AD628 [ADI]

High Common-Mode Voltage Programmable Gain Difference Amplifier; 高共模电压可编程增益差动放大器
AD628
型号: AD628
厂家: ADI    ADI
描述:

High Common-Mode Voltage Programmable Gain Difference Amplifier
高共模电压可编程增益差动放大器

放大器
文件: 总20页 (文件大小:247K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
High Common-Mode Voltage  
Programmable Gain Difference Amplifier  
AD628  
FUNCTIONAL BLOCK DIAGRAM  
FEATURES  
R
R
EXT1  
EXT2  
High common-mode input voltage range  
120 V at VS = 1ꢀ V  
Gain range 0.1 to 100  
+V  
S
R
G
Operating temperature range: −40°C to 8ꢀ°C  
Supply voltage range  
Dual supply: 2.2ꢀ V to 18 V  
Single supply: 4.ꢀ V to 36 V  
Excellent ac and dc performance  
Offset temperature stability RTI: 10 µV/°C max  
Offset: 1.ꢀ V mV max  
100k  
10kΩ  
–IN  
+IN  
G = +0.1  
–IN  
+IN  
OUT  
A2  
–IN  
10kΩ  
A1  
+IN  
100kΩ  
10kΩ  
AD628  
CMRR RTI: 7ꢀ dB min, dc to ꢀ00 Hz, G = +1  
–V  
V
S
REF  
APPLICATIONS  
C
FILT  
High voltage current shunt sensing  
Programmable logic controllers  
Analog input front end signal conditioning  
+ꢀ V, +10 V, ꢀ V, 10 V and 4 to 20 mA  
Isolation  
Figure 1.  
130  
120  
110  
100  
90  
Sensor signal conditioning  
Power supply monitoring  
Electrohydraulic control  
Motor control  
V
= ±15V  
S
GENERAL DESCRIPTION  
80  
70  
The AD628 is a precision difference amplifier that combines  
excellent dc performance with high common-mode rejection  
over a wide range of frequencies. When used to scale high  
voltages, it allows simple conversion of standard control  
voltages or currents for use with single-supply ADCs. A  
wideband feedback loop minimizes distortion effects due to  
capacitor charging of ∑-∆ ADCs.  
V
= ±2.5V  
S
60  
50  
40  
30  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
Figure 2. CMRR vs. Frequency of the AD628  
A reference pin (VREF) provides a dc offset for converting  
bipolar to single-sided signals. The AD628 converts +5 V, +10 V,  
5 V, 10 V, and 4 to 20 mA input signals to a single-ended  
output within the input range of single-supply ADCs.  
A precision 10 kΩ resistor connected to an external pin is  
provided for either a low-pass filter or to attenuate large  
differential input signals. A single capacitor implements a low-  
pass filter. The AD628 operates from single and dual supplies and  
is available in an 8-lead SOIC or MSOP package. It operates over  
the standard industrial temperature range of −40°C to +85°C.  
The AD628 has an input common-mode and differential  
mode operating range of 120 V. The high common-mode  
input impedance makes the device well suited for high voltage  
measurements across a shunt resistor. The buffer amplifier’s  
inverting input is available for making a remote Kelvin  
connection.  
Rev. C  
Information furnished by Analog Devices is believed to be accurate and reliable.  
However, no responsibility is assumed by Analog Devices for its use, nor for any  
infringements of patents or other rights of third parties that may result from its use.  
Specifications subject to change without notice. No license is granted by implication  
or otherwise under any patent or patent rights of Analog Devices. Trademarks and  
registered trademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.326.8703  
www.analog.com  
© 2004 Analog Devices, Inc. All rights reserved.  
AD628  
TABLE OF CONTENTS  
Specifications..................................................................................... 3  
REVISION HISTORY  
Absolute Maximum Ratings............................................................ 7  
ESD Caution.................................................................................. 7  
Pin Configuration and Function Descriptions............................. 8  
Typical Performance Characteristics ............................................. 9  
Test Circuits..................................................................................... 13  
Theory of Operation ...................................................................... 14  
Applications..................................................................................... 15  
Gain Adjustment......................................................................... 15  
Input Voltage Range ................................................................... 15  
Voltage Level Conversion.......................................................... 16  
Current Loop Receiver............................................................... 17  
Monitoring Battery Voltages ..................................................... 17  
Filter Capacitor Values............................................................... 18  
Kelvin Connection ..................................................................... 18  
Outline Dimensions ....................................................................... 19  
Ordering Guide........................................................................... 19  
4/04—Data Sheet Changed from Rev. B to Rev. C  
Updated Format.................................................................Universal  
Changes to Specifications............................................................... 3  
Changes to Absolute Maximum Ratings...................................... 7  
Changes to Figure 3......................................................................... 7  
Changes to Figure 26..................................................................... 13  
Changes to Figure 27..................................................................... 13  
Changes to Theory of Operation ................................................ 14  
Changes to Figure 29..................................................................... 14  
Changes to Table 5......................................................................... 15  
Changes to Gain Adjustment Section......................................... 15  
Added the Input Voltage Range Section..................................... 15  
Added Figure 30 ............................................................................ 15  
Added Figure 31 ............................................................................ 15  
Changes to Voltage Level Conversion Section .......................... 16  
Changes to Figure 32..................................................................... 16  
Changes to Table 6......................................................................... 16  
Changes to Figure 33 and Figure 34............................................ 17  
Changes to Figure 35..................................................................... 18  
Changes to Kelvin Connection Section...................................... 18  
6/03—Data Sheet Changed from Rev. A to Rev. B  
Changes to General Description ................................................... 1  
Changes to Specifications............................................................... 2  
Changes to Ordering Guide........................................................... 4  
Changes to TPCs 4, 5, and 6........................................................... 5  
Changes to TPC 9............................................................................ 6  
Updated Outline Dimensions...................................................... 14  
1/03—Data Sheet Changed from Rev. 0 to Rev. A  
Change to Ordering Guide............................................................. 4  
11/02—Rev. 0: Initial Version  
Rev. C | Page 2 of 20  
AD628  
SPECIFICATIONS  
TA = 25°C, VS = 15 V, RL = 2 kΩ, REXT1 = 10 kΩ, REXT2 = ∞, VREF = 0 unless otherwise noted.  
Table 1.  
AD628AR  
AD628ARM  
Parameter  
Conditions  
Min  
Typ  
Max  
Min  
Typ  
Max  
Unit  
DIFF AMP + OUTPUT AMP  
Gain Equation  
Gain Range  
G = +0.1(1+ REXT1/REXT2).  
See Figure 29.  
VOCM = 0 V. RTI of input pins2.  
Output amp G = +1.  
V/V  
V/V  
mV  
0.11  
−1.5  
100  
+1.5  
0.11  
−1.5  
100  
+1.5  
Offset Voltage  
vs. Temperature  
CMRR  
4
8
4
8
µV/°C  
dB  
RTI of input pins.  
G = +0.1 to +100.  
75  
75  
500 Hz.  
−40°C to +85°C.  
75  
70  
75  
70  
dB  
dB  
Minimum CMRR Over Temperature  
vs. Temperature  
PSRR (RTI)  
1
94  
4
1
94  
4
(µV/V)/°C  
dB  
VS = 10 V to 18 V.  
77  
77  
Input Voltage Range  
Common Mode  
Differential  
−120  
−120  
+120 −120  
+120 −120  
+120  
+120  
V
V
Dynamic Response  
Small Signal BW –3 dB  
Full Power Bandwidth  
Settling Time  
G = +0.1.  
600  
5
600  
5
kHz  
kHz  
µs  
G = +0.1, to 0.01%, 100 V step.  
40  
40  
Slew Rate  
0.3  
0.3  
V/µs  
Noise (RTI)  
Spectral Density  
1 kHz.  
0.1 Hz to 10 Hz.  
300  
15  
300  
15  
nV/√Hz  
µV p-p  
DIFF-AMP  
Gain  
0.1  
0.1  
V/V  
Error  
−0.1  
−1.5  
+0.01 +0.1  
−0.1  
−1.5  
+0.01 +0.1  
%
vs. Temperature  
Nonlinearity  
vs. Temperature  
Offset Voltage  
vs. Temperature  
Input Impedance  
Differential  
Common Mode  
CMRR  
5
5
5
5
ppm/°C  
ppm  
ppm  
mV  
3
10  
+1.5  
8
3
10  
+1.5  
8
RTI of input pins.  
µV/°C  
220  
55  
220  
55  
kΩ  
kΩ  
dB  
RTI of input pins.  
G = +0.1 to +100.  
75  
75  
500 Hz.  
−40°C to +85°C.  
75  
70  
75  
70  
dB  
dB  
Minimum CMRR Over Temperature  
vs. Temperature  
1
4
1
4
(µV/V)/°C  
Output Resistance  
Error  
10  
10  
kΩ  
%
−0.1  
+0.1  
−0.1  
+0.1  
Rev. C | Page 3 of 20  
 
