AD7628BQ [ROCHESTER]

DUAL, PARALLEL, 8 BITS INPUT LOADING, 8-BIT DAC, CDIP20, 0.300 INCH, CERDIP-20;
AD7628BQ
型号: AD7628BQ
厂家: Rochester Electronics    Rochester Electronics
描述:

DUAL, PARALLEL, 8 BITS INPUT LOADING, 8-BIT DAC, CDIP20, 0.300 INCH, CERDIP-20

CD 输入元件 转换器
文件: 总9页 (文件大小:875K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CMOS Dual 8-Bit  
Buffered Multiplying DAC  
a
AD7628  
FEATURES  
FUNCTIO NAL BLO CK D IAGRAM  
On-Chip Latches for Both DACs  
+12 V to +15 V Operation  
DACs Matched to 1%  
Four Quadrant Multiplication  
TTL/ CMOS Com patible from +12 V to +15 V  
Latch Free (Protection Schottkys not Required)  
APPLICATIONS  
Disk Drives  
Program m able Filters  
X-Y Graphics  
Gain/ Attenuation  
GENERAL D ESCRIP TIO N  
P RO D UCT H IGH LIGH TS  
T he AD7628 is a monolithic dual 8-bit digital/analog converter  
featuring excellent DAC-to-DAC matching. It is available in  
small 0.3" wide 20-pin DIPs and in 20-terminal surface mount  
packages.  
1. DAC to DAC matching: since both of the AD7628 DACs  
are fabricated at the same time on the same chip, precise  
matching and tracking between DAC A and DAC B is inher-  
ent. T he AD7628s matched CMOS DACs make a whole  
new range of applications circuits possible, particularly in the  
audio, graphics and process control areas.  
Separate on-chip latches are provided for each DAC to allow  
easy microprocessor interface.  
2. Small package size: combining the inputs to the on-chip  
DAC latches into a common data bus and adding a DAC A/  
DAC B select line has allowed the AD7628 to be packaged in  
a small 20-pin 0.3" wide DIP, 20-pin SOIC, 20-terminal  
PLCC and 20-terminal LCC.  
Data is transferred into either of the two DAC data latches via a  
common 8-bit T T L/CMOS compatible input port. Control in-  
put DAC A/DAC B determines which DAC is to be loaded.  
T he AD7628s load cycle is similar to the write cycle of a ran-  
dom access memory, and the device is bus compatible with most  
8-bit microprocessors, including 6502, 6809, 8085, Z80.  
3. T T L-Compatibility: All digital inputs are T T L-compatible  
over a +12 V to +15 V power supply range.  
T he device operates from a +12 V to +15 V power supply and is  
T T L-compatible over this range. Power dissipation is a low  
20 mW.  
Both DACs offer excellent four quadrant multiplication charac-  
teristics with a separate reference input and feedback resistor for  
each DAC.  
REV. A  
Inform ation furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assum ed by Analog Devices for its  
use, nor for any infringem ents of patents or other rights of third parties  
which m ay result from its use. No license is granted by im plication or  
otherwise under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norw ood, MA 02062-9106, U.S.A.  
Tel: 617/ 329-4700  
Fax: 617/ 326-8703  
World Wide Web Site: http:/ / w w w .analog.com  
© Analog Devices, Inc., 1996  
(V = +10.8 V to +15.75 V, V A = V B = +10 V; OUT A = OUT B = 0 V unless  
DD  
REF  
REF  
AD7628–SPECIFICATIONS  
otherwise noted)  
TA = –40؇C  
TA = –55؇C  
to +125؇C1  
P aram eter  
TA = +25؇C1  
to +85؇C  
Units  
Test Conditions/Com m ents  
ST AT IC PERFORMANCE2  
Resolution  
Relative Accuracy  
8
8
8
Bits  
LSB max  
LSB max  
±1/2  
±1  
±1/2  
±1  
±1/2  
±l  
T his is an Endpoint Linearity Specification  
All Grades Guaranteed Monotonic Over  
Full Operating T emperature Range  
