AD5259BCPZ10-R7 [ADI]

Nonvolatile, I2C-Compatible 256-Position, Digital Potentiometer; 非易失, I2C兼容256位,数字电位器
AD5259BCPZ10-R7
型号: AD5259BCPZ10-R7
厂家: ADI    ADI
描述:

Nonvolatile, I2C-Compatible 256-Position, Digital Potentiometer
非易失, I2C兼容256位,数字电位器

转换器 电位器 数字电位计 电阻器
文件: 总24页 (文件大小:989K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Nonvolatile, I2C-Compatible  
256-Position, Digital Potentiometer  
AD5259  
FUNCTIONAL BLOCK DIAGRAMS  
FEATURES  
Nonvolatile memory maintains wiper settings  
256-position  
Thin LFCSP-10 (3 mm x 3 mm x 0.8 mm) package  
Compact MSOP-10 (3 mm × 4.9 mm x 1.1mm) package  
I2C®-compatible interface  
VLOGIC pin provides increased interface flexibility  
End-to-end resistance 5 kΩ, 10 kΩ, 50 kΩ, 100 kΩ  
Resistance tolerance stored in EEPROM (0.1% accuracy)  
Power-on EEPROM refresh time < 1ms  
Software write protect command  
RDAC  
V
DD  
A
RDAC  
V
RDAC  
LOGIC  
EEPROM  
W
B
REGISTER  
GND  
8
8
DATA  
CONTROL  
SCL  
SDA  
2
I C  
SERIAL  
INTERFACE  
AD0  
AD1  
COMMAND  
DECODE LOGIC  
AD5259  
ADDRESS  
DECODE LOGIC  
POWER-  
ON RESET  
CONTROL LOGIC  
Address Decode Pin AD0 and Pin AD1 allow  
4 packages per bus  
Figure 1. Block Diagram  
100-year typical data retention at 55°C  
Wide operating temperature 40°C to +85°C  
3 V to 5 V single supply  
V
V
DD  
LOGIC  
A
EEPROM  
SCL  
RDAC  
REGISTER  
AND  
APPLICATIONS  
2
I
C
SDA  
AD0  
AD1  
SERIAL  
INTERFACE  
LEVEL  
LCD panel VCOM adjustment  
SHIFTER  
W
LCD panel brightness and contrast control  
Mechanical potentiometer replacement in new designs  
Programmable power supplies  
RF amplifier biasing  
COMMAND  
DECODE LOGIC  
ADDRESS  
DECODE LOGIC  
CONTROL  
LOGIC  
GND  
B
Automotive electronics adjustment  
Gain control and offset adjustment  
Fiber to the home systems  
Figure 2. Block Diagram Showing Level Shifters  
Electronics level settings  
CONNECTION DIAGRAM  
GENERAL DESCRIPTION  
W
AD0  
AD1  
SDA  
SCL  
1
2
3
4
5
10  
9
A
B
V
The AD5259 provides a compact, nonvolatile LFCSP-10  
(3 mm × 3 mm) or MSOP-10 (3 mm × 4.9 mm) packaged  
solution for 256-position adjustment applications. These  
devices perform the same electronic adjustment function  
as mechanical potentiometers1 or variable resistors, but  
with enhanced resolution and solid-state reliability.  
AD5259  
8
TOP VIEW  
DD  
(Not to Scale)  
7
GND  
6
V
LOGIC  
Figure 3. Pinout  
The wiper settings are controllable through an I2C-compatible  
digital interface that is also used to read back the wiper register  
and EEPROM content. Resistor tolerance is also stored within  
EEPROM, providing an end-to-end tolerance accuracy of 0.1%.  
1 The terms digital potentiometer, VR (variable resistor), and RDAC are used  
interchangeably.  
A separate VLOGIC pin delivers increased interface flexibility. For  
users who need multiple parts on one bus, Address Bit AD0 and  
Address Bit AD1 allow up to four devices on the same bus.  
Rev. A  
Information furnished by Analog Devices is believed to be accurate and reliable.  
However, no responsibility is assumed by Analog Devices for its use, nor for any  
infringements of patents or other rights of third parties that may result from its use.  
Specifications subject to change without notice. No license is granted by implication  
or otherwise under any patent or patent rights of Analog Devices. Trademarks and  
registered trademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
© 2005 Analog Devices, Inc. All rights reserved.  
AD5259  
TABLE OF CONTENTS  
Specifications..................................................................................... 3  
I2C-Compatible Format ................................................................. 16  
Generic Interface........................................................................ 16  
Write Modes ................................................................................ 16  
Read Modes................................................................................. 17  
Store/Restore Modes .................................................................. 17  
Tolerance Readback Modes ...................................................... 18  
ESD Protection of Digital Pins and Resistor Terminals........ 19  
Power-Up Sequence ................................................................... 19  
Layout and Power Supply Bypassing ....................................... 19  
Multiple Devices on One Bus ................................................... 19  
Evaluation Board........................................................................ 19  
Display Applications ...................................................................... 20  
Circuitry ...................................................................................... 20  
Outline Dimensions....................................................................... 21  
Ordering Guide .......................................................................... 21  
Electrical Characteristics............................................................. 3  
Timing Characteristics ................................................................ 5  
Absolute Maximum Ratings............................................................ 6  
ESD Caution.................................................................................. 6  
Pin Configuration and Function Descriptions............................. 7  
Typical Performance Characteristics ............................................. 8  
Test Circuits ..................................................................................... 13  
Theory of Operation ...................................................................... 14  
Programming the Variable Resistor......................................... 14  
Programming the Potentiometer Divider............................... 14  
I2C-Compatible Interface............................................................... 15  
Writing ......................................................................................... 15  
Storing/Restoring ....................................................................... 15  
Reading ........................................................................................ 15  
REVISION HISTORY  
7/05 — Rev. 0 to Rev. A  
Added 10-Lead LFCSP.......................................................Universal  
Changes to Features Section and  
General Description Section........................................................... 1  
Changes to Table 1............................................................................ 3  
Changes to Table 2 and Added Figure 4........................................ 5  
Changes to Table 4............................................................................ 7  
Changes to Figure 27 Caption....................................................... 11  
Changes to Theory of Operation Section.................................... 14  
Changes to I2C-Compatible Interface Section............................ 15  
Changes to Table 5.......................................................................... 16  
Changes to Multiple Devices on One Bus Section..................... 19  
Updated Figure 49 Caption........................................................... 21  
Changes to Ordering Guide .......................................................... 21  
2/05 — Revision 0: Initial Version  
Rev. A | Page 2 of 24  
AD5259  
SPECIFICATIONS  
ELECTRICAL CHARACTERISTICS  
VDD = VLOGIC = 5 V 10% or 3 V 10%ꢀ VA = VDDꢀ VB = 0 Vꢀ −40°C < TA < +85°C, unless otherwise noted.  
Table 1.  
Parameter  
Symbol  
Conditions  
Min  
Typ1  
Max  
Unit  
DC CHARACTERISTICS:  
RHEOSTAT MODE  
Resistor Differential Nonlinearity  
R-DNL  
RWB, VA = no connect  
LSB  
5 kΩ  
1± kΩ  
5± kΩ/1±± kΩ  
–1  
−1  
−±.5  
±±.2  
±±.1  
±±.1  
+1  
+1  
+±.5  
Resistor Integral Nonlinearity  
5 kΩ  
1± kΩ  
5± kΩ/1±± kΩ  
Nominal Resistor Tolerance  
Resistance Temperature Coefficient  
R-INL  
RWB, VA = no connect  
LSB  
–4  
±±.3  
±±.2  
±±.4  
+4  
+2  
+1  
+3±  
−2  
−1  
–3±  
ΔRAB  
(ΔRAB x 1±6)/  
(RAB x ΔT)  
TA = 25°C, VDD = 5.5 V  
Code = ±x±±/±x8±  
%
5±±/15  
75  
ppm/°C  
Total Wiper Resistance  
RWB  
Code = ±x±±  
35±  
Ω
DC CHARACTERISTICS:  
POTENTIOMETER DIVIDER MODE  
Differential Nonlinearity  
5 kΩ  
1± kΩ  
5± kΩ/1±± kΩ  
Integral Nonlinearity  
5 kΩ  
DNL  
LSB  
–1  
−±.5  
−±.5  
±±.2  
±±.1  
±±.2  
+1  
+±.5  
+±.5  
INL  
LSB  
–1  
−±.5  
−±.5  
±±.2  
±±.1  
±±.1  
+1  
+±.5  
+±.5  
1± kΩ  
5± kΩ/1±± kΩ  
Full-Scale Error  
5 kΩ  
VWFSE  
Code = ±xFF  
LSB  
−7  
−4  
−1  
−3  
−1.5  
−±.4  
±
±
±
1± kΩ  
5± kΩ/1±± kΩ  
Zero-Scale Error  
5 kΩ  
1± kΩ  
5± kΩ/1±± kΩ  
VWZSE  
Code = ±x±±  
LSB  
±
±
±
2.5  
1
±.2  
6±/5  
4
3
±.5  
Voltage Divider Temperature  
Coefficient  
(∆VW x 1±6)/  
(VW x ∆T)  
Code = ±x±±/±x8±  
ppm/°C  
RESISTOR TERMINALS  
Voltage Range  
Capacitance A, B  
VA, B, W  
CA, B  
GND  
VDD  
V
pF  
f = 1 MHz, measured to GND,  
code = ±x8±  
f = 1 MHz, measured to GND,  
code = ±x8±  
45  
6±  
1±  
Capacitance W  
CW  
ICM  
pF  
Common-Mode Leakage  
VA = VB = VDD/2  
nA  
Rev. A | Page 3 of 24  
 
