AD5122WBCPZ10-RL7 [ADI]

Dual Channel, 128-/256-Position, SPI, Nonvolatile Digital Potentiometer;
AD5122WBCPZ10-RL7
型号: AD5122WBCPZ10-RL7
厂家: ADI    ADI
描述:

Dual Channel, 128-/256-Position, SPI, Nonvolatile Digital Potentiometer

转换器 电阻器
文件: 总32页 (文件大小:751K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Dual Channel, 128-/256-Position, SPI,  
Nonvolatile Digital Potentiometer  
Data Sheet  
AD5122/AD5142  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
V
V
DD  
LOGIC  
INDEP  
10 kΩ and 100 kΩ resistance options  
Resistor tolerance: 8% maximum  
Wiper current: 6 mA  
Low temperature coefficient: 35 ppm/°C  
Wide bandwidth: 3 MHz  
POWER-ON  
RESET  
AD5122/  
AD5142  
RDAC1  
A1  
W1  
B1  
Fast start-up time <75 µs  
Linear gain setting mode  
Single- and dual-supply operation  
Independent logic supply: 1.8 V to 5.5 V  
Wide operating temperature: −40°C to +125°C  
3 mm × 3 mm package option  
INPUT  
RESET  
SCLK  
REGISTER 1  
SERIAL  
INTERFACE  
RDAC2  
A2  
W2  
B2  
SDI  
7/8  
INPUT  
REGISTER 2  
SYNC  
SDO  
EEPROM  
MEMORY  
Qualified for automotive applications  
APPLICATIONS  
GND  
V
SS  
Portable electronics level adjustment  
LCD panel brightness and contrast controls  
Programmable filters, delays, and time constants  
Programmable power supplies  
Figure 1.  
The AD5122/AD5142 are available in a compact, 16-lead, 3 mm ×  
3 mm LFCSP and a 16-lead TSSOP. The devices are guaranteed  
to operate over the extended industrial temperature range of  
−40°C to +125°C.  
GENERAL DESCRIPTION  
The AD5122/AD5142 potentiometers provide a nonvolatile  
solution for 128-/256-position adjustment applications, offering  
guaranteed low resistor tolerance errors of 8% and up to 6 mA  
current density in the Ax, Bx, and Wx pins.  
Table 1. Family Models  
The low resistor tolerance and low nominal temperature coefficient  
simplify open-loop applications as well as applications requiring  
tolerance matching.  
Model  
Channel Position Interface Package  
AD51231  
AD5124  
AD5124  
AD51431  
AD5144  
AD5144  
Quad  
Quad  
Quad  
Quad  
Quad  
Quad  
128  
128  
128  
256  
256  
256  
256  
128  
128  
256  
256  
128  
256  
I2C  
LFCSP  
LFCSP  
TSSOP  
LFCSP  
LFCSP  
TSSOP  
SPI/I2C  
SPI  
The linear gain setting mode allows independent programming  
of the resistance between the digital potentiometer terminals  
through the RAW and RWB string resistors, allowing accurate  
resistor matching.  
I2C  
SPI/I2C  
SPI  
I2C  
AD5144A Quad  
AD5122 Dual  
AD5122A Dual  
AD5142 Dual  
AD5142A Dual  
TSSOP  
The high bandwidth and low total harmonic distortion (THD)  
ensure optimal performance for ac signals, making these devices  
suitable for filter design.  
SPI  
LFCSP/TSSOP  
LFCSP/TSSOP  
LFCSP/TSSOP  
LFCSP/TSSOP  
LFCSP  
I2C  
SPI  
I2C  
SPI/I2C  
SPI/I2C  
The low wiper resistance of only 40 Ω at the ends of the resistor  
array allows pin to pin connection.  
AD5121  
AD5141  
Single  
Single  
LFCSP  
The wiper values can be set through an SPI-compatible digital  
interface that also reads back the wiper register and EEPROM  
contents.  
1 Two potentiometers and two rheostats.  
Rev. C  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rightsof third parties that may result fromits use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks andregisteredtrademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 ©2012–2017 Analog Devices, Inc. All rights reserved.  
Technical Support  
www.analog.com  
 
 
 
 
AD5122/AD5142  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
RDAC Register and EEPROM.................................................. 20  
Input Shift Register .................................................................... 20  
SPI Serial Data Interface............................................................ 20  
Advanced Control Modes ......................................................... 23  
EEPROM or RDAC Register Protection................................. 24  
INDEP Pin................................................................................... 24  
RDAC Architecture.................................................................... 27  
Programming the Variable Resistor......................................... 27  
Programming the Potentiometer Divider............................... 28  
Terminal Voltage Operating Range ......................................... 28  
Power-Up Sequence ................................................................... 28  
Layout and Power Supply Biasing............................................ 28  
Outline Dimensions....................................................................... 29  
Ordering Guide .......................................................................... 30  
Automotive Products................................................................. 30  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Electrical Characteristics—AD5122 .......................................... 3  
Electrical Characteristics—AD5142 .......................................... 6  
Interface Timing Specifications.................................................. 9  
Shift Register and Timing Diagrams ....................................... 10  
Absolute Maximum Ratings.......................................................... 11  
Thermal Resistance .................................................................... 11  
ESD Caution................................................................................ 11  
Pin Configurations and Function Descriptions ......................... 12  
Typical Performance Characteristics ........................................... 14  
Test Circuits..................................................................................... 19  
Theory of Operation ...................................................................... 20  
REVISION HISTORY  
5/2017—Rev. B to Rev. C  
Changes to RDAC Architecture Section ..................................... 27  
Changes to Ordering Guide.......................................................... 30  
Added Automotive Products Section .......................................... 30  
Changes to Figure 6 and Table 8................................................... 12  
Changes to Figure 16 and Figure 17............................................. 15  
Changes to EEPROM or RDAC Register Protection Section........ 24  
Updated Outline Dimensions....................................................... 29  
Changes to Ordering Guide .......................................................... 30  
2/2016—Rev. 0 to Rev. A  
Changes to Features Section ............................................................1  
Added Endnote, Table 2 ...................................................................5  
Added Endnote, Table 3 ...................................................................8  
Added Endnote, Table 4 ...................................................................9  
Changes to Figure 3 Caption and Figure 4 Caption .................. 10  
Changes to Table 6.......................................................................... 11  
Changes to Figure 6........................................................................ 12  
6/2016—Rev. A to Rev. B  
Changes to Features Section............................................................ 1  
Changes to Logic Supply Current Parameter, Table 2 ................. 4  
Changes to Logic Supply Current Parameter, Table 3 ................. 7  
Changes to Figure 16...................................................................... 15  
Added Figure 17; Renumbered Sequentially .............................. 15  
Changes to Figure 18...................................................................... 16  
Change to Linear Gain Setting Mode Section ............................ 23  
10/2012—Revision 0: Initial Version  
Rev. C | Page 2 of 32  
 
Data Sheet  
AD5122/AD5142  
SPECIFICATIONS  
ELECTRICAL CHARACTERISTICSAD5122  
VDD = 2.3 V to 5.5 V, VSS = 0 V; VDD = 2.25 V to 2.75 V, VSS = −2.25 V to −2.75 V; VLOGIC = 1.8 V to 5.5 V, 40°C < TA < +125°C, unless  
otherwise noted.  
Table 2.  
Parameter  
Symbol  
Test Conditions/Comments  
Min  
Typ1  
Max  
Unit  
DC CHARACTERISTICS—RHEOSTAT  
MODE (ALL RDACs)  
Resolution  
Resistor Integral Nonlinearity2  
N
R-INL  
7
Bits  
RAB = 10 kΩ  
VDD ≥ 2.7 V  
VDD < 2.7 V  
RAB = 100 kΩ  
VDD ≥ 2.7 V  
VDD < 2.7 V  
−1  
−2.5  
0.1  
1
+1  
+2.5  
LSB  
LSB  
−0.5  
−1  
0.1  
0.25 +1  
+0.5  
LSB  
LSB  
Resistor Differential Nonlinearity2  
Nominal Resistor Tolerance  
Resistance Temperature Coefficient3  
Wiper Resistance3  
R-DNL  
−0.5  
−8  
0.1  
1
35  
+0.5  
+8  
LSB  
%
ppm/°C  
ΔRAB/RAB  
(ΔRAB/RAB)/ΔT × 106  
RW  
Code = full scale  
Code = zero scale  
RAB = 10 kΩ  
55  
130  
125  
400  
RAB = 100 kΩ  
Bottom Scale or Top Scale  
RBS or RTS  
RAB = 10 kΩ  
RAB = 100 kΩ  
Code = 0xFF  
40  
60  
0.2  
80  
230  
+1  
%
Nominal Resistance Match  
RAB1/RAB2  
−1  
DC CHARACTERISTICS—POTENTIOMETER  
DIVIDER MODE (ALL RDACs)  
Integral Nonlinearity4  
INL  
RAB = 10 kΩ  
RAB = 100 kΩ  
−0.5  
−0.25  
−0.25  
0.1  
0.1  
0.1  
+0.5  
+0.25  
+0.25  
LSB  
LSB  
LSB  
Differential Nonlinearity4  
Full-Scale Error  
DNL  
VWFSE  
RAB = 10 kΩ  
RAB = 100 kΩ  
−1.5  
−0.5  
−0.1  
0.1  
LSB  
LSB  
+0.5  
Zero-Scale Error  
VWZSE  
RAB = 10 kΩ  
RAB = 100 kΩ  
(ΔVW/VW)/ΔT × 106 Code = half scale  
1
0.25  
5
1.5  
0.5  
LSB  
LSB  
ppm/°C  
Voltage Divider Temperature  
Coefficient3  
Rev. C | Page 3 of 32  
 
