AD5259EVAL [ADI]

Nonvolatile, I2C-Compatible 256-Position, Digital Potentiometer; 非易失, I2C兼容256位,数字电位器
AD5259EVAL
型号: AD5259EVAL
厂家: ADI    ADI
描述:

Nonvolatile, I2C-Compatible 256-Position, Digital Potentiometer
非易失, I2C兼容256位,数字电位器

电位器
文件: 总14页 (文件大小:242K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Nonvolatile, I2C Compatible  
256-Position, Digital Potentiometer  
Preliminary Technical Data  
AD5259  
parts on one bus, address bits AD0 and AD1 allow up to nine  
devices on the same bus.  
FEATURES  
Nonvolatile memoy maintains wiper settings  
256-position  
Compact MSOP-10 (3 mm × 4.9 mm) package  
I2C® compatible interface  
FUNCTIONAL BLOCK DIAGRAMS  
VLOGIC pin provides increased interface flexibility.  
End-to-end resistance 5 kΩ, 10 kΩ, 50 kΩ, 100 kΩ  
Resistance tolerance stored in EEMEM(0.1% accuracy)  
Power On EEMEM Refresh Time < 1ms  
Software write protect command  
Tri-state address decode pins AD0 and AD1  
100-year typical data retention at 55°C  
Wide operating temperature –40°C to +85°C  
+3V to +5V single-supply  
VDD  
RDAC1  
A1  
W1  
B1  
RDAC1  
REGISTER  
VLOGIC  
DGND  
RDAC EEPROM  
8
DATA  
SCL  
SDA  
I2C  
SERIAL  
INTERFACE  
8
CONTROL  
AD0  
AD1  
COMMAND DECODE LOGIC  
ADDRESS DECODE LOGIC  
CONTROL LOGIC  
POWER  
ON RESET  
APPLICATIONS  
LCD panel VCOM adjustment  
LCD panel brightness and contrast control  
Mechanical potentiometer replacement in new designs  
Programmable power supplies  
RF amplifier biasing  
Figure 1.  
Automotive electronics adjustment  
Gain control and offset adjustment  
Low resolution DAC replacement  
Electronics level settings  
1
2
3
4
5
W
10 A  
9
8
7
6
B
AD0  
AD1  
SDA  
SCL  
AD5259  
VDD  
TOP VIEW  
(Not to Scale)  
GND  
VLOGIC  
GENERAL OVERVIEW  
Figure 3. Pinout.  
The AD5259 provides a compact nonvolatile 3 mm × 4.9 mm  
packaged solution for 256-position adjustment applications.  
These devices perform the same electronic adjustment function  
as mechanical potentiometers or variable resistors, with  
enhanced resolution and solid-state reliability.  
The wiper settings are controllable through an I2C compatible  
digital interface, which can also be used to read back the wiper  
register and EEMEM content. Resistor tolerance is also stored  
within EEMEM and can be used to provide an end-to-end  
tolerance accuracy of 0.1%. In order to provide added security,  
command bits are available to place the part into a write protect  
mode in which data can not be written to the EEMEM register.  
Note:  
The terms digital potentiometer, VR, and RDAC are used interchangeably.  
Purchase of licensed I2C components of Analog Devices or one of its sublicensed  
Associated Companies conveys a license for the purchaser under the Philips I2C  
Patent Rights to use these components in an I2C system, provided that the system  
conforms to the I2C Standard Specification as defined by Philips.  
In addition, a separate VLOGIC pin provides the user with  
increased interface flexibility. For users who need multiple  
Rev. PrJ 7/22/04 | Page 1 of 14  
Information furnished by Analog Devices is believed to be accurate and reliable.  
However, no responsibility is assumed by Analog Devices for its use, nor for any  
infringements of patents or other rights of third parties that may result from its use.  
Specifications subject to change without notice. No license is granted by implication  
or otherwise under any patent or patent rights of Analog Devices. Trademarks and  
registered trademarks are the property of their respective companies.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.326.8703  
www.analog.com  
© 2004 Analog Devices, Inc. All rights reserved.  
AD5259  
Preliminary Technical Data  
TABLE OF CONTENTS  
Electrical Characteristics—5 kΩ, 10 kΩ, 50 kΩ, 100 kΩ  
Ordering Guide .......................................................................... 13  
ESD Caution................................................................................ 13  
Versions .............................................................................................. 3  
Timing Characteristics—5 kΩ, 10 kΩ, 50 kΩ, 100 kΩ Versions 4  
Absolute Maximum Ratings1 .......................................................... 5  
Outline Dimensions ....................................................................... 12  
REVISION HISTORY  
Revision 0: Initial Version  
VDD  
Vlogic  
A
EEPROM  
AD5259  
RDAC  
REGISTER  
and  
LEVEL  
SHIFTER  
SCL  
I2C SERIAL  
INTERFACE  
SDA  
AD0  
AD1  
COMMAND  
DECODE LOGIC  
W
ADDRESS  
DECODE LOGIC  
CONTROL  
LOGIC  
GND  
B
Figure 3. Block diagram showing level shifters  
Rev. PrJ 7/22/04 | Page 2 of 14  
Preliminary Technical Data  
AD5259  
ELECTRICAL CHARACTERISTICS—5 kΩ, 10 kΩ, 50 kΩ, 100 kΩ VERSIONS  
(VDD = 5 V 10%, or 3 V 10%ꢀ VA = VDDꢀ VB = 0 Vꢀ –40°C < TA < +85°Cꢀ unless otherwise noted.)  
Table 1.  
Parameter  
Symbol  
Conditions  
Min  
Max  
Unit  
DC CHARACTERISTICS—RHEOSTAT MODE  
Resistor Differential Nonlinearity  
Resistor Integral Nonlinearity  
Nominal Resistor Tolerance  
Resistance Temperature Coefficient  
R-DNL  
R-INL  
∆RAB  
RWB, VA = no connect  
RWB, VA = no connect  
TA = 2ꢀ°C  
–1  
–2  
–30  
0.1  
0.2ꢀ  
+1  
+2  
+30  
LSB  
LSB  
%
∆RAB/∆T  
VAB = VDD  
,
6ꢀ0  
ꢀ0  
ppm/°C  
Wiper = no connect  
Code = 0x00  
RWB  
RWB  
120  
DC CHARACTERISTICS—POTENTIOMETER DIVIDER MODE  
Differential Nonlinearity  
Integral Nonlinearity  
Voltage Divider Temperature Coefficient  
Full-Scale Error  
DNL  
INL  
∆VW/∆T  
VWFSE  
VWZSE  
–1  
–1  
0.1  
0.3  
30  
–1  
1
+1  
+1  
LSB  
LSB  
ppm/°C  
LSB  
LSB  
Code = 0x80  
Code = 0xFF  
Code = 0x00  
–3  
0
0
3
Zero-Scale Error  
RESISTOR TERMINALS  
Voltage Range  
VA,B,W  
CA,B  
VSS  
VDD  
V
pF  
Capacitance A, B  
f = 1 MHz, measured to  
GND, Code = 0x80  
f = 1 MHz, measured to  
GND, Code = 0x80  
4ꢀ  
60  
1
Capacitance W  
CW  
ICM  
pF  
Common-Mode Leakage  
DIGITAL INPUTS AND OUTPUTS  
Input Logic High  
VA = VB = VDD/2  
nA  
0.7 × VL  
–0.ꢀ  
VL+0.ꢀ  
0.3×VL  
1
VIH  
VIL  
IIL  
V
V
µA  
pF  
Input Logic Low  
Input Current  
Input Capacitance  
VIN = 0 V or ꢀ V  
CIL  
POWER SUPPLIES  
Power Supply Range  
VDD  
IDD  
VLOGIC  
ILOGIC(PROG)  
PDISS  
2.7  
2.7  
ꢀ.ꢀ  
1
VDD  
V
µA  
Positive Supply Current  
Logic Supply(must match logic levels)  
Programming Mode Current(EEMEM)  
Power Dissipation  
VIH = ꢀ V or VIL = 0 V  
VIH = ꢀ V or VIL = 0 V  
VIH = ꢀ V or VIL = 0 V,  
3ꢀ  
18  
mA  
µW  
ꢀ0  
V
DD = ꢀ V  
Power Supply Sensitivity  
PSS  
VDD = +ꢀ V 10%,  
Code = Midscale  
0.02  
0.0ꢀ %/%  
DYNAMIC CHARACTERISTICS  
Bandwidth –3dB  
BW  
RAB = ꢀkΩ/ 10 kΩ/ꢀ0 kΩ/100  
kΩ, Code = 0x80  
2000/600/  
100/40  
0.1  
kHz  
Total Harmonic Distortion  
THDW  
tS  
VA =1 V rms, VB = 0 V,  
f = 1 kHz, RAB = 10 kΩ  
VA = ꢀ V, VB = 0 V,  
1 LSB error band  
%
VW Settling Time (1kΩ/10 kΩ/ꢀ0 kΩ/100 kΩ)  
Resistor Noise Voltage Density  
2
9
µs  
eN_WB  
RWB = ꢀ kΩ, RS = 0  
nV/√Hz  
Rev. PrJ 7/22/04 | Page 3 of 14  
 