AD5259  
Parameter  
Symbol  
Conditions  
Min  
Typ1  
Max  
Unit  
DIGITAL INPUTS AND OUTPUTS  
Input Logic High  
Input Logic Low  
Leakage Current  
SDA, AD±, AD1  
VIH  
VIL  
IIL  
±.7 × VL  
−±.5  
VL + ±.5  
±.3 × VL  
V
V
μA  
VIN = ± V or 5 V  
VIN = ± V  
VIN = 5 V  
±.±1  
−1.3  
±.±1  
5
±1  
+1  
±1  
SCL – Logic High  
SCL – Logic Low  
−2.5  
Input Capacitance  
POWER SUPPLIES  
Power Supply Range  
Positive Supply Current  
Logic Supply  
CIL  
pF  
VDD  
IDD  
VLOGIC  
ILOGIC  
2.7  
2.7  
5.5  
2
5.5  
6
V
μA  
V
±.1  
Logic Supply Current  
Programming Mode Current (EEPROM) ILOGIC(PROG)  
Power Dissipation  
Power Supply Rejection Ratio  
DYNAMIC CHARACTERISTICS  
Bandwidth −3 dB  
VIH = 5 V or VIL = ± V  
VIH = 5 V or VIL = ± V  
VIH = 5 V or VIL = ± V, VDD = 5 V  
VDD = +5 V ± 1±%, code = ±x8±  
3
35  
15  
±±.±±5  
μA  
mA  
μW  
%/%  
PDISS  
PSRR  
4±  
±±.±6  
BW  
Code = ±x8±  
RAB = 5 kΩ  
RAB = 1± kΩ  
RAB = 5± kΩ  
RAB = 1±± kΩ  
RAB = 1± kΩ, VA = 1 V rms,  
VB = ±, f = 1 kHz  
RAB = 1± kΩ, VAB = 5 V,  
±1 LSB error band  
2±±±  
8±±  
16±  
8±  
kHz  
kHz  
kHz  
kHz  
%
Total Harmonic Distortion  
VW Settling Time  
THDW  
tS  
±.±1  
5±±  
9
ns  
Resistor Noise Voltage Density  
eN_WB  
RWB = 5 kΩ, f = 1 kHz  
nV/√Hz  
1 Typical values represent average readings at 25°C and VDD = 5 V.  
Rev. A | Page 4 of 24  
AD5259  
TIMING CHARACTERISTICS  
VDD = VLOGIC = 5 V 10% or 3 V 10%ꢀ VA = VDDꢀ VB = 0 Vꢀ −40°C < TA < +85°C, unless otherwise noted.  
Table 2.  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
I2C INTERFACE TIMING  
CHARACTERISTICS1  
SCL Clock Frequency  
tBUF Bus Free Time Between Stop  
and Start  
fSCL  
t1  
±
1.3  
4±±  
kHz  
μs  
tHD;STA Hold Time (Repeated Start)  
t2  
After this period, the first clock pulse is  
generated.  
±.6  
μs  
tLOW Low Period of SCL Clock  
tHIGH High Period of SCL Clock  
tSU;STA Setup Time for Repeated  
Start Condition  
t3  
t4  
t5  
1.3  
±.6  
±.6  
μs  
μs  
μs  
tHD;DAT Data Hold Time  
tSU;DAT Data Setup Time  
tF Fall Time of Both SDA and  
SCL Signals  
tR Rise Time of Both SDA and  
SCL Signals  
t6  
t7  
t8  
±
1±±  
±.9  
μs  
ns  
ns  
3±±  
3±±  
t9  
ns  
tSU;STO Setup Time for Stop Condition  
EEPROM Data Storing Time  
EEPROM Data Restoring Time at  
Power On2  
t1±  
±.6  
μs  
ms  
μs  
tEEMEM_STORE  
26  
3±±  
tEEMEM_RESTORE1 VDD rise time dependent. Measure without  
decoupling capacitors at VDD and GND.  
EEPROM Data Restoring Time upon  
tEEMEM_RESTORE2 VDD = 5 V.  
3±±  
54±  
μs  
μs  
Restore Command2  
EEPROM Data Rewritable Time3  
FLASH/EE MEMORY RELIABILITY  
Endurance4  
tEEMEM_REWRITE  
1±±  
7±±  
1±±  
kCycles  
Years  
Data Retention5  
1 Standard I2C mode operation guaranteed by design.  
2 During power-up, the output is momentarily preset to midscale before restoring EEPROM content.  
3 Delay time after power-on PRESET prior to writing new EEPROM data.  
4 Endurance is qualified to 1±±,±±± cycles per JEDEC Std. 22 method A117, and is measured at –4±°C, +25°C, and +85°C; typical endurance at +25°C is 7±±,±±± cycles.  
5 Retention lifetime equivalent at junction temperature (TJ) = 55°C per JEDEC Std. 22, Method A117. Retention lifetime based on an activation energy of ±.6 eV derates  
with junction temperature.  
t2  
t8  
t6  
t9  
SCL  
SDA  
t10  
t4  
t7  
t5  
t2  
t3  
t9  
t8  
t1  
P
S
S
P
Figure 4. I2C Interface Timing Diagram  
Rev. A | Page 5 of 24  
 
