AD5141BCPZ10-RL7 [ADI]

Single Channel, 128-/256-Position, I2C/SPI, Nonvolatile Digital Potentiometer; 单通道, 128 / 256位, I2C / SPI ,非易失性数字电位计
AD5141BCPZ10-RL7
型号: AD5141BCPZ10-RL7
厂家: ADI    ADI
描述:

Single Channel, 128-/256-Position, I2C/SPI, Nonvolatile Digital Potentiometer
单通道, 128 / 256位, I2C / SPI ,非易失性数字电位计

数字电位计
文件: 总32页 (文件大小:673K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Single Channel, 128-/256-Position, I2C/SPI,  
Nonvolatile Digital Potentiometer  
Data Sheet  
AD5121/AD5141  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
V
V
LOGIC  
DD  
INDEP  
10 kΩ and 100 kΩ resistance options  
Resistor tolerance: 8% maximum  
Wiper current: 6 mA  
Low temperature coefficient: 35 ppm/°C  
Wide bandwidth: 3 MHz  
AD5121/  
AD5141  
POWER-ON  
RESET  
RDAC  
INPUT  
Fast start-up time < 75 µs  
Linear gain setting mode  
A
RESET  
DIS  
W
B
REGISTER  
Single- and dual-supply operation  
Independent logic supply: 1.8 V to 5.5 V  
Wide operating temperature: −40°C to +125°C  
3 mm × 3 mm LFCSP package  
4 kV ESD protection  
SCLK/SCL  
SDI/SDA  
7/8  
SERIAL  
INTERFACE  
EEPROM  
MEMORY  
SYNC/ADDR0  
SDO/ADDR1  
GND  
V
SS  
APPLICATIONS  
WP  
Figure 1.  
Portable electronics level adjustment  
LCD panel brightness and contrast controls  
Programmable filters, delays, and time constants  
Programmable power supplies  
GENERAL DESCRIPTION  
Table 1. Family Models  
Model  
Channel Position Interface Package  
The AD5121/AD5141 potentiometers provide a nonvolatile  
solution for 128-/256-position adjustment applications, offering  
guaranteed low resistor tolerance errors of 8% and up to 6 mA  
current density in the A, B, and W pins.  
AD51231  
AD5124  
AD5124  
AD51431  
AD5144  
AD5144  
Quad  
Quad  
Quad  
Quad  
Quad  
Quad  
128  
128  
128  
256  
256  
256  
256  
128  
128  
256  
256  
128  
256  
I2C  
LFCSP  
LFCSP  
TSSOP  
LFCSP  
LFCSP  
TSSOP  
SPI/I2C  
SPI  
I2C  
The low resistor tolerance and low nominal temperature coefficient  
simplify open-loop applications as well as applications requiring  
tolerance matching.  
SPI/I2C  
SPI  
I2C  
AD5144A Quad  
AD5122 Dual  
AD5122A Dual  
AD5142 Dual  
AD5142A Dual  
TSSOP  
The linear gain setting mode allows independent programming  
of the resistance between the digital potentiometer terminals,  
through RAW and RWB string resistors, allowing very accurate  
resistor matching.  
SPI  
LFCSP/TSSOP  
LFCSP/TSSOP  
LFCSP/TSSOP  
LFCSP/TSSOP  
LFCSP  
I2C  
SPI  
I2C  
SPI/I2C  
SPI/I2C  
AD5121  
AD5141  
Single  
Single  
The high bandwidth and low total harmonic distortion (THD)  
ensure optimal performance for ac signals, making it suitable  
for filter design.  
LFCSP  
1 Two potentiometers and two rheostats.  
The low wiper resistance of only 40 Ω at the ends of the resistor  
array allows for pin-to-pin connection.  
The wiper values can be set through an SPI-/I2C-compatible digital  
interface that is also used to read back the wiper register and  
EEPROM contents.  
The AD5121/AD5141 is available in a compact, 16-lead, 3 mm ×  
3 mm LFCSP. The parts are guaranteed to operate over the  
extended industrial temperature range of −40°C to +125°C.  
Rev. 0  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rightsof third parties that may result fromits use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks andregisteredtrademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Technical Support  
©2012 Analog Devices, Inc. All rights reserved.  
www.analog.com  
 
 
 
 
 
AD5121/AD5141  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Input Shift Register .................................................................... 20  
Serial Data Digital Interface Selection, DIS............................ 20  
SPI Serial Data Interface............................................................ 20  
I2C Serial Data Interface............................................................ 22  
I2C Address.................................................................................. 22  
Advanced Control Modes ......................................................... 23  
EEPROM or RDAC Register Protection................................. 24  
Applications....................................................................................... 1  
General Description ......................................................................... 1  
Functional Block Diagram .............................................................. 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Electrical Characteristics—AD5121 .......................................... 3  
Electrical Characteristics—AD5141 .......................................... 6  
Interface Timing Specifications.................................................. 9  
Shift Register and Timing Diagrams ....................................... 10  
Absolute Maximum Ratings.......................................................... 12  
Thermal Resistance .................................................................... 12  
ESD Caution................................................................................ 12  
Pin Configuration and Function Descriptions........................... 13  
Typical Performance Characteristics ........................................... 14  
Test Circuits..................................................................................... 19  
Theory of Operation ...................................................................... 20  
RDAC Register and EEPROM.................................................. 20  
LRDAC  
)..................................... 24  
Load RDAC Input Register (  
INDEP Pin................................................................................... 24  
RDAC Architecture.................................................................... 27  
Programming the Variable Resistor......................................... 27  
Programming the Potentiometer Divider............................... 28  
Terminal Voltage Operating Range ......................................... 29  
Power-Up Sequence ................................................................... 29  
Layout and Power Supply Biasing............................................ 29  
Outline Dimensions....................................................................... 30  
Ordering Guide .......................................................................... 30  
REVISION HISTORY  
10/12—Revision 0: Initial Version  
Rev. 0 | Page 2 of 32  
 
Data Sheet  
AD5121/AD5141  
SPECIFICATIONS  
ELECTRICAL CHARACTERISTICSAD5121  
VDD = 2.3 V to 5.5 V, VSS = 0 V; VDD = 2.25 V to 2.75 V, VSS = −2.25 V to −2.75 V; VLOGIC = 1.8 V to 5.5 V, 40°C < TA < +125°C, unless  
otherwise noted.  
Table 2.  
Parameter  
Symbol  
Test Conditions/Comments  
Min  
Typ 1  
Max  
Unit  
DC CHARACTERISTICS—RHEOSTAT  
MODE (ALL RDACs)  
Resolution  
Resistor Integral Nonlinearity2  
N
R-INL  
7
Bits  
RAB = 10 kΩ  
VDD ≥ 2.7 V  
VDD < 2.7 V  
RAB = 100 kΩ  
VDD ≥ 2.7 V  
VDD < 2.7 V  
−1  
−2.5  
0.1  
1
+1  
+2.5  
LSB  
LSB  
−0.5  
−1  
0.1  
0.25 +1  
+0.5  
LSB  
LSB  
Resistor Differential Nonlinearity2  
Nominal Resistor Tolerance  
Resistance Temperature Coefficient3  
Wiper Resistance3  
R-DNL  
−0.5  
−8  
0.1  
1
35  
+0.5  
+8  
LSB  
%
ppm/°C  
ΔRAB/RAB  
(ΔRAB/RAB)/ΔT × 106  
RW  
Code = full scale  
Code = zero scale  
RAB = 10 kΩ  
55  
130  
125  
400  
RAB = 100 kΩ  
Bottom Scale or Top Scale  
RBS or RTS  
RAB = 10 kΩ  
RAB = 100 kΩ  
40  
60  
80  
230  
DC CHARACTERISTICS—POTENTIOMETER  
DIVIDER MODE (ALL RDACs)  
Integral Nonlinearity4  
INL  
RAB = 10 kΩ  
RAB = 100 kΩ  
−0.5  
−0.25  
−0.25  
0.1  
0.1  
0.1  
+0.5  
+0.25  
+0.25  
LSB  
LSB  
LSB  
Differential Nonlinearity4  
Full-Scale Error  
DNL  
VWFSE  
RAB = 10 kΩ  
RAB = 100 kΩ  
−1.5  
−0.5  
−0.1  
0.1  
LSB  
LSB  
+0.5  
Zero-Scale Error  
VWZSE  
RAB = 10 kΩ  
RAB = 100 kΩ  
(ΔVW/VW)/ΔT × 106 Code = half scale  
1
0.25  
5
1.5  
0.5  
LSB  
LSB  
ppm/°C  
Voltage Divider Temperature  
Coefficient3  
Rev. 0 | Page 3 of 32  
 