AD5259  
Preliminary Technical Data  
TIMING CHARACTERISTICS—5 kΩ, 10 kΩ, 50 kΩ, 100 kΩ VERSIONS  
(VDD = +5V 10%, or +3V 10%ꢀ VA = VDDꢀ VB = 0 Vꢀ –40°C < TA < +85°Cꢀ unless otherwise noted.)  
Table 2.  
Parameter  
Symbol  
Conditions  
Min Typ Max Unit  
I2C INTERFACE TIMING CHARACTERISTICS1 (Specifications Apply to All Parts)  
SCL Clock Frequency  
tBUF Bus Free Time between STOP and START  
tHD;STA Hold Time (Repeated START)  
fSCL  
t1  
t2  
0
1.3  
0.6  
400  
kHz  
µs  
µs  
After this period, the first clock pulse is  
generated.  
tLOW Low Period of SCL Clock  
tHIGH High Period of SCL Clock  
tSU;STA Setup Time for Repeated START Condition  
tHD;DAT Data Hold Time  
tSU;DAT Data Setup Time  
tF Fall Time of Both SDA and SCL Signals  
tR Rise Time of Both SDA and SCL Signals  
tSU;STO Setup Time for STOP Condition  
t3  
t4  
tꢀ  
t6  
t7  
t8  
t9  
t10  
1.3  
0.6  
0.6  
0
µs  
µs  
µs  
µs  
ns  
ns  
ns  
µs  
0.9  
100  
300  
300  
0.6  
t6  
t8  
t9  
SCL  
t10  
t5  
t7  
t4  
t2  
t3  
t9  
t8  
t1  
SDA  
P
S
P
Figure 4. I2C Interface Timing Diagram  
Rev. PrJ 7/22/04 | Page 4 of 14  
 