 
AD5122/AD5142  
Data Sheet  
Parameter  
Symbol  
Test Conditions/Comments  
Min  
Typ1  
Max  
Unit  
RESISTOR TERMINALS  
Maximum Continuous Current  
IA, IB, and IW  
RAB = 10 kΩ  
RAB = 100 kΩ  
−6  
−1.5  
VSS  
+6  
+1.5  
VDD  
mA  
mA  
V
Terminal Voltage Range5  
Capacitance A, Capacitance B3  
CA, CB  
f = 1 MHz, measured to GND,  
code = half scale  
RAB = 10 kΩ  
RAB = 100 kΩ  
25  
12  
pF  
pF  
Capacitance W3  
CW  
f = 1 MHz, measured to GND,  
code = half scale  
RAB = 10 kΩ  
RAB = 100 kΩ  
VA = VW = VB  
12  
5
15  
pF  
pF  
nA  
Common-Mode Leakage Current3  
−500  
+500  
DIGITAL INPUTS  
Input Logic3  
High  
VINH  
VLOGIC = 1.8 V to 2.3 V  
VLOGIC = 2.3 V to 5.5 V  
0.8 × VLOGIC  
0.7 × VLOGIC  
V
V
Low  
VINL  
VHYST  
IIN  
0.2 × VLOGIC  
1
V
V
µA  
pF  
Input Hysteresis3  
Input Current3  
0.1 × VLOGIC  
Input Capacitance3  
DIGITAL OUTPUTS  
Output High Voltage3  
Output Low Voltage3  
CIN  
5
VOH  
VOL  
RPULL-UP = 2.2 kΩ to VLOGIC  
ISINK = 3 mA  
ISINK = 6 mA, VLOGIC > 2.3 V  
VLOGIC  
V
V
V
µA  
pF  
0.4  
0.6  
+1  
Three-State Leakage Current  
Three-State Output Capacitance  
POWER SUPPLIES  
−1  
2
Single-Supply Power Range  
Dual-Supply Power Range  
Logic Supply Range  
VSS = GND  
2.3  
2.25  
1.8  
5.5  
V
V
V
V
2.75  
VDD  
VDD  
Single supply, VSS = GND  
Dual supply, VSS < GND  
VIH = VLOGIC or VIL = GND  
VDD = 5.5 V  
2.25  
Positive Supply Current  
IDD  
0.7  
5.5  
µA  
nA  
µA  
mA  
µA  
µA  
µW  
dB  
VDD = 2.3 V  
400  
−0.7  
2
320  
0.05  
3.5  
Negative Supply Current  
EEPROM Store Current3, 6  
EEPROM Read Current3, 7  
Logic Supply Current  
ISS  
VIH = VLOGIC or VIL = GND  
VIH = VLOGIC or VIL = GND  
VIH = VLOGIC or VIL = GND  
VIH = VLOGIC or VIL = GND  
VIH = VLOGIC or VIL = GND  
−5.5  
IDD_EEPROM_STORE  
IDD_EEPROM_READ  
ILOGIC  
PDISS  
PSRR  
1.4  
Power Dissipation8  
Power Supply Rejection Ratio  
∆VDD/∆VSS = VDD 10%,  
code = full scale  
−66  
−60  
Rev. C | Page 4 of 32  
Data Sheet  
AD5122/AD5142  
Parameter  
Symbol  
Test Conditions/Comments  
Min  
Typ1  
Max  
Unit  
DYNAMIC CHARACTERISTICS9  
Bandwidth  
BW  
−3 dB  
RAB = 10 kΩ  
RAB = 100 kΩ  
3
0.43  
MHz  
MHz  
Total Harmonic Distortion  
Resistor Noise Density  
VW Settling Time  
THD  
eN_WB  
tS  
VDD/VSS = 2.5 V, VA = 1 V rms,  
VB = 0 V, f = 1 kHz  
RAB = 10 kΩ  
RAB = 100 kΩ  
Code = half scale, TA = 25°C,  
f = 10 kHz  
RAB = 10 kΩ  
−80  
−90  
dB  
dB  
7
20  
nV/√Hz  
nV/√Hz  
RAB = 100 kΩ  
VA = 5 V, VB = 0 V, from  
zero scale to full scale,  
0.5 LSB error band  
RAB = 10 kΩ  
RAB = 100 kΩ  
RAB = 10 kΩ  
RAB = 100 kΩ  
2
µs  
µs  
12  
10  
25  
−90  
1
Crosstalk (CW1/CW2  
)
CT  
nV-sec  
nV-sec  
dB  
Mcycles  
kcycles  
Years  
Analog Crosstalk  
Endurance10  
CTA  
TA = 25°C  
100  
Data Retention11, 12  
50  
1 Typical values represent average readings at 25°C, VDD = 5 V, VSS = 0 V, and VLOGIC = 5 V.  
2 Resistor integral nonlinearity (R-INL) error is the deviation from an ideal value measured between the maximum resistance and the minimum resistance wiper  
positions. R-DNL measures the relative step change from ideal between successive tap positions. The maximum wiper current is limited to (0.7 × VDD)/RAB  
.
3 Guaranteed by design and characterization, not subject to production test.  
4 INL and DNL are measured at VWB with the RDAC configured as a potentiometer divider similar to a voltage output DAC. VA = VDD and VB = 0 V. DNL specification limits  
of 1 LSB maximum are guaranteed monotonic operating conditions.  
5 Resistor Terminal A, Resistor Terminal B, and Resistor Terminal W have no limitations on polarity with respect to each other. Dual-supply operation enables ground  
referenced bipolar signal adjustment.  
6 Different from operating current; supply current for EEPROM program lasts approximately 30 ms.  
7 Different from operating current; supply current for EEPROM read lasts approximately 20 µs.  
8 PDISS is calculated from (IDD × VDD) + (ILOGIC × VLOGIC).  
9 All dynamic characteristics use VDD/VSS  
= 2.5 V, and VLOGIC = 2.5 V.  
10 Endurance is qualified to 100,000 cycles per JEDEC Standard 22, Method A117 and measured at −40°C to +125°C.  
11 Retention lifetime equivalent at junction temperature (TJ) = 125°C per JEDEC Standard 22, Method A117. Retention lifetime, based on an activation energy of 1 eV,  
derates with junction temperature in the Flash/EE memory.  
12 50 years applies to an endurance of 1k cycles. An endurance of 100k cycles has an equivalent retention lifetime of 5 years.  
Rev. C | Page 5 of 32  
AD5122/AD5142  
Data Sheet  
ELECTRICAL CHARACTERISTICSAD5142  
VDD = 2.3 V to 5.5 V, VSS = 0 V; VDD = 2.25 V to 2.75 V, VSS = −2.25 V to −2.75 V; VLOGIC = 1.8 V to 5.5 V, 40°C < TA < +125°C, unless  
otherwise noted.  
Table 3.  
Parameter  
Symbol  
Test Conditions/Comments  
Min  
Typ1 Max  
Unit  
DC CHARACTERISTICS—RHEOSTAT  
MODE (ALL RDACs)  
Resolution  
N
R-INL  
8
Bits  
Resistor Integral Nonlinearity2  
RAB = 10 kΩ  
VDD ≥ 2.7 V  
VDD < 2.7 V  
RAB = 100 kΩ  
VDD ≥ 2.7 V  
VDD < 2.7 V  
−2  
−5  
0.2  
1.5  
+2  
+5  
LSB  
LSB  
−1  
−2  
−0.5  
−8  
0.1  
0.5  
0.2  
1
+1  
+2  
+0.5  
+8  
LSB  
LSB  
LSB  
%
Resistor Differential Nonlinearity2  
Nominal Resistor Tolerance  
Resistance Temperature Coefficient3  
Wiper Resistance3  
R-DNL  
ΔRAB/RAB  
(ΔRAB/RAB)/ΔT × 106  
RW  
Code = full scale  
Code = zero scale  
RAB = 10 kΩ  
35  
ppm/°C  
55  
130  
125  
400  
RAB = 100 kΩ  
Bottom Scale or Top Scale  
RBS or RTS  
RAB = 10 kΩ  
RAB = 100 kΩ  
Code = 0xFF  
40  
60  
0.2  
80  
230  
+1  
%
Nominal Resistance Match  
RAB1/RAB2  
−1  
DC CHARACTERISTICS—POTENTIOMETER  
DIVIDER MODE (ALL RDACs)  
Integral Nonlinearity4  
INL  
RAB = 10 kΩ  
RAB = 100 kΩ  
−1  
−0.5  
−0.5  
0.2  
0.1  
0.2  
+1  
+0.5  
+0.5  
LSB  
LSB  
LSB  
Differential Nonlinearity4  
Full-Scale Error  
DNL  
VWFSE  
RAB = 10 kΩ  
RAB = 100 kΩ  
−2.5  
−1  
−0.1  
0.2  
LSB  
LSB  
+1  
Zero-Scale Error  
VWZSE  
RAB = 10 kΩ  
RAB = 100 kΩ  
(ΔVW/VW)/ΔT × 106 Code = half scale  
1.2  
0.5  
5
3
1
LSB  
LSB  
ppm/°C  
Voltage Divider Temperature  
Coefficient3  
Rev. C | Page 6 of 32  
 
 
 
