AD5123BCPZ100-RL7 [ADI]

Quad Channel, 128-/256-Position, I2C Nonvolatile Digital Potentiometer; 四通道, 128 / 256位, I2C ,非易失数字电位器
AD5123BCPZ100-RL7
型号: AD5123BCPZ100-RL7
厂家: ADI    ADI
描述:

Quad Channel, 128-/256-Position, I2C Nonvolatile Digital Potentiometer
四通道, 128 / 256位, I2C ,非易失数字电位器

电位器
文件: 总28页 (文件大小:642K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Quad Channel, 128-/256-Position, I2C,  
Nonvolatile Digital Potentiometer  
Data Sheet  
AD5123/AD5143  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
V
DD  
10 kΩ and 100 kΩ resistance options  
Resistor tolerance: 8% maximum  
Wiper current: 6 mA  
Low temperature coefficient: 35 ppm/°C  
Wide bandwidth: 3 MHz  
AD5123/AD5143  
POWER-ON  
RESET  
RDAC1  
A1  
INPUT  
REGISTER 1  
W1  
B1  
Fast start-up time < 75 μs  
RDAC2  
A2  
Linear gain setting mode  
INPUT  
W2  
B2  
REGISTER 2  
SCL  
SDA  
Single- and dual-supply operation  
Wide operating temperature: −40°C to +125°C  
3 mm × 3 mm package  
SERIAL  
INTERFACE  
RDAC3  
7/8  
INPUT  
REGISTER 3  
W3  
B3  
ADDR  
4 kV ESD protection  
RDAC4  
APPLICATIONS  
INPUT  
REGISTER 4  
W4  
B4  
Portable electronics level adjustment  
LCD panel brightness and contrast controls  
Programmable filters, delays, and time constants  
Programmable power supplies  
EEPROM  
MEMORY  
GND  
V
SS  
Figure 1.  
GENERAL DESCRIPTION  
Table 1. Family Models  
The AD5123/AD5143 potentiometers provide a nonvolatile  
solution for 128-/256-position adjustment applications, offering  
guaranteed low resistor tolerance errors of 8% and up to 6 mA  
current density in the Ax, Bx, and Wx pins.  
Model  
Channel Position Interface Package  
AD51231  
AD5124  
AD5124  
AD5143  
AD5144  
AD5144  
Quad  
Quad  
Quad  
Quad  
Quad  
Quad  
128  
128  
128  
256  
256  
256  
256  
128  
128  
256  
256  
128  
256  
I2C  
LFCSP  
LFCSP  
TSSOP  
LFCSP  
LFCSP  
TSSOP  
SPI/I2C  
SPI  
I2C  
SPI/I2C  
SPI  
I2C  
The low resistor tolerance and low nominal temperature coefficient  
simplify open-loop applications as well as applications requiring  
tolerance matching.  
AD5144A Quad  
AD5122 Dual  
AD5122A Dual  
AD5142 Dual  
AD5142A Dual  
TSSOP  
The linear gain setting mode allows independent programming  
of the resistance between the digital potentiometer terminals,  
through the RAW and RWB string resistors, allowing very accurate  
resistor matching.  
SPI  
LFCSP/TSSOP  
LFCSP/TSSOP  
LFCSP/TSSOP  
LFCSP/TSSOP  
LFCSP  
I2C  
SPI  
I2C  
SPI/I2C  
SPI/I2C  
The high bandwidth and low total harmonic distortion (THD)  
ensure optimal performance for ac signals, making the devices  
suitable for filter design.  
AD5121  
AD5141  
Single  
Single  
LFCSP  
1 Two potentiometers and two rheostats.  
The low wiper resistance of only 40 Ω at the ends of the resistor  
array allows for pin-to-pin connection.  
The wiper values can be set through an I2C-compatible digital  
interface that is also used to read back the wiper register and  
EEPROM contents.  
The AD5123/AD5143 are available in a compact, 16-lead, 3 mm ×  
3 mm LFCSP. The parts are guaranteed to operate over the extended  
industrial temperature range of −40°C to +125°C.  
Rev. A  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 ©2012–2013 Analog Devices, Inc. All rights reserved.  
Technical Support  
www.analog.com  
 
 
 
 
AD5123/AD5143  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Theory of Operation ...................................................................... 19  
RDAC Register and EEPROM.................................................. 19  
Input Shift Register .................................................................... 19  
I2C Serial Data Interface............................................................ 19  
I2C Address.................................................................................. 19  
Advanced Control Modes ......................................................... 21  
EEPROM or RDAC Register Protection................................. 22  
RDAC Architecture.................................................................... 25  
Programming the Variable Resistor......................................... 25  
Programming the Potentiometer Divider............................... 26  
Terminal Voltage Operating Range ......................................... 26  
Power-Up Sequence ................................................................... 26  
Layout and Power Supply Biasing............................................ 26  
Outline Dimensions....................................................................... 27  
Ordering Guide .......................................................................... 27  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description ......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Electrical Characteristics—AD5123 .......................................... 3  
Electrical Characteristics—AD5143 .......................................... 6  
Interface Timing Specifications.................................................. 9  
Shift Register and Timing Diagrams ....................................... 10  
Absolute Maximum Ratings.......................................................... 11  
Thermal Resistance .................................................................... 11  
ESD Caution................................................................................ 11  
Pin Configuration and Function Descriptions........................... 12  
Typical Performance Characteristics ........................................... 13  
Test Circuits..................................................................................... 18  
REVISION HISTORY  
3/13—Rev. 0 to Rev. A  
Changes to Features Section............................................................ 1  
10/12—Revision 0: Initial Version  
Rev. A | Page 2 of 28  
 
Data Sheet  
AD5123/AD5143  
SPECIFICATIONS  
ELECTRICAL CHARACTERISTICSAD5123  
VDD = 2.3 V to 5.5 V, VSS = 0 V; VDD = 2.25 V to 2.75 V, VSS = −2.25 V to −2.75 V; −40°C < TA < +125°C, unless otherwise noted.  
Table 2.  
Parameter  
Symbol  
Test Conditions/Comments  
Min  
Typ 1  
Max  
Unit  
DC CHARACTERISTICS—RHEOSTAT  
MODE (ALL RDACs)  
Resolution  
Resistor Integral Nonlinearity2  
N
R-INL  
7
Bits  
RAB = 10 kΩ  
VDD ≥ 2.7 V  
VDD < 2.7 V  
RAB = 100 kΩ  
VDD ≥ 2.7 V  
VDD < 2.7 V  
−1  
−2.5  
0.1  
1
+1  
+2.5  
LSB  
LSB  
−0.5  
−1  
0.1  
0.25 +1  
+0.5  
LSB  
LSB  
Resistor Differential Nonlinearity2  
Nominal Resistor Tolerance  
Resistance Temperature Coefficient3  
Wiper Resistance3  
R-DNL  
−0.5  
−8  
0.1  
1
35  
+0.5  
+8  
LSB  
%
ppm/°C  
ΔRAB/RAB  
(ΔRAB/RAB)/ΔT × 106  
RW  
Code = full scale  
Code = zero scale  
RAB = 10 kΩ  
55  
130  
125  
400  
RAB = 100 kΩ  
Bottom Scale or Top Scale  
Nominal Resistance Match  
RBS or RTS  
RAB = 10 kΩ  
RAB = 100 kΩ  
Code = 0xFF  
40  
60  
0.2  
80  
230  
+1  
%
RAB1/RAB2  
−1  
DC CHARACTERISTICS—POTENTIOMETER  
DIVIDER MODE (ALL RDACs)  
Integral Nonlinearity4  
INL  
RAB = 10 kΩ  
RAB = 100 kΩ  
−0.5  
−0.25  
−0.25  
0.1  
0.1  
0.1  
+0.5  
+0.25  
+0.25  
LSB  
LSB  
LSB  
Differential Nonlinearity4  
Full-Scale Error  
DNL  
VWFSE  
RAB = 10 kΩ  
RAB = 100 kΩ  
−1.5  
−0.5  
−0.1  
0.1  
LSB  
LSB  
+0.5  
Zero-Scale Error  
VWZSE  
RAB = 10 kΩ  
RAB = 100 kΩ  
(ΔVW/VW)/ΔT × 106 Code = half scale  
1
0.25  
5
1.5  
0.5  
LSB  
LSB  
ppm/°C  
Voltage Divider Temperature  
Coefficient3  
Rev. A | Page 3 of 28  
 