AD628  
AD628AR  
Typ  
AD628ARM  
Parameter  
Conditions  
Min  
Max  
Min  
Typ  
Max  
Unit  
OUTPUT AMPLIFIER  
Gain Equation  
Nonlinearity  
Offset Voltage  
G = (1 + REXT1/REXT2).  
G = +1, VOUT = 10 V.  
RTI of output amp.  
V/V  
ppm  
+0.15 mV  
0.5  
0.5  
−0.15  
+0.15 −0.15  
vs. Temperature  
Output Voltage Swing  
0.6  
0.6  
µV/°C  
V
V
nA  
nA  
dB  
dB  
RL = 10 kΩ.  
RL = 2 kΩ.  
−14.2  
−13.8  
+14.1 −14.2  
+13.6 −13.8  
3
0.5  
130  
130  
+14.1  
+13.6  
3
Bias Current  
Offset Current  
CMRR  
Open-Loop Gain  
POWER SUPPLY  
Operating Range  
Quiescent Current  
TEMPERATURE RANGE  
1.5  
0.2  
1.5  
0.2  
0.5  
VCM = 13 V.  
VOUT = 13 V.  
130  
130  
2.25  
–40  
18  
1.6  
+85  
2.25  
–40  
18  
1.6  
V
mA  
°C  
+85  
1 To use a lower gain, see the Gain Adjustment section.  
2The addition of the difference amp’s and output amp’s offset voltage does not exceed this specification.  
Rev. C | Page 4 of 20  
 