AD5259  
ABSOLUTE MAXIMUM RATINGS  
TA = 25°C, unless otherwise noted.  
Table 3.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating onlyꢀ functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Parameter  
VDD, VLOGIC to GND  
VA, VB, VW to GND  
IMAX  
Value  
±.3 V to +7 V  
GND ±.3 V, VDD + ±.3 V  
Pulsed1  
±2± mA  
±5 mA  
Continuous  
Digital Inputs and Output Voltage  
to GND  
± V to 7 V  
Operating Temperature Range  
4±°C to +85°C  
Maximum Junction Temperature  
15±°C  
(TJMAX  
)
Storage Temperature  
65°C to +15±°C  
Lead Temperature  
(Soldering, 1± sec)  
Thermal Resistance2  
3±±°C  
θJA: MSOP1±  
2±±°C/W  
1 Maximum terminal current is bounded by the maximum current handling  
of the switches, maximum power dissipation of the package, and maximum  
applied voltage across any two of the A, B, and W terminals at a given  
resistance.  
2 Package power dissipation = (TJMAX – TA)/θJA.  
ESD CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4±±± V readily accumulate on  
the human body and test equipment and can discharge without detection. Although this product features  
proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy  
electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance  
degradation or loss of functionality.  
Rev. A | Page 6 of 24  
 
AD5259  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
W
AD0  
AD1  
SDA  
SCL  
1
2
3
4
5
10  
A
B
V
9
AD5259  
8
TOP VIEW  
DD  
(Not to Scale)  
7
GND  
6
V
LOGIC  
Figure 5. Pin Configuration  
Table 4. Pin Function Descriptions  
Pin  
Mnemonic  
Description  
W Terminal, GND ≤ VW ≤ VDD  
1
W
.
2
3
4
5
6
7
8
ADO  
AD1  
SDA  
SCL  
VLOGIC  
GND  
VDD  
Programmable Pin ± for Multiple Package Decoding. State is registered on power-up.  
Programmable Pin 1 for Multiple Package Decoding. State is registered on power-up.  
Serial Data Input/Output.  
Serial Clock Input. Positive edge triggered.  
Logic Power Supply.  
Digital Ground.  
Positive Power Supply.  
9
B
B Terminal, GND ≤ VB ≤ VDD  
.
1±  
A
A Terminal, GND ≤ VA ≤ VDD.  
Rev. A | Page 7 of 24  
 
AD5259  
TYPICAL PERFORMANCE CHARACTERISTICS  
VDD = VLOGIC = 5.5 V, RAB = 10 kΩ, TA = +25°Cꢀ unless otherwise noted.  
1.5  
0.25  
0.20  
0.15  
0.10  
0.05  
0
1.3  
2.7V  
1.1  
0.9  
0.7  
0.5  
0.3  
–0.05  
–0.10  
–0.15  
–0.20  
–0.25  
0.1  
–40°C  
+25°C  
–0.1  
–0.3  
+85°C  
5.5V  
–0.5  
0
32  
64  
96  
128  
160  
192  
224  
256  
0
0
0
32  
64  
96  
128  
160  
192  
224  
224  
224  
256  
256  
256  
CODE (Decimal)  
CODE (Decimal)  
Figure 6. R-INL vs. Code vs. Supply Voltage  
Figure 9. DNL vs. Code vs. Temperature  
0.5  
0.4  
0.25  
0.20  
0.15  
0.10  
0.05  
0
2.7V  
0.3  
0.2  
2.7V  
5.5V  
0.1  
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–0.05  
–0.10  
–0.15  
–0.20  
–0.25  
5.5V  
0
32  
64  
96  
128  
160  
192  
224  
256  
32  
64  
96  
128  
160  
192  
CODE (Decimal)  
CODE (Decimal)  
Figure 7. R-DNL vs. Code vs. Supply Voltage  
Figure 10. INL vs. Supply Voltages  
0.25  
0.20  
0.15  
0.10  
0.05  
0
0.25  
0.20  
0.15  
0.10  
0.05  
0
2.7V  
5.5V  
T
= +85°C  
A
–0.05  
–0.10  
–0.15  
–0.20  
–0.25  
–0.05  
–0.10  
–0.15  
–0.20  
–0.25  
T
= +25°C  
T
= –40°C  
A
A
0
32  
64  
96  
128  
160  
192  
224  
256  
32  
64  
96  
128  
160  
192  
CODE (Decimal)  
CODE (Decimal)  
Figure 8. INL vs. Code vs. Temperature  
Figure 11. DNL vs. Code vs. Supply Voltage  
Rev. A | Page 8 of 24  
 