 
AD5121/AD5141  
Data Sheet  
Parameter  
Symbol  
Test Conditions/Comments  
Min  
Typ 1  
Max  
Unit  
RESISTOR TERMINALS  
Maximum Continuous Current  
IA, IB, and IW  
RAB = 10 kΩ  
RAB = 100 kΩ  
−6  
−1.5  
VSS  
+6  
+1.5  
VDD  
mA  
mA  
V
Terminal Voltage Range5  
Capacitance A, Capacitance B3  
CA, CB  
f = 1 MHz, measured to GND,  
code = half scale  
RAB = 10 kΩ  
RAB = 100 kΩ  
25  
12  
pF  
pF  
Capacitance W3  
CW  
f = 1 MHz, measured to GND,  
code = half scale  
RAB = 10 kΩ  
RAB = 100 kΩ  
VA = VW = VB  
12  
5
15  
pF  
pF  
nA  
Common-Mode Leakage Current3  
−500  
+500  
DIGITAL INPUTS  
Input Logic3  
High  
VINH  
VLOGIC = 1.8 V to 2.3 V  
VLOGIC = 2.3 V to 5.5 V  
0.8 × VLOGIC  
0.7 × VLOGIC  
V
V
Low  
VINL  
VHYST  
IIN  
0.2 × VLOGIC  
1
V
V
µA  
pF  
Input Hysteresis3  
Input Current3  
0.1 × VLOGIC  
Input Capacitance3  
DIGITAL OUTPUTS  
Output High Voltage3  
Output Low Voltage3  
CIN  
5
VOH  
VOL  
RPULL-UP = 2.2 kΩ to VLOGIC  
ISINK = 3 mA  
ISINK = 6 mA, VLOGIC > 2.3 V  
VLOGIC  
V
V
V
µA  
pF  
0.4  
0.6  
+1  
Three-State Leakage Current  
Three-State Output Capacitance  
POWER SUPPLIES  
−1  
2
Single-Supply Power Range  
Dual-Supply Power Range  
Logic Supply Range  
VSS = GND  
2.3  
2.25  
1.8  
5.5  
V
V
V
V
2.75  
VDD  
VDD  
Single supply, VSS = GND  
Dual supply, VSS < GND  
VIH = VLOGIC or VIL = GND  
VDD = 5.5 V  
2.25  
Positive Supply Current  
IDD  
0.7  
400  
−0.7  
2
320  
1
5.5  
µA  
nA  
µA  
mA  
µA  
nA  
µW  
dB  
VDD = 2.3 V  
Negative Supply Current  
EEPROM Store Current3, 6  
EEPROM Read Current3, 7  
Logic Supply Current  
Power Dissipation8  
Power Supply Rejection Ratio  
ISS  
VIH = VLOGIC or VIL = GND  
VIH = VLOGIC or VIL = GND  
VIH = VLOGIC or VIL = GND  
VIH = VLOGIC or VIL = GND  
VIH = VLOGIC or VIL = GND  
−5.5  
IDD_EEPROM_STORE  
IDD_EEPROM_READ  
ILOGIC  
PDISS  
PSRR  
120  
−60  
3.5  
−66  
∆VDD/∆VSS = VDD 10%,  
code = full scale  
Rev. 0 | Page 4 of 32  
Data Sheet  
AD5121/AD5141  
Parameter  
Symbol  
Test Conditions/Comments  
Min  
Typ 1  
Max  
Unit  
DYNAMIC CHARACTERISTICS9  
Bandwidth  
BW  
−3 dB  
RAB = 10 kΩ  
RAB = 100 kΩ  
3
0.43  
MHz  
MHz  
Total Harmonic Distortion  
Resistor Noise Density  
VW Settling Time  
THD  
eN_WB  
tS  
VDD/VSS = 2.5 V, VA = 1 V rms,  
VB = 0 V, f = 1 kHz  
RAB = 10 kΩ  
RAB = 100 kΩ  
Code = half scale, TA = 25°C,  
f = 10 kHz  
RAB = 10 kΩ  
−80  
−90  
dB  
dB  
7
20  
nV/√Hz  
nV/√Hz  
RAB = 100 kΩ  
VA = 5 V, VB = 0 V, from  
zero scale to full scale,  
0.5 LSB error band  
RAB = 10 kΩ  
RAB = 100 kΩ  
TA = 25°C  
2
12  
1
µs  
µs  
Mcycles  
kcycles  
Years  
Endurance10  
100  
Data Retention11  
50  
1 Typical values represent average readings at 25°C, VDD = 5 V, VSS = 0 V, and VLOGIC = 5 V.  
2 Resistor integral nonlinearity (R-INL) error is the deviation from an ideal value measured between the maximum resistance and the minimum resistance wiper  
positions. R-DNL measures the relative step change from ideal between successive tap positions. The maximum wiper current is limited to (0.7 × VDD)/RAB  
.
3 Guaranteed by design and characterization, not subject to production test.  
4 INL and DNL are measured at VWB with the RDAC configured as a potentiometer divider similar to a voltage output DAC. VA = VDD and VB = 0 V. DNL specification limits  
of 1 LSB maximum are guaranteed monotonic operating conditions.  
5 Resistor Terminal A, Resistor Terminal B, and Resistor Terminal W have no limitations on polarity with respect to each other. Dual-supply operation enables ground  
referenced bipolar signal adjustment.  
6 Different from operating current; supply current for EEPROM program lasts approximately 30 ms.  
7 Different from operating current; supply current for EEPROM read lasts approximately 20 µs.  
8 PDISS is calculated from (IDD × VDD) + (ILOGIC × VLOGIC).  
9 All dynamic characteristics use VDD/VSS  
= 2.5 V, and VLOGIC = 2.5 V.  
10 Endurance is qualified to 100,000 cycles per JEDEC Standard 22, Method A117 and measured at −40°C to +125°C.  
11 Retention lifetime equivalent at junction temperature (TJ) = 125°C per JEDEC Standard 22, Method A117. Retention lifetime, based on an activation energy of 1 eV,  
derates with junction temperature in the Flash/EE memory.  
Rev. 0 | Page 5 of 32  
 
 
 
AD5121/AD5141  
Data Sheet  
ELECTRICAL CHARACTERISTICSAD5141  
VDD = 2.3 V to 5.5 V, VSS = 0 V; VDD = 2.25 V to 2.75 V, VSS = −2.25 V to −2.75 V; VLOGIC = 1.8 V to 5.5 V, 40°C < TA < +125°C, unless  
otherwise noted.  
Table 3.  
Parameter  
Symbol  
Test Conditions/Comments  
Min  
Typ 1 Max  
Unit  
DC CHARACTERISTICS—RHEOSTAT  
MODE (ALL RDACs)  
Resolution  
N
R-INL  
8
Bits  
Resistor Integral Nonlinearity2  
RAB = 10 kΩ  
VDD ≥ 2.7 V  
VDD < 2.7 V  
RAB = 100 kΩ  
VDD ≥ 2.7 V  
VDD < 2.7 V  
−2  
−5  
0.2  
1.5  
+2  
+5  
LSB  
LSB  
−1  
−2  
−0.5  
−8  
0.1  
0.5  
0.2  
1
+1  
+2  
+0.5  
+8  
LSB  
LSB  
LSB  
%
Resistor Differential Nonlinearity2  
Nominal Resistor Tolerance  
Resistance Temperature Coefficient3  
Wiper Resistance3  
R-DNL  
ΔRAB/RAB  
(ΔRAB/RAB)/ΔT × 106  
RW  
Code = full scale  
Code = zero scale  
RAB = 10 kΩ  
35  
ppm/°C  
55  
130  
125  
400  
RAB = 100 kΩ  
Bottom Scale or Top Scale  
RBS or RTS  
RAB = 10 kΩ  
RAB = 100 kΩ  
40  
60  
80  
230  
DC CHARACTERISTICS—POTENTIOMETER  
DIVIDER MODE (ALL RDACs)  
Integral Nonlinearity4  
INL  
RAB = 10 kΩ  
RAB = 100 kΩ  
−1  
−0.5  
−0.5  
0.2  
0.1  
0.2  
+1  
+0.5  
+0.5  
LSB  
LSB  
LSB  
Differential Nonlinearity4  
Full-Scale Error  
DNL  
VWFSE  
RAB = 10 kΩ  
RAB = 100 kΩ  
−2.5  
−1  
−0.1  
0.2  
LSB  
LSB  
+1  
Zero-Scale Error  
VWZSE  
RAB = 10 kΩ  
RAB = 100 kΩ  
(ΔVW/VW)/ΔT × 106 Code = half scale  
1.2  
0.5  
5
3
1
LSB  
LSB  
ppm/°C  
Voltage Divider Temperature  
Coefficient3  
Rev. 0 | Page 6 of 32  
 
Data Sheet  
AD5121/AD5141  
Parameter  
Symbol  
Test Conditions/Comments  
Min  
Typ 1 Max  
Unit  
RESISTOR TERMINALS  
Maximum Continuous Current  
IA, IB, and IW  
RAB = 10 kΩ  
RAB = 100 kΩ  
−6  
−1.5  
VSS  
+6  
+1.5  
VDD  
mA  
mA  
V
Terminal Voltage Range5  
Capacitance A, Capacitance B3  
CA, CB  
f = 1 MHz, measured to GND,  
code = half scale  
RAB = 10 kΩ  
RAB = 100 kΩ  
25  
12  
pF  
pF  
Capacitance W3  
CW  
f = 1 MHz, measured to GND,  
code = half scale  
RAB = 10 kΩ  
RAB = 100 kΩ  
VA = VW = VB  
12  
5
15  
pF  
pF  
nA  
Common-Mode Leakage Current3  
−500  
+500  
DIGITAL INPUTS  
Input Logic3  
High  
VINH  
VLOGIC = 1.8 V to 2.3 V  
VLOGIC = 2.3 V to 5.5 V  
0.8 × VLOGIC  
0.7 × VLOGIC  
V
V
Low  
VINL  
VHYST  
IIN  
0.2 × VLOGIC  
1
V
V
µA  
pF  
Input Hysteresis3  
Input Current3  
0.1 × VLOGIC  
Input Capacitance3  
DIGITAL OUTPUTS  
Output High Voltage3  
Output Low Voltage3  
CIN  
5
VOH  
VOL  
RPULL-UP = 2.2 kΩ to VLOGIC  
ISINK = 3 mA  
ISINK = 6 mA, VLOGIC > 2.3V  
VLOGIC  
V
V
V
µA  
pF  
0.4  
0.6  
+1  
Three-State Leakage Current  
Three-State Output Capacitance  
POWER SUPPLIES  
−1  
2
Single-Supply Power Range  
Dual-Supply Power Range  
Logic Supply Range  
VSS = GND  
2.3  
2.25  
1.8  
5.5  
V
V
V
V
2.75  
VDD  
VDD  
Single supply, VSS = GND  
Dual supply, VSS < GND  
VIH = VLOGIC or VIL = GND  
VDD = 5.5 V  
2.25  
Positive Supply Current  
IDD  
0.7  
400  
−0.7  
2
320  
1
5.5  
µA  
nA  
µA  
mA  
µA  
nA  
µW  
dB  
VDD = 2.3 V  
Negative Supply Current  
EEPROM Store Current3, 6  
EEPROM Read Current3, 7  
Logic Supply Current  
Power Dissipation8  
Power Supply Rejection Ratio  
ISS  
VIH = VLOGIC or VIL = GND  
VIH = VLOGIC or VIL = GND  
VIH = VLOGIC or VIL = GND  
VIH = VLOGIC or VIL = GND  
VIH = VLOGIC or VIL = GND  
−5.5  
IDD_EEPROM_STORE  
IDD_EEPROM_READ  
ILOGIC  
PDISS  
PSR  
120  
−60  
3.5  
−66  
∆VDD/∆VSS = VDD 10%,  
code = full scale  
Rev. 0 | Page 7 of 32  
 
