AD5174BCPZ-10-R2 [ADI]

Single-Channel, 1024-Position, Digital Rheostat with SPI Interface and 50-TP Memory; 单通道, 1024位数字变阻器,SPI接口和50 -TP存储器
AD5174BCPZ-10-R2
型号: AD5174BCPZ-10-R2
厂家: ADI    ADI
描述:

Single-Channel, 1024-Position, Digital Rheostat with SPI Interface and 50-TP Memory
单通道, 1024位数字变阻器,SPI接口和50 -TP存储器

存储
文件: 总20页 (文件大小:1003K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Single-Channel, 1024-Position, Digital Rheostat  
with SPI Interface and 50-TP Memory  
AD5174  
FUNCTIONAL BLOCK DIAGRAM  
FEATURES  
V
DD  
Single-channel, 1024-position resolution  
10 kΩ nominal resistance  
50-times programmable (50-TP) wiper memory  
Rheostat mode temperature coefficient: 35 ppm/°C  
2.7 V to 5.5 V single-supply operation  
2.5 V to 2.75 V dual-supply operation for ac or bipolar  
operations  
SPI-compatible interface  
Wiper setting and memory readback  
Power on refreshed from memory  
POWER-ON  
RESET  
AD5174  
RDAC  
REGISTER  
SCLK  
SYNC  
DIN  
A
10  
SPI  
SERIAL  
W
INTERFACE  
50-TP  
MEMORY  
BLOCK  
Resistor tolerance stored in memory  
Thin LFCSP 10-lead, 3 mm × 3 mm× 0.8 mm package  
Compact MSOP, 10-lead, 3 mm × 4.9 mm × 1.1 mm package  
SDO  
APPLICATIONS  
V
EXT_CAP  
GND  
SS  
Figure 1.  
Mechanical rheostat replacements  
Op-amp: variable gain control  
Instrumentation: gain, offset adjustment  
Programmable voltage-to-current conversions  
Programmable filters, delays, time constants  
Programmable power supply  
Sensor calibration  
GENERAL DESCRIPTION  
The AD5174 is a single-channel, 1024-position digital rheostat  
that combines industry leading variable resistor performance  
with nonvolatile memory (NVM) in a compact package.  
The AD5174 device wiper settings are controllable through the  
SPI digital interface. Unlimited adjustments are allowed before  
programming the resistance value into the 50-TP memory. The  
AD5174 does not require any external voltage supply to facili-  
tate fuse blow and there are 50 opportunities for permanent  
programming. During 50-TP activation, a permanent blow fuse  
command freezes the resistance position (analogous to placing  
epoxy on a mechanical rheostat).  
This device supports both dual-supply operation at 2.5 V to  
2.75 V and single-supply operation at 2.7 V to 5.5 V and offers  
50-times programmable (50-TP) memory.  
The AD5174 is available in a 3 mm × 3mm 10-lead LFCSP  
package and in a 10-lead MSOP package. The part is guaranteed  
to operate over the extended industrial temperature range of  
−40°C to +125°C.  
Rev. 0  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2010 Analog Devices, Inc. All rights reserved.  
 
 
 
AD5174  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Shift Register............................................................................... 12  
RDAC Register............................................................................ 12  
50-TP Memory Block ................................................................ 12  
Write Protection ......................................................................... 12  
RDAC and 50-TP Read Operation .......................................... 13  
Shutdown Mode ......................................................................... 14  
Reset............................................................................................. 14  
Daisy-Chain Operation............................................................. 15  
RDAC Architecture.................................................................... 15  
Programming the Variable Resistor......................................... 16  
EXT_CAP Capacitor.................................................................. 17  
Terminal Voltage Operating Range ......................................... 17  
Power-Up Sequence ................................................................... 17  
Outline Dimensions....................................................................... 18  
Ordering Guide .......................................................................... 18  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Electrical Characteristics............................................................. 3  
Interface Timing Specifications.................................................. 4  
Absolute Maximum Ratings............................................................ 6  
Thermal Resistance ...................................................................... 6  
ESD Caution.................................................................................. 6  
Pin Configuration and Function Descriptions............................. 7  
Typical Performance Characteristics ............................................. 8  
Test Circuits..................................................................................... 11  
Theory of Operation ...................................................................... 12  
Serial Data Interface................................................................... 12  
REVISION HISTORY  
3/10—Revision 0: Initial Version  
Rev. 0 | Page 2 of 20  
 