AD628  
TA = 25°C, VS = +5 V, RL = 2 kΩ, REXT1 = 10 kΩ, REXT2 = ∞, VREF = +2.5 unless otherwise noted.  
Table 2.  
AD628AR  
Typ  
AD628ARM  
Typ Max Unit  
Parameter  
Conditions  
Min  
Max Min  
DIFF AMP + OUTPUT AMP  
Gain Equation  
Gain Range  
G = +0.1(1+ REXT1/REXT2).  
See Figure 29.  
VOCM = 2.25 V. RTI of input pins2.  
Output Amp G = +1.  
V/V  
V/V  
+3.0 mV  
0.11  
−3.0  
100  
+3.0 −3.0  
0.11  
100  
Offset Voltage  
vs. Temperature  
CMRR  
6
15  
75  
75  
70  
4
6
15  
µV/°C  
dB  
dB  
dB  
(µV/V)/°C  
dB  
RTI of input pins. G = 0.1 to 100.  
500 Hz.  
75  
75  
70  
Minimum CMRR Over Temperature −40°C to +85°C.  
vs. Temperature  
PSRR (RTI)  
1
94  
1
94  
4
VS = 4.5 V to 10 V.  
77  
77  
Input Voltage Range  
Common Mode3  
Differential  
−12  
−15  
+17 −12  
+15 −15  
+17  
+15  
V
V
Dynamic Response  
Small Signal BW –3 dB  
Full Power Bandwidth  
Settling Time  
G = +0.1.  
440  
30  
15  
440  
30  
15  
kHz  
kHz  
µs  
G = +0.1, to 0.01%, 30 V step.  
Slew Rate  
0.3  
0.3  
V/µs  
Noise (RTI)  
Spectral Density  
1 kHz.  
0.1 Hz to 10 Hz.  
350  
15  
350  
15  
nV/√Hz  
µV p-p  
DIFF-AMP  
Gain  
Error  
0.1  
0.1  
V/V  
%
ppm  
ppm  
–0.1  
−2.5  
+0.01 +0.1 –0.1  
3
3
+0.01 +0.1  
3
3
Nonlinearity  
vs. Temperature  
Offset Voltage  
vs. Temperature  
Input Impedance  
Differential  
Common Mode  
CMRR  
10  
10  
RTI of input pins.  
+2.5 −2.5  
10  
+2.5 mV  
10  
µV/°C  
220  
55  
220  
55  
kΩ  
kΩ  
dB  
RTI of input pins. G = +0.1 to +100. 75  
75  
500 Hz.  
75  
70  
75  
70  
dB  
dB  
Minimum CMRR Over Temperature −40°C to +85°C.  
vs. Temperature  
Output Resistance  
Error  
1
10  
4
1
10  
4
(µV/V)/°C  
kΩ  
%
−0.1  
+0.1 −0.1  
+0.1  
OUTPUT AMPLIFIER  
Gain Equation  
Nonlinearity  
Output Offset Voltage  
vs. Temperature  
Output Voltage Swing  
G = (1 + REXT1/REXT2).  
G = +1, VOUT = 1 V to 4 V.  
RTI of output amp.  
V/V  
ppm  
0.15 mV  
0.5  
0.5  
−0.15  
0.15 −0.15  
0.6  
4.1  
4
0.6  
4.1  
4
µV/°C  
V
V
RL = 10 kΩ.  
RL = 2 kΩ.  
0.9  
1
0.9  
1
Bias Current  
Offset Current  
CMRR  
1.5  
0.2  
3
0.5  
1.5  
0.2  
3
0.5  
nA  
nA  
dB  
dB  
VCM = 1 V to 4 V.  
VOUT = 1 V to 4 V.  
130  
130  
130  
130  
Open-Loop Gain  
Rev. C | Page 5 of 20  
AD628  
AD628AR  
Typ  
AD628ARM  
Typ Max Unit  
Parameter  
Conditions  
Min  
2.25  
−40  
Max Min  
POWER SUPPLY  
Operating Range  
Quiescent Current  
TEMPERATURE RANGE  
+36  
1.6  
2.25  
+36  
1.6  
V
mA  
°C  
+85 −40  
+85  
1To use a lower gain, see the Gain Adjustment section.  
2 The addition of the difference amp’s and output amp’s offset voltage does not exceed this specification.  
3 Greater values of voltage are possible with greater or lesser values of VREF  
.
Rev. C | Page 6 of 20  
 