Measured Using Internal RFB A and RFB B.  
Both DAC Latches Loaded with 11111111.  
Gain Error is Adjustable Using Circuits  
of Figures 4 and 5.  
Differential Nonlinearity  
Gain Error  
±2  
±3  
±3  
LSB max  
Gain T emperature Coefficient3  
Gain/T emperature  
±0.0035  
±0.0035  
%/°C max  
Output Leakage Current  
OUT A (Pin 2)  
OUT B (Pin 20)  
±50  
±50  
8
±200  
±200  
8
±200  
±200  
8
nA max  
nA max  
kmin  
kmax  
DAC Latches Loaded with 00000000  
Input Resistance (VREFA, VREFB)  
Input Resistance T C = –300 ppm/°C, T ypical  
Input Resistance is 11 kΩ  
15  
15  
15  
V
REFA/VREFB Input Resistance  
Match  
±1  
±1  
±1  
% max  
DIGIT AL INPUT S4  
Input High Voltage (VIH  
Input Low Voltage (VIL  
Input Current (IIN  
Input Capacitance  
DB0–DB7  
)
2.4  
0.8  
±1  
2.4  
0.8  
±10  
2.4  
0.8  
±10  
V min  
V max  
µA max  
)
)
VIN = 0 or VDD  
10  
15  
10  
15  
10  
15  
pF max  
pF max  
WR, CS, DACA/DACB  
SWIT CHING CHARACT ERIST ICS3  
See T iming Diagram  
Chip Select to Write Set Up T ime (tCS  
Chip Select to Write Hold T ime (tCH  
DAC Select to Write Set Up T ime (tAS  
DAC Select to Write Hold T ime (tAH  
Data Valid to Write Set Up T ime (tDS  
Data Valid to Write Hold T ime (tDH  
)
160  
10  
160  
10  
160  
10  
150  
160  
10  
160  
10  
160  
10  
170  
210  
10  
210  
10  
210  
10  
210  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
)
)
)
)
)
Write Pulse Width (tWR  
)
POWER SUPPLY  
IDD, K Grade  
See Figure 3  
All Digital Inputs VIL or VIH  
All Digital Inputs VIL or VIH  
2
2
2
2.5  
mA  
mA  
B, T Grades  
2.5  
All Grades  
100  
500  
500  
µA  
All Digital Inputs 0 V or VDD  
Specifications subject to change without notice.  
AC PERFORMANCE CHARACTERISTICS These characteristics are included for Design Guidance only and are not  
subject to test. V = +10.8 V to +15.75 V. (Measured Using Recommended PC Board Layout (Figure 7) and AD644 as Output Amplifiers)  
DD  
TA = –40؇C  
to +85؇C1  
TA = –55؇C  
to +125؇πC1  
P aram eter  
TA = +25؇C1  
Units  
Test Conditions/Com m ents  
DC SUPPLY REJECT ION  
(GAIN/VDD  
)
0.01  
350  
0.02  
400  
0.02  
400  
% per % max VDD = ±5%  
CURRENT SET T LING T IME  
ns max  
T o 1/2 LSB OutA/OutB Load = 100 .  
WR = CS = 0 V.  
DB0–DB7 = 0 V to VDD or VDD to 0 V  
DIGIT AL-T O-ANALOG GLIT CH  
IMPULSE  
330  
nV sec typ  
For Code T ransition 00000000 to 11111111  
OUT PUT CAPACIT ANCE  
COUT  
COUT  
A
B
25  
25  
60  
60  
25  
25  
60  
60  
25  
25  
60  
60  
pF max  
pF max  
pF max  
pF max  
DAC Latches Loaded with 00000000  
DAC Latches Loaded with 11111111  
C
COUT  
OUT A  
B
AC FEEDT HROUGH  
REFA to OUT A  
VREFB to OUT B  
V
–70  
–70  
–65  
–65  
–65  
–65  
dB max  
dB max  
VREFA, VREFB = 20 V p-p Sine Wave  
@ 10 kHz  
CHANNEL-T O-CHANNEL ISOLAT ION  
VREFA to OUT B  
Both DAC Latches Loaded with 11111111.  
VREFA = 20 V p-p Sine Wave @ 10 kHz  
VREFB = 0 V See Figure 6.  
VREFB = 20 V p-p Sine Wave @ 10 kHz  
VREFA = 0 V See Figure 6.  
–80  
–80  
dB typ  
dB typ  
VREFB to OUT A  
DIGIT AL CROSST ALK  
60  
nV sec typ  
dB typ  
Measured for Code T ransition 00000000  
to 11111111  
HARMONIC DIST ORT ION  
NOT ES  
–85  
VIN = 6 V rms @ 1 kHz  
1T emperature Ranges are K Version; –40°C to +85°C; B Version; –40°C to +85°C; T Version; –55°C to +125°C.  
2Specification applies to both DACs in AD7628.  
3Guaranteed by design but not production tested.  