AD5174  
SPECIFICATIONS  
ELECTRICAL CHARACTERISTICS  
VDD = 2.7 V to 5.5 V, VSS = 0 V; VDD = 2.5 V to 2.75 V, VSS = −2.5 V to −2.75 V; −40°C < TA < 125°C, unless otherwise noted.  
Table 1.  
Parameter  
Symbol  
R-INL  
Test Conditions/Comments  
Min  
Typ1 Max  
Unit  
DC CHARACTERISTICS—RHEOSTAT MODE  
Resolution  
Resistor Integral Nonlinearity2, 3  
10  
−1  
−1  
−2.5  
−1  
Bits  
LSB  
LSB  
LSB  
LSB  
%
|VDD − VSS| = 3.6 V to 5.5 V  
|VDD − VSS| = 3.3 V to 3.6 V  
|VDD − VSS| = 2.7 V to 3.3 V  
+1  
+1.5  
+2.5  
+1  
Resistor Differential Nonlinearity2  
Nominal Resistor Tolerance  
Resistance Temperature Coefficient4, 5  
Wiper Resistance  
RESISTOR TERMINALS  
Terminal Voltage Range4, 6  
Capacitance A4  
R-DNL  
15  
35  
Code = full scale  
Code = zero scale  
ppm/°C  
Ω
35  
70  
VTERM  
VSS  
VDD  
V
f = 1 MHz, measured to GND, code = half scale  
f = 1 MHz, measured to GND, code = half scale  
VA = VW  
90  
40  
pF  
pF  
nA  
Capacitance W4  
Common-Mode Leakage Current4  
50  
DIGITAL INPUTS  
Input Logic4  
High  
Low  
Input Current  
Input Capacitance4  
DIGITAL OUTPUT  
Output Voltage4  
VINH  
VINL  
IIN  
2.0  
V
V
μA  
pF  
0.8  
1
5
CIN  
High  
Low  
VOH  
VOL  
RPULL_UP = 2.2 kΩ to VDD  
RPULL_UP = 2.2 kΩ to VDD  
VDD − 0.1  
V
VDD = 2.7 V to 5.5 V, VSS = 0 V  
VDD = 2.5 V to 2.75 V, VSS = −2.5 V to −2.75 V  
0.4  
0.6  
+1  
V
V
μA  
pF  
Tristate Leakage Current  
Output Capacitance4  
POWER SUPPLIES  
Single-Supply Power Range  
Dual-Supply Power Range  
Supply Current  
−1  
5
VSS = 0 V  
2.7  
2.5  
5.5  
2.75  
V
V
Positive  
Negative  
50-TP Store Current4, 7  
IDD  
ISS  
1
μA  
μA  
−1  
Positive  
Negative  
50-TP Read Current4, 8  
IDD_OTP_STORE  
ISS_OTP_STORE  
4
−4  
mA  
mA  
Positive  
Negative  
Power Dissipation9  
Power Supply Rejection Ratio4  
IDD_OTP_READ  
ISS_OTP_READ  
PDISS  
500  
5.5  
μA  
μA  
μW  
dB  
−500  
−50  
VIH = VDD or VIL = GND  
PSRR  
ΔVDD/ΔVSS  
=
5 V 10%  
−55  
Rev. 0 | Page 3 of 20  
 
 
 
AD5174  
Parameter  
DYNAMIC CHARACTERISTICS4, 10  
Symbol  
Test Conditions/Comments  
Min  
Typ1 Max  
Unit  
Bandwidth  
Total Harmonic Distortion  
Resistor Noise Density  
−3 dB, RAW = 5 kΩ, Terminal W, see Figure 24  
VA = 1 V rms, f = 1 kHz, RAW = 5 kΩ  
RWB = 5 kΩ, TA = 25°C, f = 10 kHz  
700  
−90  
13  
kHz  
dB  
nV/√Hz  
1 Typical specifications represent average readings at 25°C, VDD = 5 V, and VSS = 0 V.  
2 Resistor position nonlinearity error (R-INL) is the deviation from an ideal value measured between the maximum resistance and the minimum resistance wiper  
positions. R-DNL measures the relative step change from the ideal between successive tap positions.  
3 The maximum current in each code is defined by IAW = (VDD − 1)/RAW  
4 Guaranteed by design and not subject to production test.  
5 See Figure 9 for more details.  
.
6 Resistor Terminal A and Resistor Terminal W have no limitations on polarity with respect to each other. Dual-supply operation enables ground referenced bipolar  
signal adjustment.  
7 Different from operating current; the supply current for the fuse program lasts approximately 55 ms.  
8 Different from operating current; the supply current for the fuse read lasts approximately 500 ns.  
9 PDISS is calculated from (IDD × VDD) + (ISS × VSS).  
10 All dynamic characteristics use VDD = +2.5 V, VSS = −2.5 V.  
INTERFACE TIMING SPECIFICATIONS  
VDD = 2.7 V to 5.5 V, VSS = 0 V; VDD = 2.5 V, VSS = −2.5 V; all specifications TMIN to TMAX, unless otherwise noted.  
Table 2.  
Parameter  
Limit1  
20  
10  
10  
15  
5
Unit  
Test Conditions/Comments  
SCLK cycle time  
SCLK high time  
SCLK low time  
SYNC to SCLK falling edge setup time  
Data setup time  
2
t1  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns max  
μs max  
ms max  
μs max  
ms max  
t2  
t3  
t4  
t5  
t6  
t7  
5
1
Data hold time  
SCLK falling edge to SYNC rising edge  
Minimum SYNC high time  
SYNC rising edge to next SCLK fall ignored  
SCLK rising edge to SDO valid  
Memory readback execute time  
Memory program time  
3
t8  
400  
15  
450  
6
350  
600  
2
t9  
4
t10  
tMEMORY_READ  
tMEMORY_PROGRAM  
tRESET  
Reset OTP restore time  
Power-on 50-TP restore time  
5
tPOWER-UP  
1 All input signals are specified with tr = tf = 1 ns/V (10% to 90% of VDD) and timed from a voltage level of (VIL + VIH)/2.  
2 Maximum SCLK frequency is 50 MHz.  
3 Refer to t  
t
MEMORY_READ and MEMORY_PROGRAM for memory commands operations.  
4 RPULL_UP = 2.2 kΩ to VDD with a capacitance load of 168 pF.  
5 Maximum time after VDD − VSS is equal to 2.5 V.  
Rev. 0 | Page 4 of 20  
 
 
 
