AD5554 [ADI]

Quad, Current-Output Serial-Input, 16-Bit/14-Bit DACs; 四,电流输出串行输入, 16位/ 14位DAC
AD5554
型号: AD5554
厂家: ADI    ADI
描述:

Quad, Current-Output Serial-Input, 16-Bit/14-Bit DACs
四,电流输出串行输入, 16位/ 14位DAC

文件: 总16页 (文件大小:472K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Quad, Current-Output  
Serial-Input, 16-Bit/14-Bit DACs  
a
AD5544/AD5554  
FUNCTIONAL BLOCK DIAGRAM  
FEATURES  
AD5544 16-Bit Resolution  
AD5554 14-Bit Resolution  
2 mA Full-Scale Current 20%, with VREF = 10 V  
2 s Settling Time  
VSS BIAS for Zero-Scale Error Reduction @ Temp  
Midscale or Zero-Scale Reset  
Four Separate 4Q Multiplying Reference Inputs  
SPI-Compatible 3-Wire Interface  
Double Buffered Registers Enable  
Simultaneous Multichannel Change  
Internal Power ON Reset  
V
A B C D  
DAC A  
REF  
V
DD  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
R
FB  
A
SDO  
INPUT  
REGISTER  
DAC A  
REGISTER  
I A  
OUT  
R
R
R
R
R
R
R
R
A
R
A
GND  
B
FB  
INPUT  
REGISTER  
DAC B  
REGISTER  
16  
D9  
DAC B  
DAC C  
I B  
OUT  
D10  
D11  
D12  
D13  
D14  
D15  
A0  
A B  
GND  
R
I
C
C
FB  
INPUT  
REGISTER  
DAC C  
REGISTER  
Compact SSOP-28 Package  
OUT  
SDI  
A1  
A C  
GND  
APPLICATIONS  
Automatic Test Equipment  
Instrumentation  
CS  
R
I
D
FB  
CLK  
EN  
INPUT  
REGISTER  
DAC D  
REGISTER  
D
OUT  
DAC D  
DAC  
A
Digitally-Controlled Calibration  
B
C
D
A D  
GND  
2:4  
POWER-  
ON  
AD5544  
DECODE  
A
GND  
F
RESET  
DGND  
RS  
MSB  
LDAC  
V
SS  
GENERAL DESCRIPTION  
The AD5544/AD5554 quad, 16-/14-bit, current-output, digital-  
to-analog converters are designed to operate from a single 5 V  
supply.  
1.0  
0.5  
0.0  
DAC A  
DAC B  
DAC C  
DAC D  
The applied external reference input voltage (VREF) determines  
the full-scale output current. Integrated feedback resistors (RFB  
provide temperature-tracking, full-scale voltage outputs when  
combined with an external I-to-V precision amplifier.  
)
–0.5  
–1.0  
1.0  
0.5  
0.0  
A doubled-buffered serial-data interface offers high-speed,  
3-wire, SPI- and microcontroller-compatible inputs using  
serial-data-in (SDI), clock (CLK), and a chip-select (CS). In  
addition, a serial-data-out pin (SDO) allows for daisy-chaining  
when multiple packages are used. A common level-sensitive  
load-DAC strobe (LDAC) input allows simultaneous update of  
all DAC outputs from previously loaded input registers. Addi-  
tionally, an internal power ON reset forces the output voltage to  
zero at system turn ON. An MSB pin allows system reset asser-  
tion (RS) to force all registers to zero code when MSB = 0, or  
to half-scale code when MSB = 1.  
–0.5  
–1.0  
1.0  
0.5  
0.0  
–0.5  
–1.0  
1.0  
0.5  
0.0  
AD5544/AD5554 are packaged in the compact SSOP-28.  
–0.5  
–1.0  
0
8192 16384 24576 32768 40960 49152 57344 65536  
CODE – Decimal  
Figure 1. AD5544 INL vs. Code Plot (TA = 25°C)  
REV. 0  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, nor for any infringements of patents or other rights of third parties  
which may result from its use. No license is granted by implication or  
otherwise under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
Fax: 781/326-8703  
World Wide Web Site: http://www.analog.com  
© Analog Devices, Inc., 2000  
(@ VDD = 5 V 10%, VSS = 0 V, IOUTX = Virtual GND, AGNDX = 0 V,  
VREFA, B, C, D = 10 V, TA = Full Operating Temperature Range,  
unless otherwise noted.)  
AD5544/AD5554–SPECIFICATIONS  
AD5544 ELECTRICAL CHARACTERISTICS  
Parameter  
Symbol  
Condition  
Min Typ  
Max  
Unit  
STATIC PERFORMANCE1  
Resolution  
Relative Accuracy  
Differential Nonlinearity  
Output Leakage Current  
N
INL  
DNL  
1 LSB = VREF/216 = 153 µV when VREF = 10 V  
16  
4
1.5  
10  
20  
3
Bits  
LSB  
LSB  
nA  
nA  
mV  
IOUT  
X
Data = 0000H, TA = 25°C  
Data = 0000H, TA = TA Max  
Data = FFFFH  
I
OUTX  
Full-Scale Gain Error  
Full-Scale Tempco2  
Feedback Resistor  
GFSE  
TCVFS  
RFB  
0.75  
1
6
ppm/°C  
kΩ  
X
VDD = 5 V  
4
8
REFERENCE INPUT  
VREFX Range  
Input Resistance  
VREF  
REFX  
RREF  
CREF  
X
–15  
4
+15  
8
V
kΩ  
%
R
6
1
5
Input Resistance Match  
X
X
Channel-to-Channel  
Input Capacitance2  
pF  
ANALOG OUTPUT  
Output Current  
I
OUTX  
Data = FFFFH  
Code-Dependent  
1.25  
2.5  
0.8  
mA  
pF  
Output Capacitance2  
COUT  
X
80  
LOGIC INPUTS AND OUTPUT  
Logic Input Low Voltage  
Logic Input High Voltage  
Input Leakage Current  
VIL  
VIH  
IIL  
CIL  
VOL  
VOH  
V
V
µA  
pF  
V
2.4  
4
1
10  
0.4  
Input Capacitance2  
Logic Output Low Voltage  
Logic Output High Voltage  
IOL = 1.6 mA  
IOH = 100 µA  
V
INTERFACE TIMING2, 3  
Clock Width High  
Clock Width Low  
CS to Clock Setup  
Clock to CS Hold  
Clock to SDO Prop Delay  
Load DAC Pulsewidth  
Data Setup  
tCH  
tCL  
25  
25  
0
25  
2
25  
20  
20  
5
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tCSS  
tCSH  
tPD  
tLDAC  
tDS  
tDH  
tLDS  
tLDH  
20  
Data Hold  
Load Setup  
Load Hold  
25  
SUPPLY CHARACTERISTICS  
Power Supply Range  
Positive Supply Current  
Negative Supply Current  