 
Data Sheet  
AD5122/AD5142  
Parameter  
Symbol  
Test Conditions/Comments  
Min  
Typ1 Max  
Unit  
RESISTOR TERMINALS  
Maximum Continuous Current  
IA, IB, and IW  
RAB = 10 kΩ  
RAB = 100 kΩ  
−6  
−1.5  
VSS  
+6  
+1.5  
VDD  
mA  
mA  
V
Terminal Voltage Range5  
Capacitance A, Capacitance B3  
CA, CB  
f = 1 MHz, measured to GND,  
code = half scale  
RAB = 10 kΩ  
RAB = 100 kΩ  
25  
12  
pF  
pF  
Capacitance W3  
CW  
f = 1 MHz, measured to GND,  
code = half scale  
RAB = 10 kΩ  
RAB = 100 kΩ  
VA = VW = VB  
12  
5
15  
pF  
pF  
nA  
Common-Mode Leakage Current3  
−500  
+500  
DIGITAL INPUTS  
Input Logic3  
High  
VINH  
VLOGIC = 1.8 V to 2.3 V  
VLOGIC = 2.3 V to 5.5 V  
0.8 × VLOGIC  
0.7 × VLOGIC  
V
V
Low  
VINL  
VHYST  
IIN  
0.2 × VLOGIC  
1
V
V
µA  
pF  
Input Hysteresis3  
Input Current3  
0.1 × VLOGIC  
Input Capacitance3  
DIGITAL OUTPUTS  
Output High Voltage3  
Output Low Voltage3  
CIN  
5
VOH  
VOL  
RPULL-UP = 2.2 kΩ to VLOGIC  
ISINK = 3 mA  
ISINK = 6 mA, VLOGIC > 2.3 V  
VLOGIC  
V
V
V
µA  
pF  
0.4  
0.6  
+1  
Three-State Leakage Current  
Three-State Output Capacitance  
POWER SUPPLIES  
−1  
2
Single-Supply Power Range  
Dual-Supply Power Range  
Logic Supply Range  
VSS = GND  
2.3  
2.25  
1.8  
5.5  
V
V
V
V
2.75  
VDD  
VDD  
Single supply, VSS = GND  
Dual supply, VSS < GND  
VIH = VLOGIC or VIL = GND  
VDD = 5.5 V  
2.25  
Positive Supply Current  
IDD  
0.7  
5.5  
µA  
nA  
µA  
mA  
µA  
µA  
µW  
dB  
VDD = 2.3 V  
400  
−0.7  
2
320  
0.05  
3.5  
Negative Supply Current  
EEPROM Store Current3, 6  
EEPROM Read Current3, 7  
Logic Supply Current  
ISS  
VIH = VLOGIC or VIL = GND  
VIH = VLOGIC or VIL = GND  
VIH = VLOGIC or VIL = GND  
VIH = VLOGIC or VIL = GND  
VIH = VLOGIC or VIL = GND  
−5.5  
IDD_EEPROM_STORE  
IDD_EEPROM_READ  
ILOGIC  
PDISS  
PSRR  
1.4  
Power Dissipation8  
Power Supply Rejection Ratio  
∆VDD/∆VSS = VDD 10%,  
code = full scale  
−66  
−60  
Rev. C | Page 7 of 32  
AD5122/AD5142  
Data Sheet  
Parameter  
Symbol  
Test Conditions/Comments  
Min  
Typ1 Max  
Unit  
DYNAMIC CHARACTERISTICS9  
Bandwidth  
BW  
−3 dB  
RAB = 10 kΩ  
RAB = 100 kΩ  
3
0.43  
MHz  
MHz  
Total Harmonic Distortion  
Resistor Noise Density  
VW Settling Time  
THD  
eN_WB  
tS  
VDD/VSS = 2.5 V, VA = 1 V rms,  
VB = 0 V, f = 1 kHz  
RAB = 10 kΩ  
RAB = 100 kΩ  
Code = half scale, TA = 25°C,  
f = 10 kHz  
RAB = 10 kΩ  
−80  
−90  
dB  
dB  
7
20  
nV/√Hz  
nV/√Hz  
RAB = 100 kΩ  
VA = 5 V, VB = 0 V, from  
zero scale to full scale,  
0.5 LSB error band  
RAB = 10 kΩ  
RAB = 100 kΩ  
RAB = 10 kΩ  
RAB = 100 kΩ  
2
µs  
µs  
12  
10  
25  
−90  
1
Crosstalk (CW1/CW2  
)
CT  
nV-sec  
nV-sec  
dB  
Mcycles  
kcycles  
Years  
Analog Crosstalk  
Endurance10  
CTA  
TA = 25°C  
100  
Data Retention11, 12  
50  
1 Typical values represent average readings at 25°C, VDD = 5 V, VSS = 0 V, and VLOGIC = 5 V.  
2 Resistor integral nonlinearity (R-INL) error is the deviation from an ideal value measured between the maximum resistance and the minimum resistance wiper  
positions. R-DNL measures the relative step change from ideal between successive tap positions. The maximum wiper current is limited to (0.7 × VDD)/RAB  
.
3 Guaranteed by design and characterization, not subject to production test.  
4 INL and DNL are measured at VWB with the RDAC configured as a potentiometer divider similar to a voltage output DAC. VA = VDD and VB = 0 V. DNL specification limits  
of 1 LSB maximum are guaranteed monotonic operating conditions.  
5 Resistor Terminal A, Resistor Terminal B, and Resistor Terminal W have no limitations on polarity with respect to each other. Dual-supply operation enables ground  
referenced bipolar signal adjustment.  
6 Different from operating current; supply current for EEPROM program lasts approximately 30 ms.  
7 Different from operating current; supply current for EEPROM read lasts approximately 20 µs.  
8 PDISS is calculated from (IDD × VDD) + (ILOGIC × VLOGIC).  
9 All dynamic characteristics use VDD/VSS  
= 2.5 V, and VLOGIC = 2.5 V.  
10 Endurance is qualified to 100,000 cycles per JEDEC Standard 22, Method A117 and measured at −40°C to +125°C.  
11 Retention lifetime equivalent at junction temperature (TJ) = 125°C per JEDEC Standard 22, Method A117. Retention lifetime, based on an activation energy of 1 eV,  
derates with junction temperature in the Flash/EE memory.  
12 50 years applies to an endurance of 1k cycles. An endurance of 100k cycles has an equivalent retention lifetime of 5 years.  
Rev. C | Page 8 of 32  
Data Sheet  
AD5122/AD5142  
INTERFACE TIMING SPECIFICATIONS  
VLOGIC = 1.8 V to 5.5 V; all specifications TMIN to TMAX, unless otherwise noted.  
Table 4. SPI Interface1  
Parameter2  
Test Conditions/Comments  
Min  
20  
30  
10  
15  
10  
15  
10  
5
Typ  
Max  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Description  
t1  
VLOGIC > 1.8 V  
VLOGIC = 1.8 V  
VLOGIC > 1.8 V  
VLOGIC = 1.8 V  
VLOGIC > 1.8 V  
VLOGIC = 1.8 V  
SCLK cycle time  
t2  
t3  
SCLK high time  
SCLK low time  
t4  
t5  
t6  
t7  
SYNC to SCLK falling edge setup time  
Data setup time  
Data hold time  
SYNC rising edge to next SCLK fall ignored  
Minimum SYNC high time  
5
10  
20  
3
t8  
4
t9  
50  
SCLK rising edge to SDO valid  
SYNC rising edge to SDO pin disable  
t10  
500  
1 Refer to the AN-1248 for additional information about the serial peripheral interface.  
2 All input signals are specified with tr = tf = 1 ns/V (10% to 90% of VDD) and timed from a voltage level of (VIL + VIH)/2.  
3 Refer to t  
t
for memory commands operations (see Table 5).  
EEPROM_PROGRAM and  
EEPROM_READBACK  
4 RPULL_UP = 2.2 kΩ to VDD with a capacitance load of 168 pF.  
Table 5. Control Pins  
Parameter  
Min  
Typ  
Max  
10  
Unit  
µs  
Description  
t1  
0.1  
RESET low time  
1
tEEPROM_PROGRAM  
15  
7
50  
30  
75  
ms  
µs  
µs  
Memory program time (not shown in Figure 5)  
Memory readback time (not shown in Figure 5)  
Start-up time (not shown in Figure 5)  
Reset EEPROM restore time (not shown in Figure 5)  
tEEPROM_READBACK  
2
tPOWER_UP  
tRESET  
30  
µs  
1 EEPROM program time depends on the temperature and EEPROM write cycles. Higher timing is expected at lower temperatures and higher write cycles.  
2 Maximum time after VDD − VSS is equal to 2.3 V.  
Rev. C | Page 9 of 32  
 
 
AD5122/AD5142  
Data Sheet  
SHIFT REGISTER AND TIMING DIAGRAMS  
DB15 (MSB)  
DB8  
A0  
DB7  
D7  
DB0 (LSB)  
D0  
D1  
A1  
D6  
D5  
D4  
D3  
C3  
C2  
C1  
C0  
A3  
A2  
D2  
DATA BITS  
CONTROL BITS  
ADDRESS BITS  
Figure 2. Input Shift Register Contents  
t4  
t1  
t2  
t7  
SCLK  
SYNC  
t3  
t8  
t5  
t6  
SDI  
C3  
C2  
C1  
C0  
D7  
D6  
D5  
D2  
D1  
D0  
t9  
t10  
SDO  
C3*  
C2*  
C1*  
C0*  
D7*  
D6*  
D5*  
D2*  
D1*  
D0*  
*PREVIOUS COMMAND RECEIVED.  
Figure 3. SPI Serial Interface Timing Diagram, Clock Polarity (CPOL) = 0, Clock Phase (CPHA) = 1  
t1  
t2  
t7  
t4  
SCLK  
SYNC  
t3  
t8  
t5  
t6  
SDI  
C3  
C2  
C1  
C0  
D7  
D6  
D5  
D2  
D1  
D0  
t9  
t10  
SDO  
C3*  
C2*  
C1*  
C0*  
D7*  
D6*  
D5*  
D2*  
D1*  
D0*  
*PREVIOUS COMMAND RECEIVED.  
Figure 4. SPI Serial Interface Timing Diagram, Clock Polarity (CPOL) = 1, Clock Phase (CPHA) = 0  
SCLK  
SYNC  
t1  
RESET  
Figure 5. Control Pins Timing Diagram  
Rev. C | Page 10 of 32  
 
