AD5553CRM [ADI]

Current Output/ Serial Input, 16-/14-Bit DAC; 电流输出/串行输入, 16位/ 14位DAC
AD5553CRM
型号: AD5553CRM
厂家: ADI    ADI
描述:

Current Output/ Serial Input, 16-/14-Bit DAC
电流输出/串行输入, 16位/ 14位DAC

文件: 总12页 (文件大小:228K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Current Output/  
a
Serial Input, 16-/14-Bit DAC  
AD5543/AD5553  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
16-Bit Resolution AD5543  
14-Bit Resolution AD5553  
1 LSB DNL  
AD5543/AD5553  
R
FB  
V
2 LSB INL for AD5543  
DD  
1 LSB INL for AD5553  
Low Noise 12 nV/Hz  
Low Power, IDD = 10 A  
D/A  
CONVERTER  
I
V
OUT  
REF  
16 OR 14  
0.5 s Settling Time  
4Q Multiplying Reference-Input  
2 mA Full-Scale Current 20%, with VREF = 10 V  
Built-in RFB Facilitates Voltage Conversion  
3-Wire Interface  
CONTROL  
LOGIC  
DAC  
REGISTER  
CS  
16 OR 14  
CLK  
SDI  
GND  
Ultracompact MSOP-8 and SOIC-8 Packages  
16-/14-BIT SHIFT  
REGISTER  
APPLICATIONS  
Automatic Test Equipment  
Instrumentation  
Digitally Controlled Calibration  
Industrial Control PLCs  
1.0  
0.8  
0.6  
GENERAL DESCRIPTION  
0.4  
The AD5543/AD5553 are precision 16-/14-bit, low power,  
current output, small form factor digital-to-analog converters.  
They are designed to operate from a single 5 V supply with a  
10 V multiplying reference.  
0.2  
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
The applied external reference VREF determines the full-scale  
output current. An internal feedback resistor (RFB) facilitates the  
R-2R and temperature tracking for voltage conversion when  
combined with an external op amp.  
A serial-data interface offers high speed, 3-wire microcontroller  
compatible inputs using serial data in (SDI), clock (CLK), and  
chip select (CS).  
CODE  
Figure 1. Integral Nonlinearity Error  
The AD5543/AD5553 are packaged in ultracompact  
(3 mm 4.7 mm) MSOP-8 and SOIC-8 packages.  
REF LEVEL /DIV  
0.000dB 12.000dB  
MARKER 4 311 677.200Hz  
MAG (A/R) –2.939dB  
FFFFH  
8000H  
4000H  
2000H  
1000H  
0800H  
0400H  
0200H  
0100H  
0080H  
0040H  
0020H  
0010H  
0008H  
0004H  
0002H  
0001H  
0000H  
10  
100  
1k  
10k  
100k  
1M  
10M  
REV. A  
START 10.000Hz  
STOP 50 000 000.000Hz  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, norforanyinfringementsofpatentsorotherrightsofthirdpartiesthat  
may result from its use. No license is granted by implication or otherwise  
under any patent or patent rights of Analog Devices. Trademarks and  
registered trademarks are the property of their respective companies.  
Figure 2. Reference Multiplying Bandwidth  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
Fax: 781/326-8703  
www.analog.com  
© 2003 Analog Devices, Inc. All rights reserved.  
AD5543/AD5553–SPECIFICATIONS  
(@ VDD = 5 V 10%, VSS = 0 V, IOUT = Virtual GND, GND = 0 V, VREF = 10 V,  
TA = Full operating temperature range, unless otherwise noted.)  
ELECTRICAL CHARACTERISTICS  
Parameter  
Symbol  
Condition  
5 V 10% Unit  
STATIC PERFORMANCE1  
Resolution  
N
1 LSB = VREF/216 = 153 µV when VREF = 10 V AD5543 16  
1 LSB = VREF/214 = 610 µV when VREF = 10 V AD5553 14  
Bits  
Bits  
Relative Accuracy  
INL  
Grade: AD5553C  
Grade: AD5543B  
Monotonic  
Data = 0000H, TA = 25°C  
Data = 0000H, TA = TA max  
Data = FFFFH  
1
2
LSB max  
LSB max  
LSB max  
nA max  
nA max  
mV typ/max  
ppm/°C typ  
Differential Nonlinearity  
Output Leakage Current  
DNL  
IOUT  
1
10  
20  
Full-Scale Gain Error  
Full-Scale Tempco2  
GFSE  
TCVFS  
1/ 4  
1
REFERENCE INPUT  
VREF Range  
VREF  
RREF  
CREF  
15/+15  
5
5
V min/max  
ktyp3  
pF typ  
Input Resistance  
Input Capacitance2  
ANALOG OUTPUT  
Output Current  
IOUT  
Data = FFFFH for AD5543  
Data = 3FFFH for AD5553  
Code Dependent  
2
mA typ  
pF typ  
Output Capacitance2  
COUT  
200  