 
Preliminary Technical Data  
AD5259  
I2C INTERFACE  
Table 3. Generic Interface Format  
Device Address*  
R/W  
S
(7-bit)  
SA C2 C1 C0 A4 A3 A2 A1 A0 SA D7 D6 Dꢀ D4 D3 D2 D1 D0 SA  
P
Slave Address Byte  
Instruction Byte  
Data Byte  
Table 4. Device Address Lookup*  
(Note that AD1 and AD0 are tri-state address pins)  
Device  
AD1  
AD0  
Address  
0011000  
0011001  
0011010  
0101001  
0101010  
0101011  
1001100  
1001101  
1001110  
S = Start Condition  
0
NC  
1
0
NC  
1
0
NC  
1
0
0
0
NC  
NC  
NC  
1
P = Stop Condition  
SA = Slave Acknowledge  
MA = Master Acknowledge  
NA = No Acknowledge  
X = Don’t Care  
1
1
W
= Write  
R = Read  
Table 5. RDAC-to-EEMEM Interface Command Descriptions  
C2  
0
C1  
0
C0  
0
Command Description  
Operation between I2C and RDAC  
Operation between I2C and EEPROM  
Operation between I2C and WP register  
NOP  
0
0
1
0
1
0
1
0
0
1
0
1
Restore EEPROM to RDAC  
Store RDAC to EEPROM  
1
1
0
Rev. PrJ 7/22/04 | Page ꢀ of 14  
AD5259  
Preliminary Technical Data  
Write Modes  
Table 6. Writing to RDAC register  
Device Address*  
S
(7-bit)  
0
0
SA  
SA  
0
0
0
0
0
0
0
0
0
0
0
0
SA D7 D6 Dꢀ D4 D3 D2 D1 D0 SA  
Data Byte  
P
P
Slave Address Byte  
Instruction Byte  
Table 7. Writing to EEPROM register  
Device Address*  
S
(7-bit)  
1
0
0
0
SA D7 D6 Dꢀ D4 D3 D2 D1 D0 SA  
Data Byte  
Slave Address Byte  
Instruction Byte  
Table 8. Activating Software Write Protect  
Device Address*  
S
(7-bit)  
0
SA  
0
1
0
0
0
0
0
0
SA  
0
0
0
0
0
0
0
WP SA  
P
Slave Address Byte  
Instruction Byte  
Data Byte  
Store/Restore Modes  
Table 9. Storing RDAC value to EEPROM  
Device Address*  
S
(7-bit)  
0
SA  
1
1
0
0
0
0
0
0
0
0
SA  
SA  
P
P
Slave Address Byte  
Instruction Byte  
Table 10. Restoring EEPROM to RDAC  
Device Address*  
S
(7-bit)  
0
SA  
1
0
1
0
0
0
Slave Address Byte  
Instruction Byte  
S = Start Condition  
P = Stop Condition  
SA = Slave Acknowledge  
MA = Master Acknowledge  
NA = No Acknowledge  
X = Don’t Care  
W
= Write  
R = Read  
Rev. PrJ 7/22/04 | Page 6 of 14  
Preliminary Technical Data  
AD5259  
Read Modes  
Table 11. Traditional Read back of RDAC Register value  
Device Address*  
Device Address*  
S
(7-bit)  
(7-bit)  
0
SA  
0
0
0
0
0
0
0
0
SA  
S
1
SA D7 D6 Dꢀ D4 D3 D2 D1 D0 NA P  
Read Back Data  
Slave Address Byte  
Instruction Byte  
Slave Address Byte  
Repeat start  
Table 12. Traditional Read back of stored EEPROM value  
Device Address*  
Device Address*  
(7-bit)  
S
(7-bit)  
0
SA  
0
0
1
0
0
0
0
0
SA  
S
1
SA D7 D6 Dꢀ D4 D3 D2 D1 D0 NA P  
Read Back Data  
Slave Address Byte  
Instruction Byte  
Slave Address Byte  
Repeat start  
Table 13. Traditional Read back of Tolerance  
i. Consecutively  
Device  
Device  
Address*  
Address*  
D
S
(7-bit)  
(7-bit)  
0 SA 0 0 1 1 1 1 1 0 SA S  
Instruction Byte  
1 SA D7 D6 Dꢀ D4 D3 D2 D1 0 MA D7 D6 Dꢀ D4 D3 D2 D1 D0 NA P  
Slave Address  
Byte  
Slave Address  
Byte  
Sign + Integer Byte  
Decimal Byte  
Repeat start  
ii. Individually  
Device  
Address*  
(7-bit)  
Device  
Address*  
(7-bit)  
D
S
0 SA 0 0 1 1 1 1 1 0 SA S  
Instruction Byte  
1 SA D7 D6 Dꢀ D4 D3 D2 D1 0 NA  
P
Slave Address  
Byte  
Slave Address  
Byte  
Sign + Integer Byte  
Repeat start  
Device  
Address*  
(7-bit)  
Device  
Address*  
(7-bit)  
D
S
0 SA 0 0 1 1 1 1 1 1 SA S  
Instruction Byte  
1 SA D7 D6 Dꢀ D4 D3 D2 D1 0 NA  
P
Slave Address  
Byte  
Slave Address  
Byte  
Decimal Byte  
Repeat start  
Note: Read modes above are referred to as traditional because the first two bytes for all three cases are “dummy” bytes which function to  
place the pointer towards the correct register. This is the reason for the Repeat Start. In theory, this step can be avoided if the user is  
interested in reading a register that was previously written to. For example, if the EEPROM was just written to, then the user can skip the  
Rev. PrJ 7/22/04 | Page 7 of 14  
AD5259  
Preliminary Technical Data  
two dummy bytes and proceed directly to the “Slave Address Byte” which would be followed by the “Read Back Data.  
Calculating RAB Tolerance Stored in Read-Only Memory  
A
A
A