 
 
 
 
Data Sheet  
AD5122/AD5142  
ABSOLUTE MAXIMUM RATINGS  
TA = 25°C, unless otherwise noted.  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
Table 6.  
Parameter  
VDD to GND  
VSS to GND  
VDD to VSS  
Rating  
−0.3 V to +7.0 V  
+0.3 V to −7.0 V  
7 V  
VLOGIC to GND  
−0.3 V to VDD + 0.3 V or  
+7.0 V (whichever is less)  
VSS − 0.3 V, VDD + 0.3 V or  
+7.0 V (whichever is less)  
THERMAL RESISTANCE  
VA, VW, VB to GND  
θJA is defined by the JEDEC JESD51 standard, and the value is  
dependent on the test board and test environment.  
IA, IW, IB  
Pulsed1  
Frequency > 10 kHz  
RAW = 10 kΩ  
RAW = 100 kΩ  
Frequency ≤ 10 kHz  
RAW = 10 kΩ  
Table 7. Thermal Resistance  
Package Type  
16-Lead LFCSP  
16-Lead TSSOP  
θJA  
89.51  
150.41  
θJC  
3
27.6  
Unit  
°C/W  
°C/W  
6 mA/d2  
1.5 mA/d2  
1 JEDEC 2S2P test board, still air (0 m/sec airflow).  
6 mA/√d2  
1.5 mA/√d2  
−0.3 V to VLOGIC + 0.3 V or  
+7 V (whichever is less)  
−40°C to +125°C  
150°C  
RAW = 100 kΩ  
Digital Inputs  
ESD CAUTION  
3
Operating Temperature Range, TA  
Maximum Junction Temperature,  
TJ Maximum  
Storage Temperature Range  
Reflow Soldering  
−65°C to +150°C  
Peak Temperature  
260°C  
Time at Peak Temperature  
Package Power Dissipation  
FICDM  
20 sec to 40 sec  
(TJ max − TA)/θJA  
1.5 kV  
1 Maximum terminal current is bounded by the maximum current handling of  
the switches, maximum power dissipation of the package, and maximum  
applied voltage across any two of the A, B, and W terminals at a given  
resistance.  
2 d = pulse duty factor.  
3 Includes programming of EEPROM memory.  
Rev. C | Page 11 of 32  
 
 
 
 
AD5122/AD5142  
Data Sheet  
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS  
PIN 1  
INDICATOR  
GND 1  
A1 2  
SDI  
12  
11  
10  
9
AD5122/  
AD5142  
TOP VIEW  
(Not to Scale)  
SCLK  
V
W1 3  
LOGIC  
V
4
B1  
DD  
NOTES  
1.ꢀEXPOSED PAD. CONNECT THE EXPOSED PAD TO THE  
POTENTIAL OF THE V PIN, OR, ALTERNATIVELY, LEAVE  
SS  
IT ELECTRICALLY UNCONNECTED. IT IS RECOMMENDED  
THAT THE PAD BE THERMALLY CONNECTED TO A COPPER  
PLANE FOR ENHANCED THERMAL PERFORMANCE.  
Figure 6. 16-Lead LFCSP Pin Configuration  
Table 8. 16-Lead LFCSP Pin Function Descriptions  
Pin No. Mnemonic Description  
Ground Pin, Logic Ground Reference.  
Terminal A of RDAC1. VSS ≤ VA ≤ VDD  
Wiper Terminal of RDAC1. VSS ≤ VW ≤ VDD  
Terminal B of RDAC1. VSS ≤ VB ≤ VDD  
Negative Power Supply. Decouple this pin with 0.1 µF ceramic capacitors and 10 µF capacitors.  
Terminal A of RDAC2. VSS ≤ VA ≤ VDD  
Wiper Terminal of RDAC2. VSS ≤ VW ≤ VDD  
Terminal B of RDAC2. VSS ≤ VB ≤ VDD  
1
2
GND  
A1  
.
3
W1  
.
4
B1  
.
5
VSS  
6
A2  
.
7
W2  
.
8
B2  
.
9
VDD  
Positive Power Supply. Decouple this pin with 0.1 µF ceramic capacitors and 10 µF capacitors.  
Logic Power Supply; 1.8 V to VDD. Decouple this pin with 0.1 µF ceramic capacitors and 10 µF capacitors.  
Serial Clock Line. Data is clocked in at the logic low transition.  
10  
11  
12  
13  
14  
15  
VLOGIC  
SCLK  
SDI  
SDO  
SYNC  
INDEP  
Serial Data Input.  
Serial Data Output. This is an open-drain output pin, and it needs an external pull-up resistor.  
Synchronization Input, Active Low. When SYNC returns high, data is loaded into the input shift register.  
Linear Gain Setting Mode at Power-Up. Each string resistor is loaded independently from the associated  
memory location. If INDEP is enabled, it cannot be disabled by software.  
16  
RESET  
EPAD  
Hardware Reset Pin. Refresh the RDAC registers from EEPROM. RESET is activated at the logic low. If this pin is  
not used, tie RESET to VLOGIC  
.
Exposed Pad. Connect this exposed pad to the potential of the VSS pin, or, alternatively, leave it electrically  
unconnected. It is recommended that the pad be thermally connected to a copper plane for enhanced  
thermal performance.  
Rev. C | Page 12 of 32  
 
Data Sheet  
AD5122/AD5142  
1
2
3
4
5
6
7
8
INDEP  
16  
15  
14  
13  
12  
11  
10  
9
SYNC  
SDO  
SDI  
RESET  
GND  
A1  
AD5122/  
AD5142  
TOP VIEW  
(Not to Scale)  
SCLK  
W1  
B1  
V
LOGIC  
V
DD  
V
B2  
SS  
A2  
W2  
Figure 7. 16-Lead TSSOP, SPI Interface Pin Configuration  
Table 9. 16-Lead TSSOP, SPI Interface Pin Function Descriptions  
Pin No. Mnemonic Description  
1
INDEP  
Linear Gain Setting Mode at Power-Up. Each string resistor is loaded independently from the associated  
memory location. If INDEP is enabled, it cannot be disabled by software.  
2
RESET  
Hardware Reset Pin. Refresh the RDAC registers from EEPROM. RESET is activated at the logic low. If this pin is  
not used, tie RESET to VLOGIC  
Ground Pin, Logic Ground Reference.  
Terminal A of RDAC1. VSS ≤ VA ≤ VDD  
Wiper Terminal of RDAC1. VSS ≤ VW ≤ VDD  
Terminal B of RDAC1. VSS ≤ VB ≤ VDD  
Negative Power Supply. Decouple this pin with 0.1 µF ceramic capacitors and 10 µF capacitors.  
Terminal A of RDAC2. VSS ≤ VA ≤ VDD  
Wiper Terminal of RDAC2. VSS ≤ VW ≤ VDD  
Terminal B of RDAC2. VSS ≤ VB ≤ VDD  
.
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
GND  
A1  
W1  
B1  
VSS  
A2  
W2  
B2  
VDD  
VLOGIC  
SCLK  
SDI  
SDO  
SYNC  
.
.
.
.
.
.
Positive Power Supply. Decouple this pin with 0.1 µF ceramic capacitors and 10 µF capacitors.  
Logic Power Supply; 1.8 V to VDD. Decouple this pin with 0.1 µF ceramic capacitors and 10 µF capacitors.  
Serial Clock Line. Data is clocked in at the logic low transition.  
Serial Data Input.  
Serial Data Output. This is an open-drain output pin, and it needs an external pull-up resistor.  
Synchronization Input, Active Low. When SYNC returns high, data is loaded into the input shift register.  
Rev. C | Page 13 of 32  
AD5122/AD5142  
Data Sheet  
TYPICAL PERFORMANCE CHARACTERISTICS  
0.5  
0.2  
0.1  
10kΩ, +125°C  
10kΩ, +25°C  
0.4  
10kΩ, –40°C  
100kΩ, +125°C  
100kΩ, +25°C  
0.3  
0
100kΩ, –40°C  
0.2  
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–0.6  
0.1  
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
10kΩ, +125°C  
10kΩ, +25°C  
10kΩ, –40°C  
100kΩ, +125°C  
100kΩ, +25°C  
100kΩ, –40°C  
0
100  
200  
0
100  
200  
CODE (Decimal)  
CODE (Decimal)  
Figure 8. R-INL vs. Code (AD5142)  
Figure 11. R-DNL vs. Code (AD5142)  
0.10  
0.05  
0.20  
0.15  
0.10  
0
0.05  
–0.05  
–0.10  
–0.15  
–0.20  
–0.25  
–0.30  
0
–0.05  
–0.10  
–0.15  
–0.20  
–0.25  
10kΩ, +125°C  
10kΩ, +25°C  
10kΩ, –40°C  
100kΩ, +125°C  
100kΩ, +25°C  
100kΩ, –40°C  
10kΩ, +125°C  
10kΩ, +25°C  
10kΩ, –40°C  
100kΩ, +125°C  
100kΩ, +25°C  
100kΩ, –40°C  
0
50  
100  
0
50  
100  
CODE (Decimal)  
CODE (Decimal)  
Figure 12. R-DNL vs. Code (AD5122)  
Figure 9. R-INL vs. Code (AD5122)  
0.10  
0.05  
0.3  
0.2  
10kΩ, –40°C  
10kΩ, +25°C  
10kΩ, +125°C  
100kΩ, –40°C  
100kΩ, +25°C  
100kΩ, +125°C  
0
0.1  
–0.05  
–0.10  
–0.15  
–0.20  
–0.25  
–0.30  
0
–0.1  
–0.2  
–0.3  
10kΩ, –40°C  
10kΩ, +25°C  
10kΩ, +125°C  
100kΩ, –40°C  
100kΩ, +25°C  
100kΩ, +125°C  
0
100  
200  
0
100  
200  
CODE (Decimal)  
CODE (Decimal)  
Figure 13. DNL vs. Code (AD5142)  
Figure 10. INL vs. Code (AD5142)  
Rev. C | Page 14 of 32  
 