LOGIC INPUTS AND OUTPUT  
Logic Input Low Voltage  
Logic Input High Voltage  
Input Leakage Current  
Input Capacitance2  
VIL  
VIH  
IIL  
0.8  
2.4  
10  
V max  
V min  
µA max  
pF max  
CIL  
10  
INTERFACE TIMING 2, 4  
Clock Input Frequency  
Clock Width High  
Clock Width Low  
CS to Clock Setup  
Clock to CS Hold  
Data Setup  
fCLK  
tCH  
tCL  
tCSS  
tCSH  
tDS  
50  
10  
10  
0
10  
5
MHz  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
Data Hold  
tDH  
10  
SUPPLY CHARACTERISTICS  
Power Supply Range  
Positive Supply Current  
Power Dissipation  
VDD RANGE  
IDD  
PDISS  
PSS  
4.5/5.5  
10  
0.055  
0.006  
V min/max  
µA max  
mW max  
%/% max  
Logic Inputs = 0 V  
Logic Inputs = 0 V  
VDD = 5%  
Power Supply Sensitivity  
AC CHARACTERISTICS4  
Output Voltage Settling Time  
tS  
To 0.1% of Full Scale,  
0.5  
µs typ  
Data = 0000H to FFFFH to 0000H for AD5543  
Data = 0000H to 3FFFH to 0000H for AD5553  
VREF = 5 V p-p, Data = FFFFH  
VREF = 0 V, Data = 7FFFH to 8000H for AD5543  
Data = 1FFFH to 2000H for AD5553  
Reference Multiplying BW  
DAC Glitch Impulse  
BW  
Q
4
7
MHz typ  
nV-s typ  
Feedthrough Error  
Digital Feedthrough  
Total Harmonic Distortion  
Output Spot Noise Voltage  
VOUT/VREF Data = 0000H, VREF = 100 mV rms, same channel  
65  
7
85  
12  
dB  
Q
CS = 1, and fCLK = 1 MHz  
REF = 5 V p-p, Data = FFFFH, f = 1 kHz  
f = 1 kHz, BW = 1 Hz  
nV-s typ  
dB typ  
nV/Hz  
THD  
eN  
V
NOTES  
1All static performance tests (except IOUT) are performed in a closed-loop system using an external precision OP177 I-to-V converter amplifier. The AD5543 RFB terminal  
is tied to the amplifier output. The op amp +IN is grounded and the DAC IOUT is tied to the op amp IN. Typical values represent average readings measured at 25°C.  
2These parameters are guaranteed by design and are not subject to production testing.  
3All ac characteristic tests are performed in a closed-loop system using an AD841 I-to-V converter amplifier.  
4All input control signals are specified with tR = tF = 2.5 ns (10% to 90% of 3 V) and timed from a voltage level of 1.5 V.  
–2–  
REV. A  
AD5543/AD5553  
ABSOLUTE MAXIMUM RATINGS*  
PIN FUNCTION DESCRIPTIONS  
VDD to GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3 V, +8 V  
VREF to GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 V, +18 V  
Logic Inputs to GND . . . . . . . . . . . . . . . . . . . . . 0.3 V, +8 V  
V(IOUT) to GND . . . . . . . . . . . . . . . . . . . 0.3 V, VDD + 0.3 V  
Input Current to Any Pin except Supplies . . . . . . . . . . 50 mA  
Package Power Dissipation . . . . . . . . . . . . . (TJ Max TA )/JA  
Thermal Resistance JA  
8-Lead Surface Mount (MSOP-8) . . . . . . . . . . . . . 150°C/W  
8-Lead Surface Mount (SOIC-8) . . . . . . . . . . . . . . 100°C/W  
Maximum Junction Temperature (TJ Max) . . . . . . . . . . 150°C  
Operating Temperature Range  
Models B, C . . . . . . . . . . . . . . . . . . . . . . . . .40°C to +85°C  
Storage Temperature Range . . . . . . . . . . . . . 65°C to +150°C  
Lead Temperature  
RN-8, RM-8 (Vapor Phase, 60 sec) . . . . . . . . . . . . . . 215°C  
RN-8, RM-8 (Infrared, 15 sec) . . . . . . . . . . . . . . . . . 220°C  
Pin  
No. Mnemonic Function  
1
CLK  
Clock Input. Positive-edge triggered, clocks  
data into shift register.  
2
SDI  
Serial Register Input. Data loads directly  
into the shift register MSB first. Extra leading  
bits are ignored.  
3
4
RFB  
Internal Matching Feedback Resistor. Con-  
nects to external op amp for voltage output.  
DAC Reference Input Pin. Establishes DAC  
full-scale voltage. Constant input resistance  
versus code.  
VREF  
5
IOUT  
DAC Current Output. Connects to inverting  
terminal of external precision I-to-V op amp  
for voltage output.  
*Stresses above those listed under Absolute Maximum Ratings may cause perma-  