4Logic inputs are MOS Gates. T ypical input current (+25°C) is less than 1 nA.  
Specifications subject to change without notice.  
–2–  
REV. A  
AD7628  
TERMINO LO GY  
Relative Accur acy:  
Relative accuracy or endpoint nonlinearity is a measure of the  
maximum deviation from a straight line passing through the  
endpoints of the DAC transfer function. It is measured after ad-  
justing for zero and full-scale, and is normally expressed in  
LSBs or as a percentage of full-scale reading.  
ABSO LUTE MAXIMUM RATINGS  
(T A = +25°C unless otherwise noted)  
VDD to AGND . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 V, +17 V  
VDD to DGND . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 V, +17 V  
AGND to DGND . . . . . . . . . . . . . . . . . . . . . . . . VDD + 0.3 V  
DGND to AGND . . . . . . . . . . . . . . . . . . . . . . . . VDD + 0.3 V  
Digital Input Voltage to DGND . . . . . . 0.3 V, VDD + 0.3 V  
VPIN2, VPIN20 to AGND . . . . . . . . . . . . . . –0.3 V, VDD + 0.3 V  
D iffer ential Nonlinear ity:  
VREF A, VREF B to AGND . . . . . . . . . . . . . . . . . . . . . . . ±25 V  
VRFB A, VRFB B to AGND . . . . . . . . . . . . . . . . . . . . . . . ±25 V  
Power Dissipation (Any Package) to +75°C . . . . . . . . 450 mW  
Derates above +75°C by . . . . . . . . . . . . . . . . . . . 6 mW/°C  
Operating T emperature Range  
Commercial (K) Grades . . . . . . . . . . . . . . . –40°C to +85°C  
Industrial (B) Grades . . . . . . . . . . . . . . . . . –40°C to +85°C  
Extended (T ) Grades . . . . . . . . . . . . . . . . –55°C to +125°C  
Storage T emperature . . . . . . . . . . . . . . . . . –65°C to +150°C  
Lead T emperature (Soldering, 10 sec) . . . . . . . . . . . . +300°C  
Differential nonlinearity is the difference between the measured  
change and the ideal 1 LSB change between any two adjacent  
codes. A specified differential nonlinearity of ±1 LSB max over  
the operating temperature range ensures monotonicity.  
Gain Er r or :  
Gain error is a measure of the output error between an ideal  
DAC and the actual device output. It is measured with all 1s in  
the DAC latches after offset error has been adjusted out. Gain  
error of both DACs is adjustable to zero with external resistance.  
O utput Capacitance:  
Capacitance from OUT A or OUT B to AGND.  
O RD ERING GUID E  
D igital-to-Analog Glitch Im pulse:  
Tem perature  
Range  
Relative  
Accuracy Error  
Gain  
P ackage  
O ption2  
Model1  
T he amount of charge injected from the digital inputs to the  
analog output when the inputs change state. T his is normally  
specified as the area of the glitch in either pA-secs or nV-secs,  
depending upon whether the glitch is measured as a current or  
voltage signal. Glitch impulse is measured with VREF A, VREF  
= AGND.  
AD7628KN –40°C to +85°C  
AD7628KP –40°C to +85°C  
AD7628KR –40°C to +85°C  
AD7628BQ –40°C to +85°C  
AD7628T Q –55°C to +125°C ±1/2 LSB ±2 LSB Q-20  
AD7628T E –55°C to +125°C ±1/2 LSB ±2 LSB E-20A  
±1/2 LSB ±2 LSB N-20  
±1/2 LSB ±2 LSB P-20A  
±1/2 LSB ±2 LSB R-20  
±1/2 LSB ±2 LSB Q-20  
B
Channel-to-Channel Isolation:  
T he proportion of input signal from one DAC’s reference input  
that appears at the output of the other DAC, expressed as a  
ratio in dB.  
NOT ES  
1T o order MIL-ST D-883, Class B process parts, add /883B to part number.  
Contact your local sales office for military data sheet.  