Power Dissipation  
VDD RANGE  
IDD  
ISS  
PDISS  
PSS  
4.5  
5.5  
250  
1
1.25  
0.006 %/%  
V
Logic Inputs = 0 V  
Logic Inputs = 0 V, VSS = –5 V  
Logic Inputs = 0 V  
50  
0.001  
µA  
µA  
mW  
Power Supply Sensitivity  
VDD  
=
5%  
NOTES  
1All static performance tests (except IOUT) are performed in a closed-loop system using an external precision OP177 I-to-V converter amplifier. The AD5544  
RFB terminal is tied to the amplifier output. Typical values represent average readings measured at 25°C.  
2These parameters are guaranteed by design and not subject to production testing.  
3All input control signals are specified with tR = tF = 2.5 ns (10% to 90% of 3 V) and timed from a voltage level of 1.5 V.  
Specifications subject to change without notice.  
–2–  
REV. 0  
AD5544/AD5554  
(@ VDD = 5 V 10%, VSS = –300 mV, IOUTX = Virtual GND, AGNDX = 0 V,  
VREFA, B, C, D = 10 V, TA = full operating temperature range, unless  
otherwise noted.)  
AD5544 ELECTRICAL CHARACTERISTICS  
Parameter  
Symbol  
Condition  
Min Typ Max Unit  
AC CHARACTERISTICS1  
Output Voltage Settling Time tS  
To 0.1% of Full Scale, Data = 0000H  
to FFFFH to 0000H  
To 0.0015% of Full Scale, Data = 0000H  
to FFFFH to 0000H  
1
2
2
µs  
Output Voltage Settling Time tS  
µs  
Reference Multiplying BW  
BW –3 dB  
VREFX = 100 mV rms, Data = FFFFH,  
MHz  
C
FB = 15 pF  
REFX = 10 V, Data 0000H to 8000H to 0000H  
VOUTX/VREFX Data = 0000H, VREFX = 100 mV rms, f = 100 kHz  
DAC Glitch Impulse  
Feedthrough Error  
Crosstalk Error  
Q
V
1.2  
–65  
–90  
nV-s  
dB  
dB  
V
OUTA/VREF  
B
Data = 0000H, VREFB = 100 mV rms,  
Adjacent Channel, f = 100 kHz  
CS = 1, and fCLK = 1 MHz  
Digital Feedthrough  
Total Harmonic Distortion  
Output Spot Noise Voltage  
Q
5
–90  
7
nV-s  
dB  
nV/Hz  
THD  
eN  
V
REF = 5 V p-p, Data = FFFFH, f = 1 kHz  
f = 1 kHz, BW = 1 Hz  
NOTES  
1All ac characteristic tests are performed in a closed-loop system using an OP42 I-to-V converter amplifier.  
Specifications subject to change without notice.  
–3–  
REV. 0  
(@ VDD = 5 V 10%, VSS = 0 V, IOUTX = Virtual GND, AGNDX = 0 V,  
VREFA, B, C, D = 10 V, TA = full operating temperature range,  
unless otherwise noted.)  
AD5544/AD5554–SPECIFICATIONS  
AD5554 ELECTRICAL CHARACTERISTICS  
Parameter  
Symbol  
Condition  
Min Typ  
Max  
Unit  
STATIC PERFORMANCE1  
Resolution  
Relative Accuracy  
Differential Nonlinearity  
Output Leakage Current  
N
INL  
DNL  
IOUT  
IOUT  
GFSE  
TCVFS  
RFB  
1 LSB = VREF/214 = 610 µV when VREF = 10 V  
14  
1
1
10  
20  
10  
Bits  
LSB  
LSB  
nA  
nA  
mV  
X
X
Data = 0000H, TA = 25°C  
Data = 0000H, TA = TA Max  
Data = 3FFFH  
Full-Scale Gain Error  
Full-Scale Tempco2  
Feedback Resistor  
2
1
6
ppm/°C  
kΩ  
X
VDD = 5 V  
4
8
REFERENCE INPUT  
VREFX Range  
Input Resistance  
VREF  
RREF  
RREF  
X
X
X
–15  
4
+15  
8
V
kΩ  
%
6
1
5
Input Resistance Match  
Channel-to-Channel  
Input Capacitance2  
CREF  
X
pF  
ANALOG OUTPUT  
Output Current  
IOUT  
COUT  
X
X
Data = 3FFFH  
Code-Dependent  
1.25  
2.5  
0.8  
mA  
pF  
Output Capacitance2  
80  
LOGIC INPUTS AND OUTPUT  
Logic Input Low Voltage  
Logic Input High Voltage  
Input Leakage Current  
VIL  
VIH  
IIL  
CIL  
VOL  
VOH  
V
V
µA  
pF  
V
2.4  
4
1
10  
0.4  
Input Capacitance2  
Logic Output Low Voltage  
Logic Output High Voltage  
IOL = 1.6 mA  
IOH = 100 µA  
V
INTERFACE TIMING 2, 3  
Clock Width High  
Clock Width Low  
CS to Clock Setup  
Clock to CS Hold  
Clock to SDO Prop Delay  
Load DAC Pulsewidth  
Data Setup  
tCH  
tCL  
tCSS  
tCSH  
tPD  
tLDAC  
tDS  
tDH  
tLDS  
25  
25  
0
25  
2
25  
20  
20  
5
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
20  
Data Hold  
Load Setup  
Load Hold  
tLDH  
25  
SUPPLY CHARACTERISTICS  
Power Supply Range  
Positive Supply Current  
Negative Supply Current  
Power Dissipation  
VDD RANGE  
IDD  
ISS  
PDISS  
PSS  
4.5  
5.5  
250  
1
1.25  
0.006 %/%  
V
Logic Inputs = 0 V  
Logic Inputs = 0 V, VSS = –5 V  
Logic Inputs = 0 V  
50  
0.001  
µA  
µA  
mW  
Power Supply Sensitivity  
VDD  
=
5%  
NOTES:  
1All static performance tests (except IOUT) are performed in a closed-loop system using an external precision OP177 I-to-V converter amplifier. The AD5554  
RFB terminal is tied to the amplifier output. Typical values represent average readings measured at 25°C.  
2These parameters are guaranteed by design and not subject to production testing.  
3All input control signals are specified with tR = tF = 2.5 ns (10% to 90% of 3 V) and timed from a voltage level of 1.5 V.  
Specifications subject to change without notice.  
–4–  
REV. 0  
AD5544/AD5554  
(@ VDD = 5 V 10%, VSS = –300 mV, IOUTX = Virtual GND, AGNDX = 0 V, VREFA,  
B, C, D = 10 V, TA = full operating temperature range, unless otherwise  
noted.)  
AD5554 ELECTRICAL CHARACTERISTICS  
Parameter  
Symbol  
Condition  
Min Typ Max Unit  
AC CHARACTERISTICS1  
Output Voltage Settling Time tS  
To 0.1% of Full Scale, Data = 0000H  
to 3FFFH to 0000H  
To 0.0015% of Full Scale, Data = 0000H  
1
2
µs  
µs  