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
D7  
D6  
D5  
D4  
D3  
D2  
–6  
D1  
–7  
D0  
–8  
6
5
4
3
2
1
0
–1  
2
–2  
2
–3  
2
–4  
2
–5  
2
SIGN  
2
2
2
2
2
2
2
2
2
2
SIGN  
7 BITS FOR INTEGER NUMBER  
8 BITS FOR DECIMAL NUMBER  
Figure 5. Format of Stored Tolerance in Sign Magnitude Format with Bit Position Descriptions. (Unit is percent. Only data bytes are shown.)  
The AD5259 features a patented RAB tolerance storage in the nonvolatile memory. The tolerance is stored in the memory during factory  
production and can be read by users at any time. The knowledge of stored tolerance allows users to calculate RAB accurately. This feature is  
valuable for precision, rheostat mode, and open-loop applications where knowledge of absolute resistance is critical.  
The stored tolerance resides in the read-only memory, and is expressed as a percentage. The tolerance is stored in two memory locations  
in sign magnitude binary form(see Figure 5). The two EEMEM address bytes are 11110(sign+integer) and 11111 (decimal number). The  
two bytes can be accessed individually in two separate commands(see Table 13ii). Alternatively, in order to allow read back of the first  
byte followed by the second byte in one command(see Table 13i), the memory pointer will automatically increment from the first to the  
second EEMEM locations(increments from 11110 to 11111) if read consecutively.  
In the first memory location, the MSB is designated for the sign (0 = + and 1= –) and the 7 LSBs are designated for the integer portion of  
the tolerance. In the second memory location, all eight data bits are designated for the decimal portion of tolerance. For example, if the  
rated RAB = 10 kΩ and the data readback from Address 11110 shows 0001 1100 and Address 11111 shows 0000 1111, then the tolerance  
can be calculated as  
MSB: 0 = +  
Next 7 MSB: 001 1100 = 28  
8 LSB: 0000 1111 = 15 × 2–8 = 0.06  
Tolerance = +28.06% and therefore  
RAB_ACTUAL = 12.806 kΩ  
EEMEM Write-Acknowledge Polling  
After each write operation to the EEMEM registers, an internal write cycle begins. The I2C interface of the device is disabled. To  
determine if the internal write cycle is complete and the I2C interface is enabled, interface polling can be executed. I2C interface polling  
can be conducted by sending a start condition followed by the slave address + the write bit. If the I2C interface responds with an ACK, the  
write cycle is complete and the interface is ready to proceed with further operations. Other-wise, I2C interface polling can be repeated  
until it succeeds.  
Rev. PrJ 7/22/04 | Page 8 of 14  
Preliminary Technical Data  
AD5259  
I2C COMPATIBLE 2-WIRE SERIAL BUS  
1. The master initiates data transfer by establishing a START  
condition, which is when a high-to-low transition on the  
SDA line occurs while SCL is high (see Figure 4). The  
following byte is the Slave Address Byte, which consists of  
4. Reading: Assuming the register of interest was not just  
written to, it is necessary to write a dummy Address and  
Instruction Byte. The Instruction Byte will vary depending  
on whether the data that is wanted is the RDAC register,  
EEMEM register, or Tolerance register(see Tables 11-13).  
The Tolerance register can be read back  
the slave address followed by an R/ bit (this bit  
W
determines whether data is read from or written to the  
slave device).  
consecutively(Table 13i) or individually(Table13ii). Refer  
to page 8 for detailed information on the interpretation of  
the tolerance bytes. After the dummy Address and  
Instruction Bytes are sent, a repeat start is necessary. After  
the repeat start, another Address Byte is needed except this  
The AD5259 has two tri-state configurable address bits,  
AD0 and AD1 (see Table 4). The slave whose address  
corresponds to the transmitted address responds by pulling  
the SDA line low during the ninth clock pulse (this is  
termed the acknowledge bit). At this stage, all other devices  
on the bus remain idle while the selected device waits for  
data to be written to or read from its serial register. If the  
time, the R/ bit is logic high. Following this Address  