 
AD5123/AD5143  
Data Sheet  
Parameter  
Symbol  
Test Conditions/Comments  
Min  
Typ 1  
Max  
Unit  
RESISTOR TERMINALS  
Maximum Continuous Current  
IA, IB, and IW  
RAB = 10 kΩ  
RAB = 100 kΩ  
−6  
−1.5  
VSS  
+6  
+1.5  
VDD  
mA  
mA  
V
Terminal Voltage Range5  
Capacitance A, Capacitance B3  
CA, CB  
f = 1 MHz, measured to GND,  
code = half scale  
RAB = 10 kΩ  
RAB = 100 kΩ  
25  
12  
pF  
pF  
Capacitance W3  
CW  
f = 1 MHz, measured to GND,  
code = half scale  
RAB = 10 kΩ  
RAB = 100 kΩ  
VA = VW = VB  
12  
5
15  
pF  
pF  
nA  
Common-Mode Leakage Current3  
DIGITAL INPUTS  
Input Logic3  
−500  
+500  
High  
Low  
VINH  
VINL  
VHYST  
IIN  
0.7 × VDD  
0.1 × VDD  
V
V
V
µA  
pF  
0.2 × VDD  
1
Input Hysteresis3  
Input Current3  
Input Capacitance3  
DIGITAL OUTPUTS  
Output High Voltage3  
Output Low Voltage3  
CIN  
5
VOH  
VOL  
RPULL-UP = 2.2 kΩ to VDD  
ISINK = 3 mA  
ISINK = 6 mA  
VDD  
V
V
V
µA  
pF  
0.4  
0.6  
+1  
Three-State Leakage Current  
Three-State Output Capacitance  
POWER SUPPLIES  
−1  
2
Single-Supply Power Range  
Dual-Supply Power Range  
Positive Supply Current  
VSS = GND  
2.3  
2.25  
5.5  
2.75  
V
V
IDD  
VIH = VDD or VIL = GND  
VDD = 5.5 V  
VDD = 2.3 V  
VIH = VDD or VIL = GND  
VIH = VDD or VIL = GND  
VIH = VDD or VIL = GND  
VIH = VDD or VIL = GND  
∆VDD/∆VSS = VDD 10%,  
code = full scale  
0.7  
400  
−0.7  
2
320  
3.5  
−66  
5.5  
µA  
nA  
µA  
mA  
µA  
µW  
dB  
Negative Supply Current  
EEPROM Store Current3, 6  
EEPROM Read Current3, 7  
Power Dissipation8  
ISS  
−5.5  
IDD_EEPROM_STORE  
IDD_EEPROM_READ  
PDISS  
Power Supply Rejection Ratio  
PSRR  
−60  
Rev. A | Page 4 of 28  
Data Sheet  
AD5123/AD5143  
Parameter  
Symbol  
Test Conditions/Comments  
Min  
Typ 1  
Max  
Unit  
DYNAMIC CHARACTERISTICS9  
Bandwidth  
BW  
−3 dB  
RAB = 10 kΩ  
RAB = 100 kΩ  
3
0.43  
MHz  
MHz  
Total Harmonic Distortion  
Resistor Noise Density  
VW Settling Time  
THD  
eN_WB  
tS  
VDD/VSS = 2.5 V, VA = 1 V rms,  
VB = 0 V, f = 1 kHz  
RAB = 10 kΩ  
RAB = 100 kΩ  
Code = half scale, TA = 25°C,  
f = 10 kHz  
RAB = 10 kΩ  
RAB = 100 kΩ  
VA = 5 V, VB = 0 V, from  
zero scale to full scale,  
0.5 LSB error band  
−80  
−90  
dB  
dB  
7
20  
nV/√Hz  
nV/√Hz  
RAB = 10 kΩ  
RAB = 100 kΩ  
RAB = 10 kΩ  
RAB = 100 kΩ  
2
µs  
µs  
12  
10  
25  
−90  
1
Crosstalk (CW1/CW2)  
CT  
nV-sec  
nV-sec  
dB  
Mcycles  
kcycles  
Years  
Analog Crosstalk  
Endurance10  
CTA  
TA = 25°C  
100  
Data Retention11  
50  
1 Typical values represent average readings at 25°C, VDD = 5 V, and VSS = 0 V.  
2 Resistor integral nonlinearity (R-INL) error is the deviation from an ideal value measured between the maximum resistance and the minimum resistance wiper  
positions. R-DNL measures the relative step change from ideal between successive tap positions. The maximum wiper current is limited to (0.7 × VDD)/RAB  
.
3 Guaranteed by design and characterization, not subject to production test.  
4 INL and DNL are measured at VWB with the RDAC configured as a potentiometer divider similar to a voltage output DAC. VA = VDD and VB = 0 V. DNL specification limits  
of 1 LSB maximum are guaranteed monotonic operating conditions.  
5 Resistor Terminal A, Resistor Terminal B, and Resistor Terminal W have no limitations on polarity with respect to each other. Dual-supply operation enables ground  
referenced bipolar signal adjustment.  
6 Different from operating current; supply current for EEPROM program lasts approximately 30 ms.  
7 Different from operating current; supply current for EEPROM read lasts approximately 20 µs.  
8 PDISS is calculated from (IDD × VDD).  
9 All dynamic characteristics use VDD/VSS  
= 2.5 V.  
10 Endurance is qualified to 100,000 cycles per JEDEC Standard 22, Method A117 and measured at −40°C to +125°C.  
11 Retention lifetime equivalent at junction temperature (TJ) = 125°C per JEDEC Standard 22, Method A117. Retention lifetime, based on an activation energy of 1 eV,  
derates with junction temperature in the Flash/EE memory.  
Rev. A | Page 5 of 28  
AD5123/AD5143  
Data Sheet  
ELECTRICAL CHARACTERISTICSAD5143  
VDD = 2.3 V to 5.5 V, VSS = 0 V; VDD = 2.25 V to 2.75 V, VSS = −2.25 V to −2.75 V; −40°C < TA < +125°C, unless otherwise noted.  
Table 3.  
Parameter  
Symbol  
Test Conditions/Comments  
Min  
Typ 1 Max  
Unit  
DC CHARACTERISTICS—RHEOSTAT  
MODE (ALL RDACs)  
Resolution  
N
R-INL  
8
Bits  
Resistor Integral Nonlinearity2  
RAB = 10 kΩ  
VDD ≥ 2.7 V  
VDD < 2.7 V  
RAB = 100 kΩ  
VDD ≥ 2.7 V  
VDD < 2.7 V  
−2  
−5  
0.2  
1.5  
+2  
+5  
LSB  
LSB  
−1  
−2  
−0.5  
−8  
0.1  
0.5  
0.2  
1
+1  
+2  
+0.5  
+8  
LSB  
LSB  
LSB  
%
Resistor Differential Nonlinearity2  
Nominal Resistor Tolerance  
Resistance Temperature Coefficient3  
Wiper Resistance3  
R-DNL  
ΔRAB/RAB  
(ΔRAB/RAB)/ΔT × 106  
RW  
Code = full scale  
Code = zero scale  
RAB = 10 kΩ  
35  
ppm/°C  
55  
130  
125  
400  
RAB = 100 kΩ  
Bottom Scale or Top Scale  
Nominal Resistance Match  
RBS or RTS  
RAB = 10 kΩ  
RAB = 100 kΩ  
Code = 0xFF  
40  
60  
0.2  
80  
230  
+1  
%
RAB1/RAB2  
−1  
DC CHARACTERISTICS—POTENTIOMETER  
DIVIDER MODE (ALL RDACs)  
Integral Nonlinearity4  
INL  
RAB = 10 kΩ  
RAB = 100 kΩ  
−1  
−0.5  
−0.5  
0.2  
0.1  
0.2  
+1  
+0.5  
+0.5  
LSB  
LSB  
LSB  
Differential Nonlinearity4  
Full-Scale Error  
DNL  
VWFSE  
RAB = 10 kΩ  
RAB = 100 kΩ  
−2.5  
−1  
−0.1  
0.2  
LSB  
LSB  
+1  
Zero-Scale Error  
VWZSE  
RAB = 10 kΩ  
RAB = 100 kΩ  
(ΔVW/VW)/ΔT × 106 Code = half scale  
1.2  
0.5  
5
3
1
LSB  
LSB  
ppm/°C  
Voltage Divider Temperature  
Coefficient3  
Rev. A | Page 6 of 28  
 