AD5259  
0.5  
0.4  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
0.3  
ZSE @ V = 2.7V  
DD  
0.2  
0.1  
+25°C  
–40°C  
0
ZSE @ V = 5.5V  
DD  
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
+85°C  
160 192  
–40  
–20  
0
20  
40  
60  
80  
0
32  
64  
96  
128  
224  
256  
TEMPERATURE (°C)  
CODE (Decimal)  
Figure 12. R-INL vs. Code vs. Temperature  
Figure 15. Zero-Scale Error vs. Temperature  
1
0.5  
0.4  
0.3  
T
= –40°C  
A
0.2  
T
= +85°C  
A
0.1  
0
V
= 5.5V  
DD  
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
T
= +25°C  
A
0.1  
–40  
–20  
0
20  
40  
60  
80  
0
32  
64  
96  
128  
160  
192  
224  
256  
TEMPERATURE (°C)  
CODE (Decimal)  
Figure 13. R-DNL vs. Code vs. Temperature  
Figure 16. Supply Current vs. Temperature  
6
5
0
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
–3.0  
4
V
= 5.5V  
DD  
3
FSE @ V = 5.5V  
DD  
2
1
FSE @ V = 2.7V  
DD  
V
= 2.7V  
DD  
0
–1  
–40  
–20  
0
20  
40  
60  
80  
–40  
–20  
0
20  
40  
60  
80  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 17. Logic Supply Current vs. Temperature vs. VDD  
Figure 14. Full-Scale Error vs. Temperature  
Rev. A | Page 9 of 24  
AD5259  
400  
300  
100kΩ  
50kΩ  
120  
100  
80  
60  
40  
20  
0
100kΩ Rt @ V = 5.5V  
DD  
200  
10kΩ  
100  
0
50kΩ Rt @ V = 5.5V  
DD  
–100  
–200  
–300  
–400  
–500  
10kΩ Rt @ V = 5.5V  
DD  
5kΩ  
5kΩ Rt @ V = 5.5V  
DD  
–600  
0
–40  
–20  
0
20  
40  
60  
80  
32  
64  
96  
128  
160  
192  
224  
256  
TEMPERATURE (°C)  
CODE (Decimal)  
Figure 18. Rheostat Mode Tempco (ΔRAB x 106)/(RAB x ΔT) vs. Code  
Figure 21. Total Resistance vs. Temperature  
0
–6  
70  
60  
50  
40  
80  
40  
H
H
H
–12  
–18  
–24  
–30  
–36  
–42  
–48  
–54  
–60  
20  
10  
08  
H
H
30  
10kΩ  
20  
100kΩ  
04  
02  
H
10  
0
H
01  
H
–10  
–20  
5kΩ  
50kΩ  
–30  
–40  
1k  
10k  
100k  
1M  
10M  
0
32  
64  
96  
128  
160  
192  
224  
256  
CODE (Decimal)  
FREQUENCY (Hz)  
Figure 19. Potentiometer Mode Tempco (ΔVW x 106)/(VW x ΔT) vs. Code  
Figure 22. Gain vs. Frequency vs. Code, RAB = 5 kΩ  
0
–6  
350  
300  
250  
80  
40  
H
H
–12  
–18  
–24  
–30  
–36  
–42  
–48  
–54  
–60  
20  
10  
H
H
R
@ V = 2.7V  
DD  
WB  
200  
150  
100  
50  
08  
H
04  
02  
H
H
01  
H
R
@ V = 5.5V  
DD  
WB  
0
–40  
1k  
10k  
100k  
1M  
10M  
–20  
0
20  
40  
60  
80  
FREQUENCY (Hz)  
TEMPERATURE (°C)  
Figure 23. Gain vs. Frequency vs. Code, RAB = 10 kΩ  
Figure 20. RWB vs. Temperature  
Rev. A | Page 1± of 24  
AD5259  
0
–6  
10k  
1k  
80  
40  
H
H
–12  
–18  
–24  
–30  
–36  
–42  
–48  
–54  
–60  
20  
10  
08  
H
H
H
V
= V = 5V  
LOGIC  
DD  
04  
H
V
= V  
= 3V  
LOGIC  
DD  
02  
01  
H
H
100  
10  
1k  
10k  
100k  
1M  
0
1
2
3
4
5
V
(V)  
FREQUENCY (Hz)  
IH  
Figure 24. Gain vs. Frequency vs. Code, RAB = 50 kΩ  
Figure 27. Logic Supply Current vs. Input Voltage  
0
–6  
80  
60  
40  
20  
0
80  
40  
H
H
H
CODE = MIDSCALE, V = V  
, V = 0V  
LOGIC  
A
B
–12  
–18  
–24  
–30  
–36  
–42  
–48  
–54  
–60  
PSRR @ V  
LOGIC  
= 5V DC ± 10% p-p AC  
20  
10  
08  
H
H
PSRR @ V  
LOGIC  
= 3V DC ± 10% p-p AC  
04  
02  
01  
H
H
H
1k  
10k  
100k  
1M  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 25. Gain vs. Frequency vs. Code, RAB = 100 kΩ  
Figure 28. PSRR vs. Frequency  
0
–6  
–12  
–18  
–24  
–30  
–36  
–42  
–48  
–54  
–60  
100kΩ  
80kHz  
50kΩ  
160kHz  
V
W
10kΩ  
800kHz  
1
5kΩ  
2MHz  
SCL  
2
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
400ns/DIV  
Figure 26. 3 dB Bandwidth @ Code = 0×80  
Figure 29. Digital Feedthrough  
Rev. A | Page 11 of 24  
AD5259  
V
V
W
W
1
1
SCL  
2
1μs/DIV  
200ns/DIV  
Figure 31. Large Signal Settling Time  
Figure 30. Midscale Glitch, Code 0×7F to 0×80  
Rev. A | Page 12 of 24  
AD5259  
TEST CIRCUITS  
Figure 32 through Figure 37 illustrate the test circuits that define the test conditions used in the product Specifications tables.  
V
A
V+ = V  
±
10%  
DD  
ΔV  
ΔV  
MS  
)
V+ = V  
1LSB = V+/2  
DUT  
W
DD  
DUT  
W
PSRR (dB) = 20 LOG  
(
%
N
DD  
ΔV  
ΔV  
A
B
A
MS  
ΔV  
PSS (%/%) =  
DD  
%
DD  
V+  
V+  
B
V
V
MS  
MS  
Figure 32. Test Circuit for Potentiometer Divider Nonlinearity Error (INL, DNL)  
Figure 35. Test Circuit for Power Supply Sensitivity (PSS, PSSR)  
NO CONNECT  
DUT  
DUT  
+5V  
A
W
I
W
A
V
W
IN  
AD8610  
–5V  
V
B
OUT  
OFFSET  
GND  
B
V
MS  
+2.5V  
Figure 33. Test Circuit for Resistor Position Nonlinearity Error  
(Rheostat Operation; R-INL, R-DNL)  
Figure 36. Test Circuit for Gain vs. Frequency  
0.1V  
R
=
SW  
I
SW  
DUT  
CODE = 0x00  
DUT  
W
I
= V /R  
DD NOMINAL  
W
A
B
V
W
W
I
SW  
0.1V  
V
MS2  
B
R
= [V  
– V  
]/I  
W
MS1  
MS2 W  
V
MS1  
GND TO V  
DD  
Figure 34. Test Circuit for Wiper Resistance  
Figure 37. Test Circuit for Common-Mode Leakage Current  
Rev. A | Page 13 of 24  
 