W
Byte is the Read Back Byte containing the information  
requested in the Instruction Byte.  
R/ bit is high, the master reads from the slave device. If  
W
5. After all data bits have been read or written, a STOP  
condition is established by the master. A STOP condition is  
defined as a low-to-high transition on the SDA line while  
SCL is high. In write mode, the master pulls the SDA line  
high during the 10th clock pulse to establish a STOP  
condition (see Figure 6). In read mode, the master issues a  
No Acknowledge for the ninth clock pulse (i.e., the SDA  
line remains high). The master then brings the SDA line  
low before the 10th clock pulse, and then raises SDA high to  
establish a STOP condition (see Figure 7).  
the R/ bit is low, the master writes to the slave device.  
W
2. Writing: In the write mode, the last bit(R/ ) of the  
W
Address Byte is logic low. The second byte is the  
Instruction Byte. The first 3 bits of the Instruction Byte are  
the command bits(see Table 5). The final 5 bits indicate  
which EEMEM location the pointer moves to. The user  
must choose whether to write to the RDAC register,  
EEMEM register, or activate the software write protect(see  
Tables 6-8).  
A repeated write function gives the user flexibility to update the  
RDAC output a number of times after addressing and  
instructing the part only once. For example, after the RDAC has  
acknowledged its Slave Address and Instruction Bytes in the  
write mode, the RDAC output is updated on each successive  
byte. If different instructions are needed, the write/read mode  
has to start again with a new Slave Address, Instruction, and  
Data Byte. Similarly, a repeated read function of the RDAC is  
also allowed.  
The final byte is the Data Byte MSB first. In the case of the  
write protect mode, data is not being stored. Rather, a  
logic high in the LSB will enable write protect and a logic  
low will disable write protect.  
3. Storing/Restoring: In this mode, only two bytes are  
necessaryꢀ Address and Instruction Bytes. The last bit  
(R/ ) of the Address Byte is logic low. The first 3 bits of  
W
the Instruction Byte are the command bits(see Table 5).  
The two choices are transfer data from RDAC to  
EEMEM(Store) or from EEMEM to RDAC(Restore). The  
final 5 bits are all zeros(see Tables 9-10).  
Rev. PrJ 7/22/04 | Page 9 of 14  
AD5259  
Preliminary Technical Data  
DISPLAY APPLICATIONS  
Figure 1. VCOM adjustment application assuming that a +5V supply is available. In this case, VDD and VLOGIC would be tied together.  
Figure 2. This circuit demonstrates the flexibility of a VLOGIC pin when a separate supply is not available for VDD. VDD can be tapped off  
the +14.4V where it is resistor divided down to approximately ~5V. VLOGIC can then be taken off the same supply that powers the MCUs  
logic levels. Now, the 35 mA programming current will be drawn by VLOGIC, and VDD will only draw microamps of supply current used to  
bias up the internal switches in the digital potentiometers internal resistor string.  
Rev. PrJ 7/22/04 | Page 10 of 14  
Preliminary Technical Data  
AD5259  
ABSOLUTE MAXIMUM RATINGS1  
(TA = +25°C, unless otherwise noted.)  
Table 4  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only and functional operation of the device at these or  
any other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Parameter  
VDD to GND  
VA, VB, VW to GND  
IMAX  
Value  
–0.3 V to +7 V  
VSS –0.3V, VDD+0.3V  
Pulsed1  
20 mA  
ꢀ mA  
Continuous  
Digital Inputs and Output Voltage to GND 0 V to +7 V  
Operating Temperature Range  
Maximum Junction Temperature (TJMAX  
Storage Temperature  
–40°C to +8ꢀ°C  
)
1ꢀ0°C  
–6ꢀ°C to +1ꢀ0°C  
300°C  
Lead Temperature (Soldering, 10 sec)  
Thermal Resistance2 θJA: MSOP-10  
200°C/W  
NOTES  
1 Maximum terminal current is bounded by the maximum current handling of  
the switches, maximum power dissipation of the package, and maximum  
applied voltage across any two of the A, B, and W terminals at a given  
resistance.  
2 Package power dissipation = (TJMAX – TA)/θJA  
.
Rev. PrJ 7/22/04 | Page 11 of 14  
 