Data Sheet  
AD5123/AD5143  
Parameter  
Symbol  
Test Conditions/Comments  
Min  
Typ 1 Max  
Unit  
RESISTOR TERMINALS  
Maximum Continuous Current  
IA, IB, and IW  
RAB = 10 kΩ  
RAB = 100 kΩ  
−6  
−1.5  
VSS  
+6  
+1.5  
VDD  
mA  
mA  
V
Terminal Voltage Range5  
Capacitance A, Capacitance B3  
CA, CB  
f = 1 MHz, measured to GND,  
code = half scale  
RAB = 10 kΩ  
RAB = 100 kΩ  
25  
12  
pF  
pF  
Capacitance W3  
CW  
f = 1 MHz, measured to GND,  
code = half scale  
RAB = 10 kΩ  
RAB = 100 kΩ  
VA = VW = VB  
12  
5
15  
pF  
pF  
nA  
Common-Mode Leakage Current3  
DIGITAL INPUTS  
Input Logic3  
−500  
+500  
High  
Low  
VINH  
VINL  
VHYST  
IIN  
0.7 × VDD  
0.1 × VDD  
V
V
V
µA  
pF  
0.2 × VDD  
1
Input Hysteresis3  
Input Current3  
Input Capacitance3  
DIGITAL OUTPUTS  
Output High Voltage3  
Output Low Voltage3  
CIN  
5
VOH  
VOL  
RPULL-UP = 2.2 kΩ to VDD  
ISINK = 3 mA  
ISINK = 6 mA  
VDD  
V
V
V
µA  
pF  
0.4  
0.6  
+1  
Three-State Leakage Current  
Three-State Output Capacitance  
POWER SUPPLIES  
−1  
2
Single-Supply Power Range  
Dual-Supply Power Range  
Positive Supply Current  
VSS = GND  
2.3  
2.25  
5.5  
2.75  
V
V
IDD  
VIH = VDD or VIL = GND  
VDD = 5.5 V  
VDD = 2.3 V  
VIH = VDD or VIL = GND  
VIH = VDD or VIL = GND  
VIH = VDD or VIL = GND  
VIH = VDD or VIL = GND  
∆VDD/∆VSS = VDD 10%,  
code = full scale  
0.7  
400  
−0.7  
2
320  
3.5  
−66  
5.5  
µA  
nA  
µA  
mA  
µA  
µW  
dB  
Negative Supply Current  
EEPROM Store Current3, 6  
EEPROM Read Current3, 7  
Power Dissipation8  
ISS  
−5.5  
IDD_EEPROM_STORE  
IDD_EEPROM_READ  
PDISS  
Power Supply Rejection Ratio  
PSRR  
−60  
Rev. A | Page 7 of 28  
AD5123/AD5143  
Data Sheet  
Parameter  
Symbol  
Test Conditions/Comments  
Min  
Typ 1 Max  
Unit  
DYNAMIC CHARACTERISTICS9  
Bandwidth  
BW  
−3 dB  
RAB = 10 kΩ  
RAB = 100 kΩ  
3
0.43  
MHz  
MHz  
Total Harmonic Distortion  
Resistor Noise Density  
VW Settling Time  
THD  
eN_WB  
tS  
VDD/VSS = 2.5 V, VA = 1 V rms,  
VB = 0 V, f = 1 kHz  
RAB = 10 kΩ  
RAB = 100 kΩ  
Code = half scale, TA = 25°C,  
f = 10 kHz  
RAB = 10 kΩ  
RAB = 100 kΩ  
VA = 5 V, VB = 0 V, from  
zero scale to full scale,  
0.5 LSB error band  
−80  
−90  
dB  
dB  
7
20  
nV/√Hz  
nV/√Hz  
RAB = 10 kΩ  
RAB = 100 kΩ  
RAB = 10 kΩ  
RAB = 100 kΩ  
2
µs  
µs  
12  
10  
25  
−90  
1
Crosstalk (CW1/CW2)  
CT  
nV-sec  
nV-sec  
dB  
Mcycles  
kcycles  
Years  
Analog Crosstalk  
Endurance10  
CTA  
TA = 25°C  
100  
Data Retention11  
50  
1 Typical values represent average readings at 25°C, VDD = 5 V, and VSS = 0 V.  
2 Resistor integral nonlinearity (R-INL) error is the deviation from an ideal value measured between the maximum resistance and the minimum resistance wiper  
positions. R-DNL measures the relative step change from ideal between successive tap positions. The maximum wiper current is limited to (0.7 × VDD)/RAB  
.
3 Guaranteed by design and characterization, not subject to production test.  
4 INL and DNL are measured at VWB with the RDAC configured as a potentiometer divider similar to a voltage output DAC. VA = VDD and VB = 0 V. DNL specification limits  
of 1 LSB maximum are guaranteed monotonic operating conditions.  
5 Resistor Terminal A, Resistor Terminal B, and Resistor Terminal W have no limitations on polarity with respect to each other. Dual-supply operation enables ground  
referenced bipolar signal adjustment.  
6 Different from operating current; supply current for EEPROM program lasts approximately 30 ms.  
7 Different from operating current; supply current for EEPROM read lasts approximately 20 µs.  
8 PDISS is calculated from (IDD × VDD).  
9 All dynamic characteristics use VDD/VSS  
= 2.5 V.  
10 Endurance is qualified to 100,000 cycles per JEDEC Standard 22, Method A117 and measured at −40°C to +125°C.  
11 Retention lifetime equivalent at junction temperature (TJ) = 125°C per JEDEC Standard 22, Method A117. Retention lifetime, based on an activation energy of 1 eV,  
derates with junction temperature in the Flash/EE memory.  
Rev. A | Page 8 of 28  
Data Sheet  
AD5123/AD5143  
INTERFACE TIMING SPECIFICATIONS  
VDD = 2.3 V to 5.5 V; all specifications TMIN to TMAX, unless otherwise noted.  
Table 4. I2C Interface  
Parameter1  
Test Conditions/Comments Min  
Typ Max Unit Description  
2
fSCL  
Standard mode  
Fast mode  
100  
400  
kHz  
kHz  
µs  
µs  
µs  
µs  
ns  
ns  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
Serial clock frequency  
SCL high time, tHIGH  
SCL low time, tLOW  
t1  
Standard mode  
Fast mode  
Standard mode  
Fast mode  
Standard mode  
Fast mode  
Standard mode  
Fast mode  
4.0  
0.6  
4.7  
1.3  
250  
100  
0
t2  
t3  
Data setup time, tSU; DAT  
Data hold time, tHD; DAT  
t4  
3.45  
0.9  
0
t5  
Standard mode  
Fast mode  
Standard mode  
Fast mode  
Standard mode  
Fast mode  
Standard mode  
Fast mode  
4.7  
0.6  
4
0.6  
4.7  
1.3  
4
Setup time for a repeated start condition, tSU; STA  
Hold time (repeated) for a start condition, tHD; STA  
Bus free time between a stop and a start condition, tBUF  
Setup time for a stop condition, tSU; STO  
Rise time of SDA signal, tRDA  
t6  
t7  
t8  
0.6  
t9  
Standard mode  
Fast mode  
Standard mode  
Fast mode  
Standard mode  
Fast mode  
1000 ns  
20 + 0.1 CL  
20 + 0.1 CL  
20 + 0.1 CL  
300  
300  
300  
ns  
ns  
ns  
t10  
t11  
t11A  
Fall time of SDA signal, tFDA  
1000 ns  
300 ns  
1000 ns  
Rise time of SCL signal, tRCL  
Standard mode  
Rise time of SCL signal after a repeated start condition  
and after an acknowledge bit, tRCL1 (not shown in Figure 3)  
Fast mode  
Standard mode  
Fast mode  
20 + 0.1 CL  
300  
300  
300  
50  
ns  
ns  
ns  
ns  
ms  
µs  
µs  
µs  
t12  
Fall time of SCL signal, tFCL  
20 + 0.1 CL  
0
3
tSP  
Fast mode  
Pulse width of suppressed spike (not shown in Figure 3)  
Memory program time (not shown in Figure 3)  
Memory readback time (not shown in Figure 3)  
Power-on EEPROM restore time (not shown in Figure 3)  
Reset EEPROM restore time (not shown in Figure 3)  
4
tEEPROM_PROGRAM  
15  
7
50  
tEEPROM_READBACK  
30  
5
tPOWER_UP  
tRESET  
75  
30  
1 Maximum bus capacitance is limited to 400 pF.  
2 The SDA and SCL timing is measured with the input filters enabled. Switching off the input filters improves the transfer rate; however, it has a negative effect on the  
EMC behavior of the part.  
3 Input filtering on the SCL and SDA inputs suppresses noise spikes that are less than 50 ns for fast mode.  
4 EEPROM program time depends on the temperature and EEPROM write cycles. Higher timing is expected at lower temperatures and higher write cycles.  
5 Maximum time after VDD − VSS is equal to 2.3 V.  
Rev. A | Page 9 of 28  
 
AD5123/AD5143  
Data Sheet  
SHIFT REGISTER AND TIMING DIAGRAMS  
DB15 (MSB)  
DB8  
A0  
DB7  
D7  
DB0 (LSB)  
D0  
D1  
A1  
D6  
D5  
D4  
D3  
C3  
C2  
C1  
C0  
A3  
A2  
D2  
DATA BITS  
CONTROL BITS  
ADDRESS BITS  
Figure 2. Input Shift Register Contents  
t11  
t12  
t6  
t8  
t2  
SCL  
SDA  
t5  
t1  
t6  
t10  
t9  
t4  
t3  
t7  
P
S
S
P
Figure 3. I2C Serial Interface Timing Diagram (Typical Write Sequence)  
Rev. A | Page 10 of 28  
 
 
 