AD5259  
THEORY OF OPERATION  
The AD5259 is a 256-position digitally-controlled variable  
resistor (VR) device. EEPROM is pre-loaded at midscale from  
the factory, and initial power-up is, accordingly, at midscale.  
Similar to the mechanical potentiometer, the resistance of the  
RDAC between Wiper W and Terminal A produces a digitally  
controlled complementary resistance, RWA. The resistance value  
setting for RWA starts at a maximum value of resistance and  
decreases as the data loaded in the latch increases in value.  
The general equation for this operation is  
PROGRAMMING THE VARIABLE RESISTOR  
Rheostat Operation  
The nominal resistance (RAB) of the RDAC between Terminal A  
and Terminal B is available in 5 kΩ, 10 kΩ, 50 kΩ, and 100 kΩ.  
The nominal resistance of the VR has 256 contact points accessed  
by the wiper terminal. The 8-bit data in the RDAC latch is  
decoded to select one of 256 possible settings.  
256 D  
256  
RWA(D) =  
× RAB + 2× RW  
(2)  
Typical device-to-device matching is process lot dependent and  
may vary by up to 30%. For this reason, resistance tolerance is  
stored in the EEPROM, enabling the user to know the actual  
RAB within 0.1%.  
A
A
A
W
W
W
PROGRAMMING THE POTENTIOMETER DIVIDER  
B
B
B
Voltage Output Operation  
The digital potentiometer easily generates a voltage divider at  
Wiper W to Terminal B and Wiper W to Terminal A propor-  
tional to the input voltage at Terminal A to Terminal B. Unlike  
the polarity of VDD to GND, which must be positive, voltage  
across Terminal A to Terminal B, Wiper W to Terminal A, and  
Wiper W to Terminal B can be at either polarity.  
Figure 38. Rheostat Mode Configuration  
The general equation determining the digitally programmed  
output resistance between Wiper W and Terminal B is  
D
256  
RWB(D) =  
× RAB + 2× RW  
(1)  
V
I
A
where:  
D is the decimal equivalent of the binary code loaded in the  
8-bit RDAC register.  
W
V
O
RAB is the end-to-end resistance.  
B
RW is the wiper resistance contributed by the ON resistance of  
each internal switch.  
Figure 40. Potentiometer Mode Configuration  
A
If ignoring the effect of the wiper resistance for approximation,  
connecting the A terminal to 5 V and the B terminal to ground  
produces an output voltage at Wiper W to Terminal B starting  
at 0 V up to 1 LSB less than 5 V. The general equation defining  
the output voltage at VW with respect to ground for any valid  
input voltage applied to Terminal A and Terminal B is  
R
S
R
R
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
S
S
D
256  
256 D  
256  
W
VW (D) =  
VA +  
VB  
(3)  
A more accurate calculation, which includes the effect of wiper  
resistance, VW, is  
R
RDAC  
S
LATCH  
AND  
DECODER  
R
WB (D)  
RAB  
RWA(D)  
RAB  
(4)  
VW (D) =  
VA +  
VB  
B
Figure 39. AD5259 Equivalent RDAC Circuit  
Operation of the digital potentiometer in the divider mode  
results in a more accurate operation over temperature. Unlike  
the rheostat mode, the output voltage is dependent mainly  
on the ratio of the Internal Resistors RWA and RWB and not  
the absolute values.  
In the zero-scale condition, there is a relatively low value finite  
wiper resistance. Care should be taken to limit the current flow  
between Wiper W and Terminal B in this state to a maximum  
pulse current of no more than 20 mA. Otherwise, degradation  
or destruction of the internal switch contact can occur.  
Rev. A | Page 14 of 24  
 
AD5259  
I2C-COMPATIBLE INTERFACE  
The master initiates data transfer by establishing a start condi-  
tion, which is when a high-to-low transition on the SDA line  
occurs while SCL is high (see Figure 4). The next byte is the  
slave address byte, which consists of the slave address (first  
READING  
Assuming the register of interest was not just written to, it is  
necessary to write a dummy address and instruction byte. The  
instruction byte will vary depending on whether the data that  
is wanted is the RDAC register, EEPROM register, or tolerance  
register (see Table 11 and Table 16).  
7 bits) followed by an R/ bit (see Table 6). When the R/ bit  
W
W
is high, the master reads from the slave device. When the R/  
bit is low, the master writes to the slave device.  
W
After the dummy address and instruction bytes are sent, a repeat  
start is necessary. After the repeat start, another address byte is  
needed, except this time the R/ bit is logic high. Following this  
address byte is the readback byte containing the information  
requested in the instruction byte. Read bits appear on the nega-  
tive edges of the clock.  
The slave address of the part is determined by two configurable  
address pins, Pin AD0 and Pin AD1. The state of these two pins  
is registered upon power-up and decoded into a corresponding  
I2C 7-bit address (see Table 5). The slave address corresponding  
to the transmitted address bits responds by pulling the SDA  
line low during the ninth clock pulse (this is termed the slave  
acknowledge bit). At this stage, all other devices on the bus  
remain idle while the selected device waits for data to be  
written to, or read from, its serial register.  
W
The tolerance register can be read back individually (see  
Table 15) or consecutively (see Table 16). Refer to the Read  
Modes section for detailed information on the interpretation  
of the tolerance bytes.  
WRITING  
After all data bits have been read or written, a stop condition is  
established by the master. A stop condition is defined as a low-to-  
high transition on the SDA line while SCL is high. In write mode,  
the master pulls the SDA line high during the tenth clock pulse  
to establish a stop condition (see Figure 46). In read mode, the  
master issues a no acknowledge for the ninth clock pulse (that is,  
the SDA line remains high). The master then brings the SDA line  
low before the tenth clock pulse, and then raises SDA high to  
establish a stop condition (see Figure 47).  
In the write mode, the last bit (R/ ) of the slave address byte is  
W
logic low. The second byte is the instruction byte. The first three  
bits of the instruction byte are the command bits (see Table 6).  
The user must choose whether to write to the RDAC register,  
EEPROM register, or activate the software write protect (see  
Table 7 to Table 10). The final five bits are all zeros (see Table 13  
to Table 14). The slave again responds by pulling the SDA line  
low during the ninth clock pulse.  
The final byte is the data byte MSB first. With the write protect  
mode, data is not storedꢀ rather, a logic high in the LSB enables  
write protect. Likewise, a logic low disables write protect. The  
slave again responds by pulling the SDA line low during the  
ninth clock pulse.  
A repeated write function gives the user flexibility to update the  
RDAC output a number of times after addressing and instructing  
the part only once. For example, after the RDAC has acknowl-  
edged its slave address and instruction bytes in the write mode,  
the RDAC output is updated on each successive byte until a stop  
condition is received. If different instructions are needed, the  
write/read mode has to start again with a new slave address,  
instruction, and data byte. Similarly, a repeated read function  
of the RDAC is also allowed.  
STORING/RESTORING  
In this mode, only the address and instruction bytes are  
necessary. The last bit (R/ ) of the address byte is logic  
W
low. The first three bits of the instruction byte are the  
command bits (see Table 6). The two choices are transfer  
data from RDAC to EEPROM (store), or from EEPROM  
to RDAC (restore). The final five bits are all zeros (see  
Table 13 to Table 14).  
Rev. A | Page 15 of 24  
 