Output Voltage Settling Time tS  
to 3FFFH to 0000H  
Reference Multiplying BW  
DAC Glitch Impulse  
Feedthrough Error  
Crosstalk Error  
BW –3 dB  
VREFX = 100 mV rms, Data = 3FFFH, CFB = 15 pF  
2
1.2  
–65  
MHz  
nV-s  
dB  
Q
V
REFX = 10 V, Data 0000H to 2000H to 0000H  
VOUTX/VREFX Data = 0000H, VREFX = 100 mV rms, f = 100 kHz  
VOUTA/VREF  
B
Data = 0000H, VREFB = 100 mV rms,  
Adjacent Channel, f = 100 kHz  
CS = 1, and fCLK = 1 MHz  
VREF = 5 V p-p, Data = 3FFFH, f = 1 kHz  
f = 1 kHz, BW = 1 Hz  
–90  
5
–90  
7
dB  
nV-s  
dB  
Digital Feedthrough  
Total Harmonic Distortion  
Output Spot Noise Voltage  
Q
THD  
eN  
nV/Hz  
NOTES:  
1All ac characteristic tests are performed in a closed-loop system using an OP42 I-to-V converter amplifier.  
Specifications subject to change without notice.  
ABSOLUTE MAXIMUM RATINGS*  
VDD to GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V, +8 V  
Operating Temperature Range  
Model A . . . . . . . . . . . . . . . . . . . . . . . . . . . –40°C to +85°C  
Storage Temperature Range . . . . . . . . . . . . . –65°C to +150°C  
Lead Temperature:  
V
V
SS to GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +0.3 V, –7 V  
REF to GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . –18 V, +18 V  
Logic Inputs and Output to GND . . . . . . . . . . . . –0.3 V, +8 V  
V(IOUT) to GND . . . . . . . . . . . . . . . . . . . . –0.3 V, VDD + 0.3 V  
RS-28 (Vapor Phase, 60 secs) . . . . . . . . . . . . . . . . . . 215°C  
RS-28 (Infrared, 15 secs) . . . . . . . . . . . . . . . . . . . . . . 220°C  
A
GNDX to DGND . . . . . . . . . . . . . . . . . . . . . . –0.3 V, + 0.3 V  
*Stresses above those listed under Absolute Maximum Ratings may cause perma-  
nent damage to the device. This is a stress rating only; functional operation of the  
device at these or any other conditions above those indicated in the operational  
sections of this specification is not implied. Exposure to absolute maximum rating  
conditions for extended periods may affect device reliability.  
Input Current to Any Pin Except Supplies . . . . . . . . . 50 mA  
Package Power Dissipation . . . . . . . . . . . . (TJ MAX – TA)/θJA  
Thermal Resistance θJA  
28-Lead Shrink Surface-Mount (RS-28) . . . . . . . . 100°C/W  
Maximum Junction Temperature (TJ MAX) . . . . . . . . . 150°C  
ORDERING GUIDE  
RES INL  
Bit LSB LSB  
DNL  
Temperature  
Range  
Package  
Description  
Package  
Option  
Model  
AD5544ARS 16  
AD5554BRS 14  
4
1
1.5  
1
–40/+85°C  
–40/+85°C  
SSOP-28  
SSOP-28  
RS-28  
RS-28  
The AD5544/AD5554 contain 4196 transistors. The die size is 122 mil × 204 mil.  
CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection. Although  
the AD5544/AD5554 features proprietary ESD protection circuitry, permanent damage may occur  
on devices subjected to high-energy electrostatic discharges. Therefore, proper ESD precautions  
are recommended to avoid performance degradation or loss of functionality.  
WARNING!  
ESD SENSITIVE DEVICE  
–5–  
REV. 0  
AD5544/AD5554  
SDI  
A1  
A0  
D15 D14 D13 D12 D11 D10  
D1  
D0  
INPUT  
REG  
LD  
CLK  
tDS  
tDH  
tCH  
tCL  
tCSH  
tCSS  
CS  
tLDS  
tLDH  
LDAC  
tLDAC  
tPD  
SDO  
Figure 2. AD5544 Timing Diagram  
SDI  
A1  
A0  
D13 D12 D11 D10 D09 D08  
D1  
D0  
INPUT  
REG  
LD  
CLK  
tDS  
tDH  
tCH  
tCL  
tCSH  
tCSS  
CS  
tLDS  
tLDAC  
tLDH  
LDAC  
tPD  
SDO  
Figure 3. AD5554 Timing Diagram  
Table I. AD5544 Control-Logic Truth Table  
CS CLK LDAC RS  
MSB Serial Shift Register Function  
Input Register Function DAC Register  
H
L
L
L
+  
X
L
+  
H
L
H
H
H
H
H
H
H
H
H
H
X
X
X
X
X
No Effect  
No Effect  
Latched  
Latched  
Latched  
Latched  
Latched  
Latched  
Latched  
Shift-Register-Data Advanced One Bit Latched  
No Effect  
No Effect  
Latched  
Selected DAC Updated  
with Current SR Contents  
Latched  
Latched  
Latched  
H
H
H
H
H
X
X
X
X
X
L
H
H
H
L
X
X
X
0
No Effect  
No Effect  
No Effect  
No Effect  
No Effect  
Transparent  
Latched  
Latched  
Latched Data = 0000H  
H
+  
H
H
Latched Data = 0000H  
Latched Data = 8000H  
L
H
Latched Data = 8000H  
–6–  
REV. 0  
AD5544/AD5554  
Table II. AD5554 Control-Logic Truth Table  
CS CLK LDAC RS  
MSB Serial Shift Register Function Input Register Function DAC Register  
H
L
L
L
+  
X
L
+  
H
L
H
H
H
H
H
H
H
H
H
H
X
X
X
X
X
No Effect  
No Effect  
Latched  
Latched  
Latched  
Latched  
Latched  
Latched  
Latched  
Shift-Register-Data Advanced One Bit Latched  
No Effect  
No Effect  
Latched  
Selected DAC Updated  
with Current SR Contents  
Latched  
Latched  
Latched  
Latched Data = 0000H  
Latched Data = 2000H  
H
H
H
H
H
X
X
X
X
X
L
H
H
H
L
X
X
X
0
No Effect  
No Effect  
No Effect  
No Effect  
No Effect  
Transparent  
Latched  
Latched  
Latched Data = 0000H  
Latched Data = 2000H  
H
+  
H
H
L
H
NOTES  
1. SR = Shift Register.  
2. + positive logic transition; X = Don’t Care.  
3. At power ON both the Input Register and the DAC Register are loaded with all zeros.  
4. For AD5544, data appears at the SDO Pin 19 clock pulses after input at the SDI pin.  