Data Sheet  
AD5122/AD5142  
0.15  
0.10  
0.05  
0
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
10kΩ, –40°C  
10kΩ, +25°C  
10kΩ, +125°C  
100kΩ, –40°C  
100kΩ, +25°C  
100kΩ, +125°C  
V
V
= V  
LOGIC  
= GND  
V
V
V
= 2.3V  
= 3.3V  
= 5.5V  
DD  
SS  
LOGIC  
LOGIC  
LOGIC  
–0.05  
–0.10  
–0.15  
0
50  
100  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
CODE (Decimal)  
Figure 17. ILOGIC vs. Temperature  
Figure 14. INL vs. Code (AD5122)  
0.06  
0.04  
450  
400  
350  
300  
250  
200  
150  
100  
50  
100kΩ  
10kΩ  
10kΩ, –40°C  
10kΩ, +25°C  
10kΩ, +125°C  
100kΩ, –40°C  
100kΩ, +25°C  
100kΩ, +125°C  
0.02  
0
–0.02  
–0.04  
–0.06  
–0.08  
–0.10  
–0.12  
–0.14  
0
–50  
AD5142  
AD5122  
0
0
50  
25  
100  
50  
150  
75  
200  
100  
255  
127  
0
50  
100  
CODE (Decimal)  
CODE (Decimal)  
Figure 15. Potentiometer Mode Temperature Coefficient ((ΔVW/VW)/ΔT × 106)  
vs. Code  
Figure 18. DNL vs. Code (AD5122)  
450  
800  
10kΩ  
V
V
= V  
LOGIC  
= GND  
DD  
SS  
100kΩ  
400  
350  
300  
250  
200  
150  
100  
50  
700  
600  
500  
400  
300  
200  
100  
0
V
V
V
= 2.3V  
= 3.3V  
= 5.5V  
DD  
DD  
DD  
0
–50  
AD5142  
AD5122  
0
0
50  
25  
100  
50  
150  
75  
200  
100  
255  
127  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
CODE (Decimal)  
Figure 19. Rheostat Mode Temperature Coefficient ((ΔRWB/RWB)/ΔT × 106)  
vs. Code  
Figure 16. IDD vs. Temperature  
Rev. C | Page 15 of 32  
AD5122/AD5142  
Data Sheet  
20  
0
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
V
V
V
V
V
= 1.8V  
= 2.3V  
= 3.3V  
= 5V  
V
R
/V = ±2.5V  
LOGIC  
LOGIC  
LOGIC  
LOGIC  
LOGIC  
DD SS  
= 10kΩ  
AB  
= 5.5V  
–20  
–40  
–60  
–80  
–100  
QUARTER SCALE  
MIDSCALE  
FULL-SCALE  
0
1
2
3
4
5
10  
100  
1k  
10k  
100k  
1M  
10M  
INPUT VOLTAGE (V)  
FREQUENCY (Hz)  
Figure 20. ILOGIC Current vs. Digital Input Voltage  
Figure 23. Normalized Phase Flatness vs. Frequency, RAB = 10 kΩ  
0
–10  
–20  
–30  
–40  
–50  
–60  
10  
0x80 (0x40)  
0
0x80 (0x40)  
0x40 (0x20)  
0x20 (0x10)  
0x40 (0x20)  
–10  
0x20 (0x10)  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
0x10 (0x08)  
0x8 (0x04)  
0x10 (0x08)  
0x8 (0x04)  
0x4 (0x02)  
0x4 (0x02)  
0x2 (0x01)  
0x1 (0x00)  
0x2 (0x01)  
0x1 (0x00)  
0x00  
0x00  
AD5142 (AD5122)  
AD5142 (AD5122)  
10  
100  
1k  
10k  
100k  
1M  
10M  
10  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 21. 10 kΩ Gain vs. Frequency vs. Code  
Figure 24. 100 kΩ Gain vs. Frequency vs. Code  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
0
10kΩ  
100kΩ  
10kΩ  
V
/V = ±2.5V  
DD SS  
= 1V rms  
= GND  
100kΩ  
V
V
A
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
B
CODE = HALF SCALE  
NOISE FILTER = 22kHz  
V
f
/V = ±2.5V  
DD SS  
= 1kHz  
CODE = HALF SCALE  
NOISE FILTER = 22kHz  
IN  
20  
200  
2k  
FREQUENCY (Hz)  
20k  
200k  
0.001  
0.01  
0.1  
1
VOLTAGE (V rms)  
Figure 22. Total Harmonic Distortion Plus Noise (THD + N) vs. Frequency  
Figure 25. Total Harmonic Distortion Plus Noise (THD + N) vs. Amplitude  
Rev. C | Page 16 of 32  
Data Sheet  
AD5122/AD5142  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
10  
0x80 TO 0x7F 100kΩ  
0x80 TO 0x7F 10kΩ  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
QUARTER SCALE  
–80  
V
R
/V = ±2.5V  
MIDSCALE  
DD SS  
= 100kΩ  
FULL-SCALE  
AB  
–0.1  
–90  
10  
0
5
10  
15  
100  
1k  
10k  
100k  
1M  
TIME (µs)  
FREQUENCY (Hz)  
Figure 29. Maximum Transition Glitch  
Figure 26. Normalized Phase Flatness vs. Frequency, RAB = 100 kΩ  
0.0025  
0.0020  
0.0015  
0.0010  
0.0005  
0
1.2  
600  
100kΩ, V  
100kΩ, V  
100kΩ, V  
100kΩ, V  
100kΩ, V  
100kΩ, V  
= 2.3V  
= 2.7V  
= 3V  
DD  
DD  
DD  
DD  
DD  
DD  
1.0  
0.8  
0.6  
0.4  
0.2  
0
= 3.6V  
= 5V  
500  
400  
300  
200  
100  
0
= 5.5V  
10kΩ, V  
10kΩ, V  
10kΩ, V  
10kΩ, V  
10kΩ, V  
10kΩ, V  
= 2.3V  
= 2.7V  
= 3V  
DD  
DD  
DD  
DD  
DD  
DD  
= 3.6V  
= 5V  
= 5.5V  
–600 –500 –400 –300 –200 –100  
0
100 200 300 400 500 600  
0
1
2
3
4
5
RESISTOR DRIFT (ppm)  
VOLTAGE (V)  
Figure 30. Resistor Lifetime Drift  
Figure 27. Incremental Wiper On Resistance vs. Positive Power Supply (VDD  
)
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
10  
10kΩ, RDAC1  
100kΩ, RDAC1  
V
V
= 5V ±10% AC  
DD  
SS  
10k+ 0pF  
= GND, V = 4V, V = GND  
A
B
10k+ 75pF  
9
CODE = MIDSCALE  
10k+ 150pF  
10k+ 250pF  
8
100k+ 0pF  
100k+ 75pF  
100k+ 150pF  
100k+ 250pF  
7
6
5
4
3
2
1
0
10  
100  
1k  
10k  
100k  
1M  
10M  
AD5142  
120  
60 AD5122  
0
0
20  
10  
40  
20  
60  
30  
80  
40  
100  
50  
FREQUENCY (Hz)  
CODE (Decimal)  
Figure 31. Power Supply Rejection Ratio (PSRR) vs. Frequency  
Figure 28. Maximum Bandwidth vs. Code vs. Net Capacitance  
Rev. C | Page 17 of 32  
AD5122/AD5142  
Data Sheet  
0.020  
0.015  
0.010  
0.005  
0
7
6
5
4
3
2
1
0
10kΩ  
100kΩ  
–0.005  
–0.010  
–0.015  
–0.020  
AD5142  
250  
0
500  
1000  
1500  
2000  
0
0
50  
25  
100  
50  
150  
75  
200  
100  
AD5122  
125  
TIME (ns)  
CODE (Decimal)  
Figure 32. Digital Feedthrough  
Figure 34. Theoretical Maximum Current vs. Code  
0
–20  
10kΩ  
100kΩ  
SHUTDOWN MODE ENABLED  
–40  
–60  
–80  
–100  
–120  
10  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
Figure 33. Shutdown Isolation vs. Frequency  
Rev. C | Page 18 of 32  
Data Sheet  
AD5122/AD5142  
TEST CIRCUITS  
Figure 35 to Figure 39 define the test conditions used in the Specifications section.  
NC  
DUT  
A
V
I
A
W
V+ = V ±10%  
DD  
W
V  
MS  
V
A
B
PSRR (dB) = 20 LOG  
DD  
)
(
V  
B
W
DD  
V+  
~
V
V  
%
MS  
MS  
PSS (%/%) =  
V
MS  
V  
%
DD  
NC = NO CONNECT  
Figure 38. Power Supply Sensitivity and  
Power Supply Rejection Ratio (PSS, PSRR)  
Figure 35. Resistor Integral Nonlinearity Error (Rheostat Operation; R-INL, R-DNL)  
0.1V  
R
=
SW  
I
DUT  
B
SW  
CODE = 0x00  
W
+
DUT  
V+ = V  
DD  
1LSB = V+/2  
0.1V  
I
SW  
N
A
W
V+  
V
SS  
TO V  
DD  
B
A = NC  
V
MS  
Figure 36. Potentiometer Divider Nonlinearity Error (INL, DNL)  
Figure 39. Incremental On Resistance  
NC  
DUT  
A
W
I
= V /R  
W DD NOMINAL  
V
W
B
V
R
= V  
/I  
MS1  
W
MS1 W  
NC = NO CONNECT  
Figure 37. Wiper Resistance  
Rev. C | Page 19 of 32  
 