AD5259  
I2C-COMPATIBLE FORMAT  
The following generic, write, read, and store/restore control  
registers for the AD5259 all refer to the device addresses listed  
in Table 5ꢀ the mode/condition reference key (S, P, SA, MA,  
AD1 and AD0 are two-state address pins.  
Table 5. Device Address Lookup  
AD1 Address Pin  
AD0 Address Pin  
I2C Device Address  
±±11±±±  
±±11±1±  
1±±11±±  
W
NA, , R, and X) is listed below.  
±
1
±
1
±
±
1
1
S = Start Condition  
P = Stop Condition  
1±±111±  
SA = Slave Acknowledge  
MA = Master Acknowledge  
NA = No Acknowledge  
W
= Write  
R = Read  
X = Don’t Care  
GENERIC INTERFACE  
Table 6. Generic Interface Format  
7-Bit Device Address  
R/W  
S
(See Table 5)  
SA C2 C1 C± A4 A3 A2 A1 A± SA D7 D6 D5 D4 D3 D2 D1 D± SA  
Instruction Byte Data Byte  
P
Slave Address Byte  
Table 7. RDAC-to-EEPROM Interface Command Descriptions  
C2  
C1  
C0  
Command Description  
±
±
±
±
±
1
Operation Between Interface and RDAC.  
Operation Between Interface and EEPROM.  
±
1
±
Operation Between Interface and Write Protection Register. See Table 1±.  
1
±
±
NOP.  
1
1
±
1
1
±
Restore EEPROM to RDAC.  
Store RDAC to EEPROM.  
WRITE MODES  
Table 8. Writing to RDAC Register  
7-Bit Device Address  
S
(See Table 5)  
±
SA  
SA  
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
±
SA D7 D6 D5 D4 D3 D2 D1 D± SA  
Data Byte  
P
P
P
Slave Address Byte  
Instruction Byte  
Table 9. Writing to EEPROM Register  
7-Bit Device Address  
(See Table 5)  
S
±
±
±
1
±
SA D7 D6 D5 D4 D3 D2 D1 D± SA  
Data Byte  
Slave Address Byte  
Instruction Byte  
Table 10. Activating/Deactivating Software Write Protect  
7-Bit Device Address  
(See Table 5)  
S
±
SA  
±
1
±
±
SA  
±
±
±
±
±
±
±
WP SA  
Slave Address Byte  
Instruction Byte  
Data Byte  
In order to activate the write protection mode, the WP bit in Table 10 must be logic high. To deactivate the write protection, the  
command must be sent again, except with the WP in logic zero state. WP is reset to the deactivated mode if power is cycled off and on.  
Rev. A | Page 16 of 24  
 
AD5259  
READ MODES  
Read modes are referred to as traditional because the first two bytes for all three cases are dummy bytes, which function to place the  
pointer towards the correct registerꢀ this is the reason for the repeat start. Theoretically, this step can be avoided if the user reads a register  
previously written to. For example, if the EEPROM was just written to, the user can then skip the two dummy bytes and proceed directly  
to the slave address byte, followed by the EEPROM readback data.  
Table 11. Traditional Readback of RDAC Register Value  
7-Bit Device Address  
(See Table 5)  
7-Bit Device Address  
(See Table 5)  
S
± SA ± ± ± ± ± ± ± ± SA S  
Instruction Byte  
1 SA D7 D6 D5 D4 D3 D2 D1 D± NA  
Read Back Data  
P
Slave Address Byte  
Slave Address Byte  
Repeat start  
Table 12. Traditional Readback of Stored EEPROM Value  
7-Bit Device Address  
S (See Table 5)  
7-Bit Device Address  
(See Table 5)  
± SA ± ± 1 ± ± ± ± ± SA  
Instruction Byte  
S
1
SA D7 D6 D5 D4 D3 D2 D1 D± NA P  
Read Back Data  
Slave Address Byte  
Slave Address Byte  
Repeat start  
STORE/RESTORE MODES  
Table 13. Storing RDAC Value to EEPROM  
7-Bit Device Address  
S
(See Table 5)  
±
SA  
SA  
1
1
±
1
±
±
±
±
±
±
±
±
±
±
SA  
SA  
P
Slave Address Byte  
Instruction Byte  
Table 14. Restoring EEPROM to RDAC  
7-Bit Device Address  
(See Table 5)  
S
±
1
±
P
Slave Address Byte  
Instruction Byte  
Rev. A | Page 17 of 24  
 