AD628  
ABSOLUTE MAXIMUM RATINGS  
Table 3.  
Parameter  
Rating  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
T = 150°C  
J
Supply Voltage  
18 V  
Internal Power Dissipation  
Input Voltage (Common Mode)  
Differential Input Voltage  
Output Short-Circuit Duration  
Storage Temperature  
See Figure 3  
120 V1  
120 V1  
Indefinite  
–65°C to +125°C  
–40°C to +85°C  
300°C  
8-LEAD MSOP PACKAGE  
8-LEAD SOIC PACKAGE  
Operating Temperature Range  
Lead Temperature Range (10 sec Soldering)  
Stresses greater than those listed under Absolute Maximum  
Ratings may cause permanent damage to the device. This is a  
stress rating only; functional operation of the device at these or  
any other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
MSOP θ (JEDEC; 4-LAYER BOARD) = 132.54°C/W  
J
SOIC θ (JEDEC; 4-LAYER BOARD) = 154°C/W  
J
–60  
–40  
–20  
0
20  
40  
60  
80  
100  
AMBIENT TEMPERATURE (°C)  
Figure 3. Maximum Power Dissipation vs. Temperature  
1 When using 12 V supplies or higher (see the Input Voltage Range section).  
ESD CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on  
the human body and test equipment and can discharge without detection. Although this product features  
proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy  
electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance  
degradation or loss of functionality.  
Rev. C | Page 7 of 20  
 
 
 