AD5174  
Shift Register and Timing Diagrams  
DB9 (MSB)  
DB0 (LSB)  
D0  
D1  
C3  
C1  
C0  
D9  
D7  
D6  
D5  
D4  
D3  
D8  
0
0
C2  
D2  
DATA BITS  
CONTROL BITS  
Figure 2. Shift Register Content  
t7  
t4  
t2  
t1  
SCLK  
SYNC  
t9  
t8  
t3  
t5  
D1  
t6  
DIN  
0
0
C3  
C2  
D7  
D6  
D5  
D2  
D0  
SDO  
Figure 3. Write Timing Diagram, CPOL=0, CPHA = 1  
SCLK  
t9  
SYNC  
DIN  
0
0
C3  
D0  
D0  
0
0
C3  
C3  
D1  
D1  
D0  
D0  
t10  
SDO  
X
X
Figure 4. Read Timing Diagram, CPOL=0, CPHA = 1  
Rev. 0 | Page 5 of 20  
 
 
AD5174  
ABSOLUTE MAXIMUM RATINGS  
TA = 25°C, unless otherwise noted.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only and functional operation of the device at these or  
any other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Table 3.  
Parameter  
Rating  
VDD to GND  
VSS to GND  
VDD to VSS  
–0.3 V to +7.0 V  
+0.3 V to −7.0 V  
7 V  
VA, VW to GND  
VSS − 0.3 V, VDD + 0.3 V  
−0.3 V to VDD + 0.3 V  
7 V  
Digital Input and Output Voltage to GND  
EXT_CAP to VSS  
IA, IW  
THERMAL RESISTANCE  
θJA is defined by JEDEC specification JESD-51 and the value is  
dependent on the test board and test environment.  
Pulsed1  
Frequency > 10 kHz  
Frequency ≤ 10 kHz  
Continuous  
6 mA/d2  
6 mA/√d2  
6 mA  
−40°C to +125°C  
150°C  
Table 4. Thermal Resistance.  
1
Package Type  
10-Lead LFCSP  
10-Lead MSOP  
θJA  
50  
θJC  
3
N/A  
Unit  
°C/W  
°C/W  
Operating Temperature Range3  
135  
Maximum Junction Temperature  
(TJ Maximum)  
1 JEDEC 2S2P test board, still air (0 m/sec airflow).  
Storage Temperature Range  
Reflow Soldering  
Peak Temperature  
−65°C to +150°C  
ESD CAUTION  
260°C  
Time at Peak Temperature  
Package Power Dissipation  
20 sec to 40 sec  
(TJ max − TA)/θJA  
1 Maximum terminal current is bounded by the maximum current handling of  
the switches, maximum power dissipation of the package, and maximum  
applied voltage across any two of the A and W terminals at a given  
resistance.  
2 Pulse duty factor.  
3 Includes programming of 50-TP memory.  
Rev. 0 | Page 6 of 20  
 
 
 
 
 
 
AD5174  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
10  
9
V
1
2
3
4
5
SYNC  
SCLK  
DIN  
DD  
A
AD5174  
8
W
V
1
2
3
4
5
10  
9
SYNC  
SCLK  
DIN  
DD  
A
(EXPOSED  
PAD)*  
AD5174  
V
7
SDO  
GND  
SS  
8
W
6
EXT_CAP  
TOP VIEW  
(Not to Scale)  
V
7
SS  
EXT_CAP  
SDO  
GND  
6
*LEAVE FLOATING OR CONNECTED TO V  
SS  
.
Figure 5. MSOP Pin Configuration  
Figure 6. LFCSP Pin Configuration  
Table 5. Pin Function Descriptions  
Pin No.  
Mnemonic  
Description  
Positive Power Supply. Decouple this pin with 0.1 μF ceramic capacitors and 10 μF capacitors.  
Terminal A of RDAC. VSS ≤ VA ≤ VDD  
Wiper Terminal of RDAC. VSS ≤ VW ≤ VDD  
Negative Supply. Connect to 0 V for single-supply applications. Decouple this pin with 0.1 μF ceramic capacitors  
and 10 μF capacitors.  
1
2
3
4
VDD  
A
W
.
.
VSS  
5
EXT_CAP  
External Capacitor. Connect a 1 μF capacitor between EXT_CAP and VSS. This capacitor must have a voltage  
rating of ≥7 V.  
6
7
GND  
SDO  
Ground Pin, Logic Ground Reference.  
Serial Data Output. This open-drain output requires an external pull-up resistor. SDO can be used to clock data  
from the shift register in daisy-chain mode or in readback mode.  
8
DIN  
Serial Data Line. This pin is used in conjunction with the SCLK line to clock data into or out of the 16-bit  
input register.  
9
SCLK  
SYNC  
Serial Clock Input. Data is clocked into the shift register on the falling edge of the serial clock input. Data can be  
transferred at rates of up to 50 MHz.  
10  
Falling Edge Synchronization Signal. This is the frame synchronization signal for the input data. When SYNC  
goes low, it enables the shift register and data is transferred in on the falling edges of the subsequent clocks.  
The selected register is updated on the rising edge of SYNC following the 16th clock cycle. If SYNC is taken  
high before the 16th clock cycle, the rising edge of SYNC acts as an interrupt, and the write sequence is ignored  
by the RDAC.  
EPAD  
Exposed Pad Leave floating or connected to VSS  
Rev. 0 | Page 7 of 20  
 