AD5259  
Preliminary Technical Data  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
1
2
3
4
5
W
10 A  
9
8
7
6
B
AD0  
AD1  
SDA  
SCL  
AD5259  
VDD  
GND  
VLOGIC  
TOP VIEW  
(Not to Scale)  
Figure 2. AD5172 Pin Configuration  
Table 5. AD5259 Pin Function Descriptions  
Pin  
Mnemonic  
Description  
1
W
W Terminal. GND ≤ VW ≤ VDD  
.
2
3
4
6
7
8
9
ADO  
AD1  
SDA  
SCL  
VLOGIC  
GND  
VDD  
B
Programmable Tri-State Address Bit 0 for Multiple Package Decoding.  
Programmable Tri-State Address Bit 1 for Multiple Package Decoding.  
Serial Data Input/Output.  
Serial Clock Input. Positive edge triggered.  
Logic power supply.  
Digital Ground.  
Positive Power Supply.  
B Terminal. GND ≤ VB ≤ VDD  
.
10  
A
A Terminal. GND ≤ VA ≤ VDD.  
Rev. PrJ 7/22/04 | Page 12 of 14  
Preliminary Technical Data  
AD5259  
Outline Dimensions  
3.00 BSC  
6
10  
4.90 BSC  
3.00 BSC  
PIN 1  
1
5
0.50 BSC  
0.95  
0.85  
0.75  
1.10 MAX  
0.23  
0.20  
0.17  
0.80  
0.40  
8°  
0°  
0.15  
0.00  
0.27  
0.17  
SEATING  
PLANE  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-187BA  
Figure 3. 10-Lead Mini Small Outline Package [MSOP]  
(RM-10)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model  
ADꢀ2ꢀ9BRMZꢀ1  
RAB (Ω)  
ꢀk  
Temperature  
–40°C to +8ꢀ°C  
–40°C to +8ꢀ°C  
–40°C to +8ꢀ°C  
–40°C to +8ꢀ°C  
–40°C to +8ꢀ°C  
–40°C to +8ꢀ°C  
–40°C to +8ꢀ°C  
–40°C to +8ꢀ°C  
Package Description  
MSOP-10  
Package Option  
RM-10  
Branding  
D4P  
ADꢀ2ꢀ9BRMZꢀ-RL71  
ADꢀ2ꢀ9BRMZ101  
ADꢀ2ꢀ9BRMZ10-RL71  
ADꢀ2ꢀ9BRMZꢀ01  
ADꢀ2ꢀ9BRMZꢀ0-RL71  
ADꢀ2ꢀ9BRMZ1001  
ADꢀ2ꢀ9BRMZ100-RL71  
ꢀk  
MSOP-10  
RM-10  
D4P  
D4Q  
10k  
MSOP-10  
RM-10  
D4Q  
D4R  
D4R  
D4S  
D4S  
10k  
MSOP-10  
RM-10  
ꢀ0k  
MSOP-10  
RM-10  
ꢀ0k  
MSOP-10  
RM-10  
100k  
100k  
MSOP-10  
RM-10  
MSOP-10  
RM-10  
1 Z = Pb-free part.  
ESD CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the  
human body and test equipment and can discharge without detection. Although this product features  
proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy  
electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance  
degradation or loss of functionality.  
Rev. PrJ 7/22/04 | Page 13 of 14  
 