AD5259  
TOLERANCE READBACK MODES  
Table 15. Traditional Readback of Tolerance (Individually)  
7-Bit Device Address  
7-Bit Device Address  
S (See Table 5)  
± SA ± ± 1 1 1 1 1 ± SA S (See Table 5)  
1 SA D7 D6 D5 D4 D3 D2 D1 D± NA  
Sign + Integer Byte  
P
Slave Address Byte  
Instruction Byte  
Slave Address Byte  
Repeat start  
7-Bit Device Address  
S (See Table 5)  
7-Bit Device Address  
± SA ± ± 1 1 1 1 1 1 SA S (See Table 5)  
Instruction Byte Slave Address Byte  
1 SA D7 D6 D5 D4 D3 D2 D1 D± NA P  
Decimal Byte  
Slave Address Byte  
Repeat start  
Table 16.Traditional Readback of Tolerance (Consecutively)  
7-Bit Device  
Address  
7-Bit Device  
Address  
S (See Table 5)  
± SA ± ± 1 1 1 1 1 ± SA S (See Table 5)  
1 SA D7 D6 D5 D4 D3 D2 D1 D± MA D7 D6 D5 D4 D3 D2 D1 D± NA P  
Slave Address  
Byte  
Slave Address  
Byte  
Sign + Integer Byte  
Decimal Byte  
Instruction Byte  
Repeat start  
Calculating RAB Tolerance Stored in Read-Only Memory  
A
A
A
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
D7  
D6  
D5  
D4  
D3  
D2  
–6  
D1  
–7  
D0  
–8  
6
5
4
3
2
1
0
–1  
2
–2  
2
–3  
2
–4  
2
–5  
2
SIGN  
2
2
2
2
2
2
2
2
2
2
SIGN  
7 BITS FOR INTEGER NUMBER  
8 BITS FOR DECIMAL NUMBER  
Figure 41. Format of Stored Tolerance in Sign Magnitude Format with Bit Position Descriptions.  
(Unit is Percent. Only Data Bytes are Shown.)  
In the first memory location, the MSB is designated for the  
sign (0 = + and 1= −) and the seven LSBs are designated for  
the integer portion of the tolerance. In the second memory  
location, all eight data bits are designated for the decimal  
portion of tolerance. Note the decimal portion has a limited  
accuracy of only 0.1%. For example, if the rated RAB = 10 kΩ  
and the data readback from Address 11110 shows 0001 1100,  
and Address 11111 shows 0000 1111, then the tolerance can  
be calculated as  
The AD5259 features a patented RAB tolerance storage in the  
nonvolatile memory. The tolerance is stored in the memory  
during factory production and can be read by users at any time.  
The knowledge of stored tolerance allows users to accurately  
calculate RAB. This feature is valuable for precision, rheostat  
mode, and open-loop applications where knowledge of abso-  
lute resistance is critical.  
The stored tolerance resides in the read-only memory and is  
expressed as a percentage. The tolerance is stored in two memory  
location bytes in sign magnitude binary form (see Figure 41).  
MSB: 0 = +  
Next 7 MSB: 001 1100 = 28  
8 LSB: 0000 1111 = 15 × 2–8 = 0.06  
Tolerance = +28.06%  
Rounded Tolerance = +28.1% and therefore,  
RAB_ACTUAL = 12.810 kΩ  
The two EEPROM address bytes are 11110 (sign + integer)  
and 11111 (decimal number). The two bytes can be indi-  
vidually accessed with two separate commands (see Table 15).  
Alternatively, readback of the first byte followed by the second  
byte can be done in one command (see Table 16). In the latter  
case, the memory pointer will automatically increment from  
the first to the second EEPROM location (increments from  
11110 to 11111) if read consecutively.  
Rev. A | Page 18 of 24  
 
AD5259  
ESD PROTECTION OF DIGITAL PINS AND  
RESISTOR TERMINALS  
LAYOUT AND POWER SUPPLY BYPASSING  
It is good practice to use compact, minimum lead length layout  
design. The leads to the inputs should be as direct as possible  
with minimum conductor length. Ground paths should have  
low resistance and low inductance.  
The AD5259 VDD, VLOGIC, and GND power supplies define the  
boundary conditions for proper 3-terminal and digital input  
operation. Supply signals present on Terminal A, Terminal B,  
and Terminal W that exceed VDD or GND are clamped by the  
internal forward biased ESD protection diodes (see Figure 42).  
Digital Input SCL and Digital Input SDA are clamped by ESD  
protection diodes with respect to VLOGIC and GND as shown in  
Figure 43.  
Similarly, it is also good practice to bypass the power supplies  
with quality capacitors for optimum stability. Supply leads to  
the device should be bypassed with disc or chip ceramic capaci-  
tors of 0.01 μF to 0.1 μF. Low ESR 1 μF to 10 μF tantalum or  
electrolytic capacitors should also be applied at the supplies to  
minimize any transient disturbance and low frequency ripple  
(see Figure 44). The digital ground should also be joined  
remotely to the analog ground at one point to minimize the  
ground bounce.  
V
DD  
A
W
B
V
V
DD  
DD  
+
GND  
C2  
C1  
10μF  
0.1μF  
AD5259  
Figure 42. Maximum Terminal Voltages Set by VDD and GND  
V
LOGIC  
GND  
SCL  
SDA  
Figure 44. Power Supply Bypassing  
MULTIPLE DEVICES ON ONE BUS  
GND  
The AD5259 has two configurable address pins, Pin AD0 and  
Pin AD1. The state of these two pins is registered upon power-  
up and decoded into a corresponding I2C-compatible 7-bit  
address (see Table 5). This allows up to four devices on the bus  
to be written to or read from independently.  
Figure 43. Maximum Terminal Voltages Set by VLOGIC and GND  
POWER-UP SEQUENCE  
Because the ESD protection diodes limit the voltage compliance  
at Terminal A, Terminal B, and Terminal W (see Figure 42), it  
is important to power GND/VDD/VLOGIC before applying any  
voltage to Terminal A, Terminal B, and Terminal Wꢀ otherwise,  
the diode is forward biased, so the VDD and VLOGIC are powered  
unintentionally and may affect the users circuit. The ideal power-  
up sequence is in the following order: GND, VDD, VLOGIC, digital  
inputs, and then VA, VB, VW. The relative order of powering  
VA, VB, VW, and the digital inputs is not important as long as  
EVALUATION BOARD  
An evaluation board, with all necessary software, is available  
to program the AD5259 from any PC running Windows® 98/  
2000/ XP. The graphical user interface, as shown in Figure 45,  
is straightforward and easy to use. More detailed information  
is available in the boards user manual.  
they are powered after GND/VDD/VLOGIC  
.
Figure 45. AD5259 Evaluation Board Software  
Rev. A | Page 19 of 24  
 
AD5259  
DISPLAY APPLICATIONS  
CIRCUITRY  
For this reason, VLOGIC and VDD are provided as two separate  
supply pins that can either be tied together or treated inde-  
pendentlyꢀ VLOGIC supplying the logic/EEPROM with power,  
and VDD biasing up the A, B, and W terminals for added  
flexibility.  
A special feature of the AD5259 is its unique separation of the  
VLOGIC and VDD supply pins. The separation provides greater  
flexibility in applications that do not always provide needed  
supply voltages.  
In particular, LCD panels often require a VCOM voltage in the  
range of 3 V to 5 V. The circuit in Figure 46 is the rare excep-  
tion in which a 5 V supply is available to power the digital  
potentiometer.  
VCC (~3.3V)  
14.4V  
SUPPLIES POWER  
TO BOTH THE  
MICRO AND THE  
LOGIC SUPPLY OF  
THE DIGITAL POT  
R1  
70kΩ  
C1  
1μF  
AD5259  
R6  
R5  
V
V
DD  
10kΩ 10kΩ  
VCC (~3.3V)  
5V  
14.4V  
U1  
AD8565  
LOGIC  
R2  
A
B
10kΩ  
3.5V < V  
COM  
< 4.5V  
R1  
70kΩ  
SCL  
SDA  
GND  
+
MCU  
W
C1  
1μF  
AD5259  
R6  
R5  
V
V
DD  
10kΩ 10kΩ  
R3  
25kΩ  
U1  
AD8565  
LOGIC  
R2  
A
B
10kΩ  
3.5V < V  
COM  
< 4.5V  
SCL  
SDA  
GND  
+
MCU  
W
Figure 47. Circuitry When a Separate Supply is Not Available for VDD  
R3  
For a more detailed look at this application, refer to the article,  
“Simple VCOM Adjustment uses any Logic Supply Voltage” in  
the September 30, 2004 issue of EDN magazine.  
25kΩ  
Figure 46. VCOM Adjustment Application  
In the more common case shown in Figure 47, only analog 14.4 V  
and digital logic 3.3 V supplies are available. By placing discrete  
resistors above and below the digital potentiometer, VDD can  
now be tapped off the resistor string itself. Based on the chosen  
resistor values, the voltage at VDD in this case equals 4.8 V,  
allowing the wiper to be safely operated all the way up to 4.8 V.  
The current draw of VDD will not affect that nodes bias because  
it is only on the order of microamps. VLOGIC is tied to the MCU’s  
3.3 V digital supply because VLOGIC will draw the 35 mA which  
is needed when writing to the EEPROM. It would be imprac-  
tical to try and source 35 mA through the 70 kΩ resistor,  
therefore, VLOGIC is not connected to the same node as VDD.  
Rev. A | Page 2± of 24  
 