AD5121/AD5141  
Data Sheet  
Parameter  
Symbol  
Test Conditions/Comments  
Min  
Typ 1 Max  
Unit  
DYNAMIC CHARACTERISTICS9  
Bandwidth  
BW  
−3 dB  
RAB = 10 kΩ  
RAB = 100 kΩ  
3
0.43  
MHz  
MHz  
Total Harmonic Distortion  
Resistor Noise Density  
VW Settling Time  
THD  
eN_WB  
tS  
VDD/VSS = 2.5 V, VA = 1 V rms,  
VB = 0 V, f = 1 kHz  
RAB = 10 kΩ  
RAB = 100 kΩ  
Code = half scale, TA = 25°C,  
f = 10 kHz  
RAB = 10 kΩ  
−80  
−90  
dB  
dB  
7
20  
nV/√Hz  
nV/√Hz  
RAB = 100 kΩ  
VA = 5 V, VB = 0 V, from  
zero scale to full scale,  
0.5 LSB error band  
RAB = 10 kΩ  
RAB = 100 kΩ  
TA = 25°C  
2
12  
1
µs  
µs  
Mcycles  
kcycles  
Years  
Endurance10  
100  
Data Retention11  
50  
1 Typical values represent average readings at 25°C, VDD = 5 V, VSS = 0 V, and VLOGIC = 5 V.  
2 Resistor integral nonlinearity error (R-INL) is the deviation from an ideal value measured between the maximum resistance and the minimum resistance wiper  
positions. R-DNL measures the relative step change from ideal between successive tap positions. The maximum wiper current is limited to (0.7 × VDD)/RAB  
.
3 Guaranteed by design and characterization, not subject to production test.  
4 INL and DNL are measured at VWB with the RDAC configured as a potentiometer divider similar to a voltage output DAC. VA = VDD and VB = 0 V. DNL specification limits  
of 1 LSB maximum are guaranteed monotonic operating conditions.  
5 Resistor Terminal A, Resistor Terminal B, and Resistor Terminal W have no limitations on polarity with respect to each other. Dual-supply operation enables ground  
referenced bipolar signal adjustment.  
6 Different from operating current; supply current for EEPROM program lasts approximately 30 ms.  
7 Different from operating current; supply current for EEPROM read lasts approximately 20 µs.  
8 PDISS is calculated from (IDD × VDD) + (ILOGIC × VLOGIC).  
9 All dynamic characteristics use VDD/VSS  
= 2.5 V, and VLOGIC = 2.5 V.  
10 Endurance is qualified to 100,000 cycles per JEDEC Standard 22, Method A117 and measured at −40°C to +125°C.  
11 Retention lifetime equivalent at junction temperature (TJ) = 125°C per JEDEC Standard 22, Method A117. Retention lifetime, based on an activation energy of 1 eV,  
derates with junction temperature in the Flash/EE memory.  
Rev. 0 | Page 8 of 32  
 
 
 
Data Sheet  
AD5121/AD5141  
INTERFACE TIMING SPECIFICATIONS  
VLOGIC = 1.8 V to 5.5 V; all specifications TMIN to TMAX, unless otherwise noted.  
Table 4. SPI Interface  
Parameter1  
Test Conditions/Comments  
Min  
20  
30  
10  
15  
10  
15  
10  
5
Typ  
Max  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Description  
t1  
VLOGIC > 1.8 V  
VLOGIC = 1.8 V  
VLOGIC > 1.8 V  
VLOGIC = 1.8 V  
VLOGIC > 1.8 V  
VLOGIC = 1.8 V  
SCLK cycle time  
t2  
t3  
SCLK high time  
SCLK low time  
t4  
t5  
t6  
t7  
SYNC-to-SCLK falling edge setup time  
Data setup time  
Data hold time  
SYNC rising edge to next SCLK fall ignored  
Minimum SYNC high time  
5
10  
20  
2
t8  
3
t9  
50  
SCLK rising edge to SDO valid  
SYNC rising edge to SDO pin disable  
t10  
500  
1 All input signals are specified with tr = tf = 1 ns/V (10% to 90% of VDD) and timed from a voltage level of (VIL + VIH)/2.  
2 Refer to t  
t
for memory commands operations (see Table 6).  
EEPROM_PROGRAM and  
EEPROM_READBACK  
3 RPULL_UP = 2.2 kΩ to VDD with a capacitance load of 168 pF.  
Table 5. I2C Interface  
Parameter1 Test Conditions/Comments  
Min  
Typ Max Unit Description  
2
fSCL  
t1  
Standard mode  
Fast mode  
Standard mode  
Fast mode  
100  
400  
kHz  
kHz  
µs  
µs  
µs  
µs  
ns  
ns  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
Serial clock frequency  
4.0  
0.6  
4.7  
1.3  
250  
100  
0
SCL high time, tHIGH  
t2  
Standard mode  
Fast mode  
SCL low time, tLOW  
t3  
Standard mode  
Fast mode  
Data setup time, tSU; DAT  
t4  
Standard mode  
Fast mode  
3.45  
0.9  
Data hold time, tHD; DAT  
0
t5  
Standard mode  
Fast mode  
4.7  
0.6  
4
0.6  
4.7  
1.3  
4
Setup time for a repeated start condition, tSU; STA  
Hold time (repeated) for a start condition, tHD; STA  
Bus free time between a stop and a start condition, tBUF  
Setup time for a stop condition, tSU; STO  
Rise time of SDA signal, tRDA  
t6  
Standard mode  
Fast mode  
t7  
Standard mode  
Fast mode  
t8  
Standard mode  
Fast mode  
0.6  
t9  
Standard mode  
Fast mode  
1000 ns  
20 + 0.1 CL  
20 + 0.1 CL  
20 + 0.1 CL  
300  
300  
300  
ns  
ns  
ns  
t10  
t11  
t11A  
Standard mode  
Fast mode  
Standard mode  
Fast mode  
Fall time of SDA signal, tFDA  
1000 ns  
300 ns  
1000 ns  
Rise time of SCL signal, tRCL  
Standard mode  
Rise time of SCL signal after a repeated start condition  
and after an acknowledge bit, tRCL1 (not shown in Figure 3)  
Fast mode  
20 + 0.1 CL  
300  
ns  
Rev. 0 | Page 9 of 32  
 
 
AD5121/AD5141  
Data Sheet  
Parameter1 Test Conditions/Comments  
Min  
Typ Max Unit Description  
t12  
Standard mode  
Fast mode  
Fast mode  
300  
300  
50  
ns  
ns  
ns  
Fall time of SCL signal, tFCL  
20 + 0.1 CL  
0
3
tSP  
Pulse width of suppressed spike (not shown in Figure 3)  
1 Maximum bus capacitance is limited to 400 pF.  
2 The SDA and SCL timing is measured with the input filters enabled. Switching off the input filters improves the transfer rate; however, it has a negative effect on the  
EMC behavior of the part.  
3 Input filtering on the SCL and SDA inputs suppresses noise spikes that are less than 50 ns for fast mode.  
Table 6. Control Pins  
Parameter  
Min  
1
Typ  
Max  
Unit  
µs  
Description  
t1  
End command to LRDAC falling edge  
Minimum LRDAC low time  
t2  
50  
0.1  
ns  
t3  
10  
50  
30  
75  
µs  
RESET low time  
1
tEEPROM_PROGRAM  
15  
7
ms  
µs  
Memory program time (not shown in Figure 6)  
Memory readback time (not shown in Figure 6)  
Power-on EEPROM restore time (not shown in Figure 6)  
Reset EEPROM restore time (not shown in Figure 6)  
tEEPROM_READBACK  
2
tPOWER_UP  
µs  
µs  
tRESET  
30  
1 EEPROM program time depends on the temperature and EEPROM write cycles. Higher timing is expected at lower temperatures and higher write cycles.  
2 Maximum time after VDD − VSS is equal to 2.3 V.  
SHIFT REGISTER AND TIMING DIAGRAMS  
DB15 (MSB)  
DB8  
A0  
DB7  
D7  
DB0 (LSB)  
D0  
D1  
A1  
D6  
D5  
D4  
D3  
C3  
C2  
C1  
C0  
A3  
A2  
D2  
DATA BITS  
CONTROL BITS  
ADDRESS BITS  
Figure 2. Input Shift Register Contents  
t11  
t12  
t6  
t8  
t2  
SCL  
SDA  
t5  
t1  
t6  
t10  
t9  
t4  
t3  
t7  
P
S
S
P
Figure 3. I2C Serial Interface Timing Diagram (Typical Write Sequence)  
t4  
t1  
t2  
t7  
SCLK  
SYNC  
t3  
t8  
t5  
t6  
SDI  
C3  
C2  
C1  
C0  
D7  
D6  
D5  
D2  
D1  
D0  
t9  
t10  
SDO  
C3*  
C2*  
C1*  
C0*  
D7*  
D6*  
D5*  
D2*  
D1*  
D0*  
*PREVIOUS COMMAND RECEIVED.  
Figure 4. SPI Serial Interface Timing Diagram, CPOL = 0, CPHA = 1  
Rev. 0 | Page 10 of 32  
 
 
 
 
 
 
Data Sheet  
AD5121/AD5141  
t1  
t2  
t7  
t4  
SCLK  
SYNC  
t3  
t8  
t5  
t6  
SDI  
C3  
C2  
C1  
C0  
D7  
D6  
D5  
D2  
D1  
D0  
t9  
t10  
SDO  
C3*  
C2*  
C1*  
C0*  
D7*  
D6*  
D5*  
D2*  
D1*  
D0*  
*PREVIOUS COMMAND RECEIVED.  
Figure 5. SPI Serial Interface Timing Diagram, CPOL = 1, CPHA = 0  
SCLK  
SPI INTERFACE  
SYNC  
SCL  
2
I C INTERFACE  
SDA  
P
t2  
t1  
LRDAC  
RESET  
t3  
Figure 6. Control Pins Timing Diagram  
Rev. 0 | Page 11 of 32  
 
AD5121/AD5141  
Data Sheet  
ABSOLUTE MAXIMUM RATINGS  
TA = 25°C, unless otherwise noted.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Table 7.  
Parameter  
VDD to GND  
VSS to GND  
VDD to VSS  
Rating  
−0.3 V to +7.0 V  
+0.3 V to −7.0 V  
7 V  
VLOGIC to GND  
−0.3 V to VDD + 0.3 V or  
THERMAL RESISTANCE  
+7.0 V (whichever is less)  
VA, VW, VB to GND  
VSS − 0.3 V, VDD + 0.3 V or  
+7.0 V (whichever is less)  
θJA is defined by the JEDEC JESD51 standard, and the value is  
dependent on the test board and test environment.  
IA, IW, IB  
Pulsed1  
Table 8. Thermal Resistance  
Package Type  
θJA  
θJC  
Unit  
Frequency > 10 kHz  
RAW = 10 kΩ  
RAW = 100 kΩ  
6 mA/d2  
1.5 mA/d2  
16-Lead LFCSP  
89.51  
3
°C/W  
1 JEDEC 2S2P test board, still air (0 m/sec airflow).  
Frequency ≤ 10 kHz  
RAW = 10 kΩ  
RAW = 100 kΩ  
6 mA/√d2  
1.5 mA/√d2  
ESD CAUTION  
Digital Inputs  
−0.3 V to VLOGIC + 0.3 V or  
+7 V (whichever is less)  
−40°C to +125°C  
150°C  
3
Operating Temperature Range, TA  
Maximum Junction Temperature,  
TJ Maximum  
Storage Temperature Range  
Reflow Soldering  
−65°C to +150°C  
Peak Temperature  
260°C  
Time at Peak Temperature  
Package Power Dissipation  
20 sec to 40 sec  
(TJ max − TA)/θJA  
1 Maximum terminal current is bounded by the maximum current handling of  
the switches, maximum power dissipation of the package, and maximum  
applied voltage across any two of the A, B, and W terminals at a given  
resistance.  
2 d = pulse duty factor.  
3 Includes programming of EEPROM memory.  
Rev. 0 | Page 12 of 32  
 