5. For AD5554, data appears at the SDO Pin 17 clock pulses after input at the SDI pin.  
Table III. AD5544 Serial Input Register Data Format, Data Is Loaded in the MSB-First Format  
MSB  
Bit Position B17 B16 B15 B14 B13 B12 B11 B10 B9  
Data Word A1 A0 D15 D14 D13 D12 D11 D10 D9  
LSB  
B1 B0  
D2 D1 D0  
B8  
B7  
B6  
B5  
B4  
B3  
B2  
D8  
D7  
D6  
D5  
D4  
D3  
NOTE  
Only the last 18 bits of data clocked into the serial register (Address + Data) are inspected when the CS line’s positive edge returns to logic high. At this point an inter-  
nally generated load strobe transfers the serial register data contents (Bits D15–D0) to the decoded DAC-Input-Register address determined by bits A1 and A0. Any  
extra bits clocked into the AD5544 shift register are ignored, only the last 18 bits clocked in are used. If double-buffered data is not needed, the LDAC pin can be tied  
logic low to disable the DAC Registers.  
Table IV. AD5554 Serial Input Register Data Format, Data Is Loaded in the MSB-First Format  
MSB  
Bit Position B15  
LSB  
B14  
A0  
B13  
B12  
B11  
B10  
B9  
B8  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
Data Word A1  
D13 D12 D11 D10 D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
NOTE  
Only the last 16 bits of data clocked into the serial register (Address + Data) are inspected when the CS line’s positive edge returns to logic high. At this point an inter-  
nally generated load strobe transfers the serial register data contents (Bits D13–D0) to the decoded DAC-Input-Register address determined by bits A1 and A0. Any  
extra bits clocked into the AD5554 shift register are ignored, only the last 16 bits clocked in are used. If double-buffered data is not needed, the LDAC pin can be tied  
logic low to disable the DAC Registers.  
Table V. Address Decode  
A1  
A0  
DAC Decoded  
0
0
1
1
0
1
0
1
DAC A  
DAC B  
DAC C  
DAC D  
–7–  
REV. 0  
AD5544/AD5554  
AD5544/AD5554 PIN FUNCTION DESCRIPTIONS  
Pin # Name  
Function  
DAC A Analog Ground.  
DAC A Current Output.  
1
2
3
4
5
6
AGND  
A
I
OUTA  
V
R
REFA  
FBA  
DAC A Reference Voltage Input Terminal. Establishes DAC A full-scale output voltage. Pin can be tied to VDD pin.  
Establish Voltage Output for DAC A by Connecting to External Amplifier Output.  
MSB Bit Set Pin During a Reset Pulse (RS) or at System Power ON if Tied to Ground or VDD.  
Reset Pin, Active Low Input. Input registers and DAC registers are set to all zeros or half-scale code (8000H for  
AD5544 and 2000H for AD5554) determined by the voltage on the MSB pin. Register Data = 0000H when MSB  
= 0. Register Data = 8000H for AD5544 and 2000H for AD5554 when MSB = 1.  
MSB  
RS  
7
8
VDD  
CS  
Positive Power Supply Input. Specified range of operation 5 V 10%.  
Chip Select, Active Low Input. Disables shift register loading when high. Transfers serial register data to the Input  
Register when CS/LDAC returns High. Does not effect LDAC operation.  
9
CLK  
SDI  
Clock Input, Positive Edge Clocks Data into Shift Register.  
Serial Data Input, Input Data Loads Directly into the Shift Register.  
Establish Voltage Output for DAC B by Connecting to External Amplifier Output.  
DAC B Reference Voltage Input Terminal. Establishes DAC B full-scale output voltage. Pin can be tied to VDD pin.  
DAC B Current Output.  
DAC B Analog Ground.  
DAC C Analog Ground.  
DAC C Current Output.  
DAC C Reference Voltage Input Terminal. Establishes DAC C full-scale output voltage. Pin can be tied to VDD pin.  
Establish voltage output for DAC C by connecting to external amplifier output.  
No Connect. Leave pin unconnected.  
Serial Data Output, input data loads directly into the shift register. Data appears at SDO, 19 clock pulses for  
AD5544 and 17 clock pulses for AD5554 after input at the SDI pin.  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
R
V
FBB  
REFB  
I
OUTB  
A
A
GNDB  
GNDC  
I
OUTC  
V
R
REFC  
FBC  
NC  
SDO  
21  
LDAC  
Load DAC Register Strobe, Level Sensitive Active Low. Transfers all Input Register data to DAC registers. Asyn-  
chronous active low input. See Control Logic Truth Table for operation.  
22  
23  
24  
25  
26  
27  
28  
A
VSS  
GNDF  
High Current Analog Force Ground.  
Negative Bias Power Supply Input. Specified range of operation –0.3 V to –5.5 V.  
DGND Digital Ground Pin.  
R
V
FBD  
REFD  
Establish Voltage Output for DAC D by Connecting to External Amplifier Output.  
DAC D Reference Voltage Input Terminal. Establishes DAC D full-scale output voltage. Pin can be tied to VDD pin.  
DAC D Current Output.  
I
OUTD  
AGND  
D
DAC D Analog Ground.  
AD5544/AD5554 PIN CONFIGURATION  
1
2
A
A
A
A
A
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
A
D
GND  
GND  
I
I
D
OUT  
OUT  
3
V
V
D
REF  
REF  
4
R
R
D
FB  
FB  
5
MSB  
DGND  
AD5544/  
AD5554  
6
V
RS  
SS  
7
V
A
F
DD  
GND  
TOP VIEW  
(Not to Scale)  
8
CS  
CLK  
SDI  
LDAC  
SDO  
NC  
9
10  
11  
12  
13  
14  
R
B
B
B
B
R
C
FB  
FB  
V
V
C
REF  
OUT  
GND  
REF  
I
I
C
OUT  
A
A
C
GND  
NC = NO CONNECT  