nent damage to the device. This is a stress rating only; functional operation of the  
device at these or any other conditions above those indicated in the operational  
sections of this specification is not implied. Exposure to absolute maximum rating  
conditions for extended periods may affect device reliability.  
6
7
GND  
VDD  
Analog and Digital Ground  
Positive Power Supply Input. Specified range  
of operation 5 V 10%.  
8
CS  
Chip Select. Active low digital input. Transfers  
shift-register data to DAC register on rising  
edge. See Truth Table for operation.  
PIN CONFIGURATION  
MSOP and SOIC-8  
AD5543/  
AD5553  
CLK  
SDI  
1
2
3
4
8
7
6
5
CS  
V
DD  
TOP VIEW  
(Not to Scale)  
R
GND  
FB  
I
V
OUT  
REF  
ORDERING GUIDE*  
Temperature Package  
INL  
RES  
Package  
Model  
(LSB) (LSB) Range  
Description Option  
Marking  
AD5543BR  
AD5543BRM  
AD5553CRM  
2
2
1
16  
16  
14  
40°C to +85°C SOIC-8  
40°C to +85°C MSOP-8  
40°C to +85°C MSOP-8  
RN-8  
RM-8  
RM-8  
AD5543  
DXB  
DUC  
*The AD5543 contains 1040 transistors. The die size measures 55 mil 73 mil, 4,015 sq. mil.  
CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection. Although the  
AD5543/AD5553 features proprietary ESD protection circuitry, permanent damage may occur on  
devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are  
recommended to avoid performance degradation or loss of functionality.  
REV. A  
–3–  
AD5543/AD5553–Typical Performance Characteristics  
1.0  
1.0  
0.8  
0.6  
0.4  
0.2  
0
0.8  
0.6  
0.4  
0.2  
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
0
2048  
4096  
6144  
CODE – Decimal  
8192 10240 12288 14336 16384  
0
8192 16384 24576 32768 40960 49152 57344 65536  
CODE – Decimal  
TPC 1. AD5543 Integral Nonlinearity Error  
TPC 4. AD5553 Differential Nonlinearity Error  
1.5  
1.0  
V
= 2.5V  
= 25C  
REF  
0.8  
0.6  
T
A
1.0  
0.5  
0
0.4  
0.2  
INL  
0
DNL  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.5  
–1.0  
–1.5  
GE  
2
4
6
8
10  
0
8192 16384 24576 32768 40960 49152 57344 65536  
CODE – Decimal  
SUPPLYVOLTAGEV –V  
DD  
TPC 2. AD5543 Differential Nonlinearity Error  
TPC 5. Linearity Errors vs. VDD  
1.0  
0.8  
5
4
3
2
1
0
V
= 5V  
= 25C  
DD  
T
A
0.6  
0.4  
0.2  
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
0
2048  
4096 6144  
8192 10240 12288 14336 16384  
0
0.5  
1.0 1.5  
2.0 2.5  
3.0  
3.5  
4.0  
4.5 5.0  
CODE – Decimal  
LOGIC INPUTVOLTAGEV –V  
IH  
TPC 3. AD5553 Integral Nonlinearity Error  
TPC 6. Supply Current vs. Logic Input Voltage  
–4–  
REV. A  
AD5543/AD5553  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
5555  
H
8000  
H
FFFF  
0000  
H
H
10k  
100k  
1M  
CLOCK FREQUENCY – Hz  
10M  
100M  
TPC 7. AD5543 Supply Current vs. Clock Frequency  
TPC 10. Settling Time  
90  
V
= 5V 10%  
DD  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
= 10V  
REF  
CS (5V/DIV)  
V
= 5V  
= 10V  
DD  
V
REF  
CODES 8000 7FFF  
H
H
V
(50mV/DIV)  
OUT  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
TIME – s  
3.5  
4.0  
4.5 5.0  
10  
100  
1k  
10k  
100k  
1M  
FREQUENCY – Hz  
TPC 11. Midscale Transition and Digital Feedthrough  
TPC 8. Power Supply Rejection vs. Frequency  
REF LEVEL /DIV  
0.000dB 12.000dB  
MARKER 4 311 677.200Hz  
MAG (A/R) –2.939dB  
FFFFH  
8000H  
4000H  
2000H  
1000H  
0800H  
0400H  
0200H  
0100H  
0080H  
0040H  
0020H  
0010H  
0008H  
0004H  
0002H  
0001H  
0000H  
10  
100  
1k  
10k  
100k  
1M  
10M  
START 10.000Hz  
STOP 50 000 000.000Hz  
TPC 9. Reference Multiplying Bandwidth  
REV. A  
–5–  
AD5543/AD5553  
D1  
D0  
SDI  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
D8  
CLK  
t
t
t
t
CL  
DS  
CH  
DH  
t
CSH  
t
CSS  
CS  
Figure 3a. AD5543 Timing Diagram  
D1  
D0  
SDI  
D13  