 
 
 
 
 
 
 
 
Data Sheet  
AD5121/AD5141  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
PIN 1  
INDICATOR  
GND 1  
A 2  
12 SDI/SDA  
11  
10  
9
SCLK/SCL  
AD5121/  
AD5141  
W 3  
B 4  
V
LOGIC  
TOP VIEW  
(Not to Scale)  
V
DD  
NOTES  
1. INTERNALLY CONNECT THE  
EXPOSED PAD TO V  
.
SS  
Figure 7. Pin Configuration  
Table 9. Pin Function Descriptions  
Pin No. Mnemonic Description  
Ground Pin, Logic Ground Reference.  
Terminal A of RDAC. VSS ≤ VA ≤ VDD  
Wiper terminal of RDAC. VSS ≤ VW ≤ VDD  
Terminal B of RDAC. VSS ≤ VB ≤ VDD  
Negative Power Supply. Decouple this pin with 0.1 µF ceramic capacitors and 10 µF capacitors.  
1
2
3
4
5
6
GND  
A
W
B
VSS  
.
.
.
SYNC/ADDR0 Programmable Address (ADDR0) for Multiple Package Decoding, DIS = 1.  
Synchronization Data Input, Active Low. When SYNC returns high, data is loaded into the RDAC register, DIS = 0.  
7
8
RESET  
DIS  
Hardware Reset Pin. Refresh the RDAC registers from EEPROM. RESET is activated at logic low. If this pin is not  
used, tie RESET to VLOGIC  
Digital Interface Select (SPI/I2C Select). SPI when DIS = 0 (GND), I2C when DIS = 1 (VLOGIC). This pin cannot be left  
floating.  
.
9
10  
11  
VDD  
VLOGIC  
SCLK/SCL  
Positive Power Supply. Decouple this pin with 0.1µF ceramic capacitors and 10 µF capacitors.  
Logic Power Supply; 1.8 V to VDD. Decouple this pin with 0.1 µF ceramic capacitors and 10 µF capacitors.  
SPI Serial Clock Line (SCLK). Data is clocked in at logic low transition.  
I2C Serial Clock Line (SCL). Data is clocked in at logic low transition.  
Serial Data Input/Output (SDA), When DIS = 1.  
12  
13  
SDI/SDA  
WP  
Serial Data Input (SDI), When DIS = 0.  
Optional Write Protect. This pin prevents any changes to the present RDAC and EEPROM contents, except when  
reloading the content of the EEPROM into the RDAC register. WP is activated at logic low. If this pin is not used,  
tie WP to VLOGIC  
14  
SDO/ADDR1  
Programmable Address (ADDR1) for Multiple Package Decoding, When DIS = 1.  
Serial Data Output (SDO). This is an open-drain output pin, and it needs an external pull-up resistor when DIS = 0.  
15  
16  
INDEP  
LRDAC  
EPAD  
Linear Gain Setting Mode at Power-Up. Each string resistor is loaded from its associate memory location. If  
INDEP is enabled, it cannot be disabled by the software.  
Load RDAC. Transfers the contents of the input register to the RDAC register. This allows asynchronous RDAC  
update. LRDAC is activated low. If this pin is not used, tie LRDAC to VLOGIC  
.
Internally Connect the Exposed Pad to VSS.  
Rev. 0 | Page 13 of 32  
 
 
AD5121/AD5141  
Data Sheet  
TYPICAL PERFORMANCE CHARACTERISTICS  
0.5  
0.2  
0.1  
10kΩ, +125°C  
10kΩ, +25°C  
0.4  
10kΩ, –40°C  
100kΩ, +125°C  
100kΩ, +25°C  
0.3  
0
100kΩ, –40°C  
0.2  
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–0.6  
0.1  
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
10kΩ, +125°C  
10kΩ, +25°C  
10kΩ, –40°C  
100kΩ, +125°C  
100kΩ, +25°C  
100kΩ, –40°C  
0
100  
200  
0
100  
200  
CODE (Decimal)  
CODE (Decimal)  
Figure 8. R-INL vs. Code (AD5141)  
Figure 11. R-DNL vs. Code (AD5141)  
0.20  
0.10  
0.05  
0.15  
0.10  
0
0.05  
–0.05  
–0.10  
–0.15  
–0.20  
–0.25  
–0.30  
0
–0.05  
–0.10  
–0.15  
–0.20  
–0.25  
10kΩ, +125°C  
10kΩ, +25°C  
10kΩ, –40°C  
100kΩ, +125°C  
100kΩ, +25°C  
100kΩ, –40°C  
10kΩ, +125°C  
10kΩ, +25°C  
10kΩ, –40°C  
100kΩ, +125°C  
100kΩ, +25°C  
100kΩ, –40°C  
0
50  
100  
0
50  
100  
CODE (Decimal)  
CODE (Decimal)  
Figure 9. R-INL vs. Code (AD5121)  
Figure 12. R-DNL vs. Code (AD5121)  
0.10  
0.05  
0.3  
0.2  
0.1  
0
10kΩ, –40°C  
10kΩ, +25°C  
10kΩ, +125°C  
100kΩ, –40°C  
100kΩ, +25°C  
100kΩ, +125°C  
0
–0.05  
–0.10  
–0.15  
–0.20  
–0.25  
–0.30  
–0.1  
–0.2  
10kΩ, –40°C  
10kΩ, +25°C  
10kΩ, +125°C  
100kΩ, –40°C  
100kΩ, +25°C  
100kΩ, +125°C  
–0.3  
0
0
100  
200  
100  
200  
CODE (Decimal)  
CODE (Decimal)  
Figure 13. DNL vs. Code (AD5141)  
Figure 10. INL vs. Code (AD5141)  
Rev. 0 | Page 14 of 32  
 