–8–  
REV. 0  
Typical Performance CharacteristicsAD5544/AD5554  
0.75  
0.50  
0.25  
0.00  
0.25  
0.50  
0.75  
0.50  
0.25  
DAC A  
DAC B  
DAC C  
0.00  
0.25  
0.50  
DAC A  
DAC B  
DAC C  
DAC D  
0.75  
0.50  
0.25  
0.00  
0.25  
0.50  
0.75  
0.50  
0.25  
0.00  
0.25  
0.50  
0.75  
0.50  
0.25  
0.00  
0.25  
0.50  
0.75  
0.50  
0.25  
0.00  
0.25  
0.50  
0.75  
0.50  
0.25  
0.00  
0.25  
0.50  
0.75  
0.50  
0.25  
DAC D  
8192  
0.00  
0.25  
0.50  
0
8192 16384 24576 32768 40960 49152 57344 65536  
0
2048 4096  
6144  
10240 12288 14336 16384  
CODE Decimal  
CODE Decimal  
TPC 1. AD5544 DNL vs. Code (TA = 25°C)  
TPC 3. AD5554 DNL vs. Code (TA = 25°C)  
1.0  
DAC A  
DAC B  
DAC C  
0.5  
0.0  
2.0  
1.5  
V
V
T
= 5V  
DD  
0.5  
1.0  
= 10V  
REF  
= 25C  
F000  
8000  
A
H
1.0  
0.5  
0
1.0  
0.5  
H
0.0  
0.5  
1.0  
7FFF  
H
0.5  
1.0  
1.5  
2.0  
1.0  
0.5  
0FFF  
H
0.0  
0.5  
1.0  
0
1500  
1000  
500  
500  
1000  
1500  
1.0  
0.5  
DAC D  
OP AMP OFFSET VOLTAGE V  
0.0  
0.5  
1.0  
TPC 4. AD5544 Integral Nonlinearity Error vs.  
Op Amp Offset  
0
2048 4096  
6144  
8192  
10240 12288 14336 16384  
CODE Decimal  
TPC 2. AD5554 INL vs. Code (TA = 25°C)  
–9–  
REV. 0  
AD5544/AD5554  
0.75  
10.0  
7.5  
V
V
T
= 5V  
V
V
T
= 5V  
DD  
DD  
= 10V  
= 10V  
REF  
REF  
0.50  
0.25  
0.00  
= 25C  
= 25C  
A
A
3000  
H
5.0  
2000  
2.5  
0.0  
H
1FFF  
H
H
2.5  
5.0  
0.25  
0.50  
0.75  
0FFF  
7.5  
10.0  
1500  
0
2000 1500 1000 500  
500  
1000  
1500 2000  
0
1000  
500  
500  
1000  
1500  
OP AMP OFFSET VOLTAGE V  
OP AMP OFFSET VOLTAGE V  
TPC 5. AD5554 Integral Nonlinearity Error vs.  
Op Amp Offset  
TPC 8. AD5544 Gain Error vs. Op Amp Offset  
1.00  
4
V
V
T
= 5V  
V
V
T
= 5V  
DD  
DD  
= 10V  
= 10V  
3
2
REF  
0.75  
REF  
8000  
F000  
H
= 25C  
= 25C  
A
A
0.50  
0.25  
1
0
H
0.00  
0FFF  
H
1  
2  
3  
4  
0.25  
0.50  
0.75  
1.00  
5  
1500  
0
1000 750  
500 250  
250  
500  
750  
1000  
0
1000  
500  
500  
1000  
1500  
OP AMP OFFSET VOLTAGE V  
OP AMP OFFSET VOLTAGE V  
TPC 6. AD5544 Differential Nonlinearity Error vs.  
Op Amp Offset  
TPC 9. AD5554 Gain Error vs. Op Amp Offset  
0.3  
30  
V
V
T
= 5V  
SS = 120 UNITS  
2000  
3000  
DD  
H
V
V
= 5V  
= 10V  
DD  
REF  
0.2  
0.1  
= 10V  
= 25C  
REF  
A
T
= 40C TO +85C  
A
H
20  
10  
0
0.0  
0FFF  
H
0.1  
0.2  
0.3  
ACCURACY DEGRADATION  
DUE TO EXTERNAL OP AMP  
INPUT OFFSET VOLTAGE  
SPECIFICATION.  
0
1500  
1000  
500  
500  
1000  
1500  
0
0.5  
1.0  
1.5  
OP AMP OFFSET VOLTAGE V  
FULL-SCALE TEMPCO ppm/C  
TPC 7. AD5554 Differential Nonlinearity Error vs.  
Op Amp Offset  
TPC 10. AD5544 Full-Scale Tempco (ppm/C)  
–10–  
REV. 0  
AD5544/AD5554  
60  
40  
30  
20  
10  
SS = 180 UNITS  
V
V
T
= 5V  
DD  
= 10V  
REF  
V
OUT  
(10V/DIV)  
V
V
= 5V  
= 40C TO +85C  
DD  
A
= 10V  
REF  
T
= 25C  
= 343  
A
A
V
1LSB = 52mV  
V
OUT  
(50mV/DIV)  
1s/DIV  
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
1.8  
FULL-SCALE ERROR TEMPCO ppm/C  
TPC 11. AD5554 Full-Scale Tempco (ppm/C)  
TPC 14. AD5544 Small Signal Settling Time  
10000  
1000  
100  
7FFF 8000  
V
= 5V  
DD  
= 10V  
= 25C  
H
H
V
V
= 5V  
DD  
5555  
FFFF  
H
V
REF  
= 10V  
REF  
T
A
T
= 25C  
A
CS  
(5V/DIV)  
H
8000  
H
H
0000  
V
OUT  
(50mV/DIV)  
100ns/DIV  
10  
1k  
10k  
100k  
1M  
10M  
100M  
CLOCK FREQUENCY Hz  
TPC 12. AD5544 Midscale Transition  
TPC 15. AD5544 Power Supply Current vs.  
Clock Frequency  
10000  
1000  
100  
V
V
= 5V  
DD  
1555  
0000 FFFF  
V
= 5V  
DD  
= 10V  
= 25C  
H
H
H
= 10V  
REF  
V
REF  
T
= 25C  
A
CS  
(5V/DIV)  
T
A
3FFF  
H
2000  
H
H
0000  
V
OUT  
(5V/DIV)  
2s/DIV  
10  
1k  
10k  
100k  
1M  
10M  
100M  
CLOCK FREQUENCY Hz  
TPC 16. AD5554 Power Supply Current vs.  
Clock Frequency  
TPC 13. AD5544 Large Signal Settling Time  
–11–  
REV. 0  
AD5544/AD5554  
100  
600  
500  
400  
300  
200  
100  
0
V
= 5V 10%  
V = 5V  
DD  
DD  
= 25C  
90  
80  
70  
60  
50  
40  
30  
20  
T
V
= 10V  
A
REF  
T
= 25C  
A
100  
1k  
10k  
100k  
1M  
0
1
2
3
4
5
CLOCK FREQUENCY Hz  
LOGIC INPUT VOLTAGE Volts  
TPC 17. AD5544/AD5554 Power Supply Rejection  
vs. Frequency  
TPC 19. AD5544/AD5554 Power Supply Current  
vs. Logic Input Voltage  
55  
V
V
= 5V  
DD  
54  
53  
52  
51  
50  
49  
48  
47  
46  
= 10V  
REF  
LOGIC = V  
DD  
50  
25  
0
25  
50  
75  
100  
125  
150  
TEMPERATURE C  
TPC 18. AD5544/AD5554 Power Supply Current  
vs. Temperature  
CIRCUIT OPERATION  
with both negative or positive reference voltages. The VDD power  
pin is only used by the logic to drive the DAC switches ON and  
OFF. Note that a matching switch is used in series with the  
internal 5 kfeedback resistor. If users are attempting to mea-  
sure the value of RFB, power must be applied to VDD in order to  
achieve continuity. An additional VSS bias pin is used to guard  
the substrate during high temperature applications to minimize  
zero-scale leakage currents that double every 10°C. The DAC  
output voltage is determined by VREF and the digital data (D) as:  