D12  
D11  
D10  
D9  
D8  
D7  
D6  
CLK  
t
t
t
t
CL  
DS  
CH  
DH  
t
CSH  
t
CSS  
CS  
Figure 3b. AD5553 Timing Diagram  
Table I. Control-Logic Truth Table  
CLK  
CS  
Serial Shift Register Function  
DAC Register  
X
+  
X
H
L
H
+  
No Effect  
Shift Register Data Advanced One Bit  
No Effect  
Latched  
Latched  
Latched  
X
Shift Register Data Transferred to DAC Register  
New Data Loaded from Serial Register  
+ positive logic transition; X Don't Care  
Table II. AD5543 Serial Input Register Data Format; Data is Loaded in the MSB-First Format  
MSB  
LSB  
Bit Position  
Data-Word  
B15  
B14  
B13  
B12  
B11  
B10  
B9  
B8  
B7  
B6  
B5  
B4  
B3  
B2  
B1 B0  
D1 D0  
D15 D14 D13 D12 D11 D10 D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
Table III. AD5553 Serial Input Register Data Format; Data is Loaded in the MSB-First Format  
MSB  
B13  
LSB  
B1  
Bit Position  
B12  
B11  
B10  
B9  
B8  
B7  
B6  
B5  
B4  
B3  
B2  
B0  
Data-Word* D13 D12 D11 D10 D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
*A full 16-bit data-word can be loaded into the AD5553 serial input register, but only the last 14 bits entered will be transferred to the DAC register when CS returns  
to logic high.  
–6–  
REV. A  
AD5543/AD5553  
CIRCUIT OPERATION  
various resistances and capacitances. External amplifier choice  
should take into account the variation in impedance generated  
by the AD5543 on the amplifiers inverting input node. The  
feedback resistance, in parallel with the DAC ladder resistance,  
dominates output voltage noise. To maintain good analog perfor-  
mance, power supply bypassing of 0.01 µF to 0.1 µF ceramic or  
chip capacitors in parallel with a 1 µF tantalum capacitor is recom-  
mended. Due to degradation of power supply rejection ratio in  
frequency, users must avoid using switching power supplies.  
The AD5543/AD5553 contains a 16-/14-bit, current output,  
digital-to-analog converter, a serial input register, and a DAC  
register. Both converters use a 3-wire serial data interface.  
D/A Converter Section  
The DAC architecture uses a current steering R-2R ladder  
design. Figure 4 shows the typical equivalent DAC structure.  
The DAC contains a matching feedback resistor for use with an  
external op amp, (see Figure 5). With RFB and IOUT terminals  
connected to the op amp output and inverting node respec-  
tively, a precision voltage output can be achieved as:  
SERIAL DATA INTERFACE  
The AD5543/AD5553 uses a 3-wire (CS, SDI, CLK) serial  
data interface. New serial data is clocked into the serial input  
register in a 16-bit data-word format for AD5543. The MSB is  
loaded first. Table II defines the 16 data-word bits. Data is  
placed on the SDI pin and clocked into the register on the positive  
clock edge of CLK, subject to the data setup and hold time  
VOUT = VREF × D / 65,536 (AD5543)  
VOUT = VREF × D /16,384 (AD5553)  
(1)  
(2)  
Note that the output voltage polarity is opposite to the VREF  
polarity for dc reference voltages.  
requirements specified in the interface timing specifications  
.
These DACs are designed to operate with either negative or  
positive reference voltages. The VDD power pin is only used by  
the internal logic to drive the DAC switchesON and OFF states.  
Only the last 16 bits clocked into the serial register are inter-  
rogated when the CS pin is strobed to transfer the serial register  
data to the DAC register. Since most microcontrollers output  
serial data in 8-bit bytes, two data bytes can be written to the  
AD5543/AD5553. After loading the serial register, the rising edge  
of CS transfers the serial register data to the DAC register;  
during this strobe, the CLK should not be toggled. For the  
AD5553, with 16-bit clock cycles, the two LSBs are ignored.  