Data Sheet  
AD5121/AD5141  
0.15  
0.10  
0.05  
0
0.06  
0.04  
10kΩ, –40°C  
10kΩ, +25°C  
10kΩ, +125°C  
100kΩ, –40°C  
100kΩ, +25°C  
100kΩ, +125°C  
10kΩ, –40°C  
10kΩ, +25°C  
10kΩ, +125°C  
100kΩ, –40°C  
100kΩ, +25°C  
100kΩ, +125°C  
0.02  
0
–0.02  
–0.04  
–0.06  
–0.08  
–0.10  
–0.12  
–0.14  
–0.05  
–0.10  
–0.15  
0
50  
100  
0
50  
100  
CODE (Decimal)  
CODE (Decimal)  
Figure 14. INL vs. Code (AD5121)  
Figure 17. DNL vs. Code (AD5121)  
450  
400  
350  
300  
250  
200  
150  
100  
50  
450  
100kΩ  
10kΩ  
10kΩ  
100kΩ  
400  
350  
300  
250  
200  
150  
100  
50  
0
0
–50  
–50  
AD5141  
AD5121  
AD5142  
AD5122  
0
0
50  
25  
100  
50  
150  
75  
200  
100  
255  
127  
0
0
50  
25  
100  
50  
150  
75  
200  
100  
255  
127  
CODE (Decimal)  
CODE (Decimal)  
Figure 18. Rheostat Mode Temperature Coefficient ((ΔRWB/RWB)/ΔT × 106)  
vs. Code  
Figure 15. Potentiometer Mode Temperature Coefficient ((ΔVW/VW)/ΔT × 106)  
vs. Code  
1200  
800  
2
I
I
I
, V  
=
=
=
2.3V  
3.3V  
5V  
I
I
I
,
,
,
V
V
V
= 2.3V  
= 3.3V  
= 5V  
V
V
= V  
DD LOGIC  
I C, V  
= 1.8V  
= 2.3V  
= 3.3V  
= 5V  
DD DD  
LOGIC LOGIC  
LOGIC  
LOGIC  
LOGIC  
LOGIC  
LOGIC  
LOGIC  
LOGIC  
LOGIC  
LOGIC  
LOGIC  
2
I C, V  
, V  
= GND  
DD DD  
LOGIC LOGIC  
SS  
2
I C, V  
700  
600  
500  
400  
300  
200  
100  
0
, V  
DD DD  
LOGIC LOGIC  
2
I C, V  
1000  
800  
600  
400  
200  
0
2
I C, V  
= 5.5V  
= 1.8V  
= 2.3V  
= 3.3V  
= 5V  
SPI, V  
SPI, V  
SPI, V  
SPI, V  
SPI, V  
= 5.5V  
0
1
2
3
4
5
–40  
10  
60  
TEMPERATURE (°C)  
110 125  
INPUT VOLTAGE (V)  
Figure 19. ILOGIC Current vs. Digital Input Voltage  
Figure 16. Supply Current vs. Temperature  
Rev. 0 | Page 15 of 32  
AD5121/AD5141  
Data Sheet  
0
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
0x80 (0x40)  
0x40 (0x20)  
0x20 (0x10)  
0x10 (0x08)  
0x8 (0x04)  
0x80 (0x40)  
0x40 (0x20)  
–10  
0x20 (0x10)  
–20  
0x10 (0x08)  
0x4 (0x02)  
0x2 (0x01)  
0x1 (0x00)  
0x8 (0x04)  
–30  
0x4 (0x02)  
0x00  
0x2 (0x01)  
0x1 (0x00)  
–40  
0x00  
–50  
AD5121/AD5141  
–60  
AD5121/AD5141  
10  
100  
1k  
10k  
100k  
1M  
10M  
10  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 20. 10 kΩ Gain vs. Frequency vs. Code  
Figure 23. 100 kΩ Gain vs. Frequency vs. Code  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
0
10kΩ  
10kΩ  
100kΩ  
V
/V = ±2.5V  
= 1V rms  
= GND  
DD SS  
100kΩ  
V
V
A
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
B
CODE = HALF SCALE  
NOISE FILTER = 22kHz  
V
f
/V = ±2.5V  
DD SS  
= 1kHz  
CODE = HALF SCALE  
NOISE FILTER = 22kHz  
IN  
0.001  
0.01  
0.1  
1
20  
200  
2k  
FREQUENCY (Hz)  
20k  
200k  
VOLTAGE (V rms)  
Figure 24. Total Harmonic Distortion Plus Noise (THD + N) vs. Amplitude  
Figure 21. Total Harmonic Distortion Plus Noise (THD + N) vs. Frequency  
10  
0
20  
V
R
/V = ±2.5V  
DD SS  
= 10kΩ  
AB  
0
–20  
–10  
–20  
–30  
–40  
–50  
–60  
–40  
–60  
–70  
–80  
QUARTER SCALE  
QUARTER SCALE  
MIDSCALE  
–80  
V
R
/V = ±2.5V  
MIDSCALE  
DD SS  
FULL-SCALE  
= 100kΩ  
AB  
FULL-SCALE  
–90  
10  
–100  
100  
1k  
10k  
100k  
1M  
10  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 25. Normalized Phase Flatness vs. Frequency, RAB = 100 kΩ  
Figure 22. Normalized Phase Flatness vs. Frequency, RAB = 10 kΩ  
Rev. 0 | Page 16 of 32  
Data Sheet  
AD5121/AD5141  
0.0025  
0.0020  
0.0015  
0.0010  
0.0005  
0
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
600  
500  
400  
300  
200  
100  
100kΩ, V  
100kΩ, V  
100kΩ, V  
100kΩ, V  
100kΩ, V  
100kΩ, V  
= 2.3V  
= 2.7V  
= 3V  
DD  
DD  
DD  
DD  
DD  
DD  
= 3.6V  
= 5V  
= 5.5V  
10kΩ, V  
10kΩ, V  
10kΩ, V  
10kΩ, V  
10kΩ, V  
10kΩ, V  
= 2.3V  
= 2.7V  
= 3V  
DD  
DD  
DD  
DD  
DD  
DD  
= 3.6V  
= 5V  
= 5.5V  
0
0
0
–600 –500 –400 –300 –200 –100  
0
100 200 300 400 500 600  
1
2
3
4
5
RESISTOR DRIFT (ppm)  
VOLTAGE (V)  
Figure 26. Incremental Wiper On Resistance vs. VDD  
Figure 29. Resistor Lifetime Drift  
10  
9
8
7
6
5
4
3
2
1
0
0
10kΩ  
10k+ 0pF  
100kΩ  
10k+ 75pF  
10k+ 150pF  
10k+ 250pF  
100k+ 0pF  
100k+ 75pF  
100k+ 150pF  
100k+ 250pF  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
10  
100  
1k  
10k  
100k  
1M  
10M  
0
0
20  
10  
40  
20  
60  
30  
80  
40  
100  
50  
120  
60 AD5121  
AD5141  
FREQUENCY (Hz)  
CODE (Decimal)  
Figure 30. Power Supply Rejection Ratio (PSRR) vs. Frequency  
Figure 27. Maximum Bandwidth vs. Code vs. Net Capacitance  
0.020  
0.8  
0x80 TO 0x7F, 100kΩ  
V
V
V
/V = ±2.5V  
DD SS  
0x80 TO 0x7F, 10kΩ  
= V  
A
B
DD  
SS  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.015  
0.010  
0.005  
0
= V  
–0.005  
–0.010  
–0.015  
–0.020  
–0.1  
0
500  
1000  
1500  
2000  
0
5
10  
15  
TIME (ns)  
TIME (µs)  
Figure 31. Digital Feedthrough  
Figure 28. Maximum Transition Glitch  
Rev. 0 | Page 17 of 32  
AD5121/AD5141  
Data Sheet  
7
6
5
4
3
2
1
0
0
10kΩ  
SHUTDOWN MODE ENABLED  
100kΩ  
–20  
–40  
–60  
–80  
10kΩ  
–100  
100kΩ  
–120  
10  
100  
1k  
10k  
100k  
1M  
10M  
0
0
50  
25  
100  
50  
150  
75  
200  
100  
250  
125  
AD5141  
AD5121  
FREQUENCY (Hz)  
CODE (Decimal)  
Figure 32. Shutdown Isolation vs. Frequency  
Figure 33. Theoretical Maximum Current vs. Code  
Rev. 0 | Page 18 of 32  
Data Sheet  
AD5121/AD5141  
TEST CIRCUITS  
Figure 34 to Figure 38 define the test conditions used in the Specifications section.  
NC  
DUT  
A
V
I
A
W
V+ = V ±10%  
DD  
W
V
Δ
MS  
V
A
B
PSRR (dB) = 20 LOG  
DD  
)
(
ΔV  
B
W
DD  
V+  
~
V
ΔV  
%
MS  
MS  
PSS (%/%) =  
V
MS  
ΔV  
%
DD  
NC = NO CONNECT  
Figure 37. Power Supply Sensitivity and  
Figure 34. Resistor Integral Nonlinearity Error (Rheostat Operation; R-INL, R-DNL)  
Power Supply Rejection Ratio (PSS and PSRR)  
0.1V  
R
=
SW  
I
DUT  
B
SW  
CODE = 0x00  
W
+
DUT  
V+ = V  
DD  
1LSB = V+/2  
0.1V  
I
SW  
N
A
W
V+  
V
TO V  
DD  
SS  
B
A = NC  
V
MS  
Figure 35. Potentiometer Divider Nonlinearity Error (INL, DNL)  
Figure 38. Incremental on Resistance  
NC  
DUT  
A
W
I
= V /R  
DD NOMINAL  
W
V
W
B
V
R
= V /I  
MS1 W  
MS1  
W
NC = NO CONNECT  
Figure 36. Wiper Resistance  
Rev. 0 | Page 19 of 32  
 
 
 
AD5121/AD5141  
Data Sheet  
THEORY OF OPERATION  
The AD5121/AD5141 digital programmable potentiometers are  
designed to operate as true variable resistors for analog signals  
within the terminal voltage range of VSS < VTERM < VDD. The  
resistor wiper position is determined by the RDAC register  
contents. The RDAC register acts as a scratchpad register that  
allows unlimited changes of resistance settings. A secondary  
register (the input register) can be used to preload the RDAC  
register data.  
SERIAL DATA DIGITAL INTERFACE SELECTION, DIS  
The AD5121/AD5141 LFSCP provides the flexibility of a selectable  
interface. When the digital interface select (DIS) pin is tied low,  
the SPI mode is engaged. When the DIS pin is tied high, the I2C  
mode is engaged.  
SPI SERIAL DATA INTERFACE  
The AD5121/AD5141 contain a 4-wire, SPI-compatible digital  
interface (SDI,  
begins by bringing the  
held low until the complete data-word is loaded from the SDI pin.  
Data is loaded in at the SCLK falling edge transition, as shown  
in Figure 4. When  
, SDO, and SCLK). The write sequence  
SYNC  
The RDAC register can be programmed with any position setting  
using the I2C or SPI interface (depending on the model). When  
a desirable wiper position is found, this value can be stored in  
the EEPROM memory. Thereafter, the wiper position is always  
restored to that position for subsequent power-ups. The storing  
of EEPROM data takes approximately 18 ms; during this time,  
the device is locked and does not acknowledge any new command,  
preventing any changes from taking place.  
SYNC  
SYNC  
pin must be  
line low. The  
SYNC  
returns high, the serial data-word is  
decoded according to the instructions in Table 16.  
The AD5121/AD5141 do not require a continuous SCLK  
SYNC  
when  
is high. To minimize power consumption in the  
RDAC REGISTER AND EEPROM  
digital input buffers when the part is enabled, operate all serial  
interface pins close to the VLOGIC supply rails.  
The RDAC register directly controls the position of the digital  
potentiometer wiper. For example, when the RDAC register is  
loaded with 0x80 (AD5141, 256 taps), the wiper is connected to  
half scale of the variable resistor. The RDAC register is a standard  
logic register; there is no restriction on the number of changes  
allowed.  
SYNC  
Interruption  
In a standalone write sequence for the AD5121/AD5141,  
SYNC  
the  
instruction is decoded when  
SYNC  
line is kept low for 16 falling edges of SCLK, and the  
SYNC  
is pulled high. However, if  
line is kept low for less than 16 falling edges of SCLK,  
the  
It is possible to both write to and read from the RDAC register  
using the digital interface (see Table 16).  
the input shift register content is ignored, and the write sequence is  
considered invalid.  
The contents of the RDAC register can be stored to the EEPROM  
using Command 9 (see Table 16). Thereafter, the RDAC register  
always sets at that position for any future on-off-on power  
supply sequence. It is possible to read back data saved into the  
EEPROM with Command 3 (see Table 16).  
SDO Pin  
The serial data output pin (SDO) serves two purposes: to read  
back the contents of the control, EEPROM, RDAC, and input  
registers using Command 3 (see Table 11 and Table 16), and to  
connect the AD5121/AD5141 to daisy-chain mode.  
Alternatively, the EEPROM can be written to independently  
using Command 1 (see Table 16).  
The SDO pin contains an internal open-drain output that needs an  
external pull-up resistor. The SDO pin is enabled when  
pulled low, and the data is clocked out of SDO on the rising  
edge of SCLK.  
SYNC  
is  
INPUT SHIFT REGISTER  
For the AD5121/AD5141, the input shift register is 16 bits wide,  
as shown in Figure 2. The 16-bit word consists of four control  
bits, followed by four address bits and by eight data bits  
If the AD5121 RDAC or EEPROM registers are read from or  
written to the lowest data bit (Bit 0) is ignored.  
Data is loaded MSB first (Bit 15). The four control bits determine  
the function of the software command, as listed in Table 11 and  
Table 16.  
Rev. 0 | Page 20 of 32  
 
 
 
 
 