The AD5544 and AD5554 contain four, 16-bit and 14-bit,  
current-output, digital-to-analog converters respectively. Each  
DAC has its own independent multiplying reference input. Both  
AD5544/AD5554 use 3-wire SPI compatible serial data inter-  
face, with a configurable asynchronous RS pin for half-scale  
(MSB = 1) or zero-scale (MSB = 0) preset. In addition, an  
LDAC strobe enables four channel simultaneous updates for  
hardware synchronized output voltage changes.  
D/A Converter Section  
D
Each part contains four current-steering R-2R ladder DACs.  
Figure 4 shows a typical equivalent DAC. Each DAC contains  
a matching feedback resistor for use with an external I-to-V  
converter amplifier. The RFBX pin is connected to the output of  
the external amplifier. The IOUTX terminal is connected to the  
inverting input of the external amplifier. The AGNDX pin should  
be Kelvin-connected to the load point in the circuit requiring  
the full 16-bit accuracy. These DACs are designed to operate  
V
= V  
×
×
(For AD5544)  
(Equation 1)  
OUT  
REF  
65536  
D
V
OUT  
= V  
(For AD5554)  
(Equation 2)  
REF  
16384  
Note that the output polarity is opposite to the VREF polarity for  
dc reference voltages.  
–12–  
REV. 0  
AD5544/AD5554  
FFFF  
V
H
DD  
B15  
B14  
B13  
B12  
B11  
B10  
B9  
R
R
R
R
X
V
X
FB  
REF  
2R  
2R  
2R  
R
5kꢃ  
S2  
S1  
I
X
OUT  
B8  
B7  
B6  
A
F
GND  
B5  
B4  
A
X
GND  
FROM OTHER DACS A  
GND  
B3  
B2  
V
DGND  
B1  
SS  
V
V
= 5V  
DD  
B0  
ZS  
DIGITAL INTERFACE CONNECTIONS OMITTED FOR CLARITY.  
SWITCHES S1 AND S2 ARE CLOSED, V MUST BE POWERED.  
= 100mV rms  
REF  
DD  
T
= 25C  
A
Figure 4. Typical Equivalent DAC Channel  
100  
1k  
10k  
100k  
1M 10M  
These DACs are also designed to accommodate ac reference  
input signals. Both AD5544/AD5554 will accommodate input  
reference voltages in the range of 12 V to +12 V. The reference  
voltage inputs exhibit a constant nominal input resistance of  
5 k, 30%. On the other hand, the DAC outputs IOUTA, B,  
C, D are code-dependent and produce various output resis-  
tances and capacitances. The choice of external amplier  
should take into account the variation in impedance generated  
by the AD5544/AD5554 on the ampliersinverting input  
node. The feedback resistance, in parallel with the DAC ladder  
resistance, dominates output voltage noise. For multiplying  
mode applications, an external feedback compensation capacitor  
(CFB) may be needed to provide a critically damped output  
response for step changes in reference input voltages. Figures 5  
and 6 show the gain vs. frequency performance at various  
attenuation settings using a 23 pF external feedback capacitor  
connected across the IOUTX and RFBX terminals for AD5544  
and AD5554 respectively. In order to maintain good analog  
performance, power supply bypassing of 0.01 µF, in parallel  
with 1 µF, is recommended. Under these conditions, clean  
power supply with low ripple voltage capability should be used.  
Switching power supplies is usually not suitable for this application  
due to the higher ripple voltage and PSS frequency-dependent  
characteristics. It is best to derive the AD5544/AD5554s 5 V  
supply from the systemsanalog supply voltages. (Do not use  
the digital 5 V supply.) See Figure 7.  
FREQUENCY Hz  
Figure 5. AD5554 Reference Multiplying Bandwidth  
vs. Code  
3FFF  
H
B13  
B12  
B11  
B10  
B9  
B8  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
V
V
= 5V  
DD  
= 100mV rms  
ZS  
REF  
T
= 25C  
= 23pF  
A
C
F
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY Hz  
Figure 6. AD5554 Reference Multiplying Bandwidth  
vs. Code  
15V  
ANALOG  
2R  
POWER  
SUPPLY  
5V  
+
R
V
DD  
AD5544  
R
FB  
X
R
R
R
V
X
REF  
2R  
2R  
2R  
R
5kꢃ  
15V  
V
S2  
S1  
I
X
CC  
OUT  
V
A
F
OUT  
GND  
A1  
A
X
GND  
+
V
EE  
LOAD  
FROM OTHER DACS A  
GND  
DGND  
V
SS  
DIGITAL INTERFACE CONNECTIONS OMITTED.  
FOR CLARITY SWITCHES S1 AND S2 ARE CLOSED,  
MUST BE POWERED.  
V
DD  
Figure 7. Recommended Kelvin-Sensed Hookup  
–13–  
REV. 0  
AD5544/AD5554  
V
A B C D  
REF  
CS  
EN  
AD5544  
V
DD  
CLK  
R
I
A
FB  
SDI  
16  
D0  
DAC A  
INPUT  
D1  
D2  
A
DAC A  
OUT  
REGISTER  
REGISTER  
R
R
R
R
R
D3  
A
A
GND  
D4  
D5  
D6  
D7  
D8  
D9  
D10  
D11  
D12  
D13  
D14  
D15  
A0  
R B  
FB  
INPUT  
REGISTER  
DAC B  
REGISTER  
I
B
DAC B  
OUT  
R
R
R
A
B
DAC A  
GND  
SDO  
B
C
D
A1  
2:4  
DECODE  
R
I
C
FB  
INPUT  
REGISTER  
DAC C  
REGISTER  
C
DAC C  
OUT  
A
C
GND  
R
I
D
FB  
INPUT  
REGISTER  
DAC D  
REGISTER  
D
DAC D  
OUT  
A
D
GND  
SET  
MSB  
SET  
MSB  
A
F
POWER-  
ON  
RESET  
GND  
DGND  
MSB  
V
LDAC  
RS  
SS  
Figure 8. System Level Digital Interfacing  
SERIAL DATA INTERFACE  
can be written to the AD5554. Keeping the CS line low between  
the rst and second byte transfer will result in a successful serial  
register update.  
The AD5544/AD5554 uses a 3-wire (CS, SDI, CLK) SPI com-  
patible serial data interface. Serial data of AD5544 and AD5554  