V
DD  
R
R
R
R
V
FB  
REF  
2R  
2R  
2R  
R
5kꢃ  
S2  
S1  
I
OUT  
ESD Protection Circuits  
All logic-input pins contain back-biased ESD protection Zener  
diodes connected to ground (GND) and VDD as shown in Figure 6.  
GND  
V
DD  
DIGITAL INTERFACE CONNECTIONS OMITTED FOR CLARITY;  
SWITCHES S1 AND S2 ARE CLOSED, V MUST BE POWERED  
DD  
DIGITAL  
INPUTS  
Figure 4. Equivalent R-2R DAC Circuit  
5kꢃ  
Note that a matching switch is used in series with the internal 5 kΩ  
feedback resistor. If users attempt to measure RFB, power must be  
applied to VDD to achieve continuity.  
DGND  
V
DD  
Figure 6. Equivalent ESD Protection Circuits  
U1  
PCB Layout and Power Supply Bypassing  
V
R
FB  
DD  
U2  
It is a good practice to employ compact, minimum lead length  
PCB layout design. The leads to the input should be as short as  
possible to minimize IR drop and stray inductance.  
I
V
V
REF  
OUT  
REF  
V
V+  
O
AD8628  
V–  
GND  
It is also essential to bypass the power supplies with quality  
capacitors for optimum stability. Supply leads to the device should  
be bypassed with 0.01 µF to 0.1 µF disc or chip ceramic capaci-  
tors. Low-ESR 1 µF to 10 µF tantalum or electrolytic capacitors  
should also be applied at the supplies to minimize transient  
disturbance and filter out low frequency ripple  
AD5543/AD5553  
–5V  
Figure 5. Voltage Output Configuration  
These DACs are also designed to accommodate ac reference  
input signals. The AD5543 accommodates input reference  
voltages in the range of 12 V to +12 V. The reference voltage  
inputs exhibit a constant nominal input resistance value of 5 k,  
30%. The DAC output (IOUT) is code-dependent, producing  
The PCB metal traces between VREF and RFB should also be  
matched to minimize gain error.  
REV. A  
–7–  
AD5543/AD5553  
APPLICATIONS  
Stability  
Bipolar Output  
The AD5543/AD5553 is inherently a 2-quadrant multiplying  
D/A converter. That is, it can easily be set up for unipolar output  
operation. The full-scale output polarity is the inverse of the  
reference input voltage.  
V
DD  
U1  
C1  
R
V
FB  
DD  
In some applications, it may be necessary to generate the full  
4-quadrant multiplying capability or a bipolar output swing. This  
is easily accomplished by using an additional external amplifier  
U4 configured as a summing amplifier (see Figure 9). In this  
circuit, the second amplifier U4 provides a gain of 2 that increases  
the output span magnitude to 5 V. Biasing the external amplifier  
with a 2.5 V offset from the reference voltage results in a full  
4-quadrant multiplying circuit. The transfer equation of this circuit  
shows that both negative and positive output voltages are created  
I
V
V
OUT  
REF  
REF  
V
O
AD8628  
GND  
U2  
AD5543/AD5553  
Figure 7. Optional Compensation Capacitor for Gain  
Peaking Prevention  
as the input data (D) is incremented from code zero (VOUT  
2.5 V) to midscale (VOUT = 0 V) to full-scale (VOUT = +2.5 V).  
=
In the I-to-V configuration, the IOUT of the DAC and the inverting  
node of the op amp must be connected as close as possible, and  
proper PCB layout technique must be employed. Since every code  
change corresponds to a step function, gain peaking may occur  
if the op amp has limited GBP and there is excessive parasitic  
capacitance at the inverting node.  
VOUT = (D / 32,768 – 1) × VREF (AD5543)  
VOUT = (D /16,384 – 1) × VREF (AD5553)  
(3)  
(4)  
For AD5543, the resistance tolerance becomes the dominant  
error of which users should be aware.  
An optional compensation capacitor C1 can be added for stability  
as shown in Figure 7. C1 should be found empirically but 20 pF  
is generally adequate for the compensation.  
R1  
R2  
10kꢃꢀ0.01% 10kꢃꢀ0.01%  
Positive Voltage Output  
C2  