Data Sheet  
AD5123/AD5143  
ABSOLUTE MAXIMUM RATINGS  
TA = 25°C, unless otherwise noted.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Table 5.  
Parameter  
VDD to GND  
VSS to GND  
Rating  
−0.3 V to +7.0 V  
+0.3 V to −7.0 V  
7 V  
VDD to VSS  
VA, VW, VB to GND  
VSS − 0.3 V, VDD + 0.3 V or  
+7.0 V (whichever is less)  
THERMAL RESISTANCE  
IA, IW, IB  
θJA is defined by the JEDEC JESD51 standard, and the value is  
dependent on the test board and test environment.  
Pulsed1  
Frequency > 10 kHz  
Table 6. Thermal Resistance  
RAW = 10 kΩ  
RAW = 100 kΩ  
6 mA/d2  
1.5 mA/d2  
Package Type  
θJA  
89.51  
θJC  
Unit  
16-Lead LFCSP  
3
°C/W  
Frequency ≤ 10 kHz  
RAW = 10 kΩ  
6 mA/√d2  
1.5 mA/√d2  
1 JEDEC 2S2P test board, still air (0 m/sec airflow).  
RAW = 100 kΩ  
Digital Inputs  
−0.3 V to VDD + 0.3 V or  
+7 V (whichever is less)  
−40°C to +125°C  
150°C  
ESD CAUTION  
3
Operating Temperature Range, TA  
Maximum Junction Temperature,  
TJ Maximum  
Storage Temperature Range  
Reflow Soldering  
Peak Temperature  
Time at Peak Temperature  
Package Power Dissipation  
ESD4  
−65°C to +150°C  
260°C  
20 sec to 40 sec  
(TJ max − TA)/θJA  
4 kV  
FICDM  
1.5 kV  
1 Maximum terminal current is bounded by the maximum current handling of  
the switches, maximum power dissipation of the package, and maximum  
applied voltage across any two of the A, B, and W terminals at a given  
resistance.  
2 d = pulse duty factor.  
3 Includes programming of EEPROM memory.  
4 Human body model (HBM) classification.  
Rev. A | Page 11 of 28  
 
 
 
 
 
 
 
 
AD5123/AD5143  
Data Sheet  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
PIN 1  
INDICATOR  
12 V  
DD  
A1  
W1  
B1  
1
2
3
4
AD5123/  
AD5143  
11 B4  
10 W4  
TOP VIEW  
W3  
9 B2  
(Not to Scale)  
NOTES  
1. INTERNALLY CONNECT THE  
EXPOSED PAD TO V  
.
SS  
Figure 4. Pin Configuration  
Table 7. Pin Function Descriptions  
Pin No. Mnemonic Description  
Terminal A of RDAC1. VSS ≤ VA ≤ VDD.  
1
A1  
2
3
4
5
W1  
B1  
W3  
B3  
Wiper Terminal of RDAC1. VSS ≤ VW ≤ VDD.  
Terminal B of RDAC1. VSS ≤ VB ≤ VDD.  
Wiper Terminal of RDAC3. VSS ≤ VW ≤ VDD.  
Terminal B of RDAC3. VSS ≤ VB ≤ VDD.  
6
7
VSS  
A2  
Negative Power Supply. Decouple this pin with 0.1 µF ceramic capacitors and 10 µF capacitors.  
Terminal A of RDAC2. VSS ≤ VA ≤ VDD.  
8
9
W2  
B2  
Wiper Terminal of RDAC2. VSS ≤ VW ≤ VDD.  
Terminal B of RDAC2. VSS ≤ VB ≤ VDD.  
10  
11  
12  
13  
14  
15  
16  
W4  
B4  
Wiper Terminal of RDAC4. VSS ≤ VW ≤ VDD.  
Terminal B of RDAC4. VSS ≤ VB ≤ VDD.  
VDD  
SCL  
SDA  
ADDR  
GND  
EPAD  
Positive Power Supply. Decouple this pin with 0.1 µF ceramic capacitors and 10 µF capacitors.  
Serial Clock Line. Data is clocked in at the logic low transition.  
Serial Data Input/Output.  
Programmable Address for Multiple Package Decoding.  
Ground Pin, Logic Ground Reference.  
Internally Connect the Exposed Paddle to VSS.  
Rev. A | Page 12 of 28  
 
Data Sheet  
AD5123/AD5143  
TYPICAL PERFORMANCE CHARACTERISTICS  
0.5  
0.2  
0.1  
10kΩ, +125°C  
10kΩ, +25°C  
0.4  
10kΩ, –40°C  
100kΩ, +125°C  
100kΩ, +25°C  
0.3  
0
100kΩ, –40°C  
0.2  
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–0.6  
0.1  
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
10kΩ, +125°C  
10kΩ, +25°C  
10kΩ, –40°C  
100kΩ, +125°C  
100kΩ, +25°C  
100kΩ, –40°C  
0
100  
200  
0
100  
200  
CODE (Decimal)  
CODE (Decimal)  
Figure 5. R-INL vs. Code (AD5143)  
Figure 8. R-DNL vs. Code (AD5143)  
0.20  
0.10  
0.05  
0.15  
0.10  
0
0.05  
–0.05  
–0.10  
–0.15  
–0.20  
–0.25  
–0.30  
0
–0.05  
–0.10  
–0.15  
–0.20  
–0.25  
10kΩ, +125°C  
10kΩ, +25°C  
10kΩ, –40°C  
100kΩ, +125°C  
100kΩ, +25°C  
100kΩ, –40°C  
10kΩ, +125°C  
10kΩ, +25°C  
10kΩ, –40°C  
100kΩ, +125°C  
100kΩ, +25°C  
100kΩ, –40°C  
0
50  
100  
0
50  
100  
CODE (Decimal)  
CODE (Decimal)  
Figure 6. R-INL vs. Code (AD5123)  
Figure 9. R-DNL vs. Code (AD5123)  
0.10  
0.05  
0.3  
0.2  
10kΩ, –40°C  
10kΩ, +25°C  
10kΩ, +125°C  
100kΩ, –40°C  
100kΩ, +25°C  
100kΩ, +125°C  
0
0.1  
–0.05  
–0.10  
–0.15  
–0.20  
–0.25  
–0.30  
0
–0.1  
–0.2  
–0.3  
10kΩ, –40°C  
10kΩ, +25°C  
10kΩ, +125°C  
100kΩ, –40°C  
100kΩ, +25°C  
100kΩ, +125°C  
0
100  
200  
0
100  
200  
CODE (Decimal)  
CODE (Decimal)  
Figure 10. DNL vs. Code (AD5143)  
Figure 7. INL vs. Code (AD5143)  
Rev. A | Page 13 of 28  
 