AD628  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
Table 4. Pin Function Descriptions  
Pin No. Mnemonic Function  
1
2
3
4
8
7
6
5
–IN  
+V  
+IN  
AD628  
TOP VIEW  
(Not to Scale)  
–V  
S
S
1
2
3
4
5
6
7
8
+IN  
−VS  
VREF  
CFILT  
OUT  
RG  
Noninverting Input  
V
R
G
REF  
Negative Supply Voltage  
Reference Voltage Input  
Filter Capacitor Connection  
Amplifier Output  
Output Amplifier Inverting Input  
Positive Supply Voltage  
Inverting Input  
C
OUT  
FILT  
Figure 4. Pin Configuration  
+VS  
−IN  
Rev. C | Page 8 of 20  
AD628  
TYPICAL PERFORMANCE CHARACTERISTICS  
140  
120  
100  
80  
40  
8440 UNITS  
G = +0.1  
35  
30  
25  
20  
15  
10  
5
–15V  
+15V  
60  
+2.5V  
40  
20  
0
0
0.1  
1
10  
100  
1k  
10k  
100k  
1M  
–1.6 –1.2 –0.8 –0.4  
0
0.4  
0.8  
1.2  
1.6  
2.0  
INPUT OFFSET VOLTAGE (mV)  
FREQUENCY (Hz)  
Figure 5. Typical Distribution of Input Offset Voltage,  
VS = 15 V, SOIC Package  
Figure 8. PSRR vs. Frequency, Single and Dual Supplies  
25  
20  
15  
10  
5
1000  
8440 UNITS  
0
–74  
100  
–78  
–82  
–86  
–90  
–94  
–98 –102 –106 –110  
1
10  
100  
1k  
10k  
100k  
CMRR (dB)  
FREQUENCY (Hz)  
Figure 6. Typical Distribution of Common-Mode Rejection, SOIC Package  
Figure 9. Voltage Noise Spectral Density, RTI, VS = 15 V  
130  
120  
110  
100  
1000  
V
= ±15V  
S
90  
80  
70  
60  
50  
40  
30  
V
= ±2.5V  
S
100  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
1
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
Figure 7. CMRR vs. Frequency  
Figure 10. Voltage Noise Spectral Density, RTI, VS = 2.5 V  
Rev. C | Page 9 of 20  
AD628  
40  
35  
30  
25  
20  
15  
10  
5
9638 UNITS  
1s  
100  
90  
10  
0
0
0
5
10  
0
1
2
3
4
5
6
7
8
9
10  
TIME (Sec)  
GAIN ERROR (ppm)  
Figure 11. 0.1 Hz to 10 Hz Voltage Noise, RTI  
Figure 14. Typical Distribution of +1 Gain Error  
60  
50  
150  
100  
50  
UPPER CMV LIMIT  
G = +100  
G = +10  
G = +1  
40  
–40°C  
30  
20  
+85°C  
V
= 0V  
REF  
10  
0
+25°C  
0
–40°C  
–50  
–100  
–150  
–10  
–20  
–30  
–40  
G = +0.1  
+85°C  
LOWER CMV LIMIT  
15  
100  
1k  
10k  
100k  
1M  
10M  
0
5
10  
(±V)  
20  
FREQUENCY (Hz)  
V
S
Figure 12. Small Signal Frequency Response,  
OUT = 200 mV p-p, G = +0.1, +1, +10, and +100  
Figure 15. Common-Mode Operating Range vs.  
Power Supply Voltage for Three Temperatures  
V
60  
50  
VS = ±15V  
500µV  
G = +100  
G = +10  
G = +1  
100  
90  
RL = 1k  
40  
30  
20  
RL = 2k  
10  
0
RL = 10k  
10  
0
–10  
–20  
–30  
–40  
G = +0.1  
4.0V  
10  
100  
1k  
10k  
100k  
1M  
OUTPUT VOLTAGE (V)  
FREQUENCY (Hz)  
Figure 13. Large Signal Frequency Response,  
VOUT = 20 V p-p, G = +0.1, +1, +10, and +100  
Figure 16. Normalized Gain Error vs. VOUT, VS = 15 V  
Rev. C | Page 10 of 20  
AD628  
VS = ±2.5V  
RL = 1k  
100µV  
500mV  
100  
90  
100  
90  
RL = 2k  
RL = 10k  
10  
0
10  
0
4µs  
50mV  
500mV  
OUTPUT VOLTAGE (V)  
Figure 17. Normalized Gain Error vs. VOUT, VS = 2.5 V  
Figure 20. Small Signal Pulse Response,  
RL = 2 kΩ, CL = 0 pF, Top: Input, Bottom: Output  
4
3
2
1
0
500mV  
100  
90  
10  
0
4µs  
50mV  
–40  
–20  
0
20  
40  
60  
80  
100  
TEMPERATURE (°C)  
Figure 18. Bias Current vs. Temperature Buffer  
Figure 21. Small Signal Pulse Response,  
RL = 2 kΩ, CL = 1000 pF, Top: Input, Bottom: Output  
15  
10  
5
–40°C  
–25°C  
+85°C  
100  
90  
10.0 V  
10.0 V  
+25°C  
0
–40°C  
–5  
–10  
–15  
–25°C  
10  
0
+85°C  
+25°C  
40 µs  
0
5
10  
15  
20  
25  
OUTPUT CURRENT (mA)  
Figure 19. Output Voltage Operating Range vs. Output Current  
Figure 22. Large Signal Pulse Response,  
RL = 2 kΩ, CL = 1000 pF, Top: Input, Bottom: Output  
Rev. C | Page 11 of 20  
AD628  
100  
100  
90  
90  
5V  
5V  
10mV  
10mV  
10  
0
10  
0
100  
µ
s
100µs  
Figure 23. Settling Time to 0.01%, 0 V to 10 V Step  
Figure 24. Settling Time to 0.01% 0 V to −10 V Step  
Rev. C | Page 12 of 20  
AD628  
TEST CIRCUITS  
HP3589A  
HP3561A  
SPECTRUM ANALYZER  
SPECTRUM ANALYZER  
+V  
S
+V  
S
C
FILT  
4
7
–IN  
10k  
10kΩ  
+IN  
–IN  
100kΩ  
FET  
PROBE  
–IN  
+IN  
AD829  
+
10k  
10kΩ  
100kΩ  
100kΩ  
8
1
OUT  
+IN  
–IN  
OUT  
–IN  
5
G = +0.1  
+IN  
+IN  
G = +100  
–IN  
G = +0.1  
+IN  
100kΩ  
AD628  
10kΩ  
AD628  
C
R
10kΩ  
FILT  
V
G
REF  
3
2
6
R
V
–V  
G
REF  
S
10kΩ  
–V  
S
10kΩ  
AD707  
+
Figure 25. CMRR vs. Frequency  
Figure 27. Noise Tests  
SCOPE  
+V  
S
1 VAC  
+15V  
G = +100  
G = +100  
+IN  
–IN  
10k  
10kΩ  
+
OUT  
20Ω  
100kΩ  
AD829  
–IN  
–IN  
G = +0.1  
+IN  
+IN  
100kΩ  
AD628  
10kΩ  
V
C
R
G
REF  
FILT  
–V  
S
Figure 26. PSRR vs. Frequency  
Rev. C | Page 13 of 20  
AD628  
THEORY OF OPERATION  
R
G
The AD628 is a high common-mode voltage difference  
amplifier, combined with a user configurable output amplifier  
(see Figure 28 and Figure 29). Differential mode voltages in  
excess of 120 V are accurately scaled by a precision 11:1 voltage  
divider at the input. A reference voltage input is available to the  
user at Pin 3 (VREF). The output common-mode voltage of the  
difference amplifier is the same as the voltage applied to the  
reference pin. If the uncommitted amplifier is configured for  
gain, connecting Pin 3 to one end of the external gain resistor  
establishes the output common-mode voltage at Pin 5 (OUT).  
100k  
100kΩ  
10kΩ  
G = +0.1  
–IN  
+IN  
–IN  
+IN  
OUT  
A2  
–IN  
10kΩ  
A1  
+IN  
10kΩ  
V
C
FILT  
REF  
The output of the difference amplifier is internally connected  
to a 10 kΩ resistor trimmed to better than 0.1% absolute  
accuracy. The resistor is connected to the noninverting input of  
the output amplifier and is accessible to the user at Pin 4 (CFILT).  
A capacitor may be connected to implement a low-pass filter, a  
resistor may be connected to further reduce the output voltage,  
or a clamp circuit may be connected to limit the output swing.  
Figure 28. Simplified Schematic  
C
FILT  
+V  
S
AD628  
10k  
100kΩ  
The uncommitted amplifier is a high open-loop gain, low offset,  
low drift op amp, with its noninverting input connected to the  
internal 10 kΩ resistor. Both inputs are accessible to the user.  
–IN  
+IN  
G = +0.1  
–IN  
10kΩ  
A1  
+IN  
OUT  
A2  
+IN  
Careful layout design has resulted in exceptional common-  
mode rejection at higher frequencies. The inputs are connected  
to Pin 1 (+IN) and Pin 8 (−IN), which are adjacent to the power  
Pin 2 (−VS) and Pin 7 (+VS). Because the power pins are at ac  
ground, input impedance balance and, therefore, common-  
mode rejection, are preserved at higher frequencies.  
–IN  
100kΩ  
10kΩ  
–V  
V
REF  
R
S
G
R
EXT3  
R
R
EXT1  
REFERENCE  
VOLTAGE  
EXT2  
Figure 29. Circuit Connections  
Rev. C | Page 14 of 20  
 