AD5174  
TYPICAL PERFORMANCE CHARACTERISTICS  
0.8  
1.0  
0.8  
0.6  
0.4  
+25°C  
–40°C  
+125°C  
V
/V = 5V/0V  
DD SS  
0.6  
0.4  
0.2  
0
–0.2  
–0.4  
–0.6  
0.2  
0
0
0
0
128  
256  
384  
512  
640  
768  
896  
1023  
1023  
1023  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
VOLTAGE (V)  
CODE (Decimal)  
Figure 7. R-INL vs. Code vs. Temperature  
Figure 10. Supply Current (IDD) vs. Digital Input Voltage  
0.4  
0.3  
+25°C  
–40°C  
+125°C  
500  
400  
I
= 5V  
DD  
300  
0.2  
200  
I
= 3V  
0.1  
DD  
100  
I
= 3V  
0
SS  
0
–100  
–200  
–300  
–400  
–500  
–0.1  
–0.2  
–0.3  
I
= 5V  
SS  
128  
256  
384  
512  
640  
768  
896  
–40 –30 –20 –10  
0
10 20 30 40 50 60 70 80 90 100 110  
TEMPERATURE (°C)  
CODE (Decimal)  
Figure 8. R-DNL vs. Code vs. Temperature  
Figure 11. Supply Current (IDD, ISS) vs. Temperature  
700  
600  
7
6
5
4
3
2
1
V
/V = 5V/0V  
DD SS  
V
/V = 5V/0V  
DD SS  
500  
400  
300  
200  
100  
0
0
128  
256  
384  
512  
640  
768  
896  
0
85 170 255 340 425 510 595 680 765 850 935 1023  
CODE (Decimal)  
CODE (Decimal)  
Figure 9. Tempco ΔRWA/ΔT vs. Code  
Figure 12. Theoretical Maximum Current vs. Code  
Rev. 0 | Page 8 of 20  
 
 
AD5174  
–20  
–25  
0
V
/V = 5V/0V  
DD SS  
CODE = HALF SCALE  
0x200  
0x100  
0x080  
–5  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–45  
–50  
–30  
–35  
–40  
–45  
–50  
–55  
–60  
0x040  
0x020  
0x010  
0x008  
0x004  
0x002  
0x001  
V
/V = 5V/0V  
DD SS  
10  
100  
1k  
10k  
100k  
1M  
1
10  
100  
1k  
10k  
100k 1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 13. Bandwidth vs. Frequency vs. Code  
Figure 16. PSRR vs. Frequency  
8
0
–20  
V
/V = ±2.5V  
DD SS  
CODE = HALF SCALE  
= 1V rms  
f
IN  
NOISE BW = 22kHz  
7
6
5
4
–40  
–60  
–80  
–100  
–120  
10  
100  
1k  
10k  
0.07  
0.09  
0.11  
0.13  
0.15  
0.17  
1M  
100k  
FREQUENCY (Hz)  
TIME (Seconds)  
Figure 14. THD + N vs. Frequency  
Figure 17. VEXT_CAP Waveform While Writing Fuse  
0
20  
10  
0
10k  
V
/V = ±2.5V  
= 200µA  
DD SS  
I
AW  
–20  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–40  
–60  
–80  
V
/V = ±2.5V  
DD SS  
CODE = HALF SCALE  
fIN = 1kHz  
NOISE BW = 22kHz  
–100  
0.001  
0.01  
0.1  
1
–2  
0
2
4
AMPLITUDE (V rms)  
TIME (µs)  
Figure 15. THD + N vs. Amplitude  
Figure 18. Maximum Glitch Energy  
Rev. 0 | Page 9 of 20  
AD5174  
1.0  
0.006  
0.005  
0.004  
0.003  
0.002  
0.001  
0
V
/V = 5V/0V  
= 10µA  
DD SS  
I
AW  
CODE = HALF SCALE  
0.5  
0
–0.5  
–1.0  
–0.001  
–0.002  
V
/V = ±2.5V  
= 200µA  
DD SS  
I
AW  
–1.5  
–10  
0
10  
20  
30  
40  
50  
60  
0
100 200 300 400 500 600 700 800 900 1000  
OPERATION AT 150°C (Hours)  
TIME (µs)  
Figure 19. Digital Feedthrough  
Figure 20. Long-Term Drift Accelerated Average by Burn-In  
Rev. 0 | Page 10 of 20  
AD5174  
TEST CIRCUITS  
Figure 21 to Figure 25 define the test conditions used in the Specifications section.  
DUT  
DUT  
I
W
1GΩ  
W
W
A
A
V
V
V
MS  
MS  
Figure 24. Gain vs. Frequency  
Figure 21. Resistor Position Nonlinearity Error  
(Rheostat Operation; R-INL, R-DNL)  
DUT  
GND  
GND  
V
I
MS  
W
R
=
=
I
WA  
CM  
+2.75V  
–2.75V  
W
CODE = 0x00  
DUT  
A
R
WA  
2
I
W
R
W
A
W
NC  
GND  
–2.75V  
V
MS  
NC = NO CONNECT  
+2.75V  
Figure 25. Common Leakage Current  
Figure 22. Wiper Resistance  
V+ = V ±10%  
DD  
V
V
MS  
PSRR (dB) = 20 log  
DD  
ΔV  
ΔV  
%
%
MS  
DD  
I
W
PSS (%/%) =  
V
DD  
W
V+  
A
V
MS  
Figure 23. Power Supply Sensitivity (PSS, PSRR)  
Rev. 0 | Page 11 of 20  
 