 
 
AD5122/AD5142  
Data Sheet  
THEORY OF OPERATION  
The AD5122/AD5142 digital programmable potentiometers are  
designed to operate as true variable resistors for analog signals  
within the terminal voltage range of VSS < VTERM < VDD. The resistor  
wiper position is determined by the RDAC register contents. The  
RDAC register acts as a scratchpad register that allows unlimited  
changes of resistance settings. A secondary register (the input  
register) can preload the RDAC register data.  
SPI SERIAL DATA INTERFACE  
The AD5122/AD5142 contain a 4-wire, SPI-compatible digital  
SYNC  
interface (SDI,  
begins by bringing the  
, SDO, and SCLK). The write sequence  
SYNC SYNC  
line low. The  
pin must be  
held low until the complete data-word is loaded from the SDI  
pin. Data is loaded in at the SCLK falling edge transition, as  
shown in Figure 3 and Figure 4. When  
SYNC  
returns high, the  
The RDAC register can be programmed with any position setting  
using the SPI interface (depending on the model). When a  
desirable wiper position is found, this value can be stored in the  
EEPROM memory. Thereafter, the wiper position is always  
restored to that position for subsequent power-ups. The storing  
of EEPROM data takes approximately 15 ms; during this time,  
the device is locked and does not acknowledge any new command,  
preventing any changes from taking place.  
serial data-word is decoded according to the instructions in  
Table 16.  
To minimize power consumption in the digital input buffers  
when the device is enabled, operate all serial interface pins close  
to the VLOGIC supply rails.  
SYNC  
Interruption  
In a standalone write sequence for the AD5122/AD5142,  
SYNC  
the  
instruction is decoded when  
SYNC  
line is kept low for 16 falling edges of SCLK, and the  
RDAC REGISTER AND EEPROM  
SYNC  
is pulled high. However, if  
line is kept low for less than 16 falling edges of SCLK,  
The RDAC register directly controls the position of the digital  
potentiometer wiper. For example, when the RDAC register is  
loaded with 0x80 (AD5142, 256 taps), the wiper is connected to  
half scale of the variable resistor. The RDAC register is a standard  
logic register; there is no restriction on the number of changes  
allowed.  
the  
the input shift register content is ignored, and the write sequence is  
considered invalid.  
SDO Pin  
The serial data output pin (SDO) serves two purposes: to read  
back the contents of the control, EEPROM, RDAC, and input  
registers using Command 3 (see Table 10 and Table 16), and to  
connect the AD5122/AD5142 to daisy-chain mode.  
It is possible to both write to and read from the RDAC register  
using the digital interface (see Table 10).  
The contents of the RDAC register can be stored to the EEPROM  
using Command 9 (see Table 16). Thereafter, the RDAC register  
always sets at that position for any future on-off-on power  
supply sequence. It is possible to read back data saved into the  
EEPROM with Command 3 (see Table 10).  
The SDO pin contains an internal open-drain output that needs an  
external pull-up resistor. The SDO pin is enabled when  
pulled low, and the data is clocked out of SDO on the rising  
edge of SCLK, as shown in Figure 3 and Figure 4.  
SYNC  
is  
Alternatively, the EEPROM can be written to independently  
using Command 11 (see Table 16).  
INPUT SHIFT REGISTER  
For the AD5122/AD5142, the input shift register is 16 bits wide,  
as shown in Figure 2. The 16-bit word consists of four control  
bits, followed by four address bits and by eight data bits.  
If the AD5122 RDAC or EEPROM registers are read from or  
written to, the lowest data bit (Bit 0) is ignored.  
Data is loaded MSB first (Bit 15). The four control bits determine  
the function of the software command as listed in Table 10 and  
Table 16.  
Rev. C | Page 20 of 32  
 
 
 
 
Data Sheet  
AD5122/AD5142  
Daisy-Chain Connection  
To prevent data from mislocking (for example, due to noise) the  
device includes an internal counter, if the clock falling edges  
count is not a multiple of 8, the device ignores the command. A  
valid clock count is 16, 24, or 32. The counter resets  
Daisy chaining minimizes the number of port pins required from  
the controlling IC. As shown in Figure 40, the SDO pin of one  
package must be tied to the SDI pin of the next package. The clock  
period can be increased because of the propagation delay of the  
line between subsequent devices. When two AD5122/AD5142  
devices are daisy chained, 32 bits of data are required. The first  
16 bits assigned to U2, and the second 16 bits assigned to U1, as  
SYNC  
when  
returns high.  
SYNC  
shown in Figure 41. Keep the  
pin low until all 32 bits are  
SYNC  
clocked into their respective serial registers. The  
pin is  
then pulled high to complete the operation. A typical connection is  
shown in Figure 40.  
V
V
LOGIC  
LOGIC  
AD5122/  
AD5142  
AD5122/  
AD5142  
R
P
2.2kΩ  
R
P
2.2kΩ  
SDI  
SDO  
U2  
MOSI  
SDI  
U1  
SDO  
MICROCONTROLLER  
MISO  
SCLK  
SS  
SYNC  
SCLK  
SYNC  
SCLK  
Figure 40. Daisy-Chain Configuration  
18  
SCLK  
1
2
16  
17  
32  
SYNC  
MOSI  
DB15  
DB0  
DB15  
DB15  
DB0  
INPUT WORD FOR U2  
INPUT WORD FOR U1  
INPUT WORD FOR U2  
SDO_U1  
DB0  
DB15  
DB0  
UNDEFINED  
Figure 41. Daisy-Chain Diagram  
Rev. C | Page 21 of 32  
 
 
AD5122/AD5142  
Data Sheet  
Table 10. Reduced Commands Operation Truth Table  
Control  
Bits[DB15:DB12]  
Address  
Bits[DB11:DB8]1  
Data Bits[DB7:DB0]1  
Command  
Number  
C3 C2 C1 C0 A3 A2 A1 A0 D7 D6 D5 D4 D3 D2 D1 D0 Operation  
0
1
0
0
0
0
0
0
0
1
X
0
X
0
X
0
X
X
X
X
X
X
X
X
X
NOP: do nothing.  
A0 D7 D6 D5 D4 D3 D2 D1 D0 Write contents of serial register  
data to RDAC  
2
3
0
0
0
0
1
1
0
1
0
0
0
0
A0 D7 D6 D5 D4 D3 D2 D1 D0 Write contents of serial register  
data to input register  
X
A1 A0  
X
X
X
X
X
X
D1 D0 Read back contents  
D1  
0
1
D0  
1
1
Data  
EEPROM  
RDAC  
9
0
0
1
1
1
1
0
1
1
1
1
0
1
1
1
0
0
0
0
X
0
0
0
X
0
A0  
A0  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
1
0
X
Copy RDAC register to EEPROM  
Copy EEPROM into RDAC  
Software reset  
10  
14  
15  
0
X
A3  
A0  
D0 Software shutdown  
D0  
0
1
Condition  
Normal mode  
Shutdown mode  
1X means don’t care.  
Table 11. Reduced Address Bits Table  
A3  
A2  
X1  
0
A1  
X1  
0
A0  
X1  
0
Channel  
Stored Channel Memory  
Not applicable  
RDAC1  
1
0
All channels  
RDAC1  
0
0
0
0
0
1
1
0
RDAC2  
Not applicable  
Not applicable  
RDAC2  
1X means don’t care.  
Rev. C | Page 22 of 32  
 