Data Sheet  
AD5121/AD5141  
Daisy-Chain Connection  
To prevent data from mislocking (for example, due to noise) the  
part includes an internal counter, if the clock falling edges count  
is not a multiple of 8, the part ignores the command. A valid  
Daisy chaining minimizes the number of port pins required from  
the controlling IC. As shown in Figure 39, the SDO pin of one  
package must be tied to the SDI pin of the next package. The clock  
period may need to be increased because the propagation delay  
of the line between subsequent devices. When two AD5121/  
AD5141 devices are daisy chained, 32 bits of data are required.  
The first 16 bits assigned to U2, and the second 16 bits assigned  
SYNC  
clock count is 16, 24, or 32. The counter resets when  
returns high.  
SYNC  
to U1, as shown in Figure 40. Keep the  
pin low until all  
SYNC  
32 bits are clocked into their respective serial registers. The  
pin is then pulled high to complete the operation. A typical  
connection is shown in Figure 39.  
V
V
LOGIC  
LOGIC  
AD5121/  
AD5141  
AD5121/  
AD5141  
R
P
2.2kΩ  
R
P
2.2kΩ  
SDI  
SDO  
U2  
MOSI  
SDI  
U1  
SDO  
MICROCONTROLLER  
MISO  
SCLK  
SS  
SYNC  
SCLK  
SYNC  
SCLK  
Figure 39. Daisy-Chain Configuration  
18  
SCLK  
1
2
16  
17  
32  
SYNC  
MOSI  
DB15  
DB0  
DB15  
DB15  
DB0  
INPUT WORD FOR U2  
INPUT WORD FOR U1  
INPUT WORD FOR U2  
SDO_U1  
DB0  
DB15  
DB0  
UNDEFINED  
Figure 40. Daisy-Chain Diagram  
Rev. 0 | Page 21 of 32  
 
 
AD5121/AD5141  
Data Sheet  
I2C SERIAL DATA INTERFACE  
3. When all data bits have been read from or written to, a stop  
condition is established. In write mode, the master pulls the  
SDA line high during the tenth clock pulse to establish a stop  
condition. In read mode, the master issues a no acknowledge  
for the ninth clock pulse (that is, the SDA line remains high).  
The master then brings the SDA line low before the tenth  
clock pulse, and then high again during the tenth clock pulse  
to establish a stop condition.  
The AD5141 has 2-wire, I2C-compatible serial interface. These  
devices can be connected to an I2C bus as a slave device, under the  
control of a master device. See Figure 3 for a timing diagram of a  
typical write sequence.  
The AD5141 supports standard (100 kHz) and fast (400 kHz) data  
transfer modes. Support is not provided for 10-bit addressing  
and general call addressing.  
I2C ADDRESS  
The 2-wire serial bus protocol operates as follows:  
The AD5141 has two different pin address options available, as  
shown in Table 10.  
1. The master initiates a data transfer by establishing a start  
condition, which is when a high-to-low transition on the  
SDA line occurs while SCL is high. The following byte is  
the address byte, which consists of the 7-bit slave address  
Table 10. 24-Lead LFCSP Device Address Selection  
ADDR0 Pin  
ADDR1 Pin  
7-Bit I2C Device Address  
0100000  
0100010  
0100011  
W
and an R/ bit. The slave device corresponding to the  
VDD  
VDD  
VDD  
VDD  
No connect1  
GND  
transmitted address responds by pulling SDA low during  
the ninth clock pulse (this is called the acknowledge bit).  
At this stage, all other devices on the bus remain idle while  
the selected device waits for data to be written to, or read  
from, its shift register.  
VDD  
No connect1  
No connect1  
No connect1  
GND  
GND  
GND  
0101000  
0101010  
0101011  
0101100  
0101110  
0101111  
No connect1  
GND  
W
If the R/ bit is set high, the master reads from the slave  
VDD  
No connect1  
GND  
W
device. However, if the R/ bit is set low, the master writes  
to the slave device.  
2. Data is transmitted over the serial bus in sequences of nine  
clock pulses (eight data bits followed by an acknowledge bit).  
The transitions on the SDA line must occur during the low  
period of SCL and remain stable during the high period of SCL.  
1 Not available in bipolar mode (VSS < 0 V) or in low voltage mode (VLOGIC = 1.8 V).  
Table 11. Simple Command Operation Truth Table  
Control  
Bits[DB15:DB12]  
Address  
Bits[DB11:DB8]1  
Data Bits[DB7:DB0]1  
Command  
Number  
C3 C2 C1 C0 A3 A2 A1 A0 D7 D6 D5 D4 D3 D2 D1 D0 Operation  
0
1
0
0
0
0
0
0
0
1
X
0
X
0
X
0
X
0
X
X
X
X
X
X
X
X
NOP: do nothing  
D7 D6 D5 D4 D3 D2 D1 D0 Write contents of serial register  
data to RDAC  
2
3
0
0
0
0
1
1
0
1
0
0
0
0
0
0
0
D7 D6 D5 D4 D3 D2 D1 D0 Write contents of serial register  
data to input register  
X
X
X
X
X
X
X
D1 D0 Read back contents  
D1  
0
1
D0  
1
1
Data  
EEPROM  
RDAC  
9
0
0
1
1
1
1
0
1
1
1
1
0
1
1
1
0
X
X
X
0
X
X
X
0
0
0
X
0
0
0
X
0
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
1
0
X
Copy RDAC register to EEPROM  
Copy EEPROM into RDAC  
Software reset  
10  
14  
15  
D0 Software shutdown  
D0  
0
1
Condition  
Normal mode  
Shutdown mode  
1 X = don’t care.  
Rev. 0 | Page 22 of 32  
 
 
 
 
 
 
Data Sheet  
AD5121/AD5141  
Low Wiper Resistance Feature  
ADVANCED CONTROL MODES  
The AD5121/AD5141 include two commands to reduce the wiper  
resistance between the terminals when they achieve full scale or  
zero scale. These extra positions are called bottom scale, BS, and  
top scale, TS. The resistance between Terminal A and Terminal W  
at top scale is specified as RTS. Similarly, the bottom scale resistance  
between Terminal B and Terminal W is specified as RBS.  
The AD5121/AD5141 digital potentiometers include a set of user  
programming features to address the wide number of applications  
for these universal adjustment devices (see Table 16 and Table 18).  
Key programming features include the following:  
Input register  
Linear gain setting mode  
Low wiper resistance feature  
Linear increment and decrement instructions  
6 dB increment and decrement instructions  
Burst mode (I2C only)  
The contents of the RDAC registers are unchanged by entering  
in these positions. There are two ways to exit from top scale and  
bottom scale: by using Command 12 or Command 13 (see  
Table 16); or by loading new data in an RDAC register, which  
includes increment/decrement operations and a shutdown  
command.  
Reset  
Shutdown mode  
Table 12 and Table 13 show the truth tables for the top scale  
position and the bottom scale position, respectively, when linear  
gain setting mode is enabled.  
Input Register  
The AD5121/AD5141 include one input register per RDAC  
register. This register allows preloading of the value for the  
associated RDAC register.  
Table 12. Top Scale Truth Table  
Linear Gain Setting Mode  
Potentiometer Mode  
This feature allows a synchronous and asynchronous update of  
one or all the RDAC registers at the same time.  
RAW  
RAB  
RWB  
RAW  
RWB  
RAB  
RTS  
RAB  
These registers can be written to using Command 2 and read back  
from using Command 3 (see Table 16).  
Table 13. Bottom Scale Truth Table  
Linear Gain Setting Mode  
Potentiometer Mode  
The transfer from the input register to the RDAC register is  
RAW  
RWB  
RAW  
RWB  
done asynchronously by the  
pin or synchronously by  
LRDAC  
RTS  
RBS  
RAB  
RBS  
Command 8 (see Table 16).  
Linear Increment and Decrement Instructions  
If new data is loaded in an RDAC register, this RDAC register  
automatically overwrites the associated input register.  
The increment and decrement commands (Command 4 and  
Command 5 in Table 16) are useful for linear step adjustment  
applications. These commands simplify microcontroller software  
coding by allowing the controller to send an increment or  
decrement command to the device. The adjustment can be  
individual or in a ganged potentiometer arrangement, where  
all wiper positions are changed at the same time.  
Linear Gain Setting Mode  
The patented architecture of the AD5121/AD5141 allows the  
independent control of each string resistor, RAW and RWB. To  
enable this feature, use Command 16 (see Table 16) to set Bit D2  
of the control register (see Table 18).  
This mode of operation can control the potentiometer as two  
independent rheostats connected at a single point, W terminal,  
as opposed to potentiometer mode where each resistor is  
For an increment command, executing Command 4 automatically  
moves the wiper to the next resistance segment position. This  
command can be executed in a single channel or multiple channels.  
complementary, RAW = RAB − RWB  
.
±± dB Increment and Decrement Instructions  
This feature enables a second input and an RDAC register per  
channel, as shown in Table 16; however, the actual RDAC contents  
remain unchanged. The same operations are valid for  
potentiometer and linear gain setting modes.  
Two programming instructions produce logarithmic taper  
increment or decrement of the wiper position control by  
an individual potentiometer or by a ganged potentiometer  
arrangement where all RDAC register positions are changed  
simultaneously. The +6 dB increment is activated by Command 6,  
and the −6 dB decrement is activated by Command 7 (see Table 16).  
For example, starting with the zero-scale position and executing  
Command 6 ten times moves the wiper in 6 dB steps to the full-  
scale position. When the wiper position is near the maximum  
setting, the last 6 dB increment instruction causes the wiper to go  
to the full-scale position (see Table 14).  
If the INDEP pin is pulled high, the device powers up in linear  
gain setting mode and loads the values stored in the associated  
memory locations for each channel (see Table 17). The INDEP pin  
and D2 bit are connected internally to a logic OR gate, if any or  
both are 1, the parts cannot operate in potentiometer mode.  
Rev. 0 | Page 23 of 32  
 
 
 