AD5259  
NOTES  
Preliminary Technical Data  
©
2003 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective companies.  
PR05026–0–7/04(PrJ)  
Rev. PrJ 7/22/04 | Page 14 of 14  

相关型号:

AD5259EVAL2

Nonvolatile, I2C-Compatible 256-Position, Digital Potentiometer
ADI

AD526

10 MHz, 20 V/μs, G = 1, 10, 100, 1000 i CMOS® Programmable Gain Instrumentation Amplifier
ADI

AD5260

1-/2-Channel 15 V Digital Potentiometers
ADI

AD5260BRU20

1-/2-Channel 15 V Digital Potentiometers
ADI

AD5260BRU20-REEL7

1-/2-Channel 15 V Digital Potentiometers
ADI

AD5260BRU200

1-/2-Channel 15 V Digital Potentiometers
ADI

AD5260BRU200-REEL7

1-/2-Channel 15 V Digital Potentiometers
ADI

AD5260BRU50

1-/2-Channel 15 V Digital Potentiometers
ADI

AD5260BRU50-REEL7

1-/2-Channel 15 V Digital Potentiometers
ADI

AD5260BRUZ20

1-/2-Channel 15 V Digital Potentiometer
ADI

AD5260BRUZ20-REEL7

IC 20K DIGITAL POTENTIOMETER, 3-WIRE SERIAL CONTROL INTERFACE, 256 POSITIONS, PDSO14, TSSOP-14, Digital Potentiometer
ADI

AD5260BRUZ20-RL7

1-/2-Channel 15 V Digital Potentiometer
ADI