2E = Leadless Ceramic Chip Carrier; N = Plastic DIP; P = Plastic Leaded Chip  
Carrier; Q = Cerdip; R = SOIC.  
D igital Cr osstalk:  
T he glitch energy transferred to the output of one converter due  
to a change in digital input code to the other converter. Speci-  
fied in nV secs.  
P IN CO NFIGURATIO NS  
LCCC  
D IP , SO IC  
P LCC  
1
AGND  
OUT A  
RFB A  
20 OUT B  
19 RFB B  
3
2
1 20 19  
2
3
4
5
6
7
8
9
3
2
20 19  
1
18 VREF  
17 VDD  
B
4
V
A
18  
17  
16  
V
V
B
V
A
4
5
6
7
8
18  
17  
V
V
B
REF  
REF  
DD  
REF  
REF  
VREF  
A
DGND 5  
DGND  
DAC A/DAC B  
DB7 (MSB)  
DB6  
AD7628  
TOP VIEW  
(Not to Scale)  
DD  
AD7628  
TOP VIEW  
(Not to Scale)  
AD7628  
TOP VIEW  
(Not to Scale)  
DGND  
DAC A/DAC B  
(MSB) DB7  
DB6  
16 WR  
6
7
8
WR  
DAC A /DAC B  
DB7 (MSB)  
DB6  
16 WR  
15 CS  
15 CS  
15 CS  
14 DB0 (LSB)  
13 DB1  
12 DB2  
11 DB3  
14  
DB0 (LSB)  
14 DB0 (LSB)  
9
10 11 12 13  
9
10  
12 13  
11  
DB5  
DB4 10  
CAUTIO N  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection.  
Although the AD7628 features proprietary ESD protection circuitry, permanent damage may  
occur on devices subjected to high energy electrostatic discharges. T herefore, proper ESD  
precautions are recommended to avoid performance degradation or loss of functionality.  
WARNING!  
ESD SENSITIVE DEVICE  
REV. A  
–3–  
AD7628  
INTERFACE LO GIC INFO RMATIO N  
D AC Selection  
Both DAC latches share a common 8-bit input port. T he con-  
trol input DAC A/DAC B selects which DAC can accept data  
from the input port.  
weighted currents are switched between the DAC output and  
AGND, thus maintaining fixed currents in each ladder leg inde-  
pendent of switch state.  
EQ UIVALENT CIRCUIT ANALYSIS  
Figure 2 shows an approximate equivalent circuit for one of  
the AD7628s D/A converters, in this case DAC A. A similar  
equivalent circuit can be drawn for DAC B. Note that AGND  
(Pin 1) is common for both DAC A and DAC B.  
Mode Selection  
Inputs CS and WR control the operating mode of the selected  
DAC. See Mode Selection T able below.  
Wr ite Mode  
T he current source ILEAKAGE is composed of surface and junc-  
tion leakages and, as with most semiconductor devices, approxi-  
mately doubles every 10°C. T he resistor Ro, as shown in Fig-  
ure 2, is the equivalent output resistance of the device, which  
varies with input code (excluding all 0s code) from 0.8R to 2R.  
R is typically 11 k. COUT is the capacitance due to the N-channel  
switches and varies from about 50 pF to 120 pF, depending on  
the digital input. g(VREF A, N) is the T hevenin equivalent volt-  
age generator due to the reference input voltage VREF A and the  
transfer function of the R-2R ladder.  
When CS and WR are both low, the selected DAC is in the write  
mode. T he input data latches of the selected DAC are transpar-  
ent and its analog output responds to activity on DB0–DB7.  
H old Mode  
T he selected DAC latch retains the data that was present on  
DB0–DB7 just prior to CS or WR assuming a high state. Both  
analog outputs remain at the values corresponding to the data in  
their respective latches.  
Mode Selection Table  
For further information on CMOS multiplying D/A converters,  
refer to “CMOS DAC Application Guide, 2ND Edition” avail-  
able from Analog Devices, Publication Number G872a–15–4/86.  
DAC A/  
D AC B  
CS  
WR  
D AC A  
D AC B  
L
L
L
H
X