Data Sheet  
AD5122/AD5142  
Low Wiper Resistance Feature  
ADVANCED CONTROL MODES  
The AD5122/AD5142 include two commands to reduce the wiper  
resistance between the terminals when the devices achieve full scale  
or zero scale. These extra positions are called bottom scale, BS, and  
top scale, TS. The resistance between Terminal A and Terminal W  
at top scale is specified as RTS. Similarly, the bottom scale resistance  
between Terminal B and Terminal W is specified as RBS.  
The AD5122/AD5142 digital potentiometers include a set of user  
programming features to address the wide number of applications  
for these universal adjustment devices (see Table 16 and Table 18).  
Key programming features include the following:  
Input register  
Linear gain setting mode  
Low wiper resistance feature  
Lineal increment and decrement instructions  
6 dB increment and decrement instructions  
Reset  
The contents of the RDAC registers are unchanged by entering  
in these positions. There are three ways to exit from top scale  
and bottom scale: by using Command 12 or Command 13 (see  
Table 16); by loading new data in an RDAC register, which  
includes increment/decrement operations; or by entering  
shutdown mode, Command 15 (see Table 16).  
Shutdown mode  
Table 12 and Table 13 show the truth tables for the top scale  
position and the bottom scale position, respectively, when the  
potentiometer or linear gain setting mode is enabled.  
Input Register  
The AD5122/AD5142 include one input register per RDAC  
register. These registers allow preloading of the value for the  
associated RDAC register. These registers can be written to using  
Command 2 and read back from using Command 3 (see Table 16).  
Table 12. Top Scale Truth Table  
Linear Gain Setting Mode  
Potentiometer Mode  
This feature allows a synchronous update of one or all the  
RDAC registers at the same time.  
RAW  
RAB  
RWB  
RAW  
RWB  
RAB  
RTS  
RAB  
The transfer from the input register to the RDAC register is  
done synchronously by Command 8 (see Table 16).  
Table 13. Bottom Scale Truth Table  
Linear Gain Setting Mode  
Potentiometer Mode  
If new data is loaded into an RDAC register, this RDAC register  
automatically overwrites the associated input register.  
RAW  
RWB  
RAW  
RWB  
RTS  
RBS  
RAB  
RBS  
Linear Gain Setting Mode  
The proprietary architecture of the AD5122/AD5142 allows the  
independent control of each string resistor, RAW and RWB. To  
enable this feature, use Command 16 (see Table 16) to set Bit D2  
of the control register (see Table 18).  
Linear Increment and Decrement Instructions  
The increment and decrement commands (Command 4 and  
Command 5 in Table 16) are useful for linear step adjustment  
applications. These commands simplify microcontroller software  
coding by allowing the controller to send an increment or  
decrement command to the device. The adjustment can be  
individual or in a ganged potentiometer arrangement, where  
all wiper positions are changed at the same time.  
This mode of operation can control the potentiometer as two  
independent rheostats connected at a single point, W terminal,  
as opposed to potentiometer mode where each resistor is  
complementary, RAW = RAB − RWB  
.
This feature enables a second input and an RDAC register per  
channel, as shown in Table 17; however, the actual RDAC contents  
remain unchanged. The same operations are valid for  
For an increment command, executing Command 4 automatically  
moves the wiper to the next RDAC position. This command  
can be executed in a single channel or multiple channels.  
potentiometer mode and linear gain setting mode.  
If the INDEP pin is pulled high, the device powers up in linear  
gain setting mode and loads the values stored in the associated  
memory locations for each channel (see Table 17). The INDEP pin  
and D2 bit are connected internally to a logic or gate, if any or  
both are 1, the devices cannot operate in potentiometer mode.  
Rev. C | Page 23 of 32  
 
 
 
AD5122/AD5142  
Data Sheet  
±± dB Increment and Decrement Instructions  
Shutdown Mode  
Two programming instructions produce logarithmic taper  
increment or decrement of the wiper position control by  
an individual potentiometer or by a ganged potentiometer  
arrangement where all RDAC register positions are changed  
simultaneously. The +6 dB increment is activated by Command 6,  
and the −6 dB decrement is activated by Command 7 (see Table 16).  
For example, starting with the zero-scale position and executing  
Command 6 ten times moves the wiper in 6 dB steps to the full-  
scale position. When the wiper position is near the maximum setting,  
the last 6 dB increment instruction causes the wiper to go to the  
full-scale position (see Table 14).  
The AD5122/AD5142 can be placed in shutdown mode by  
executing the software shutdown command, Command 15 (see  
Table 16); and by setting the LSB (D0) to 1. This feature places  
the RDAC in a special state. The contents of the RDAC register are  
unchanged by entering shutdown mode. However, all commands  
listed in Table 16 are supported while in shutdown mode. Execute  
Command 15 (see Table 16) and set the LSB (D0) to 0 to exit  
shutdown mode.  
Table 15. Truth Table for Shutdown Mode  
Linear Gain Setting Mode  
Potentiometer Mode  
A2 AW  
WB  
AW  
WB  
RBS  
N/A1  
Incrementing the wiper position by +6 dB essentially doubles the  
RDAC register value, whereas decrementing the wiper position by  
−6 dB halves the register value. Internally, the AD5122/AD5142  
use shift registers to shift the bits left and right to achieve a 6 dB  
increment or decrement. These functions are useful for various  
audio/video level adjustments, especially for white LED brightness  
settings in which human visual responses are more sensitive to  
large adjustments than to small adjustments.  
0
1
N/A1  
Open  
N/A1  
Open  
N/A1  
Open  
1 N/A means not applicable.  
EEPROM OR RDAC REGISTER PROTECTION  
The EEPROM and RDAC registers can be protected by disabling  
any update to these registers. This can be done by using software. If  
these registers are protected by software, set Bit D0 and/or Bit D1  
(see Table 18), which protects the EEPROM and RDAC registers  
independently.  
Table 14. Detailed Left Shift and Right Shift Functions for  
the 6 dB Step Increment and Decrement  
Left Shift (+6 dB/Step)  
Right Shift (−6 dB/Step)  
When RDAC is protected, the only operation allowed is to copy  
the EEPROM into the RDAC register.  
0000 0000  
0000 0001  
0000 0010  
1111 1111  
0111 1111  
0011 1111  
INDEP PIN  
If the INDEP pin is pulled high at power-up, the device operates  
in linear gain setting mode, loading each string resistor, RAWx and  
0000 0100  
0000 1000  
0001 1111  
0000 1111  
RWBx, with the value stored into the EEPROM (see Table 17). If  
0001 0000  
0000 0111  
the pin is pulled low, the device powers up in potentiometer mode.  
0010 0000  
0000 0011  
0100 0000  
1000 0000  
1111 1111  
0000 0001  
0000 0000  
0000 0000  
The INDEP pin and the D2 bit are connected internally to a logic  
OR gate, if any or both are 1, the device cannot operate in  
potentiometer mode (see Table 18).  
Reset  
The AD5122/AD5142 can be reset through software by executing  
Command 14 (see Table 16) or through hardware on the low pulse  
RESET  
of the  
pin. The reset command loads the RDAC registers  
with the contents of the EEPROM and takes approximately 30 µs.  
The EEPROM is preloaded to midscale at the factory, and initial  
RESET  
power-up is, accordingly, at midscale. Tie  
RESET  
to VLOGIC if  
the  
pin is not used.  
Rev. C | Page 24 of 32  
 
 
 
Data Sheet  
AD5122/AD5142  
Table 16. Advance Command Operation Truth Table  
Control  
Bits[DB15:DB12]  
Address  
Bits[DB11:DB8]1  
Data Bits[DB7:DB0]1  
Command  
Number  
C3  
0
C2  
0
C1  
0
C0  
0
A3 A2 A1 A0 D7 D6 D5 D4 D3 D2 D1 D0 Operation  
0
1
X
0
X
X
0
X
X
X
X
X
X
X
X
X
NOP: do nothing  
0
0
0
1
A2  
A0 D7 D6 D5 D4 D3 D2 D1 D0 Write contents of serial  
register data to RDAC  
2
3
0
0
0
0
1
1
0
1
0
0
A2  
0
A0 D7 D6 D5 D4 D3 D2 D1 D0 Write contents of serial  
register data to input  
register  
A2 A1 A0  
X
X
X
X
X
X
D1 D0 Read back contents  
D1  
0
0
D0  
0
1
Data  
Input register  
EEPROM  
1
0
Control  
register  
1
1
RDAC  
4
5
6
7
8
0
0
0
0
0
1
1
1
1
1
0
0
0
0
1
0
0
1
1
0
A3 A2  
A3 A2  
A3 A2  
A3 A2  
A3 A2  
0
0
0
0
0
A0  
A0  
A0  
A0  
A0  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
1
0
1
0
X
Linear RDAC increment  
Linear RDAC decrement  
+6 dB RDAC increment  
−6 dB RDAC decrement  
Copy input register to RDAC  
(software LRDAC)  
9
0
1
1
1
0
A2  
0
0
A0  
A0  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
1
0
Copy RDAC register to  
EEPROM  
10  
11  
0
1
1
0
1
0
1
0
0
0
A2  
0
Copy EEPROM into RDAC  
A1 A0 D7 D6 D5 D4 D3 D2 D1 D0 Write contents of serial  
register data to EEPROM  
12  
1
0
0
1
A3 A2  
0
0
A0  
A0  
1
0
0
0
0
0
0
0
0
0
0
0
0
0
D0 Top scale  
D0 = 0; normal mode  
D0 = 1; shutdown mode  
D0 Bottom scale  
13  
1
0
0
1
A3 A2  
D0 = 1; enter  
D0 = 0; exit  
14  
15  
1
1
0
1
1
0
1
0
X
X
X
0
X
X
0
X
0
X
0
X
0
X
0
X
0
X
0
X
Software reset  
A3 A2  
A0  
D0 Software shutdown  
D0 = 0; normal mode  
D0 = 1; device placed in  
shutdown mode  
16  
1
1
0
1
X
X
X
X
X
X
X
X
X
D2 D1 D0 Copy serial register data to  
control register  
1 X means don’t care.  
Rev. C | Page 25 of 32  
 