 
AD628  
APPLICATIONS  
GAIN ADJUSTMENT  
INPUT VOLTAGE RANGE  
The AD628 system gain is provided by an architecture  
consisting of two amplifiers. The gain of the input stage  
is fixed at 0.1; the output buffer is user adjustable as  
The common-mode input voltage range is determined by VREF  
and the supply voltage. The relation is expressed by  
VCM  
11(VS+ –1.2 V)10VREF  
11(VS+1.2 V)10VREF  
UPPER  
G
A2 = 1 + REXT1/REXT2. The system gain is then  
(2)  
VCM  
LOWER  
REXT1  
REXT2  
(1)  
GTOTAL = 0.1× 1+  
where VS+ is the positive supply, VSis the negative supply  
and 1.2 V is the headroom needed for suitable performance.  
Equation 2 provides a general formula for calculating the  
common-mode input voltage range. However, the AD628  
should be kept within the maximum limits listed in the  
Specifications table (Table 1) to maintain optimal performance.  
This is illustrated in Figure 30 where the maximum common-  
mode input voltage is limited to 120 V. Figure 31 shows the  
common-mode input voltage bounds for single-supply voltages.  
At a 2 nA maximum, the input bias current of the buffer amplifier  
is very low and any offset voltage induced at the buffer amplifier by  
its bias current may be neglected (2 nA × 10 kΩ = 20 µV). However,  
to absolutely minimize bias current effects, REXT1 and REXT2 may be  
selected so that their parallel combination is 10 kΩ. If practical  
resistor values force the parallel combination of REXT1 and REXT2  
below 10 kΩ, a series resistor (REXT3) may be added to make up for  
the difference. Table 5 lists several values of gain and corresponding  
resistor values.  
200  
150  
100  
50  
Table 5. Nearest Standard 1% Resistor Values for Various  
Gains (See Figure 29)  
Total Gain  
(V/V)  
A2 Gain  
(V/V)  
REXT1 (Ω)  
REXT2 (Ω)  
REXT3 (Ω)  
MAXIMUM INPUT COMMON-MODE  
0
0.1  
0.2  
0.25  
0.5  
1
2
5
10  
1
2
10 k  
20 k  
20 k  
0
0
0
0
0
0
0
0
VOLTAGE WHEN V  
= GND  
REF  
–50  
–100  
–150  
–200  
2.5  
5
10  
20  
50  
100  
25.9 k  
49.9 k  
100 k  
200 k  
499 k  
1 M  
18.7 k  
12.4 k  
11 k  
10.5 k  
10.2 k  
10.2 k  
0
2
4
6
8
10  
12  
14  
16  
SUPPLY VOLTAGE (±V)  
To set the system gain to less than 0.1, an attenuator may be  
created by placing a resistor, REXT4, from Pin 4 (CFILT) to the  
reference voltage. A divider would be formed by the 10 kΩ  
resistor which is in series with the positive input of A2 and  
REXT4. A2 would be configured for unity gain.  
Figure 30. Input Common-Mode Voltage vs. Supply Voltage for Dual Supplies  
100  
80  
Using a divider and setting A2 to unity gain yields  
60  
40  
REXT4  
10 kΩ + REXT4  
GW /DIVIDER = 0.1×  
×1  
20  
MAXIMUM INPUT COMMON-MODE  
0
–20  
–40  
–60  
–80  
VOLTAGE WHEN V  
= MIDSUPPLY  
REF  
0
2
4
6
8
10  
12  
14  
16  
SINGLE-SUPPLY VOLTAGE (V)  
Figure 31. Input Common-Mode Voltage vs.  
Supply Voltage for Single Supplies  
Rev. C | Page 15 of 20  
 
 
 