is clocked into the serial input register in an 18-bit and 16-bit  
data-word format respectively. MSB bits are loaded rst. Table  
II denes the 18 data-word bits for AD5544. Table III denes  
the 16 data-word bits for AD5554. Data is placed on the SDI  
pin, and clocked into the register on the positive clock edge of  
CLK subject to the data setup and data hold time requirements  
specied in the Interface Timing Specications. Data can only  
be clocked in while the CS chip select pin is active low. For  
AD5544, only the last 18 bits clocked into the serial register will  
be interrogated when the CS pin returns to the logic high state,  
extra data bits are ignored. For AD5554, only the last 16 bits  
clocked into the serial register will be interrogated when the CS  
pin returns to the logic high state. Since most microcontrollers  
output serial data in 8-bit bytes, three right-justied data bytes  
can be written to the AD5544. Keeping the CS line low between  
the rst, second, and third byte transfers will result in a success-  
ful serial register update. Similarly, two right-justied data bytes  
Once the data is properly aligned in the shift register, the posi-  
tive edge of the CS initiates the transfer of new data to the target  
DAC register, determined by the decoding of address bits A1  
and A0. For AD5544, Tables I, III, V, and Figure 2 dene the  
characteristics of the software serial interface. For AD5554,  
Tables II, IV, V, and Figure 3 dene the characteristics of the  
software serial interface. Figures 8 and 9 show the equivalent  
logic interface for the key digital control pins for AD5544.  
AD5554 has similar conguration, except with 14 data bits.  
Two additional pins RS and MSB provide hardware control  
over the preset function and DAC Register loading. If these  
functions are not needed, the RS pin can be tied to logic high.  
The asynchronous input RS pin forces all input and DAC regis-  
ters to either the zero-code state (MSB = 0), or the half-scale  
state (MSB = 1)  
–14–  
REV. 0  
AD5544/AD5554  
TO INPUT REGISTER  
APPLICATIONS  
The AD5544/AD5554 are inherently 2-quadrant multiplying  
D/A converters. That is, they can be easily set up for unipolar  
output operation. The full-scale output polarity is the inverse of  
the reference-input voltage.  
A
B
C
D
ADDRESS  
DECODER  
CS  
EN  
SHIFT REGISTER  
In some applications it may be necessary to generate the full 4-  
quadrant multiplying capability or a bipolar output swing. This  
is easily accomplished using an additional external amplier  
(A2) congured as a summing amplier (see Figure 11). In this  
circuit the rst and second ampliers (A1 and A2) provide a  
total gain-of-2 which increases the output voltage span to 20 V.  
Biasing the external amplier with a 10 V offset from the refer-  
ence voltage results in a full 4-quadrant multiplying circuit. The  
transfer equation of this circuit shows that both negative and  
positive output voltages are created as the input data (D) is  
incremented from code zero (VOUT = 10 V) to midscale (VOUT  
= 0 V) to full-scale (VOUT = 10 V).  
CLK  
SDI  
TH  
TH  
19 /17  
CLOCK  
SDO  
Figure 9. AD5544/AD5554 Equivalent Logic Interface  
POWER-ON RESET  
When the VDD power supply is turned ON, an internal reset  
strobe forces all the Input and DAC registers to the zero-code  
state or half-scale, depending on the MSB pin voltage. The VDD  
power supply should have a smooth positive ramp without  
drooping in order to have consistent results, especially in the  
region of VDD = 1.5 V to 2.3 V. The VSS supply has no effect on  
the power-ON reset performance. The DAC register data will  
stay at zero or half-scale setting until a valid serial register data  
load takes place.  
D
VOUT  
=
=
1 ×V  
REF  
(For AD5544)  
(Equation 3)  
(Equation 4)  
32768  
D
VOUT  
1 ×VREF  
(For AD5554)  
ESD Protection Circuits  
8192  
All logic-input pins contain back-biased ESD protection Zeners  
connected to ground (DGND) and VDD as shown in Figure 9.  
10kꢃ  
10kꢃ  
5kꢃ  
V
DD  
10V  
V
REF  
A2  
V
OUT  
5kꢃ  
DIGITAL  
INPUTS  
AD588  
10V < V  
< +10V  
OUT  
V
DD  
V
X
R
X
REF  
FB  
DGND  
I
X
OUT  
ONE CHANNEL  
AD5544  
Figure 10. Equivalent ESD Protection Circuits  
A1  
V
A
F
A
X
SS  
GND  
GND  
PCB LAYOUT  
In PCB layout, all analog ground, AGNDX, should be tied together.  
Ampliers suitable for I-to-V conversion include:  
DIGITAL INTERFACE CONNECTIONS  
OMITTED FOR CLARITY.  
Figure 11. Four-Quadrant Multiplying Application Circuit  
High Accuracy: OP97, OP297  
Speed and Accuracy: OP42  
5 V Applications: OP162/OP262/OP462, OP184/OP284/  
OP484  
–15–  
REV. 0  
AD5544/AD5554  
OUTLINE DIMENSIONS  
Dimensions shown in inches and (mm).  
28-Lead SSOP  
(RS-28)  
0.407 (10.34)  
0.397 (10.08)  
28  
15  
14  
1
0.07 (1.79)  
0.078 (1.98)  
PIN 1  
0.066 (1.67)  
0.068 (1.73)  
0.03 (0.762)  
0.022 (0.558)  
8°  
0°  
0.0256  
(0.65)  
BSC  
0.015 (0.38)  
0.010 (0.25)  
0.008 (0.203)  
0.002 (0.050)  
SEATING  
PLANE  
0.009 (0.229)  
0.005 (0.127)  
–16–  
REV. 0  