L
L
X
H
WRIT E  
HOLD  
HOLD  
HOLD  
HOLD  
WRIT E  
HOLD  
HOLD  
H
X
X
L = Low State, H = High State, X = Don’t Care  
WRITE CYCLE TIMING D IAGRAM  
Figure 2. Equivalent Analog Output Circuit of DAC A  
CIRCUIT INFO RMATIO ND IGITAL SECTIO N  
T he input buffers are simple CMOS level-shifters designed so  
that when the AD7628 is operated with VDD from 10.8 V to  
15.75 V, the buffer converts TTL input levels (2.4 V and 0.8 V)  
into CMOS logic levels. When VIN is in the region of 1.0 volt to  
2.0 volts, the input buffers operate in their linear region and  
pass a quiescent current (see Figure 3). To minimize power sup-  
ply currents, it is recommended that the digital input voltages be as  
close to the supply rails (VDD and DGND) as practicably possible.  
T he AD7628 may be operated with any supply voltage in the  
range 10.8 VDD 15.75 volts.  
CIRCUIT INFO RMATIO ND /A SECTIO N  
The AD7628 contains two identical 8-bit multiplying D/A con-  
verters, DAC A and DAC B. Each DAC consists of a highly  
stable thin film R-2R ladder and eight N-channel current steering  
switches. A simplified D/A circuit for DAC A is shown in Figure  
1. An inverted R-2R ladder structure is used; that is, binary  
Figure 3. Typical Plot of Supply Current, IDD vs. Logic  
Input Voltage VIN to VDD = +15 V  
Figure 1. Sim plified Functional Circuit for DAC A  
REV. A  
–4–  
AD7628  
Figure 4. Dual DAC Unipolar Binary Operation (2 Quadrant Multiplication). See Table I.  
Figure 5. Dual DAC Bipolar Operation (4 Quadrant Multiplication). See Table II.  
Table II. Bipolar (O ffset Binary) Code Table  
Table I. Unipolar Binary Code Table  
D AC Latch Contents  
MSB LSB  
Analog O utput  
(D AC A or D AC B)  
D AC Latch Contents  
MSB LSB  
Analog O utput  
(D AC A or D AC B)  
127  
255  
+V IN  
V IN  
1 1 1 1 1 1 1 1  
1 0 0 0 0 0 0 1  
1 0 0 0 0 0 0 0  
0 1 1 1 1 1 1 1  
0 0 0 0 0 0 0 1  
0 0 0 0 0 0 0 0  
1 1 1 1 1 1 1 1  
1 0 0 0 0 0 0 1  
1 0 0 0 0 0 0 0  
0 1 1 1 1 1 1 1  
0 0 0 0 0 0 0 1  
0 0 0 0 0 0 0 0  
128  
256  
1
129  
+V IN  
V IN  
128  
256  
128  
256  
V IN  
V IN  
V IN  
V IN  
V IN  
= –  
0
2
1
127  
256  
V IN  
128  
127  
1
V IN  
128  
256  
128  
V IN  
0
= 0  
128  
256  
1
NOT E: 1 LSB = (2–8)(VIN) =  
1
V
(
NOT E: 1 LSB = (2–7)(VIN ) =  
)
IN  
V
(
)
IN  
256  
128  
Table III. Recom m ended Trim Resistor Values  
Trim  
Resistor  
K/B/T  
R1; R3  
R2; R4  
500  
150  
REV. A  
–5–  
AD7628  
Figure 7 shows a printed circuit layout for the AD7628 and the  
AD644 dual op amp, which minimizes feedthrough and crosstalk.  
AP P LICATIO NS INFO RMATIO N  
Application H ints  
T o ensure system performance consistent with AD7628 specifi-  
cations, careful attention must be given to the following points:  
SINGLE SUP P LY AP P LICATIO NS  
T he AD7628 DAC R-2R ladder termination resistors are con-  
nected to AGND within the device. T his arrangement is par-  
ticularly convenient for single supply operation because AGND  
may be biased at any voltage between DGND and VDD. Figure  
8 shows a circuit that provides two +5 V to +8 V analog outputs  
by biasing AGND +5 V up from DGND. T he two DAC refer-  
ence inputs are tied together and a reference input voltage is ob-  
tained without a buffer amplifier by making use of the constant  
and matched impedances of the DAC A and DAC B reference  
inputs. Current flows through the two DAC R-2R ladders into  