 
 
 
AD5174  
THEORY OF OPERATION  
The AD5174 is designed to operate as a true variable resistor for  
analog signals within the terminal voltage range of VSS < VTERM  
< VDD. The RDAC register contents determine the resistor wiper  
position. The RDAC register acts as a scratchpad register, which  
allows unlimited changes of resistance settings. The RDAC register  
can be programmed with any position setting by using the SPI  
interface. When a desirable wiper position is found, this value  
can be stored in a 50-TP memory register. Thereafter, the wiper  
position is always restored to that position for subsequent  
power-ups. The storing of 50-TP data takes approximately 350 ms;  
during this time, the AD5174 locks to prevent any changes from  
taking place.  
RDAC REGISTER  
The RDAC register directly controls the position of the digital  
rheostat wiper. For example, when the RDAC register is loaded  
with all 0s, the wiper is connected to Terminal A of the variable  
resistor. The RDAC register is a standard logic register, and there  
is no restriction on the number of changes allowed. The basic  
mode of setting the variable resistor wiper position (programming  
the RDAC register) is accomplished by loading the serial data  
input register with Command 1 (see Table 6) and with the desired  
wiper position data.  
50-TP MEMORY BLOCK  
The AD5174 contains an array of 50-TP programmable memory  
registers, which allow the wiper position to be programmed up  
to 50 times. Table 10 shows the memory map. When the desired  
wiper position is determined, the user can load the serial data  
input register with Command 3 (see Table 6), which stores the  
wiper position data in a 50-TP memory register. The first address  
to be programmed is Location 0x01 (see Table 10); the AD5174  
increments the 50-TP memory address for each subsequent  
program until the memory is full. Programming data to 50-TP  
consumes approximately 4 mA for 55 ms, and takes approx-  
imately 350 ms to complete, during which time the shift register  
locks to prevent any changes from occurring. Bit C2 of the  
control register can be polled to verify that the fuse program  
command was completed properly. No change in supply voltage  
is required to program the 50-TP memory; however, a 1 μF  
capacitor on the EXT_CAP pin is required (see Figure 28).  
Prior to 50-TP activation, the AD5174 presets to midscale  
on power-up.  
The AD5174 also feature a patented 1% end-to-end resistor  
tolerance. This simplifies precision, rheostat mode, and open-  
loop applications where knowledge of absolute resistance is  
critical.  
SERIAL DATA INTERFACE  
SYNC  
The AD5174 contains a serial interface (  
, SCLK, DIN,  
and SDO) that is compatible with SPI interface standards, as well  
as most DSPs. This device allows writing of data via the serial  
interface to every register.  
SHIFT REGISTER  
The shift register is 16 bits wide, as shown in Figure 2. The  
16-bit word consists of two unused bits, which should be set to  
0, followed by four control bits and 10 RDAC data bits. Data is  
loaded MSB first (Bit D9). The four control bits determine the  
function of the software command as listed in Table 6. Figure 3  
shows a timing diagram of a typical AD5174 write sequence.  
WRITE PROTECTION  
SYNC  
The write sequence begins by bringing the  
line low. The  
SYNC  
pin must be held low until the complete data-word is  
At power-up, the serial data input register write commands for  
both the RDAC register and the 50-TP memory registers are  
disabled. The RDAC write protect bit, C1, of the control register  
(see Table 8 and Table 9) is set to 0 by default. This disables any  
change of the RDAC register content regardless of the software  
commands, except that the RDAC register can be refreshed  
from the 50-TP memory using the software reset, Command 4  
(see Table 6). To enable programming of the RDAC register,  
the write protect bit (Bit C1), of the control register must first  
be programmed by loading the serial data input register with  
Command 7. To enable programming of the 50-TP memory,  
the program enable bit (Bit C0) of the control register, which  
is set to 0 by default, must first be set to 1.  
SYNC  
loaded from the DIN pin. When  
returns high, the serial  
data-word is decoded according to the instructions in Table 6.  
The command bits (Cx) control the operation of the digital  
potentiometer. The data bits (Dx) are the values that are loaded  
into the decoded register. The AD5174 has an internal counter  
that counts a multiple of 16 bits (a frame) for proper operation.  
For example, AD5174 works with a 32-bit word but does not  
work properly with a 31-bit or 33-bit word. The AD5174  
does not require a continuous SCLK when  
To minimize power consumption in the digital input buffers,  
operate all serial interface pins close to the VDD supply rails.  
SYNC  
is high.  
Rev. 0 | Page 12 of 20  
 
 
 
 
 
