Pin 28 together and  
decouple them to Pin 27 using a 10 μF capacitor with low ESR  
and low ESL.  
Solder the pad directly to the PCB.  
Connect the pad to the ground plane of the board using  
multiple vias, as shown in Figure 31.  
Decouple all supply pins except for Pin 12 (VIO) directly to  
the pad, minimizing the current return path.  
Pin 13 and Pin 24 can be connected directly to the pad. Use  
vias to ground at the point where these pins connect to the  
pad.  
Reduce the inductance of the path connecting Pin 25, Pin 26,  
and Pin 28 by widening the PCB traces connecting these pins.  
A similar approach should be taken in the connections used for  
the reference pins of the AD7625. Connect Pin 29, Pin 30, and  
Pin 32 together using widened PCB traces to reduce inductance.  
In internal or external reference mode, a 4.096 V reference voltage  
is output on Pin 29, Pin 30, and Pin 32. Decouple these pins to  
Pin 31 using a 10 μF capacitor with low ESR and low ESL.  
VDD1 Supply Routing and Decoupling  
The VDD1 supply is connected to Pin 1, Pin 19, and Pin 20. The  
supply should be decoupled using a 100 nF capacitor at Pin 1.  
The user can connect this supply trace to Pin 19 and Pin 20. Use  
a series ferrite bead to connect the VDD1 supply from Pin 1 to  
Pin 19 and Pin 20. The ferrite bead isolates any high frequency  
noise or ringing on the VDD1 supply. Decouple the VDD1  
Figure 31 shows an example of the recommended layout for  
the underside of the AD7625 device. Note the extended signal  
trace connections and the outline of the capacitors decoupling  
the signals applied to the REF pins (Pin 29, Pin 30, and Pin 32)  
and to the CAP2 pins (Pin 25, Pin 26, and Pin 28).  
24 23 22 21 20 19 18 17  
25  
26  
27  
28  
29  
30  
31  
32  
16  
15  
14  
13  
12  
11  
10  
9
Paddle  
4.096V  
EXTERNAL REFERENCE  
(ADR434 OR ADR444)  
1
2
3
4
5
6
7
8
Figure 31. PCB Layout and Decoupling Recommendations for Pin 24 to Pin 32  
Rev. B | Page 21 of 24  
 
 
 
 
AD7625  
Data Sheet  
OUTLINE DIMENSIONS  
5.10  
5.00 SQ  
4.90  
0.30  
0.25  
0.18  
PIN 1  
INDICATOR  
PIN 1  
INDICATOR  
25  
24  
32  
1
0.50  
BSC  
3.25  
3.10 SQ  
2.95  
EXPOSED  
PAD  
17  
16  
8
9
0.50  
0.40  
0.30  
0.25 MIN  
TOP VIEW  
BOTTOM VIEW  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.80  
0.75  
0.70  
0.05 MAX  
0.02 NOM  
SECTION OF THIS DATA SHEET.  
COPLANARITY  
0.08  
0.20 REF  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MO-220-WHHD.  
Figure 32. 32-Lead Lead Frame Chip Scale Package [LFCSP_WQ]  
5 mm × 5 mm Body and 0.75 mm Package Height  
(CP-32-7)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1, 2  
Temperature Range  
−40°C to +85°C  
−40°C to +85°C  
Package Description  
Package Option  
CP-32-7  
CP-32-7  
AD7625BCPZ  
32-Lead Lead Frame Chip Scale Package [LFCSP_WQ]  
32-Lead Lead Frame Chip Scale Package [LFCSP_WQ]  
Evaluation Board  
AD7625BCPZRL7  
EVAL-AD7625FMCZ  
EVAL-SDP-CH1Z  
Controller Board  
1 Z = RoHS Compliant Part.  
2 The EVAL-SDP-CH1Z board allows the PC to control and communicate with all Analog Devices evaluation boards with model numbers ending with the FMC designator.  
Rev. B | Page 22 of 24  
 
 
Data Sheet  
NOTES  
AD7625  
Rev. B | Page 23 of 24  
AD7625  
NOTES  
Data Sheet  
©2009–2015 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D07652-0-10/15(B)  
Rev. B | Page 24 of 24  

相关型号:

AD7625BCPZRL7

16-Bit, 6 MSPS, PulSAR Differential ADC
ADI

AD7625_17

16-Bit, 6 MSPS, PulSAR Differential ADC
ADI

AD7626

16-Bit, 10MSPS PulSAR Differential ADC
ADI

AD7626BCPZ

16-Bit, 10 MSPS, PulSAR Differential ADC
ADI

AD7626BCPZ-RL7

16-Bit, 10 MSPS, PulSAR Differential ADC
ADI

AD7626_09

16-Bit, 10 MSPS, PulSAR Differential ADC
ADI

AD7626_10

16-Bit, 10 MSPS, PulSAR Differential ADC
ADI

AD7628

CMOS Dual 8-Bit Buffered Multiplying DAC
ADI

AD7628BFN

8-Bit Digital-to-Analog Converter
ETC

AD7628BN

8-Bit Digital-to-Analog Converter
ETC

AD7628BQ

CMOS Dual 8-Bit Buffered Multiplying DAC
ADI

AD7628BQ

DUAL, PARALLEL, 8 BITS INPUT LOADING, 8-BIT DAC, CDIP20, 0.300 INCH, CERDIP-20
ROCHESTER