AD5123/AD5143  
Data Sheet  
0.15  
0.10  
0.05  
0
0.06  
0.04  
10kΩ, –40°C  
10kΩ, +25°C  
10kΩ, +125°C  
100kΩ, –40°C  
100kΩ, +25°C  
100kΩ, +125°C  
10kΩ, –40°C  
10kΩ, +25°C  
10kΩ, +125°C  
100kΩ, –40°C  
100kΩ, +25°C  
100kΩ, +125°C  
0.02  
0
–0.02  
–0.04  
–0.06  
–0.08  
–0.10  
–0.12  
–0.14  
–0.05  
–0.10  
–0.15  
0
50  
100  
0
50  
100  
CODE (Decimal)  
CODE (Decimal)  
Figure 11. INL vs. Code (AD5123)  
Figure 14. DNL vs. Code (AD5123)  
450  
400  
350  
300  
250  
200  
150  
100  
50  
450  
100kΩ  
10kΩ  
10kΩ  
100kΩ  
400  
350  
300  
250  
200  
150  
100  
50  
0
0
–50  
–50  
0
0
50  
25  
100  
50  
150  
75  
200  
100  
255  
127  
AD5143  
AD5123  
0
0
50  
25  
100  
50  
150  
75  
200  
100  
255 AD5142A  
AD5122A  
127  
CODE (Decimal)  
CODE (Decimal)  
Figure 12. Potentiometer Mode Temperature Coefficient ((ΔVW/VW)/ΔT × 106) vs.  
Code  
Figure 15. Rheostat Mode Temperature Coefficient ((ΔRWB/RWB)/ΔT × 106)  
vs. Code  
800  
1200  
I
I
I
, V = 2.3V  
V
= GND  
V
V
V
V
= 2.3V  
= 3.3V  
= 5V  
DD DD  
SS  
DD  
DD  
DD  
DD  
, V = 3.3V  
DD DD  
700  
600  
500  
400  
300  
200  
100  
0
, V = 5V  
DD DD  
= 5.5V  
1000  
800  
600  
400  
200  
0
–40  
10  
60  
110 125  
0
1
2
3
4
5
TEMPERATURE (°C  
)
INPUT VOLTAGE (V)  
Figure 13. Supply Current vs. Temperature  
Figure 16. IDD Current vs. Digital Input Voltage  
Rev. A | Page 14 of 28  
Data Sheet  
AD5123/AD5143  
10  
0
0
0x80 (0x40)  
0x80 (0x40)  
0x40 (0x20)  
0x20 (0x10)  
0x10 (0x08)  
0x8 (0x04)  
0x40 (0x20)  
–10  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
0x20 (0x10)  
–20  
0x10 (0x08)  
0x4 (0x02)  
0x2 (0x01)  
0x1 (0x00)  
0x8 (0x04)  
–30  
0x4 (0x02)  
0x2 (0x01)  
0x00  
0x1 (0x00)  
–40  
0x00  
–50  
AD5143 (AD5123)  
AD5143 (AD5123)  
–60  
10  
100  
1k  
10k  
100k  
1M  
10M  
10  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 17. 10 kΩ Gain vs. Frequency and Code  
Figure 20. 100 kΩ Gain vs. Frequency and Code  
–40  
0
10kΩ  
100kΩ  
10kΩ  
100kΩ  
V
/V = ±2.5V  
= 1V rms  
= GND  
DD SS  
V
V
A
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
B
–50  
–60  
CODE = HALF SCALE  
NOISE FILTER = 22kHz  
–70  
–80  
V
f
/V = ±2.5V  
DD SS  
–90  
= 1kHz  
CODE = HALF SCALE  
NOISE FILTER = 22kHz  
IN  
–100  
20  
200  
2k  
FREQUENCY (Hz)  
20k  
200k  
0.001 0.01  
0.1  
1
VOLTAGE (V rms)  
Figure 18. Total Harmonic Distortion Plus Noise (THD + N) vs. Frequency  
Figure 21. Total Harmonic Distortion Plus Noise (THD + N) vs. Amplitude  
20  
10  
0
V
R
/V = ±2.5V  
DD SS  
= 10kΩ  
AB  
0
–20  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–40  
–60  
–80  
QUARTER SCALE  
–80  
QUARTER SCALE  
MIDSCALE  
V
R
/V = ±2.5V  
MIDSCALE  
DD SS  
FULL-SCALE  
= 100kΩ  
FULL-SCALE  
AB  
–100  
–90  
10  
10  
100  
1k  
10k  
100k  
1M  
10M  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 19. Normalized Phase Flatness vs. Frequency, RAB = 10 kΩ  
Figure 22. Normalized Phase Flatness vs. Frequency, RAB = 100 kΩ  
Rev. A | Page 15 of 28  
AD5123/AD5143  
Data Sheet  
0.0025  
0.0020  
0.0015  
0.0010  
0.0005  
0
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
600  
500  
400  
300  
200  
100  
0
100kΩ, V  
100kΩ, V  
100kΩ, V  
100kΩ, V  
100kΩ, V  
100kΩ, V  
= 2.3V  
= 2.7V  
= 3V  
DD  
DD  
DD  
DD  
DD  
DD  
= 3.6V  
= 5V  
= 5.5V  
10kΩ, V  
10kΩ, V  
10kΩ, V  
10kΩ, V  
10kΩ, V  
10kΩ, V  
= 2.3V  
= 2.7V  
= 3V  
DD  
DD  
DD  
DD  
DD  
DD  
= 3.6V  
= 5V  
= 5.5V  
–600 –500 –400 –300 –200 –100  
0
100 200 300 400 500 600  
0
1
2
3
4
5
RESISTOR DRIFT (ppm)  
VOLTAGE (V)  
Figure 23. Incremental Wiper On Resistance vs. Positive Power Supply (VDD  
)
Figure 26. Resistor Lifetime Drift  
10  
0
10kΩ, RDAC1  
100kΩ, RDAC1  
10k+ 0pF  
V
V
= 5V ±10% AC  
DD  
SS  
10k+ 75pF  
= GND, V = 4V, V = GND  
A B  
9
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
10k+ 150pF  
10k+ 250pF  
100k+ 0pF  
100k+ 75pF  
100k+ 150pF  
100k+ 250pF  
CODE = MIDSCALE  
8
7
6
5
4
3
2
1
0
10  
100  
1k  
10k  
100k  
1M  
10M  
0
0
20  
10  
40  
20  
60  
30  
80  
40  
100  
50  
120  
60 AD5123  
AD5143  
FREQUENCY (Hz)  
CODE (Decimal)  
Figure 27. Power Supply Rejection Ratio (PSRR) vs. Frequency  
Figure 24. Maximum Bandwidth vs. Code and Net Capacitance  
0.020  
0.8  
0x80 TO 0x7F 100kΩ  
0x80 TO 0x7F 10kΩ  
0.7  
0.015  
0.010  
0.005  
0
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
–0.005  
–0.010  
–0.015  
–0.020  
–0.1  
0
500  
1000  
1500  
2000  
0
5
10  
15  
TIME (ns)  
TIME (µs)  
Figure 25. Maximum Transition Glitch  
Figure 28. Digital Feedthrough  
Rev. A | Page 16 of 28  
Data Sheet  
AD5123/AD5143  
0
7
6
5
4
3
2
1
0
10kΩ  
SHUTDOWN MODE ENABLED  
100kΩ  
–20  
–40  
–60  
–80  
10kΩ  
–100  
–120  
100kΩ  
10  
100  
1k  
10k  
100k  
1M  
10M  
AD5143  
AD5123  
0
0
50  
25  
100  
50  
150  
75  
200  
100  
250  
125  
FREQUENCY (Hz)  
CODE (Decimal)  
Figure 29. Shutdown Isolation vs. Frequency  
Figure 30. Theoretical Maximum Current vs. Code  
Rev. A | Page 17 of 28  
AD5123/AD5143  
Data Sheet  
TEST CIRCUITS  
Figure 31 to Figure 35 define the test conditions used in the Specifications section.  
NC  
DUT  
A
V
I
A
W
V+ = V ±10%  
DD  
W
V
Δ
MS  
V
A
B
PSRR (dB) = 20 LOG  
DD  
)
(
ΔV  
B
W
DD  
V+  
~
V
ΔV  
%
MS  
MS  
PSS (%/%) =  
V
MS  
ΔV  
%
DD  
NC = NO CONNECT  
Figure 34. Power Supply Sensitivity and  
Power Supply Rejection Ratio (PSS, PSRR)  
Figure 31. Resistor Integral Nonlinearity Error (Rheostat Operation; R-INL, R-DNL)  
0.1V  
R
=
SW  
I
DUT  
B
SW  
CODE = 0x00  
W
+
DUT  
V+ = V  
DD  
1LSB = V+/2  
0.1V  
I
SW  
N
A
W
V+  
V
TO V  
DD  
SS  
B
A = NC  
V
MS  
Figure 32. Potentiometer Divider Nonlinearity Error (INL, DNL)  
Figure 35. Incremental On Resistance  
DUT  
A
W
I
= V /R  
DD NOMINAL  
W
V
W
B
V
R
= V /I  
MS1 W  
MS1  
W
NC = NO CONNECT  
Figure 33. Wiper Resistance  
Rev. A | Page 18 of 28  
 
 
 
Data Sheet  
AD5123/AD5143  
THEORY OF OPERATION  
I2C SERIAL DATA INTERFACE  
The AD5123/AD5143 digital programmable potentiometers are  
designed to operate as true variable resistors for analog signals  
within the terminal voltage range of VSS < VTERM < VDD. The resistor  
wiper position is determined by the RDAC register contents. The  
RDAC register acts as a scratchpad register that allows unlimited  
changes of resistance settings. A secondary register (the input  
register) can be used to preload the RDAC register data.  
The AD5123/AD5143 has 2-wire, I2C-compatible serial interfaces.  
These devices can be connected to an I2C bus as a slave device,  
under the control of a master device. See Figure 3 for a timing  
diagram of a typical write sequence.  
The AD5123/AD5143 supports standard (100 kHz) and fast  
(400 kHz) data transfer modes. Support is not provided for  
10-bit addressing and general call addressing.  
The RDAC register can be programmed with any position setting  
using the I2C interface (depending on the model). When a desirable  
wiper position is found, this value can be stored in the EEPROM  
memory. Thereafter, the wiper position is always restored to  
that position for subsequent power-ups. The storing of EEPROM  
data takes approximately 15 ms; during this time, the device is  
locked and does not acknowledge any new command, preventing  
any changes from taking place.  
The 2-wire serial bus protocol operates as follows:  
1. The master initiates a data transfer by establishing a start  
condition, which is when a high-to-low transition on the  
SDA line occurs while SCL is high. The following byte is  
the address byte, which consists of the 7-bit slave address  
W
and an R/ bit. The slave device corresponding to the  
transmitted address responds by pulling SDA low during  
the ninth clock pulse (this is called the acknowledge bit).  
At this stage, all other devices on the bus remain idle while  
the selected device waits for data to be written to, or read  
from, its shift register.  
RDAC REGISTER AND EEPROM  
The RDAC register directly controls the position of the digital  
potentiometer wiper. For example, when the RDAC register is  
loaded with 0x80 (AD5143, 256 taps), the wiper is connected to  
half scale of the variable resistor. The RDAC register is a standard  
logic register; there is no restriction on the number of changes  
allowed.  
W
If the R/ bit is set high, the master reads from the slave  
W
device. However, if the R/ bit is set low, the master writes  
to the slave device.  
It is possible to both write to and read from the RDAC register  
using the digital interface (see Table 9).  
2. Data is transmitted over the serial bus in sequences of nine  
clock pulses (eight data bits followed by an acknowledge bit).  
The transitions on the SDA line must occur during the low  
period of SCL and remain stable during the high period of SCL.  
3. When all data bits have been read from or written to, a stop  
condition is established. In write mode, the master pulls the  
SDA line high during the tenth clock pulse to establish a stop  
condition. In read mode, the master issues a no acknowledge  
for the ninth clock pulse (that is, the SDA line remains high).  
The master then brings the SDA line low before the tenth  
clock pulse, and then high again during the tenth clock pulse  
to establish a stop condition.  
The contents of the RDAC register can be stored to the EEPROM  
using Command 9 (see Table 9). Thereafter, the RDAC register  
always sets at that position for any future on-off-on power supply  
sequence. It is possible to read back data saved into the EEPROM  
with Command 3 (see Table 9).  
Alternatively, the EEPROM can be written to independently  
using Command 11 (see Table 15).  
INPUT SHIFT REGISTER  
For the AD5123/AD5143, the input shift register is 16 bits wide,  
as shown in Figure 2. The 16-bit word consists of four control  
bits, followed by four address bits and by eight data bits.  
I2C ADDRESS  
The facility to make hardwired changes to ADDR allows the  
user to incorporate up to three of these devices on one bus as  
outlined in Table 8.  
If the AD5143 RDAC or EEPROM registers are read from or  
written to, the lowest data bit (Bit 0) is ignored.  
Data is loaded MSB first (Bit 15). The four control bits determine  
the function of the software command, as listed in Table 9 and  
Table 15.  
Table 8. I2C Address Selection  
ADDR Pin  
7-Bit I2C Device Address  
0101000  
VDD  
No connect1  
GND  
0101010  
0101011  
1 Not available in bipolar mode ( VSS < 0 V).  
Rev. A | Page 19 of 28  
 