AD5259  
OUTLINE DIMENSIONS  
INDEX  
AREA  
3.00 BSC  
PIN 1  
INDICATOR  
3.00  
BSC SQ  
10  
6
10  
1
1.50  
BCS SQ  
4.90 BSC  
3.00 BSC  
PIN 1  
0.50  
BSC  
2.48  
2.38  
2.23  
EXPOSED  
1
5
PAD  
TOP VIEW  
(BOTTOM VIEW)  
6
5
0.50 BSC  
0.95  
0.85  
0.75  
0.50  
0.40  
0.30  
1.74  
1.64  
1.49  
1.10 MAX  
0.80 MAX  
0.55 TYP  
0.80  
0.75  
0.70  
0.80  
0.60  
0.40  
8°  
0°  
0.15  
0.00  
0.27  
0.17  
0.05 MAX  
0.02 NOM  
SEATING  
PLANE  
SIDE VIEW  
0.23  
0.08  
COPLANARITY  
0.10  
SEATING  
PLANE  
0.30  
0.23  
0.18  
0.20 REF  
COMPLIANT TO JEDEC STANDARDS MO-187-BA  
Figure 48. 10-Lead Mini Small Outline Package [MSOP]  
(RM-10)  
Figure 49. 10-Lead Lead Frame Chip Scale Package [LFCSP_WD]  
3 mm × 3 mm Body, Very Very Thin, Dual Lead  
(CP-10-9)  
Dimensions shown in millimeters  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model  
AD5259BRMZ51  
Package Description  
Package Option  
RAB (Ω)  
5 k  
5 k  
5 k  
1± k  
1± k  
1± k  
5± k  
5± k  
5± k  
1±± k  
1±± k  
1±± k  
Temperature  
–4±°C to +85°C  
–4±°C to +85°C  
–4±°C to +85°C  
–4±°C to +85°C  
–4±°C to +85°C  
–4±°C to +85°C  
–4±°C to +85°C  
–4±°C to +85°C  
–4±°C to +85°C  
–4±°C to +85°C  
–4±°C to +85°C  
–4±°C to +85°C  
Branding  
D4P  
D4P  
1±-Lead MSOP  
1±-Lead MSOP  
1±-Lead LFCSP_WD  
1±-Lead MSOP  
1±-Lead MSOP  
1±-Lead LFCSP_WD  
1±-Lead MSOP  
1±-Lead MSOP  
1±-Lead LFCSP_WD  
1±-Lead MSOP  
1±-Lead MSOP  
RM-1±  
RM-1±  
CP-1±-9  
RM-1±  
RM-1±  
CP-1±-9  
RM-1±  
RM-1±  
CP-1±-9  
RM-1±  
RM-1±  
CP-1±-9  
AD5259BRMZ5-R71  
AD5259BCPZ5-R71  
AD5259BRMZ1±1  
AD5259BRMZ1±-R71  
AD5259BCPZ1±-R71  
AD5259BRMZ5±1  
AD5259BRMZ5±-R71  
AD5259BCPZ5±-R71  
AD5259BRMZ1±±1  
AD5259BRMZ1±±-R71  
AD5259BCPZ1±±-R71  
AD5259EVAL2  
D4P  
D4Q  
D4Q  
D4Q  
D4R  
D4R  
D4R  
D4S  
D4S  
D4S  
1±-Lead LFCSP_WD  
Evaluation Board  
1 Z = Pb-free part.  
2 The evaluation board is shipped with the 1± kΩ RAB resistor option; however, the board is compatible with all available resistor value options.  
Rev. A | Page 21 of 24  
 
AD5259  
NOTES  
Rev. A | Page 22 of 24  
AD5259  
NOTES  
Rev. A | Page 23 of 24  
AD5259  
NOTES  
Purchase of licensed I2C components of Analog Devices or one of its sublicensed Associated Companies conveys a license for the purchaser under the Philips I2C Patent  
Rights to use these components in an I2C system, provided that the system conforms to the I2C Standard Specification as defined by Philips.  
©
2005 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective companies.  
D05026–0–7/05(A)  
Rev. A | Page 24 of 24  

相关型号:

AD5259BCPZ100-R7

Nonvolatile, I2C-Compatible 256-Position, Digital Potentiometer
ADI

AD5259BCPZ5-R7

Nonvolatile, I2C-Compatible 256-Position, Digital Potentiometer
ADI

AD5259BCPZ50-R7

Nonvolatile, I2C-Compatible 256-Position, Digital Potentiometer
ADI

AD5259BRMZ10

Nonvolatile, I2C-Compatible 256-Position, Digital Potentiometer
ADI

AD5259BRMZ10-R7

Nonvolatile, I2C-Compatible 256-Position, Digital Potentiometer
ADI

AD5259BRMZ100

Nonvolatile, I2C-Compatible 256-Position, Digital Potentiometer
ADI

AD5259BRMZ100-R7

Nonvolatile, I2C-Compatible 256-Position, Digital Potentiometer
ADI

AD5259BRMZ5

Nonvolatile, I2C-Compatible 256-Position, Digital Potentiometer
ADI

AD5259BRMZ5-R7

Nonvolatile, I2C-Compatible 256-Position, Digital Potentiometer
ADI

AD5259BRMZ50

Nonvolatile, I2C-Compatible 256-Position, Digital Potentiometer
ADI

AD5259BRMZ50-R7

Nonvolatile, I2C-Compatible 256-Position, Digital Potentiometer
ADI

AD5259EVAL

Nonvolatile, I2C-Compatible 256-Position, Digital Potentiometer
ADI