相关型号:

AD5554BRS

Quad, Current-Output Serial-Input, 16-Bit/14-Bit DACs
ADI

AD5554BRSZ

Quad, Current-Output, Serial-Input 16-/14-Bit DACs
ADI

AD5555

Dual, Current-Output, Serial-Input, 16-/14-Bit DAC
ADI

AD5555CRU

Dual, Current-Output, Serial-Input, 16-/14-Bit DAC
ADI

AD5555CRU-REEL7

Dual, Current-Output, Serial-Input, 16-/14-Bit DAC
ADI

AD5555CRUZ

Dual, Current-Output, Serial-Input, 16-/14-Bit DACs
ADI

AD5555CRUZ-REEL7

Dual, Current-Output, Serial-Input, 16-/14-Bit DACs
ADI

AD5556

Dual 8-,10-,12-Bit High Bandwidth Multiplying DACs with Serial Interface
ADI

AD5556CRU

Current Output, Parallel Input, 16-/14-Bit Multiplying DACs with 4-Quadrant Resistors
ADI

AD5556CRU-REEL7

Current Output, Parallel Input, 16-/14-Bit Multiplying DACs with 4-Quadrant Resistors
ADI

AD5556CRUZ

Current Output, Parallel Input, 16-/14-Bit Multiplying DACs with Four-Quadrant Resistors
ADI

AD5557

Dual Current Output, Parallel Input, 16-/14-Bit Multiplying DACs with 4-Quadrant Resistors
ADI