 
 
 
 
 
AD5123/AD5143  
Data Sheet  
Table 9. Reduced Commands Operation Truth Table  
Control  
Bits[DB15:DB12]  
Address  
Bits[DB11:DB8]1  
Data Bits[DB7:DB0]1  
Command  
Number  
C3 C2 C1 C0 A3 A2 A1 A0 D7 D6 D5 D4 D3 D2 D1 D0 Operation  
0
1
0
0
0
0
0
0
0
1
X
0
X
0
X
X
X
X
X
X
X
X
X
X
NOP: do nothing  
A1 A0 D7 D6 D5 D4 D3 D2 D1 D0 Write contents of serial register  
data to RDAC  
2
3
0
0
0
0
1
1
0
1
0
0
0
0
A1 A0 D7 D6 D5 D4 D3 D2 D1 D0 Write contents of serial register  
data to input register  
A1 A0  
X
X
X
X
X
X
D1 D0 Read back contents  
D1  
0
1
D0  
1
1
Data  
EEPROM  
RDAC  
9
0
0
1
1
1
1
0
1
1
1
1
0
1
1
1
0
0
0
0
X
0
A1 A0  
A1 A0  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
1
0
X
Copy RDAC register to EEPROM  
Copy EEPROM into RDAC  
Software reset  
10  
14  
15  
0
X
X
X
A3  
A1 A0  
D0 Software shutdown  
D0  
0
1
Condition  
Normal mode  
Shutdown mode  
1 X = don’t care.  
Table 10. Reduced Address Bits Table  
A3  
A2  
X1  
0
A1  
X1  
0
A0  
X1  
0
Channel  
Stored Channel Memory  
Not applicable  
RDAC1  
1
0
All channels  
RDAC1  
0
0
0
1
RDAC2  
RDAC2  
0
0
1
0
RDAC3  
RDAC3  
0
0
1
1
RDAC4  
RDAC4  
1 X = don’t care.  
Rev. A | Page 20 of 28  
 
 
Data Sheet  
AD5123/AD5143  
Low Wiper Resistance Feature  
ADVANCED CONTROL MODES  
The AD5123/AD5143 include two commands to reduce the wiper  
resistance between the terminals when the devices achieve full scale  
or zero scale. These extra positions are called bottom scale, BS, and  
top scale, TS. The resistance between Terminal A and Terminal W  
at top scale is specified as RTS. Similarly, the bottom scale resistance  
between Terminal B and Terminal W is specified as RBS.  
The AD5123/AD5143 digital potentiometers include a set of user  
programming features to address the wide number of applications  
for these universal adjustment devices (see Table 15 and Table 17).  
Key programming features include the following:  
Input register  
Linear gain setting mode  
Low wiper resistance feature  
Linear increment and decrement instructions  
6 dB increment and decrement instructions  
Burst mode (I2C only)  
The contents of the RDAC registers are unchanged by entering  
in these positions. There are three ways to exit from top scale  
and bottom scale: by using Command 12 or Command 13  
(see Table 15); by loading new data in an RDAC register, which  
includes increment/decrement operations; or by entering  
shutdown mode, Command 15 (see Table 15).  
Reset  
Shutdown mode  
Table 11 and Table 12 show the truth tables for the top scale  
position and the bottom scale position, respectively, when the  
potentiometer or linear gain setting mode is enabled.  
Input Register  
The AD5123/AD5143 include one input register per RDAC  
register. These registers allow preloading of the value for the  
associated RDAC register. These registers can be written to using  
Command 2 and read back using Command 3 (see Table 15).  
Table 11. Top Scale Truth Table  
Linear Gain Setting Mode  
Potentiometer Mode  
RAW  
RAB  
RWB  
RAW  
RWB  
This feature allows a synchronous and asynchronous update of  
one or all of the RDAC registers at the same time.  
RAB  
RTS  
RAB  
Table 12. Bottom Scale Truth Table  
The transfer from the input register to the RDAC register is  
done synchronously by Command 8 (see Table 15).  
Linear Gain Setting Mode  
Potentiometer Mode  
RAW  
RWB  
RAW  
RWB  
If new data is loaded in an RDAC register, this RDAC register  
automatically overwrites the associated input register.  
RTS  
RBS  
RAB  
RBS  
Linear Increment and Decrement Instructions  
Linear Gain Setting Mode  
The increment and decrement commands (Command 4 and  
Command 5 in Table 15) are useful for linear step adjustment  
applications. These commands simplify microcontroller  
software coding by allowing the controller to send an increment  
or decrement command to the device. The adjustment can be  
individual or in a ganged potentiometer arrangement, where all  
wiper positions are changed at the same time.  
The patented architecture of the AD5123/AD5143 allows the  
independent control of each string resistor, RAW, and RWB. To enable  
linear gain setting mode, use Command 16 (see Table 15) to set  
Bit D2 of the control register (see Table 17).  
This mode of operation can control the potentiometer as two  
independent rheostats connected at a single point, W terminal,  
as opposed to potentiometer mode where each resistor is  
For an increment command, executing Command 4 automatically  
moves the wiper to the next resistance RDAC position. This  
command can be executed in a single channel or multiple channels.  
complementary, RAW = RAB − RWB  
.
This mode enables a second input and an RDAC register per  
channel, as shown in Table 16; however, the actual RDAC  
contents remain unchanged. The same operations are valid  
for potentiometer and linear setting gain modes. The parts  
restore in potentiometer mode after a reset or power-up.  
Rev. A | Page 21 of 28  
 
 
 
AD5123/AD5143  
Data Sheet  
±± dB Increment and Decrement Instructions  
Reset  
Two programming instructions produce logarithmic taper  
increment or decrement of the wiper position control by  
an individual potentiometer or by a ganged potentiometer  
arrangement where all RDAC register positions are changed  
simultaneously. The +6 dB increment is activated by Command 6,  
and the −6 dB decrement is activated by Command 7 (see Table 15).  
For example, starting with the zero-scale position and executing  
Command 6 ten times moves the wiper in 6 dB steps to the full-  
scale position. When the wiper position is near the maximum  
setting, the last 6 dB increment instruction causes the wiper to  
go to the full-scale position (see Table 13).  
The AD5123/AD5143 can be reset through software by executing  
Command 14 (see Table 15). The reset command loads the  
RDAC registers with the contents of the EEPROM and takes  
approximately 30 µs. The EEPROM is preloaded to midscale at  
the factory, and initial power-up is, accordingly, at midscale.  
Shutdown Mode  
The AD5123/AD5143 can be placed in shutdown mode by  
executing the software shutdown command, Command 15  
(see Table 15), and setting the LSB (D0) to 1. This feature places  
the RDAC in a zero power consumption state where the device  
operates in potentiometer mode, Terminal A is open-circuited,  
and the wiper, Terminal W, is connected to Terminal B; however, a  
finite wiper resistance of 40 Ω is present. When the device is  
configured in linear gain setting mode, the resistor addressed,  
Incrementing the wiper position by +6 dB essentially doubles  
the RDAC register value, whereas decrementing the wiper  
position by −6 dB halves the register value. Internally, the  
AD5123/AD5143 use shift registers to shift the bits left and  
right to achieve a 6 dB increment or decrement. These  
functions are useful for various audio/video level adjustments,  
especially for white LED brightness settings in which human  
visual responses are more sensitive to large adjustments than to  
small adjustments.  
R
AW or RWB, is internally place at high impedance. Table 14  
shows the truth table depending on the device operating mode.  
The contents of the RDAC register are unchanged by entering  
shutdown mode. However, all commands listed in Table 15 are  
supported while in shutdown mode. Execute Command 15 (see  
Table 15) and set the LSB (D0) to 0 to exit shutdown mode.  
Table 13. Detailed Left Shift and Right Shift Functions for  
the 6 dB Step Increment and Decrement  
Table 14. Truth Table for Shutdown Mode  
Linear Gain Setting Mode  
Potentiometer Mode  
Left Shift (+6 dB/Step)  
Right Shift (−6 dB/Step)  
RAW  
RWB  
RAW RWB  
0000 0000  
1111 1111  
High impedance High impedance High impedance RBS  
0000 0001  
0111 1111  
0000 0010  
0000 0100  
0011 1111  
0001 1111  
EEPROM OR RDAC REGISTER PROTECTION  
The EEPROM and RDAC registers can be protected by disabling  
any update to these registers. This can be done by using software or  
by using hardware. If these registers are protected by software,  
set Bit D0 and/or Bit D1 (see Table 17), which protects the RDAC  
and EEPROM registers independently.  
0000 1000  
0001 0000  
0010 0000  
0100 0000  
0000 1111  
0000 0111  
0000 0011  
0000 0001  
1000 0000  
0000 0000  
1111 1111  
0000 0000  
When RDAC is protected, the only operation allowed is to copy  
the EEPROM into the RDAC register.  
Burst Mode  
By enabling the burst mode, multiple data bytes can be sent to  
the part consecutively. After the command byte, the part  
interprets the consecutive bytes as data bytes for the command.  
A new command can be sent by generating a repeat start or by a  
stop and start condition.  
The burst mode is activated by setting Bit D3 of the control  
register (see Table 17).  
Rev. A | Page 22 of 28  
 