To achieve the positive voltage output, an applied negative  
reference to the input of the DAC is preferred over the output  
inversion through an inverting amplifier because of the resistors  
tolerance errors. To generate a negative reference, the reference  
can be level-shifted by an op amp such that the VOUT and GND  
pins of the reference become the virtual ground and 2.5 V  
respectively, (see Figure 8).  
U4  
+5V  
+5V  
U1  
5kꢃꢀ0.01%  
V
O
V+  
R3  
ADR03  
1/2AD8620  
V–  
C1  
V
R
FB  
DD  
I
V
V
V
OUT  
+5V  
IN  
REF  
OUT  
–5V  
1/2AD8620  
GND  
U3  
GND  
–2.5 < V < +2.5  
O
+5V  
U2  
AD5553 ONLY  
ADR03  
Figure 9. Four-Quadrant Multiplying Application Circuit  
V
V
IN  
OUT  
U4  
+5V  
U1  
V
GND  
U3  
–2.5V  
C1  
V
R
FB  
DD  
V+  
I
1/2AD8620  
OUT  
REF  
V
O
V–  
1/2AD8628  
GND  
–5V  
U2  
0 < V < +2.5  
AD5543/AD5553  
O
Figure 8. Positive Voltage Output Configuration  
–8–  
REV. A  
AD5543/AD5553  
Programmable Current Source  
If the resistors are perfectly matched, ZO is infinite, which is  
desirable, and behaves as an ideal current source. On the other  
hand, if they are not matched, ZO can be either positive or nega-  
tive. Negative can cause oscillation. As a result, C1 is needed to  
prevent the oscillation. For critical applications, C1 could be  
found empirically, but typically falls in the range of few pF.  
Figure 10 shows a versatile V-I conversion circuit using an  
improved Howland Current Pump. In addition to the precision  
current conversion it provides, this circuit enables a bidirec-  
tional current flow and high voltage compliance. This circuit  
can be used in 4 to 20 mA current transmitters with up to 500 Ω  
of load. In Figure 10, it can be shown that if the resistor network is  
matched, the load current is:  
V
DD  
U1  
R2 + R3 / R1  
(
)
V
R
FB  
IL  
=
×VREF × D  
(5)  
DD  
R3  
I
R1'  
R2'  
V
V
REF  
OUT  
REF  
150k15kꢃ  
R3 in theory can be made small to achieve the current needed  
within the U3 output current driving capability. This circuit is  
versatile such that AD8510 can deliver 20 mA in both direc-  
tions and the voltage compliance approaches 15 V, which is  
limited mainly by the supply voltages of U3. However, users  
must pay attention to the compensation. Without C1, it can be  
shown that the output impedance becomes:  
AD8628  
GND  
C1  
10pF  
AD5543/AD5553  
U2  
V
DD  
R3'  
50ꢃ  
U3  
V+  
AD8510  
V–  
R3  
50ꢃ  
R1'R3 R1+ R2  
(
)
ZO  
=
(6)  
V
SS  
R1 R2'+R3' R1' R2 + R3  
(
)
(
)
V
L
R2  
R1  
15kꢃ  
150kꢃ  
I
LOAD  
L
Figure 10. Programmable Current Source with Bidirec-  
tional Current Control and High Voltage Compliance  
Capabilities  
REV. A  
–9–  
AD5543/AD5553  
OUTLINE DIMENSIONS  
8-Lead microSOIC Package [MSOP]  
(RM-8)  
Dimensions shown in millimeters  
3.00  
BSC  
8
5
4
4.90  
BSC  
3.00  
BSC  
1
PIN 1  
0.65 BSC  
1.10 MAX  
0.15  
0.00  
0.80  
0.40  
8ꢂ  
0ꢂ  
0.38  
0.22  
0.23  
0.08  
SEATING  
PLANE  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-187AA  
8-Lead Standard Small Outline Package [SOIC]  
Narrow Body  
(RN-8)  
Dimensions shown in millimeters and (inches)  
5.00 (0.1968)  
4.80 (0.1890)  
8
1
5
4
6.20 (0.2440)  
5.80 (0.2284)  
4.00 (0.1574)  
3.80 (0.1497)  
0.50 (0.0196)  
0.25 (0.0099)  
1.27 (0.0500)  
BSC  
45ꢂ  
1.75 (0.0688)  
1.35 (0.0532)  
0.25 (0.0098)  
0.10 (0.0040)  
8ꢂ  
0.51 (0.0201)  
0.33 (0.0130)  
01.27 (0.0500)  
COPLANARITY  
0.10  
0.25 (0.0098)  
0.19 (0.0075)  
SEATING  
PLANE  
0.41 (0.0160)  
COMPLIANT TO JEDEC STANDARDS MS-012AA  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN  
–10–  
REV. A  
AD5543/AD5553  
Revision History  
Location  
Page  
2/03—Data Sheet changed from REV. 0 to REV. A.  
Changes to ORDERING GUIDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
REV. A  
–11–  
–12–  