AD5121/AD5141  
Data Sheet  
Incrementing the wiper position by +6 dB essentially doubles  
the RDAC register value, whereas decrementing the wiper  
position by −6 dB halves the register content. Internally, the  
AD5121/AD5141 use shift registers to shift the bits left and  
right to achieve a 6 dB increment or decrement. These functions  
are useful for various audio/video level adjustments, especially  
for white LED brightness settings in which human visual responses  
are more sensitive to large adjustments than to small adjustments.  
Table 15. Truth Table for Shutdown Mode  
Linear Gain Setting Mode Potentiometer Mode  
A2 AW  
WB  
AW  
WB  
RBS  
N/A1  
0
1
N/A1  
Open  
N/A1  
Open  
N/A1  
Open  
1 N/A = not applicable.  
EEPROM OR RDAC REGISTER PROTECTION  
The EEPROM and RDAC registers can be protected by disabling  
any update to these registers. This can be done by using software or  
by using hardware. If these registers are protected by software,  
set Bit D0 and/or Bit D1 (see Table 18), which protects the RDAC  
and EEPROM registers independently.  
Table 14. Detailed Left Shift and Right Shift Functions for  
the 6 dB Step Increment and Decrement  
Left Shift (+6 dB/Step)  
Right Shift (−6 dB/Step)  
0000 0000  
1111 1111  
0000 0001  
0111 1111  
If the registers are protected by hardware, pull the  
pin low.  
WP  
pin is pulled low when the part is executing a command,  
0000 0010  
0011 1111  
If the  
WP  
0000 0100  
0001 1111  
the protection is not enabled until the command is completed.  
0000 1000  
0000 1111  
0001 0000  
0010 0000  
0100 0000  
1000 0000  
0000 0111  
0000 0011  
0000 0001  
0000 0000  
When RDAC is protected, the only operation allowed is to copy  
the EEPROM into the RDAC register.  
LOAD RDAC INPUT REGISTER (LRDAC)  
software or hardware transfers data from the input  
LRDAC  
1111 1111  
0000 0000  
register to the RDAC register (and therefore updates the wiper  
position). By default, the input register has the same value as the  
RDAC register; therefore, only the input register that has been  
updated using Command 2 is updated.  
Burst Mode (I2C Only)  
By enabling the burst mode, multiple data bytes can be sent to the  
part consecutively. After the command byte, the part interprets the  
consecutive bytes as data bytes for the first command.  
Software  
, Command 8, allows updating of a single RDAC  
LRDAC  
A new command can be sent by generating a repeat start or by a  
stop and start condition.  
register or all of the channels at once (see Table 16). This is a  
synchronous update.  
The burst mode is activated by setting Bit D3 of the control  
register (see Table 18), and if a reset or power-down is performed,  
it automatically resets.  
The hardware  
is completely asynchronous and copies  
LRDAC  
the content of all the input registers into the associated RDAC  
registers. If a command is executed, to avoid data corruption,  
any transition in the  
Reset  
pin is ignored by the part.  
LRDAC  
The AD5121/AD5141 can be reset through software by  
executing Command 14 (see Table 16) or through hardware on  
INDEP PIN  
If the INDEP pin is pulled high at power-up, the part operates  
in linear gain setting mode, loading each string resistor, RAW and  
the low pulse of the  
pin. The reset command loads the  
RESET  
RDAC register with the contents of the EEPROM and takes  
approximately 30 µs. The EEPROM is preloaded to midscale at  
the factory, and initial power-up is, accordingly, at midscale.  
RWB, with the value stored into the EEPROM (see Table 17). If  
the pin is pulled low, the part powers up in potentiometer mode.  
The INDEP pin and the D2 bit are connected internally to a logic  
OR gate, if any or both are 1, the part cannot operate in  
potentiometer mode (see Table 18).  
Tie  
to V if the  
pin is not used.  
RESET  
RESET  
DD  
Shutdown Mode  
The AD5121/AD5141 can be placed in shutdown mode by  
executing the software shutdown command, Command 15 (see  
Table 16); and by setting the LSB (D0) to 1. This feature places  
the RDAC in a special state. The contents of the RDAC register are  
unchanged by entering shutdown mode. However, all commands  
listed in Table 16 are supported while in shutdown mode. Execute  
Command 15 (see Table 16) and set the LSB (D0) to 0 to exit  
shutdown mode.  
Rev. 0 | Page 24 of 32  
 
 
 
 
 
Data Sheet  
AD5121/AD5141  
Table 16. Advance Commands Operation Truth Table  
Control  
Bits[DB15:DB12]  
Address  
Bits[DB11:DB8]1  
Data Bits[DB7:DB0]1  
Command  
Number  
C3  
0
C2  
0
C1  
0
C0  
0
A3 A2 A1 A0 D7 D6 D5 D4 D3 D2 D1 D0 Operation  
0
1
X
0
X
X
0
X
X
X
X
X
X
X
X
X
NOP: do nothing  
0
0
0
1
A2  
A0 D7 D6 D5 D4 D3 D2 D1 D0 Write contents of serial  
register data to RDAC  
2
3
0
0
0
0
1
1
0
1
0
A2  
0
A0 D7 D6 D5 D4 D3 D2 D1 D0 Write contents of serial  
register data to input register  
X
A2 A1 A0  
X
X
X
X
X
X
D1 D0 Read back contents  
D1  
0
0
D0  
0
1
Data  
Input register  
EEPROM  
1
0
Control  
register  
1
1
RDAC  
4
5
6
7
8
0
0
0
0
0
1
1
1
1
1
0
0
0
0
1
0
0
1
1
0
A3 A2  
A3 A2  
A3 A2  
A3 A2  
A3 A2  
0
0
0
0
0
A0  
A0  
A0  
A0  
A0  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
1
0
1
0
X
Linear RDAC increment  
Linear RDAC decrement  
+6 dB RDAC increment  
−6 dB RDAC decrement  
Copy input register to RDAC  
(software LRDAC)  
9
0
1
1
1
0
A2  
0
A0  
X
X
X
X
X
X
X
1
Copy RDAC register to  
EEPROM  
10  
11  
0
1
1
0
1
0
1
0
0
0
A2  
A2  
0
0
A0  
X
X
X
X
X
X
X
0
Copy EEPROM into RDAC  
A0 D7 D6 D5 D4 D3 D2 D1 D0 Write contents of serial  
register data to EEPROM  
12  
1
0
0
1
A3 A2  
0
A0  
1
X
X
X
X
X
X
D0 Top scale  
D0 = 0; normal mode  
D0 = 1; shutdown mode  
D0 Bottom scale  
13  
1
0
0
1
A3 A2  
0
A0  
0
X
X
X
X
X
X
D0 = 1; enter  
D0 = 0; exit  
14  
15  
1
1
0
1
1
0
1
0
X
X
X
0
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
Software reset  
A3 A2  
A0  
D0 Software shutdown  
D0 = 0; normal mode  
D0 = 1; device placed in  
shutdown mode  
16  
1
1
0
1
X
X
X
X
X
X
X
X
D3 D2 D1 D0 Copy serial register data to  
control register  
1 X = don’t care.  
Table 17. Address Bits  
Potentiometer Mode  
Linear Gain Setting Mode  
Stored RDAC  
Memory  
A3  
1
0
A2  
X1  
0
A1  
X1  
0
A0  
X1  
0
Input Register  
All channels  
RDAC  
RDAC Register  
All channels  
RDAC  
Input Register  
All channels  
RWB  
RDAC Register  
All channels  
RWB  
Not applicable  
RDAC/RWB  
0
0
0
0
1
0
0
0
0
0
1
1
0
1
0
1
Not applicable  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
RAW  
RAW  
Not applicable  
RAW  
MSB tolerance  
LSB tolerance  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
1 X = don’t care.  
Rev. 0 | Page 25 of 32  
 
 
 
 
AD5121/AD5141  
Data Sheet  
Table 18. Control Register Bit Descriptions  
Bit Name  
Description  
D0  
RDAC register write protect  
0 = wiper position frozen to value in EEPROM memory  
1 = allows update of wiper position through digital interface (default)  
EEPROM program enable  
D1  
D2  
D3  
0 = EEPROM program disabled  
1 = enables device for EEPROM program (default)  
Linear setting mode/potentiometer mode  
0 = potentiometer mode (default)  
1 = linear gain setting mode  
Burst mode (I2C only)  
0 = disabled (default)  
1 = enabled (no disable after stop or repeat start condition)  
Rev. 0 | Page 26 of 32  
 
Data Sheet  
AD5121/AD5141  
RDAC ARCHITECTURE  
PROGRAMMING THE VARIABLE RESISTOR  
Rheostat Operation—±8% Resistor Tolerance  
To achieve optimum performance, Analog Devices, Inc., has  
patented the RDAC segmentation architecture for all the digital  
potentiometers. In particular, the AD5121/AD5141 employ a  
three-stage segmentation approach, as shown in Figure 41. The  
AD5121/AD5141 wiper switch is designed with the transmission  
gate CMOS topology and with the gate voltage derived from  
The AD5121/AD5141 operate in rheostat mode when only two  
terminals are used as a variable resistor. The unused terminal can  
be floating, or it can be tied to Terminal W, as shown in Figure 42.  
A
A
A
W
W
W
V
DD and VSS.  
A
S
TS  
B
B
B
Figure 42. Rheostat Mode Configuration  
R
R
H
The nominal resistance between Terminal A and Terminal B,  
RAB, is 10 kΩ or 100 kΩ, and has 128/256 tap points accessed by  
the wiper terminal. The 7-bit/8-bit data in the RDAC latch is  
decoded to select one of the 128/256 possible wiper settings. The  
general equations for determining the digitally programmed  
output resistance between Terminal W and Terminal B are  
R
M
H
R
M
R
L
L
W
AD5121:  
R
7-BIT/8-BIT  
ADDRESS  
DECODER  
D
128  
From 0x00 to 0x7F (1)  
From 0x00 to 0xFF (2)  
R
R
WB (D) =  
×RAB + RW  
×RAB + RW  
M
R
H
AD5141:  
R
M
D
256  
R
H
RWB (D) =  
S
BS  
where:  
B
D is the decimal equivalent of the binary code in the 7-bit/8-bit  
RDAC register.  
R
R
AB is the end-to-end resistance.  
W is the wiper resistance.  
Figure 41. AD5121/AD5141 Simplified RDAC Circuit  
Top Scale/Bottom Scale Architecture  
In potentiometer mode, similar to the mechanical  
potentiometer, the resistance of the RDAC between Terminal  
W and Terminal A also produces a digitally controlled  
complementary resistance, RWA. RWA also gives a maximum of 8%  
absolute resistance error. RWA starts at the maximum resistance  
value and decreases as the data loaded into the latch increases.  
The general equations for this operation are  
In addition, the AD5121/AD5141 include new positions to  
reduce the resistance between terminals. These positions are  
called bottom scale and top scale. At bottom scale, the typical  
wiper resistance decreases from 130 Ω to 60 Ω (RAB = 100 kΩ).  
At top scale, the resistance between Terminal A and Terminal W  
is decreased by 1 LSB, and the total resistance is reduced to 60 Ω  
(RAB = 100 kΩ).  
AD5121:  
128 D  
128  
R
AW (D) =  
×RAB + RW  
From 0x00 to 0x7F (3)  
From 0x00 to 0xFF (4)  
AD5141:  
256 D  
256  
R
AW (D) =  
×RAB + RW  
where:  
D is the decimal equivalent of the binary code in the 7-bit/8-bit  
RDAC register.  
R
R
AB is the end-to-end resistance.  
W is the wiper resistance.  
Rev. 0 | Page 27 of 32  
 
 
 