 
 
Data Sheet  
AD5123/AD5143  
Table 15. Advance Commands Operation Truth Table  
Control  
Bits[DB15:DB12]  
Address  
Bits[DB11:DB8]1  
Data Bits[DB7:DB0]1  
Command  
Number  
C3  
0
C2  
0
C1  
0
C0  
0
A3 A2 A1 A0 D7 D6 D5 D4 D3 D2 D1 D0 Operation  
NOP: do nothing  
0
1
X
X
X
X
X
X
X
X
X
X
X
X
0
0
0
1
A3 A2 A1 A0 D7 D6 D5 D4 D3 D2 D1 D0 Write contents of serial  
register data to RDAC  
2
3
0
0
0
0
1
1
0
1
A3 A2 A1 A0 D7 D6 D5 D4 D3 D2 D1 D0 Write contents of serial  
register data to input register  
X
A2 A1 A0  
X
X
X
X
X
X
D1 D0 Read back contents  
D1  
0
D0  
0
Data  
Input register  
EEPROM  
0
1
1
0
Control  
register  
1
1
RDAC  
4
5
6
7
8
0
0
0
0
0
1
1
1
1
1
0
0
0
0
1
0
0
1
1
0
A3 A2 A1 A0  
A3 A2 A1 A0  
A3 A2 A1 A0  
A3 A2 A1 A0  
A3 A2 A1 A0  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
1
0
1
0
X
Linear RDAC increment  
Linear RDAC decrement  
+6 dB RDAC increment  
−6 dB RDAC decrement  
Copy input register to RDAC  
(software LRDAC)  
9
0
1
1
1
0
0
A1 A0  
A1 A0  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
1
0
Copy RDAC register to  
EEPROM  
10  
11  
0
1
1
0
1
0
1
0
0
0
0
0
Copy EEPROM into RDAC  
A1 A0 D7 D6 D5 D4 D3 D2 D1 D0 Write contents of serial  
register data to EEPROM  
12  
1
0
0
1
A3 A2 A1 A0  
1
0
X
X
X
X
X
X
X
X
X
X
X
X
D0 Top scale  
D0 = 0; normal mode  
D0 = 1; shutdown mode  
D0 Bottom scale  
13  
1
0
0
1
A3 A2 A1 A0  
D0 = 1; enter  
D0 = 0; exit  
14  
15  
1
1
0
1
1
0
1
0
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
Software reset  
A3 A2 A1 A0  
D0 Software shutdown  
D0 = 0; normal mode  
D0 = 1; device placed in  
shutdown mode  
16  
1
1
0
1
X
X
X
X
X
X
X
X
D3 D2 D1 D0 Copy serial register data to  
control register  
1 X = don’t care.  
Table 16. Address Bits  
Potentiometer Mode  
Linear Gain Setting Mode  
Stored RDAC  
Memory  
A3  
1
0
A2  
X1  
0
A1  
X1  
0
A0  
X1  
0
Input Register  
All channels  
RDAC1  
RDAC Register  
All channels  
RDAC1  
Input Register  
All channels  
RWB1  
RDAC Register  
All channels  
RWB1  
Not applicable  
RDAC1  
0
0
1
0
0
0
0
1
Not applicable  
RDAC2  
Not applicable  
RDAC2  
RAW1  
RWB2  
RAW1  
RWB2  
Not applicable  
RDAC2  
0
0
1
0
0
1
1
0
Not applicable  
RDAC3  
Not applicable  
RDAC3  
RAW2  
RWB3  
RAW2  
RWB3  
Not applicable  
RDAC3  
0
0
1
0
1
1
0
1
Not applicable  
RDAC4  
Not applicable  
RDAC4  
RAW3  
RWB4  
RAW3  
RWB4  
Not applicable  
RDAC4  
0
1
1
1
Not applicable  
Not applicable  
RAW4  
RAW4  
Not applicable  
1 X = don’t care.  
Rev. A | Page 23 of 28  
 
 
 
 
AD5123/AD5143  
Data Sheet  
Table 17. Control Register Bit Descriptions  
Bit Name  
Description  
D0  
RDAC register write protect  
0 = wiper position frozen to value in EEPROM memory  
1 = allows update of wiper position through digital interface (default)  
EEPROM program enable  
D1  
D2  
D3  
0 = EEPROM program disabled  
1 = enables device for EEPROM program (default)  
Linear setting mode/potentiometer mode  
0 = potentiometer mode (default)  
1 = linear gain setting mode  
Burst mode  
0 = disabled (default)  
1 = enabled (no disable after stop or repeat start condition)  
Rev. A | Page 24 of 28  
 
Data Sheet  
AD5123/AD5143  
The nominal resistance between Terminal A and Terminal B,  
RAB, is 10 kꢀ or 100 kꢀ, and has 128/256 tap points accessed by  
the wiper terminal. The 7-bit/8-bit data in the RDAC latch is  
decoded to select one of the 128/256 possible wiper settings. The  
general equations for determining the digitally programmed  
output resistance between Terminal W and Terminal B are  
RDAC ARCHITECTURE  
To achieve optimum performance, Analog Devices, Inc., has  
patented the RDAC segmentation architecture for all the digital  
potentiometers. In particular, the AD5123/AD5143 employ a  
three-stage segmentation approach, as shown in Figure 36. The  
AD5123/AD5143 wiper switch is designed with the transmission  
gate CMOS topology and with the gate voltage derived from  
AD5123:  
VDD and VSS.  
D
128  
From 0x00 to 0x7F (1)  
From 0x00 to 0xFF (2)  
R
WB (D)   
RAB RW  
RAB RW  
A
S
TS  
AD5143:  
R
R
H
H
D
256  
RWB (D)   
R
M
where:  
D is the decimal equivalent of the binary code in the 7-bit/8-bit  
RDAC register.  
R
M
R
R
AB is the end-to-end resistance.  
L
L
RW is the wiper resistance.  
W
R
In potentiometer mode, similar to the mechanical potentiometer,  
the resistance between Terminal W and Terminal A also produces  
a digitally controlled complementary resistance, RWA. RWA also  
gives a maximum of 8% absolute. RWA starts at the maximum  
resistance value and decreases as the data loaded into the latch  
increases. The general equations for this operation are  
7-BIT/8-BIT  
ADDRESS  
DECODER  
R
R
M
R
H
M
R
H
S
BS  
AD5123:  
B
128 D  
128  
R
AW (D)   
RAB RW  
RAB RW  
From 0x00 to 0x7F (3)  
From 0x00 to 0xFF (4)  
AD5143:  
Figure 36. AD5123/AD5143 Simplified RDAC Circuit  
256 D  
256  
R
AW (D)   
Top Scale/Bottom Scale Architecture  
In addition, the AD5123/AD5143 include new positions to  
where:  
reduce the resistance between terminals. These positions are  
called bottom scale and top scale. At bottom scale, the typical  
wiper resistance decreases from 130 Ω to 60 Ω (RAB = 100 kΩ).  
At top scale, the resistance between Terminal A and Terminal W is  
decreased by 1 LSB, and the total resistance is reduced to 60 Ω  
(RAB = 100 kΩ).  
D is the decimal equivalent of the binary code in the 7-bit/8-bit  
RDAC register.  
R
AB is the end-to-end resistance.  
RW is the wiper resistance.  
If the part is configured in linear gain setting mode, the resistance  
between Terminal W and Terminal A is directly proportional  
to the code loaded in the associate RDAC register. The general  
equations for this operation are  
PROGRAMMING THE VARIABLE RESISTOR  
Rheostat Operation— 8% Resistor Tolerance  
The AD5123/AD5143 operate in rheostat mode when only two  
terminals are used as a variable resistor. The unused terminal can  
be floating, or it can be tied to Terminal W, as shown in Figure 37.  
AD5123:  
D
128  
From 0x00 to 0x7F (5)  
From 0x00 to 0xFF (6)  
R
AW (D)   
RAB RW  
A
A
A
AD5143:  
W
W
W
D
256  
R
AW (D)   
RAB RW  
B
B
B
where:  
Figure 37. Rheostat Mode Configuration  
D is the decimal equivalent of the binary code in the 7-bit/8-bit  
RDAC register.  
R
AB is the end-to-end resistance.  
RW is the wiper resistance.  
Rev. A | Page 25 of 28  
 