相关型号:

AD5553CRM-REEL7

Current Output/Serial Input, 16-/14-Bit DACs
ADI

AD5553CRMZ

Current Output/Serial Input, 16-/14-Bit DACs
ADI

AD5553CRMZ-REEL7

Current Output/Serial Input, 16-/14-Bit DACs
ADI

AD5554

Quad, Current-Output Serial-Input, 16-Bit/14-Bit DACs
ADI

AD5554BRS

Quad, Current-Output Serial-Input, 16-Bit/14-Bit DACs
ADI

AD5554BRSZ

Quad, Current-Output, Serial-Input 16-/14-Bit DACs
ADI

AD5555

Dual, Current-Output, Serial-Input, 16-/14-Bit DAC
ADI

AD5555CRU

Dual, Current-Output, Serial-Input, 16-/14-Bit DAC
ADI

AD5555CRU-REEL7

Dual, Current-Output, Serial-Input, 16-/14-Bit DAC
ADI

AD5555CRUZ

Dual, Current-Output, Serial-Input, 16-/14-Bit DACs
ADI

AD5555CRUZ-REEL7

Dual, Current-Output, Serial-Input, 16-/14-Bit DACs
ADI

AD5556

Dual 8-,10-,12-Bit High Bandwidth Multiplying DACs with Serial Interface
ADI