 
AD5174  
Data from the selected memory location is clocked out of the  
RDAC AND 50-TP READ OPERATION  
SDO pin during the next SPI operation. A binary encoded version  
address of the most recently programmed wiper memory location  
can be read back using Command 6 (see Table 6). This can be used  
to monitor the spare memory status of the 50-TP memory block.  
A serial data output SDO pin is available for readback of  
the internal RDAC register or 50-TP memory contents. The  
contents of the RDAC register can be read back through  
SDO by using Command 2 (see Table 6). Data from the  
RDAC register is clocked out of the SDO pin during the last  
10 clocks of the next SPI operation.  
Table 7 provides a sample listing for the sequence of serial data  
input (DIN) words with the serial data output appearing at the  
SDO pin in hexadecimal format for a write and read to both the  
RDAC register and the 50-TP memory (Memory Location 20).  
It is possible to read back the contents of any of the 50-TP  
memory registers through SDO by using Command 5. The  
lower six LSB bits, D5 to D0 of the data byte, select which  
memory location is to be read back, as shown in Table 10.  
Table 6. Command Operation Truth Table  
Command[DB13:DB10]  
Data[DB9:DB0]1  
D9 D8 D7 D6 D5 D4 D3 D2  
Command  
Number  
C3  
0
C2  
0
C1  
0
C0  
0
D1 D0 Operation  
0
1
X
X
X
X
X
X
X
X
X
X
NOP: do nothing.  
0
0
0
1
D9 D8 D7 D6 D5 D4 D3 D2  
D1 D0  
Write contents of serial register  
data to RDAC.  
2
0
0
0
0
0
0
0
0
1
1
1
1
1
1
0
0
1
1
0
1
0
1
0
1
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
Read contents of RDAC wiper  
register.  
3
Store wiper setting: store RDAC  
setting to 50-TP.  
4
Software reset: refresh RDAC with  
last 50-TP memory stored value.  
52  
6
D5 D4 D3 D2  
D1 D0 Read contents of 50-TP from SDO  
output in the next frame.  
X
X
X
X
X
X
X
X
X
X
Read address of last 50-TP  
programmed memory location.  
73  
D1 D0  
Write contents of serial register  
data to control register.  
8
9
1
1
0
0
0
0
0
1
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
Read contents of control register.  
Software shutdown.  
D0  
D0 = 0; normal mode.  
D0 = 1; device placed in shutdown  
mode.  
1 X is don’t care.  
2 See Table 10 for 50-TP memory map.  
3 See Table 9 for bit details.  
Rev. 0 | Page 13 of 20  
 
 
 
AD5174  
SHUTDOWN MODE  
RESET  
The AD5174 can be shut down by executing the software  
shutdown command, Command 9 (see Table 6), and setting  
the LSB to 1. This feature places the RDAC in a zero-power-  
consumption state where Terminal A is open circuited and  
the wiper terminal, W, remains connected. It is possible to  
execute any command from Table 6 while the AD5174 is in  
shutdown mode. The parts can be taken out of shutdown  
mode by executing Command 9 and setting the LSB to 0  
or by a software reset, Command 4 (see Table 6).  
The AD5174 can be reset through software by executing Com-  
mand 4 (see Table 6). The reset command loads the RDAC  
register with the contents of the most recently programmed 50-TP  
memory location. The RDAC register loads with midscale if no  
50-TP memory location has been previously programmed.  
Table 7. Write and Read to RDAC and 50-TP Memory  
DIN  
SDO1  
Action  
0x1C03 0xXXXX Enable update of the wiper position and the 50-TP memory contents through the digital interface.  
0x0500 0x1C03 Write 0x100 to the RDAC register; wiper moves to ¼ full-scale position.  
0x0800 0x0500 Prepares data read from RDAC register.  
0x0C00 0x100  
Stores RDAC register content into the 50-TP memory. A 16-bit word appears out of SDO, where the last 10 bits contain  
the contents of the RDAC register (0x100).  
0x1800 0x0C00 Prepares data read of the last programmed 50-TP memory monitor location.  
0x0000 0xXX19 NOP Instruction 0 sends a 16-bit word out of SDO, where the six LSBs (that is, last six bits) contain the binary address of  
the last programmed 50-TP memory location, for example, 0x19 (see Table 10).  
0x1419 0x0000 Prepares data read from Memory Location 0x19.  
0x2000 0x0100 Prepares data read from the control register. Sends a 16-bit word out of SDO, where the last 10 bits contain the  
contents of Memory Location 0x19.  
0x0000 0xXXXX NOP Instruction 0 sends a 16-bit word out of SDO, where the last four bits contain the contents of the control register.  
If Bit C2 = 1, the fuse program command was successful.  
1 X is don’t care.  
Table 8. Control Register Bit Map  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
0
0
0
0
0
0
C2  
0
C1  
C0  
Table 9. Control Register Bit Description  
Bit Name  
Description  
C0  
50-TP program enable  
0 = 50-TP program disabled (default)  
1 = enable device for 50-TP program  
RDAC register write protect  
0 = wiper position frozen to value in 50-TP memory (default)1  
1 = allow update of wiper position through digital interface  
50-TP memory program success bit  
C1  
C2  
0 = fuse program command was unsuccessful (default)  
1 = fuse program command was successful  
1 Wiper position frozen to the last value programmed in the 50-TP memory. The wiper is frozen to midscale if the 50-TP memory has not been previously programmed.  
Rev. 0 | Page 14 of 20  
 
 
 
 
 