 
AD628  
The differential input voltage range is constrained to the  
linear operation of the internal amplifiers A1 and A2. The  
voltage applied to the inputs of A1 and A2 should be between  
VS− + 1.2 V and VS+ − 1.2 V. Similarly, the outputs of A1 and A2  
The design of such an application may be done in a few simple  
steps, which include the following:  
Determine the required gain. For example, if the input voltage  
must be transformed from 10 V to 0 V to +5 V, the gain is  
+5/+20 or +0.25.  
should be kept between VS + 0.9 V and VS+ − 0.9 V.  
VOLTAGE LEVEL CONVERSION  
Determine if the circuit common-mode voltage must be  
changed. An AD7715-5 ADC is illustrated for this example.  
When operating from a 5 V supply, the common-mode  
voltage of the AD7715 is half the supply or 2.5 V. If the  
AD628 reference pin and the lower terminal of the 10 kΩ  
resistor are connected to a 2.5 V voltage source, the output  
common-mode voltage will be 2.5 V.  
Industrial signal conditioning and control applications typically  
require connections between remote sensors or amplifiers and  
centrally located control modules. Signal conditioners provide  
output voltages up to 10 V full scale; however, ADCs or  
microprocessors operating on single 3.3 V to 5 V logic supplies  
are becoming the norm. Thus, the controller voltages require  
further reduction in amplitude and reference.  
Table 6 shows resistor and reference values for commonly used  
single-supply converter voltages. REXT3 is included as an option.  
It is used to balance the source impedance into A2, which is  
described in more detail in the Gain Adjustment section.  
Furthermore, voltage potentials between locations are seldom  
compatible, and power line peaks and surges can generate  
destructive energy between utility grids. The AD628 is an ideal  
solution to both problems. It attenuates otherwise destructive  
signal voltage peaks and surges by a factor of 10 and shifts the  
differential input signal to the desired output voltage.  
Table 6. Nearest 1% Resistor Values for Voltages Level  
Conversion Applications  
ADC  
Supply  
Input  
Desired  
Voltage Voltage  
Output  
Voltage (V)  
VREF REXT1  
REXT3  
(kΩ)  
Conversion from voltage-driven or current-loop systems is  
easily accommodated using the circuit in Figure 32. This shows  
a circuit for converting inputs of various polarities and  
amplitudes to the input of a single-supply ADC.  
(V)  
10  
(V)  
5
(V)  
2.5  
2.5  
2.5  
2.5  
(kΩ)  
15.0  
39.7  
39.7  
89.8  
2.5  
2.5  
2.5  
2.5  
1.25  
1.25  
1.25  
1.25  
4.02  
2.00  
2.00  
1.00  
7.96  
4.02  
4.02  
2.00  
5
+10  
+5  
10  
5
5
5
3
Note that the common-mode output voltage can be adjusted by  
connecting Pin 3 (VREF) and the lower end of the 10 kΩ resistor  
to the desired voltage. The output common-mode voltage will  
be the same as the reference voltage.  
1.25 2.49  
1.25 15.0  
1.25 15.0  
1.25 39.7  
5
3
+10  
+5  
3
3
AD7715-5  
DGND  
SCLK  
SERIAL CLOCK  
CLOCK  
DV  
DD  
MCLK IN  
+5V  
MCLK OUT DIN  
NC  
DOUT  
DRDY  
CS  
+V  
S
+5V  
RESET  
AV  
DD  
AGND  
–IN  
+IN  
10k  
100kΩ  
100kΩ  
10kΩ  
G = +0.1  
OUT  
+IN  
–IN  
(SEE  
TABLE 5)  
A2  
REF IN(–)  
AIN(+)  
–IN  
V
AIN(–) REF IN(+)  
A1  
IN  
R
+IN  
EXT1  
(SEE  
TABLE 5)  
+2.5V  
AD628  
10kΩ  
+5V  
AD680  
V
R
REF  
G
–V  
S
C
FILT  
R
EXT3  
10kΩ  
(SEE  
TABLE 5)  
Figure 32. Level Shifter  
Rev. C | Page 16 of 20  
 
 
AD628  
CURRENT LOOP RECEIVER  
MONITORING BATTERY VOLTAGES  
Analog data transmitted on a 4 to 20 mA current loop may be  
detected with the receiver shown in Figure 33. The AD628 is an  
ideal choice for such a function, because the current loop must  
be driven with a compliance voltage sufficient to stabilize the  
loop, and the resultant common-mode voltage often exceeds  
commonly used supply voltages. Note that with large shunt  
values a resistance of equal value must be inserted in series with  
the inverting input to compensate for an error at the  
noninverting input.  
Figure 34 illustrates how the AD628 may be used to monitor a  
battery charger. Voltages approximately eight times the power  
supply voltage may be applied to the input with no damage. The  
resistor divider action is well suited for the measurement of  
many power supply applications, such as those found in battery  
chargers or similar equipment.  
+15V  
+V  
S
250  
–IN  
100kΩ  
100kΩ  
10kΩ  
10kΩ  
+IN  
0V TO 5V  
TO ADC  
OUT  
A2  
G = +0.1  
A1  
–IN  
–IN  
+IN  
250Ω  
R
+IN  
EXT1  
100kΩ  
AD628  
10kΩ  
4–20mA  
SOURCE  
R
G
–V  
V
S
REF  
C
–15V  
FILT  
R
EXT2  
11kΩ  
2.5V  
REF  
Figure 33. Level Shifter for 4 to 20 mA Current Loop  
5V  
+V  
S
nV  
(V)  
–IN  
100k  
100kΩ  
10kΩ  
10kΩ  
BAT  
0V TO 5V  
TO ADC  
+IN  
–IN  
OUT  
A2  
G = +0.1  
A1  
R
10kΩ  
–IN  
+IN  
EXT1  
CHARGING  
CIRCUIT  
+1.5V  
BATTERY  
R
G
+IN  
OTHER  
BATTERIES IN  
CHARGING  
CIRCUIT  
10kΩ  
AD628  
–V  
V
C
FILT  
S
REF  
Figure 34. Battery Voltage Monitor  
Rev. C | Page 17 of 20  
 