R1, and R1 is adjusted until the VREF A and VREF B inputs are  
at +2 V. T he two analog output voltages range from +5 V to  
+8 V for DAC codes 00000000 to l l l l l l l l .  
1. GENERAL GROUND MANAGEMENT : AC or transient  
voltages between the AD7628 AGND and DGND can cause  
noise injection into the analog output. T he simplest method  
of ensuring that voltages at AGND and DGND are equal is  
to tie AGND and DGND together at the AD7628. In more  
omplex systems where the AGND–DGND intertie is on the  
backplane, it is recommended that diodes be connected in  
inverse parallel between the AD7628 AGND and DGND  
pins (1N914 or equivalent).  
2. OUT PUT AMPLIFIER OFFSET : CMOS DACs exhibit a  
code-dependent output resistance which, in turn, causes a  
code-dependent amplifier noise gain. T he effect is a code-  
dependent differential nonlinearity term at the amplifier  
output that depends on VOS (VOS is amplifier input offset  
voltage). This differential nonlinearity term adds to the R/2R  
differential nonlinearity. T o maintain monotonic operation, it  
is recommended that amplifier VOS be no greater than 10% of  
1 LSB over the temperature range of interest.  
3. HIGH FREQUENCY CONSIDERAT IONS: T he output  
capacitance of a CMOS DAC works in conjunction with the  
amplifier feedback resistance to add a pole to the open loop  
response. T his can cause ringing or oscillation. Stability can  
be restored by adding a phase compensation capacitor in  
parallel with the feedback resistor.  
D YNAMIC P ERFO RMANCE  
Figure 8. AD7628 Single Supply Operation  
T he dynamic performance of the two DACs in the AD7628 will  
depend on the gain and phase characteristics of the output am-  
plifiers, together with the optimum choice of the PC board lay-  
out and decoupling components. Figure 6 shows the relationship  
between input frequency and channel-to-channel isolation.  
Figure 9 shows DAC A of the AD7628 connected in a positive  
reference, voltage switching mode. T his configuration is useful  
because VOUT is the same polarity as VIN, allowing single supply  
operation. However, to retain specified linearity, VIN must be in  
the range 0 V to +2.5 V and the output buffered or loaded with  
a high impedance (see Figure 10). Note that the input voltage is  
connected to the DAC OUT A, and the output voltage is taken  
from the DAC VREF A pin.  
Figure 6. Channel-to-Channel Isolation  
Figure 9. AD7628 Single Supply, Voltage Switching Mode  
Figure 7. Suggested PC Board Layout for AD7628 with  
AD644 Dual Op Am p  
Figure 10. Typical AD7628 Perform ance in Single Supply  
Voltage Switching Mode  
REV. A  
–6–  
AD7628  
MICRO P RO CESSO R INTERFACE  
Figure 11. AD7628 Dual DAC to 6800 CPU Interface  
Figure 12. AD7628 Dual DAC to 8085 CPU Interface  
P RO GRAMMABLE WIND O W CO MP ARATO R  
In the circuit of Figure 13, the AD7628 is used to implement a  
programmable window comparator. DACs A and B are loaded  
with the required upper and lower voltage limits for the test,  
respectively. If the test input is not within the programmed lim-  
its, the pass/fail output will indicate a fail (logic zero).  
Figure 13. Digitally Program m able Window Com parator  
(Upper and Lower Lim it Detector)  
CIRCUIT EQ UATIO NS  
C1 = C2, R1 = R2, R4 = R5  
P RO GRAMMABLE STATE VARIABLE FILTER  
1
fC  
=
2π R C1  
1
R3  
RF  
.
Q =  
R4 RFBB1  
RF  
AO = –  
RS  
NOT E  