 
AD5174  
Table 10. Memory Map  
Data Byte[DB9:DB0]1  
Command Number  
D9  
X
D8  
X
D7  
X
D6  
0
D5  
0
D4  
0
D3  
0
D2  
0
D1  
0
D0  
0
Register Contents  
5
Reserved  
X
X
X
0
0
0
0
0
0
1
1st programmed wiper location (0x01)  
2nd programmed wiper location (0x02)  
X
X
X
0
0
0
0
0
1
0
X
X
X
0
0
0
0
0
1
1
3rd programmed wiper location (0x03)  
4th programmed wiper location (0x04)  
X
X
X
0
0
0
0
1
0
0
X
X
X
0
0
0
1
0
1
0
10th programmed wiper location (0xA)  
X
X
X
0
0
1
0
1
0
0
20th programmed wiper location (0x14)  
X
X
X
0
0
1
1
1
1
0
30th programmed wiper location (0x1E)  
X
X
X
0
1
0
1
0
0
0
40th programmed wiper location (0x28)  
X
X
X
0
1
1
0
0
1
0
50th programmed wiper location (0x32)  
X
X
X
0
1
1
1
0
0
1
MSB resistance tolerance (0x39)  
LSB resistance tolerance (0x3A)  
X
X
X
0
1
1
1
0
1
0
1 X is don’t care.  
DAISY-CHAIN OPERATION  
RDAC ARCHITECTURE  
The serial data output pin (SDO) serves two purposes: it can be  
used to read the contents of the wiper setting and 50-TP values  
using Command 2 and Command 5, respectively (see Table 6),  
or the SDO pin can be used in daisy-chain mode. The remaining  
instructions are valid for daisy chaining multiple devices in  
simultaneous operations. Data is clocked out of SDO on the  
rising edge of SCLK. Daisy chaining minimizes the number  
of port pins required from the controlling IC. The SDO pin  
contains an open-drain N-channel FET that requires a pull-up  
resistor if this pin is used. As shown in Figure 26, users need  
to tie the SDO pin of one package to the DIN pin of the next  
package. Users may need to increase the clock period, because  
the pull-up resistor and the capacitive loading at the SDO-to-  
DIN interface may require additional time delay between  
subsequent devices. When two AD5174 devices are daisy-  
chained, 32 bits of data are required. The first 16 bits go  
To achieve optimum performance, Analog Devices, Inc., has  
patented the RDAC segmentation architecture for all the digital  
potentiometers. In particular, the AD5174 employs a three-stage  
segmentation approach as shown in Figure 27. The AD5174  
wiper switch is designed with the transmission gate CMOS  
topology.  
A
R
L
L
R
R
R
M
M
S
W
10-BIT  
ADDRESS  
DECODER  
R
W
W
SYNC  
to U2, and the second 16 bits go to U1. Keep the  
pin  
R
W
low until all 32 bits are clocked into their respective serial  
SYNC  
registers. The  
operation.  
pin is then pulled high to complete the  
Figure 27. Simplified RDAC Circuit  
V
DD  
R
2.2k  
AD5174  
U1  
AD5174  
U2  
P
MOSI  
µC  
SCLK  
DIN  
DIN  
SDO  
SDO  
SS  
SYNC  
SCLK  
SYNC SCLK  
Figure 26. Daisy-Chain Configuration Using SDO  
Rev. 0 | Page 15 of 20  
 
 
 
 
 
AD5174  
Calculate the Actual End-to-End Resistance  
PROGRAMMING THE VARIABLE RESISTOR  
The resistance tolerance is stored in the internal memory  
during factory testing. The actual end-to-end resistance can,  
therefore, be calculated (which is valuable for calibration,  
tolerance matching, and precision applications).  
Rheostat Operation  
The nominal resistance between Terminal W and Terminal A,  
RWA , is 10 kΩ and has 1024-tap points accessed by the wiper ter-  
minal. The 10-bit data in the RDAC latch is decoded to select  
one of the 1024 possible wiper settings. As a result, the general  
equation for determining the digitally programmed output  
resistance between the W terminal and the A terminal is  
The resistance tolerance (in percentage) is stored in fixed-point  
format, using a 16-bit sign magnitude binary. The sign bit(0 =  
negative and 1 = positive) and the integer part is located in  
Address 0x39 as shown in Table 10. Address 0x3A contains the  
fractional part as shown in Table 11.  
D
1024  
RWA(D) =  
×RWA  
(1)  
That is, if the data readback from Address 0x39 is 0000001010 and  
data from Address 0x3A is 0010110000, then the end-to-end  
resistance can be calculated as follows.  
where:  
D is the decimal equivalent of the binary code loaded in the  
10-bit RDAC register.  
R
WA is the end-to-end resistance.  
For Memory Location 0x39,  
In the zero-scale condition, a finite total wiper resistance of  
120 Ω is present. Regardless of which setting the part is oper-  
ating in, take care to limit the current between Terminal A and  
Terminal W to the maximum continuous current of 6 mA or  
a pulse current specified in Table 3. Otherwise, degradation or  
possible destruction of the internal switch contact may occur.  
DB[9:8]: XX = don’t care  
DB[7]: 0 = negative  
DB[6:0]: 0001010 = 10  
For Memory Location 0x3A,  
DB[9:8]: XX = don’t care  
DB[7:0]: 10110000 = 176 × 2−8 = 0.6875  
Therefore, tolerance = −10.6875% and RWA (1023)= 8.931 kΩ.  
Table 11. End-to-End Resistance Tolerance Bytes  
Data Byte1  
Memory Map Address  
DB9  
X
X
DB8  
X
X
DB7  
Sign  
2−1  
DB6  
26  
2−2  
DB5  
25  
2−3  
DB4  
24  
2−4  
DB3  
23  
2−5  
DB2  
22  
2−6  
DB1  
21  
2−7  
DB0  
20  
2−8  
0x39  
0x3A  
1 X is don’t care.  
Rev. 0 | Page 16 of 20  
 
 
 