 
AD628  
FILTER CAPACITOR VALUES  
KELVIN CONNECTION  
A capacitor may be connected to Pin 4 (CFILT) to implement a  
low-pass filter. The capacitor value is  
In certain applications, it may be desirable to connect the  
inverting input of an amplifier to a remote reference point. This  
eliminates errors resulting in circuit losses in interconnecting  
wiring. The AD628 is particularly suited for this type of  
connection. In Figure 35, a 10 kΩ resistor is added in the  
feedback to match the source impedance of A2, which is  
described in more detail in the Gain Adjustment section.  
C =15.9/ft  
(
μF  
)
where ft is the desired 3 dB filter frequency.  
Table 7 shows several frequencies and their closest standard  
capacitor values.  
5V  
+V  
S
Table 7. Capacitor Values for Various Filter Frequencies  
Frequency (Hz) Capacitor Value (µF)  
–IN  
100k  
100kΩ  
10kΩ  
10kΩ  
CIRCUIT  
LOSS  
+IN  
A2  
–IN  
OUT  
10  
1.5  
G = +0.1  
A1  
–IN  
+IN  
50  
0.33  
60  
0.27  
10kΩ  
R
G
100  
400  
1 k  
5 k  
10 k  
0.15  
LOAD  
+IN  
0.039  
0.015  
0.0033  
0.0015  
10kΩ  
AD628  
V
–V  
REF  
C
FILT  
S
V
/2  
S
Figure 35. Kelvin Connection  
Rev. C | Page 18 of 20  
 
 
AD628  
OUTLINE DIMENSIONS  
5.00 (0.1968)  
4.80 (0.1890)  
3.00  
BSC  
8
1
5
4
8
5
4
6.20 (0.2440)  
5.80 (0.2284)  
4.00 (0.1574)  
3.80 (0.1497)  
4.90  
BSC  
3.00  
BSC  
1.27 (0.0500)  
BSC  
0.50 (0.0196)  
0.25 (0.0099)  
× 45°  
PIN 1  
1.75 (0.0688)  
1.35 (0.0532)  
0.65 BSC  
0.25 (0.0098)  
0.10 (0.0040)  
1.10 MAX  
8°  
0.15  
0.00  
0.51 (0.0201)  
0.31 (0.0122)  
0° 1.27 (0.0500)  
COPLANARITY  
0.10  
0.25 (0.0098)  
0.17 (0.0067)  
SEATING  
PLANE  
0.80  
0.60  
0.40  
0.40 (0.0157)  
8°  
0°  
0.38  
0.22  
0.23  
0.08  
COMPLIANT TO JEDEC STANDARDS MS-012AA  
COPLANARITY  
0.10  
SEATING  
PLANE  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN  
COMPLIANT TO JEDEC STANDARDS MO-187AA  
Figure 37. 8-Lead Standard Small Outline Package [SOIC] Narrow Body  
Figure 36. 8-Lead Mini Small Outline Package [MSOP]  
(RM-8)  
(R-8)  
Dimensions shown in millimeters and (inches)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model  
AD628AR  
AD628AR-REEL  
AD628AR-REEL7  
AD628ARM  
AD628ARM-REEL  
AD628ARM-REEL7  
AD628-EVAL  
Temperature Range  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
Description  
Package Option  
Branding  
8-Lead SOIC  
R-8  
R-8  
R-8  
RM-8  
RM-8  
RM-8  
8-Lead SOIC 13" Reel  
8-Lead SOIC 7" Reel  
8-Lead MSOP  
8-Lead MSOP 13" Reel  
8-Lead MSOP 7" Reel  
Evaluation Board  
JGA  
JGA  
JGA  
Rev. C | Page 19 of 20  
AD628  
NOTES  
©
2004 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
C02992–0–4/04(C)  
Rev. C | Page 20 of 20  

相关型号:

AD628-EVAL

High Common-Mode Voltage Programmable Gain Difference Amplifier
ADI

AD628AR

High Common-Mode Voltage Programmable Gain Difference Amplifier
ADI

AD628AR-REEL

High Common-Mode Voltage Programmable Gain Difference Amplifier
ADI

AD628AR-REEL7

High Common-Mode Voltage Programmable Gain Difference Amplifier
ADI

AD628ARM

High Common-Mode Voltage Programmable Gain Difference Amplifier
ADI

AD628ARM-REEL

High Common-Mode Voltage Programmable Gain Difference Amplifier
ADI

AD628ARM-REEL7

High Common-Mode Voltage Programmable Gain Difference Amplifier
ADI

AD628ARMZ

High Common-Mode Voltage, Programmable Gain Difference Amplifier
ADI

AD628ARMZ-R7

High Common-Mode Voltage, Programmable Gain Difference Amplifier
ADI

AD628ARMZ-REEL7

OP-AMP, 1500uV OFFSET-MAX, PDSO8, MO-187AA, MSOP-8
ADI

AD628ARMZ-RL

High Common-Mode Voltage, Programmable Gain Difference Amplifier
ADI

AD628ARN

Amplifier. Other
ETC