DAC equivalent resistance equals  
256 × DAC Ladder resistance  
(
)
DAC Digital Code  
Figure 14. Digitally Controlled State Variable Filter  
In this state, variable or universal filter configuration (Figure  
14) for DACs A1 and B1 control the gain and Q of the filter  
characteristic, while DACs A2 and B2 control the cutoff fre-  
quency, fC. DACs A2 and B2 must track accurately for the simple  
expression for fC to hold. T his is readily accomplished by the  
AD7628. Op amps are 2 × AD644. C3 compensates for the  
effects of op amp gain-bandwidth limitations.  
T he filter provides low pass, high pass and band pass outputs  
and is ideally suited for applications where microprocessor con-  
trol of filter parameters is required, e.g., equalizer, tone con-  
trols, etc.  
Programmable range for component values shown is fC = 0 kHz  
to 15 kHz and Q = 0.3 to 4.5.  
REV. A  
–7–  
AD7628  
D IGITALLY CO NTRO LLED D UAL  
MECH ANICAL INFO RMATIO N  
TELEP H O NE ATTENUATO R  
O UTLINE D IMENSIO NS  
In this configuration, the AD7628 functions as a 2-channel  
digitally controlled attenuator; ideal for stereo audio and tele-  
phone signal level control applications. T able IV gives input  
codes vs. attenuation for a 0 dB to 15.5 dB range.  
D imensions shown in inches and (mm).  
20-P in Cer dip (Q Suffix)  
Attenuation, dB  
Input Code = 256 × 10 exp  
20  
20-P in P lastic D IP (N Suffix)  
Figure 15. Digitally Controlled Dual Telephone Attenuator  
Table IV. Attenuation vs. D AC A, D AC B Code for the  
Circuit of Figure 15  
20-Ter m inal  
Leadless Chip  
Car r ier (E Suffix)  
D AC Input  
Attn. dB Code  
Code in  
D ecim al Attn. dB Code  
D AC Input  
Code in  
D ecim al  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
6.5  
7.0  
7.5  
1 1 1 1 1 1 1 1 255  
1 1 1 1 0 0 1 0 242  
1 1 1 0 0 1 0 0 228  
1 1 0 1 0 1 1 1 215  
1 1 0 0 1 0 1 1 203  
1 1 0 0 0 0 0 0 192  
1 0 1 1 0 1 0 1 181  
1 0 1 0 1 0 1 1 171  
1 0 1 0 0 0 1 0 162  
1 0 0 1 1 0 0 0 152  
1 0 0 1 0 0 0 0 144  
1 0 0 0 1 0 0 0 136  
1 0 0 0 0 0 0 0 128  
8.0  
8.5  
9.0  
0 1 1 0 0 1 1 0  
0 1 1 0 0 0 0 0  
0 1 0 1 1 0 1 1  
0 1 0 1 0 1 1 0  
0 1 0 1 0 0 0 1  
0 1 0 0 1 1 0 0  
0 1 0 0 1 0 0 0  
0 1 0 0 0 1 0 0  
0 1 0 0 0 0 0 0  
0 0 1 1 1 1 0 1  
0 0 1 1 1 0 0 1  
0 0 1 1 0 1 1 0  
0 0 1 1 0 0 1  
102  
96  
91  
86  
81  
76  
72  
68  
64  
61  
57  
54  
51  
48  
46  
43  
9.5  
10.0  
10.5  
11.0  
11.5  
12.0  
12.5  
13.0  
13.5  
14.0  
14.5  
15.0  
15.5  
20-Ter m inal  
P lastic Leaded  
Chip Car r ier (P Suffix)  
0 1 1 1 0 0 1  
121  
0 0 1 1 0 0 0 0  
0 0 1 0 1 1 1 0  
0 0 1 0 1 0 1 1  
0 1 1 1 0 0 1 0 114  
0 1 1 0 1 1 0 0 108  
REV. A  
–8–  

相关型号:

AD7628KC/D

8-Bit Digital-to-Analog Converter
ETC

AD7628KCWP

8-Bit Digital-to-Analog Converter
ETC

AD7628KFN

8-Bit Digital-to-Analog Converter
ETC

AD7628KN

CMOS Dual 8-Bit Buffered Multiplying DAC
ADI

AD7628KNZ

CMOS Dual 8-Bit Buffered Multiplying DAC
ADI

AD7628KP

CMOS Dual 8-Bit Buffered Multiplying DAC
ADI

AD7628KP

DUAL, PARALLEL, 8 BITS INPUT LOADING, 8-BIT DAC, PQCC20, PLASTIC, LCC-20
ROCHESTER

AD7628KP-REEL

CMOS Dual 8-Bit Buffered Multiplying DAC
ADI

AD7628KP/+

8-Bit Digital-to-Analog Converter
ETC

AD7628KPZ

DUAL, PARALLEL, 8 BITS INPUT LOADING, 8-BIT DAC, PQCC20, PLASTIC, LCC-20
ROCHESTER

AD7628KPZ-REEL

CMOS Dual 8-Bit Buffered Multiplying DAC
ADI

AD7628KR

CMOS Dual 8-Bit Buffered Multiplying DAC
ADI