 
AD5121/AD5141  
Data Sheet  
If the part is configured in linear gain setting mode, the resistance  
between Terminal W and Terminal A is directly proportional  
to the code loaded in the associate RDAC register. The general  
equations for this operation are  
That is, if the data readback from Address 0x02 is 00000010, and  
the data readback from Address 0x03 is 10110000, the end-to-end  
resistance can be calculated as follows.  
For Memory Map Address 0x02, DB[7] = 0 = negative, and  
DB[6:0] = 0000010 = 2.  
AD5121:  
D
128  
For Memory Map Address 0x03, DB[7:0] = 10110000 = 176 × 2−8 =  
0.6875, and therefore, tolerance = −2.6875%, and RAB = 9.731 kΩ.  
From 0x00 to 0x7F (5)  
From 0x00 to 0xFF (6)  
R
AW (D) =  
× RAB + RW  
AD5141:  
PROGRAMMING THE POTENTIOMETER DIVIDER  
Voltage Output Operation  
D
256  
R
AW (D) =  
× RAB + RW  
The digital potentiometer easily generates a voltage divider at  
wiper-to-B and wiper-to-A that is proportional to the input voltage  
at A to B, as shown in Figure 43.  
where:  
D is the decimal equivalent of the binary code in the 7-bit/8-bit  
RDAC register.  
V
A
A
RAB is the end-to-end resistance.  
W
V
OUT  
R
W is the wiper resistance.  
B
V
In the bottom scale condition or top scale condition, a finite  
total wiper resistance of 40 Ω is present. Regardless of which  
setting the part is operating in, limit the current between  
Terminal A to Terminal B, Terminal W to Terminal A, and  
Terminal W to Terminal B, to the maximum continuous current  
of 6 mA or to the pulse current specified in Table 7. Otherwise,  
degradation or possible destruction of the internal switch  
contact can occur.  
B
Figure 43. Potentiometer Mode Configuration  
Connecting Terminal A to 5 V and Terminal B to ground  
produces an output voltage at the Wiper W to Terminal B  
ranging from 0 V to 5 V. The general equation defining the  
output voltage at VW with respect to ground for any valid  
input voltage applied to Terminal A and Terminal B is  
R
WB(D)  
R
AW (D)  
RAB  
Calculate the Actual End-to-End Resistance  
VW (D) =  
×VA +  
×VB  
(7)  
RAB  
The resistance tolerance is stored in the internal memory during  
factory testing. Therefore, the actual end-to-end resistance can  
be calculated (which is valuable for calibration, tolerance matching,  
and precision applications).  
where:  
R
R
WB(D) can be obtained from Equation 1 and Equation 2.  
AW(D) can be obtained from Equation 3 and Equation 4.  
The resistance tolerance (in percentage) is stored in fixed point  
format, using a 16-bit sign magnitude binary. The sign bit  
(0 = negative and 1 = positive) and the integer part are located  
in Address 0x02, as shown in Table 19. Address 0x03 contains  
the fractional part, as shown in Table 19.  
Operation of the digital potentiometer in the divider mode  
results in a more accurate operation over temperature. Unlike  
the rheostat mode, the output voltage is dependent mainly on  
the ratio of the internal resistors, RAW and RWB, and not the  
absolute values. Therefore, the temperature drift reduces to  
5 ppm/°C.  
Table 19. End-to-End Resistance Tolerance Bytes  
Data Byte  
Memory Map Address  
DB7  
Sign  
2−1  
DB6  
26  
2−2  
DB5  
25  
2−3  
DB4  
24  
2−4  
DB3  
23  
2−5  
DB2  
22  
2−6  
DB1  
21  
2−7  
DB0  
20  
2−8  
0x02  
0x03  
Rev. 0 | Page 28 of 32  
 
 
 
Data Sheet  
AD5121/AD5141  
TERMINAL VOLTAGE OPERATING RANGE  
LAYOUT AND POWER SUPPLY BIASING  
The AD5121/AD5141 are designed with internal ESD diodes  
for protection. These diodes also set the voltage boundary of  
the terminal operating voltages. Positive signals present on  
Terminal A, Terminal B, or Terminal W that exceed VDD are  
clamped by the forward-biased diode. There is no polarity  
constraint between VA, VW, and VB, but they cannot be higher  
than VDD or lower than VSS.  
It is always a good practice to use a compact, minimum lead  
length layout design. Ensure that the leads to the input are as  
direct as possible with a minimum conductor length. Ground  
paths should have low resistance and low inductance. It is also  
good practice to bypass the power supplies with quality capacitors.  
Apply low equivalent series resistance (ESR) 1 µF to 10 µF  
tantalum or electrolytic capacitors at the supplies to minimize  
any transient disturbance and to filter low frequency ripple.  
Figure 45 illustrates the basic supply bypassing configuration  
for the AD5121/AD5141.  
V
DD  
A
V
V
LOGIC  
V
V
LOGIC  
DD  
DD  
W
B
+
+
+
C3  
C1  
C5  
0.1µF  
C6  
10µF  
10µF  
0.1µF  
AD5121/  
AD5141  
C4  
10µF  
C2  
0.1µF  
V
V
DD  
SS  
V
SS  
GND  
Figure 44. Maximum Terminal Voltages Set by VDD and VSS  
POWER-UP SEQUENCE  
Figure 45. Power Supply Bypassing  
Because there are diodes to limit the voltage compliance at  
Terminal A, Terminal B, and Terminal W (see Figure 44), it is  
important to power up VDD first before applying any voltage to  
Terminal A, Terminal B, and Terminal W. Otherwise, the diode  
is forward-biased such that VDD is powered unintentionally. The  
ideal power-up sequence is VSS, VDD, VLOGIC, digital inputs, and  
VA, VB, and VW. The order of powering VA, VB, VW, and digital  
inputs is not important as long as they are powered after VSS,  
V
DD, and VLOGIC. Regardless of the power-up sequence and the  
ramp rates of the power supplies, once VLOGIC is powered, the  
power-on preset activates, which restores EEPROM values to  
the RDAC registers.  
Rev. 0 | Page 29 of 32  
 
 
 
 
 
AD5121/AD5141  
Data Sheet  
OUTLINE DIMENSIONS  
3.10  
3.00 SQ  
2.90  
0.30  
0.23  
0.18  
PIN 1  
INDICATOR  
PIN 1  
INDICATOR  
13  
16  
0.50  
BSC  
1
4
12  
EXPOSED  
PAD  
1.75  
1.60 SQ  
1.45  
9
8
5
0.50  
0.40  
0.30  
0.25 MIN  
TOP VIEW  
BOTTOM VIEW  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.80  
0.75  
0.70  
0.05 MAX  
0.02 NOM  
COPLANARITY  
0.08  
SECTION OF THIS DATA SHEET.  
SEATING  
PLANE  
0.20 REF  
COMPLIANT TO JEDEC STANDARDS MO-220-WEED-6.  
Figure 46. 16-Lead Lead Frame Chip Scale Package [LFCSP_WQ]  
3 mm × 3 mm Body, Very Very Thin Quad  
(CP-16-22)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1, 2  
RAB (kΩ) Resolution Interface Temperature Range Package Description Package Option Branding  
AD5121BCPZ10-RL7  
AD5121BCPZ100-RL7 100  
AD5141BCPZ10-RL7 10  
AD5141BCPZ100-RL7 100  
EVAL-AD5141DBZ  
10  
128  
128  
256  
256  
SPI/I2C  
SPI/I2C  
SPI/I2C  
SPI/I2C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
16-Lead LFCSP_WQ  
16-Lead LFCSP_WQ  
16-Lead LFCSP_WQ  
16-Lead LFCSP_WQ  
Evaluation Board  
CP-16-22  
CP-16-22  
CP-16-22  
CP-16-22  
DHE  
DHF  
DHC  
DHD  
1 Z = RoHS Compliant Part  
2 The evaluation board is shipped with the 10 kΩ RAB resistor option; however, the board is compatible with both of the available resistor value options.  
Rev. 0 | Page 30 of 32  
 
 
 
Data Sheet  
NOTES  
AD5121/AD5141  
Rev. 0 | Page 31 of 32  
AD5121/AD5141  
NOTES  
Data Sheet  
©2012 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D10940-0-10/12(0)  
Rev. 0 | Page 32 of 32  

相关型号:

AD5141BCPZ100-RL7

Single Channel, 128-/256-Position, I2C/SPI, Nonvolatile Digital Potentiometer
ADI

AD5142

Quad Channel, 128-/256-Position, I2C Nonvolatile Digital Potentiometer
ADI

AD5142A

Quad Channel, 128-/256-Position, I2C Nonvolatile Digital Potentiometer
ADI

AD5142ABCPZ10-RL7

The AD5122A/AD5142A are available in a compact, 16-lead, 3 mm × 3 mm LFCSP and a 16-lead TSSOP.
ADI

AD5142ABCPZ100-RL7

The AD5122A/AD5142A are available in a compact, 16-lead, 3 mm × 3 mm LFCSP and a 16-lead TSSOP.
ADI

AD5142ABRUZ10

The AD5122A/AD5142A are available in a compact, 16-lead, 3 mm × 3 mm LFCSP and a 16-lead TSSOP.
ADI

AD5142ABRUZ10-RL7

The AD5122A/AD5142A are available in a compact, 16-lead, 3 mm × 3 mm LFCSP and a 16-lead TSSOP.
ADI

AD5142ABRUZ100

The AD5122A/AD5142A are available in a compact, 16-lead, 3 mm × 3 mm LFCSP and a 16-lead TSSOP.
ADI

AD5142ABRUZ100-RL7

The AD5122A/AD5142A are available in a compact, 16-lead, 3 mm × 3 mm LFCSP and a 16-lead TSSOP.
ADI

AD5142BCPZ10-RL7

The AD5122/AD5142 potentiometers provides a nonvolatile solution for 128-/256-position adjustment applications, offering guaranteed low resistor tolerance errors of ±8% and up to ±6 mA current density in the Ax, Bx, and Wx pins.
ADI

AD5142BCPZ100-RL7

The AD5122/AD5142 potentiometers provides a nonvolatile solution for 128-/256-position adjustment applications, offering guaranteed low resistor tolerance errors of ±8% and up to ±6 mA current density in the Ax, Bx, and Wx pins.
ADI

AD5142BRUZ10

The AD5122/AD5142 potentiometers provides a nonvolatile solution for 128-/256-position adjustment applications, offering guaranteed low resistor tolerance errors of ±8% and up to ±6 mA current density in the Ax, Bx, and Wx pins.
ADI