AD5174  
The ground pin of the AD5174 is primarily used as a digital  
EXT_CAP CAPACITOR  
ground reference. To minimize the digital ground bounce, join the  
AD5174 ground terminal remotely to the common ground. The  
digital input control signals to the AD5174 must be referenced  
to the device ground pin (GND) and must satisfy the logic level  
defined in the Specifications section. An internal level shift  
circuit ensures that the common-mode voltage range of the  
three terminals extends from VSS to VDD, regardless of the  
digital input level.  
A 1 μF capacitor to VSS must be connected to the EXT_CAP  
pin, as shown in Figure 28, on power-up and throughout the  
operation of the AD5174.  
AD5174  
50-TP  
MEMORY  
EXT_CAP  
BLOCK  
C1  
1µF  
POWER-UP SEQUENCE  
V
SS  
SS  
Because there are diodes to limit the voltage compliance at  
Terminal A and Terminal W (see Figure 29), it is important to  
power VDD/VSS first before applying any voltage to Terminal A  
and Terminal W; otherwise, the diode is forward-biased such  
that VDD/VSS are powered unintentionally. The ideal power-  
up sequence is VSS, GND, VDD, digital inputs, VA, and VW.  
The order of powering VA, VW, and the digital inputs is not  
important as long as they are powered after VDD/VSS.  
V
Figure 28. EXT_CAP Hardware Setup  
TERMINAL VOLTAGE OPERATING RANGE  
The positive VDD and negative VSS power supplies of the AD5174  
define the boundary conditions for proper 2-terminal digital  
resistor operation. Supply signals present on Terminal A and  
Terminal W that exceed VDD or VSS are clamped by the internal  
forward-biased diodes (see Figure 29).  
As soon as VDD is powered, the power-on preset activates,  
which first sets the RDAC to midscale and then restores the  
last programmed 50-TP value to the RDAC register.  
V
DD  
A
W
V
SS  
Figure 29. Maximum Terminal Voltages Set by VDD and VSS  
Rev. 0 | Page 17 of 20  
 
 
 
 
 
AD5174  
OUTLINE DIMENSIONS  
2.48  
2.38  
2.23  
3.10  
3.00 SQ  
2.90  
0.50 BSC  
6
10  
PIN 1 INDEX  
EXPOSED  
PAD  
1.74  
1.64  
1.49  
AREA  
0.50  
0.40  
0.30  
5
1
PIN 1  
INDICATOR  
TOP VIEW  
BOTTOM VIEW  
(R 0.15)  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.80  
0.75  
0.70  
0.05 MAX  
0.02 NOM  
SECTION OF THIS DATA SHEET.  
SEATING  
PLANE  
0.30  
0.25  
0.20  
0.20 REF  
Figure 30. 10-Lead Frame Chip Scale Package [LFCSP_WD]  
3 mm × 3mm Body, Very Thin, Dual Lead  
(CP-10-9)  
Dimensions shown in millimeters  
3.10  
3.00  
2.90  
10  
1
6
5
5.15  
4.90  
4.65  
3.10  
3.00  
2.90  
PIN 1  
IDENTIFIER  
0.50 BSC  
0.95  
0.85  
0.75  
15° MAX  
1.10 MAX  
0.70  
0.55  
0.40  
0.15  
0.05  
0.23  
0.13  
6°  
0°  
0.30  
0.15  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-187-BA  
Figure 31. 10-Lead Mini Small Outline Package [MSOP]  
(RM-10)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
AD5174BRMZ-10  
AD5174BRMZ-10-RL7  
AD5174BCPZ-10-R2  
AD5174BCPZ-10-RL7  
RAB (kΩ) Resolution Temperature Range  
Package Description  
10-Lead MSOP  
10-Lead MSOP  
10-Lead LFCSP_WD  
10-Lead LFCSP_WD  
Package Option Branding  
10  
10  
10  
10  
1,024  
1,024  
1,024  
1,024  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
RM-10  
DDT  
DDT  
DEF  
DEF  
RM-10  
CP-10-9  
CP-10-9  
1 Z = RoHS Compliant Part.  
Rev. 0 | Page 18 of 20  
 
 
AD5174  
NOTES  
Rev. 0 | Page 19 of 20  
AD5174  
NOTES  
©2010 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D08718-0-3/10(0)  
Rev. 0 | Page 20 of 20  
 

相关型号:

AD5174BCPZ-10-RL7

Single-Channel, 1024-Position, Digital Rheostat with SPI Interface and 50-TP Memory
ADI

AD5174BRMZ-10

Single-Channel, 1024-Position, Digital Rheostat with SPI Interface and 50-TP Memory
ADI

AD5174BRMZ-10-RL7

Single-Channel, 1024-Position, Digital Rheostat with SPI Interface and 50-TP Memory
ADI

AD5175

Single-Channel, 1024-Position, Digital Rheostat with I2C Interface and 50-TP Memory
ADI

AD5175BCPZ-10-R2

Single-Channel, 1024-Position, Digital Rheostat with I2C Interface and 50-TP Memory
ADI

AD5175BCPZ-10-RL7

Single-Channel, 1024-Position, Digital Rheostat with I2C Interface and 50-TP Memory
ADI

AD5175BRMZ-10

Single-Channel, 1024-Position, Digital Rheostat with I2C Interface and 50-TP Memory
ADI

AD5175BRMZ-10-RL7

Single-Channel, 1024-Position, Digital Rheostat with I2C Interface and 50-TP Memory
ADI

AD517J

Low Cost, Laser Trimmed, Precision IC Op Amp
ADI

AD517JCHIPS

AD517JCHIPS
ADI

AD517JH

Low Cost, Laser Trimmed, Precision IC Op Amp
ADI

AD517JH/+

IC,OP-AMP,SINGLE,BIPOLAR,CAN,8PIN,METAL
ADI