 
 
 
AD5123/AD5143  
Data Sheet  
V
DD  
In the bottom scale condition or top scale condition, a finite  
total wiper resistance of 40 Ω is present. Regardless of which  
setting the part is operating in, limit the current between  
Terminal A to Terminal B, Terminal W to Terminal A, and  
Terminal W to Terminal B, to the maximum continuous  
current of ±± mA or to the pulse current specified in Table 5.  
Otherwise, degradation or possible destruction of the internal  
switch contact can occur.  
A
W
B
V
SS  
PROGRAMMING THE POTENTIOMETER DIVIDER  
Figure 39. Maximum Terminal Voltages Set by VDD and VSS  
Voltage Output Operation  
POWER-UP SEQUENCE  
The digital potentiometer easily generates a voltage divider at  
wiper-to-B and wiper-to-A that is proportional to the input voltage  
at A to B, as shown in Figure 38.  
Because there are diodes to limit the voltage compliance at  
Terminal A, Terminal B, and Terminal W (see Figure 39), it is  
important to power up VDD first before applying any voltage to  
Terminal A, Terminal B, and Terminal W. Otherwise, the diode  
is forward-biased such that VDD is powered unintentionally. The  
ideal power-up sequence is VSS, VDD, digital inputs, and VA, VB,  
and VW. The order of powering VA, VB, VW, and digital inputs is  
not important as long as they are powered after VSS and VDD.  
Regardless of the power-up sequence and the ramp rates of the  
power supplies, once VDD is powered, the power-on preset  
activates, which restores EEPROM values to the RDAC registers.  
V
A
A
W
V
OUT  
B
V
B
Figure 38. Potentiometer Mode Configuration  
Connecting Terminal A to 5 V and Terminal B to ground  
produces an output voltage at the Wiper W to Terminal B  
ranging from 0 V to 5 V. The general equation defining the  
output voltage at VW with respect to ground for any valid  
input voltage applied to Terminal A and Terminal B is  
LAYOUT AND POWER SUPPLY BIASING  
It is always a good practice to use a compact, minimum lead  
length layout design. Ensure that the leads to the input are as  
direct as possible with a minimum conductor length. Ground  
paths should have low resistance and low inductance. It is also  
good practice to bypass the power supplies with quality capacitors.  
Apply low equivalent series resistance (ESR) 1 μF to 10 μF  
tantalum or electrolytic capacitors at the supplies to minimize  
any transient disturbance and to filter low frequency ripple.  
Figure 40 illustrates the basic supply bypassing configuration  
for the AD5123/AD5143.  
RWB(D)  
RAB  
R
AW (D)  
RAB  
VW (D)   
VA   
VB  
(7)  
where:  
RWB(D) can be obtained from Equation 1 and Equation 2.  
RAW(D) can be obtained from Equation 3 and Equation 4.  
Operation of the digital potentiometer in the divider mode  
results in a more accurate operation over temperature. Unlike  
the rheostat mode, the output voltage is dependent mainly on  
the ratio of the internal resistors, RAW and RWB, and not the  
absolute values. Therefore, the temperature drift reduces to  
5 ppm/°C.  
V
V
DD  
DD  
+
+
C3  
C1  
10µF  
0.1µF  
AD5123/  
AD5143  
C4  
10µF  
C2  
0.1µF  
TERMINAL VOLTAGE OPERATING RANGE  
V
V
SS  
SS  
The AD5123/AD5143 are designed with internal ESD diodes  
for protection. These diodes also set the voltage boundary of  
the terminal operating voltages. Positive signals present on  
Terminal A, Terminal B, or Terminal W that exceed VDD are  
clamped by the forward-biased diode. There is no polarity  
GND  
Figure 40. Power Supply Bypassing  
constraint between VA, VW, and VB, but they cannot be higher  
than VDD or lower than VSS.  
Rev. A | Page 26 of 28  
 
 
 
 
 
 
 
Data Sheet  
AD5123/AD5143  
OUTLINE DIMENSIONS  
3.10  
3.00 SQ  
2.90  
0.30  
0.23  
0.18  
PIN 1  
INDICATOR  
PIN 1  
INDICATOR  
13  
16  
0.50  
BSC  
1
4
12  
EXPOSED  
PAD  
1.75  
1.60 SQ  
1.45  
9
8
5
0.50  
0.40  
0.30  
0.25 MIN  
TOP VIEW  
BOTTOM VIEW  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.80  
0.75  
0.70  
0.05 MAX  
0.02 NOM  
COPLANARITY  
0.08  
SECTION OF THIS DATA SHEET.  
SEATING  
PLANE  
0.20 REF  
COMPLIANT TO JEDEC STANDARDS MO-220-WEED-6.  
Figure 41. 16-Lead Lead Frame Chip Scale Package [LFCSP_WQ]  
3 mm × 3 mm Body, Very Very Thin Quad  
(CP-16-22)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1, 2  
AD5123BCPZ10-RL7  
AD5123BCPZ100-RL7 100  
AD5143BCPZ10-RL7 10  
AD5143BCPZ100-RL7 100  
EVAL-AD5143DBZ  
RAB (kΩ) Resolution Interface Temperature Range Package Description Package Option Branding  
10  
128  
128  
256  
256  
I2C  
I2C  
I2C  
I2C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
16-Lead LFCSP_WQ  
16-Lead LFCSP_WQ  
16-Lead LFCSP_WQ  
16-Lead LFCSP_WQ  
Evaluation Board  
CP-16-22  
CP-16-22  
CP-16-22  
CP-16-22  
DGZ  
DH0  
DH1  
DH2  
1 Z = RoHS Compliant Part.  
2 The evaluation board is shipped with the 10 kΩ RAB resistor option; however, the board is compatible with all of the available resistor value options.  
Rev. A | Page 27 of 28  
 
 
 
AD5123/AD5143  
NOTES  
Data Sheet  
I2C refers to a communications protocol originally developed by Philips Semiconductors (now NXP Semiconductors).  
©2012–2013 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D10878-0-3/13(A)  
Rev. A | Page 28 of 28  

相关型号:

AD5124

The AD5124/AD5144/AD5144A potentiometers provide a nonvolatile solution for 128-/256-position adjustment applications, offering guaranteed low resistor tolerance errors of ±8% and up to ±6 mA current density in the Ax, Bx, and Wx pins.
ADI

AD5124BCPZ10-RL7

The AD5124/AD5144/AD5144A potentiometers provide a nonvolatile solution for 128-/256-position adjustment applications, offering guaranteed low resistor tolerance errors of ±8% and up to ±6 mA current density in the Ax, Bx, and Wx pins.
ADI

AD5124BCPZ100-RL7

The AD5124/AD5144/AD5144A potentiometers provide a nonvolatile solution for 128-/256-position adjustment applications, offering guaranteed low resistor tolerance errors of ±8% and up to ±6 mA current density in the Ax, Bx, and Wx pins.
ADI

AD5124BRUZ10

The AD5124/AD5144/AD5144A potentiometers provide a nonvolatile solution for 128-/256-position adjustment applications, offering guaranteed low resistor tolerance errors of ±8% and up to ±6 mA current density in the Ax, Bx, and Wx pins.
ADI

AD5124BRUZ10-RL7

The AD5124/AD5144/AD5144A potentiometers provide a nonvolatile solution for 128-/256-position adjustment applications, offering guaranteed low resistor tolerance errors of ±8% and up to ±6 mA current density in the Ax, Bx, and Wx pins.
ADI

AD5124BRUZ100

The AD5124/AD5144/AD5144A potentiometers provide a nonvolatile solution for 128-/256-position adjustment applications, offering guaranteed low resistor tolerance errors of ±8% and up to ±6 mA current density in the Ax, Bx, and Wx pins.
ADI

AD5124BRUZ100-RL7

The AD5124/AD5144/AD5144A potentiometers provide a nonvolatile solution for 128-/256-position adjustment applications, offering guaranteed low resistor tolerance errors of ±8% and up to ±6 mA current density in the Ax, Bx, and Wx pins.
ADI

AD513J

IC OP-AMP, 1 MHz BAND WIDTH, BCY8, TO-99, 8 PIN, Operational Amplifier
ADI

AD513K

IC OP-AMP, 1 MHz BAND WIDTH, BCY8, TO-99, 8 PIN, Operational Amplifier
ADI

AD513S

IC OP-AMP, 1 MHz BAND WIDTH, BCY8, TO-99, 8 PIN, Operational Amplifier
ADI

AD5141

Quad Channel, 128-/256-Position, I2C Nonvolatile Digital Potentiometer
ADI

AD5141BCPZ10-RL7

Single Channel, 128-/256-Position, I2C/SPI, Nonvolatile Digital Potentiometer
ADI