AD5122/AD5142  
Data Sheet  
Table 17. Address Bits  
Potentiometer Mode  
Input Register RDAC Register  
Linear Gain Setting Mode  
Stored Channel  
Memory  
A3  
1
0
0
0
A2  
X1  
0
1
0
A1  
X1  
0
0
0
A0  
X1  
0
0
1
Input Register  
RDAC Register  
All channels  
RWB1  
All channels  
RDAC1  
All channels  
RDAC1  
All channels  
RWB1  
Not applicable  
RDAC1/RWB1  
Not applicable  
RAW1  
Not applicable  
RDAC2  
Not applicable  
RDAC2  
RAW1  
RWB2  
RAW1  
RWB2  
0
0
0
1
0
0
0
1
1
1
0
1
Not applicable  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
RAW2  
Not applicable  
Not applicable  
RAW2  
Not applicable  
Not applicable  
Not applicable  
RDAC2/RWB2  
RAW2  
1 X means don’t care.  
Table 18. Control Register Bit Descriptions  
Bit Name  
Description  
D0  
RDAC register write protect  
0 = wiper position frozen to value in EEPROM memory  
1 = allows update of wiper position through digital interface (default)  
EEPROM program enable  
D1  
D2  
0 = EEPROM program disabled  
1 = enables device for EEPROM program (default)  
Lineal setting mode/potentiometer mode  
0 = potentiometer mode (default)  
1 = linear gain setting mode  
Rev. C | Page 26 of 32  
 
 
Data Sheet  
AD5122/AD5142  
The nominal resistance between Terminal A and Terminal B, RAB,  
is 10 kꢀ or 100 kꢀ, and has 128/256 tap points accessed by the  
wiper terminal. The 7-bit/8-bit data in the RDAC latch is decoded  
to select one of the 128/256 possible wiper settings. The general  
equations for determining the digitally programmed output  
resistance between Terminal W and Terminal B are  
RDAC ARCHITECTURE  
To achieve optimum performance, Analog Devices, Inc., uses a  
proprietary RDAC segmentation architecture for all the digital  
potentiometers. In particular, the AD5122/AD5142 employ a  
three stage segmentation approach, as shown in Figure 42. The  
AD5122/AD5142 wiper switch is designed with the transmission  
gate CMOS topology and with the gate voltage derived from  
AD5122:  
VDD and VSS.  
D
128  
R
WB (D)   
RAB RW  
RAB RW  
From 0x00 to 0x7F (1)  
From 0x00 to 0xFF (2)  
A
S
TS  
AD5142:  
R
R
H
H
D
256  
RWB (D)   
R
M
where:  
D is the decimal equivalent of the binary code in the 7-bit/8-bit  
RDAC register.  
RAB is the end-to-end resistance.  
RW is the wiper resistance.  
R
M
R
L
L
W
R
In potentiometer mode, similar to the mechanical potentiometer,  
the resistance between Terminal W and Terminal A also produces  
a digitally controlled complementary resistance, RWA. RWA also  
gives a maximum of 8% absolute resistance error. RWA starts at the  
maximum resistance value and decreases as the data loaded into  
the latch increases. The general equations for this operation are  
7-BIT/8-BIT  
ADDRESS  
DECODER  
R
R
M
R
H
M
R
H
S
BS  
AD5122:  
B
128 D  
128  
R
AW (D)   
RAB RW  
RAB RW  
From 0x00 to 0x7F (3)  
From 0x00 to 0xFF (4)  
AD5142:  
Figure 42. AD5122/AD5142 Simplified RDAC Circuit  
256 D  
256  
R
AW (D)   
Top Scale/Bottom Scale Architecture  
In addition, the AD5122/AD5142 include new positions to  
where:  
reduce the resistance between terminals. These positions are  
called bottom scale and top scale. At bottom scale, the typical  
wiper resistance decreases from 130 Ω to 60 Ω (RAB = 100 kΩ).  
At top scale, the resistance between Terminal A and Terminal W is  
decreased by 1 LSB, and the total resistance is reduced to 60 Ω  
(RAB = 100 kΩ).  
D is the decimal equivalent of the binary code in the 7-bit/8-bit  
RDAC register.  
R
AB is the end-to-end resistance.  
RW is the wiper resistance.  
If the device is configured in linear gain setting mode, the  
resistance between Terminal W and Terminal A is directly  
proportional to the code loaded in the associate RDAC register.  
The general equations for this operation are  
PROGRAMMING THE VARIABLE RESISTOR  
Rheostat Operation— 8% Resistor Tolerance  
The AD5122/AD5142 operate in rheostat mode when only two  
terminals are used as a variable resistor. The unused terminal can  
be floating, or it can be tied to Terminal W, as shown in Figure 43.  
AD5122:  
D
128  
R
AW (D)   
RAB RW  
From 0x00 to 0x7F (5)  
From 0x00 to 0xFF (6)  
A
A
A
AD5142:  
W
W
W
D
256  
R
AW (D)   
RAB RW  
B
B
B
where:  
Figure 43. Rheostat Mode Configuration  
D is the decimal equivalent of the binary code in the 7-bit/8-bit  
RDAC register.  
R
AB is the end-to-end resistance.  
RW is the wiper resistance.  
Rev. C | Page 27 of 32  
 
 
 
 
AD5122/AD5142  
Data Sheet  
V
DD  
In the bottom scale condition or top scale condition, a finite  
total wiper resistance of 40 Ω is present. Regardless of which  
setting the device is operating in, limit the current between  
Terminal A to Terminal B, Terminal W to Terminal A, and  
Terminal W to Terminal B, to the maximum continuous current  
of ±± mA or to the pulse current specified in Table ±. Otherwise,  
degradation or possible destruction of the internal switch  
contact can occur.  
A
W
B
V
SS  
PROGRAMMING THE POTENTIOMETER DIVIDER  
Figure 45. Maximum Terminal Voltages Set by VDD and VSS  
Voltage Output Operation  
POWER-UP SEQUENCE  
The digital potentiometer easily generates a voltage divider at  
wiper to B and wiper to A that is proportional to the input voltage  
at A to B, as shown in Figure 44.  
Because there are diodes to limit the voltage compliance at  
Terminal A, Terminal B, and Terminal W (see Figure 45), it is  
important to power up VDD first before applying any voltage to  
Terminal A, Terminal B, and Terminal W. Otherwise, the diode  
is forward-biased such that VDD is powered unintentionally. The  
ideal power-up sequence is VSS, VDD, VLOGIC, digital inputs, and  
VA, VB, and VW. The order of powering VA, VB, VW, and digital  
inputs is not important as long as they are powered after VSS,  
VDD, and VLOGIC. Regardless of the power-up sequence and the  
ramp rates of the power supplies, once VLOGIC is powered, the  
power-on preset activates, which restores EEPROM values to  
the RDAC registers.  
V
A
A
W
V
OUT  
B
V
B
Figure 44. Potentiometer Mode Configuration  
Connecting Terminal A to 5 V and Terminal B to ground  
produces an output voltage at the Wiper W to Terminal B  
ranging from 0 V to 5 V. The general equation defining the  
output voltage at VW with respect to ground for any valid  
input voltage applied to Terminal A and Terminal B is  
LAYOUT AND POWER SUPPLY BIASING  
It is always a good practice to use a compact, minimum lead  
length layout design. Ensure that the leads to the input are as  
direct as possible with a minimum conductor length. Ground  
paths must have low resistance and low inductance. It is also  
good practice to bypass the power supplies with quality capacitors.  
Apply low equivalent series resistance (ESR) 1 μF to 10 μF  
tantalum or electrolytic capacitors at the supplies to minimize  
any transient disturbance and to filter low frequency ripple.  
Figure 4± illustrates the basic supply bypassing configuration  
for the AD5122/AD5142.  
RWB(D)  
RAB  
R
AW (D)  
RAB  
VW (D)   
VA   
VB  
(7)  
where:  
R
R
WB(D) can be obtained from Equation 1 and Equation 2.  
AW(D) can be obtained from Equation 3 and Equation 4.  
Operation of the digital potentiometer in the divider mode  
results in a more accurate operation over temperature. Unlike  
the rheostat mode, the output voltage is dependent mainly on  
the ratio of the internal resistors, RAW and RWB, and not the  
absolute values. Therefore, the temperature drift reduces to  
5 ppm/°C.  
V
V
LOGIC  
V
V
LOGIC  
DD  
DD  
+
+
+
C3  
C1  
C5  
0.1µF  
C6  
10µF  
10µF  
0.1µF  
AD5122/  
AD5142  
TERMINAL VOLTAGE OPERATING RANGE  
C4  
C2  
10µF  
0.1µF  
The AD5122/AD5142 are designed with internal ESD diodes  
V
V
SS  
SS  
GND  
for protection. These diodes also set the voltage boundary of the  
terminal operating voltages. Positive signals present on  
Terminal A, Terminal B, or Terminal W that exceed VDD are  
clamped by the forward-biased diode. There is no polarity  
constraint between VA, VW, and VB, but they cannot be higher  
than VDD or lower than VSS.  
Figure 46. Power Supply Bypassing  
Rev. C | Page 28 of 32  
 
 
 
 
 
 
 
Data Sheet  
AD5122/AD5142  
OUTLINE DIMENSIONS  
DETAIL A  
(JEDEC 95)  
3.10  
3.00 SQ  
2.90  
0.30  
0.23  
0.18  
PIN 1  
INDICATOR  
PIN 1  
13  
16  
TIONS  
INDICATOR AREA OP  
(SEE DETAIL A)  
0.50  
BSC  
12  
1
1.75  
1.60 SQ  
1.45  
EXPOSED  
PAD  
9
4
8
5
0.50  
0.40  
0.30  
0.20 MIN  
TOP VIEW  
TOP VIEW  
BOTTOM VIEW  
0.80  
0.75  
0.70  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.05 MAX  
0.02 NOM  
COPLANARITY  
0.08  
SECTION OF THIS DATA SHEET.  
SEATING  
PLANE  
0.20 REF  
COMPLIANT TOJEDEC STANDARDS MO-220-WEED-6.  
Figure 47. 16-Lead Lead Frame Chip Scale Package [LFCSP]  
3 mm × 3 mm Body and 0.75 mm Package Height  
(CP-16-22)  
Dimensions shown in millimeters  
5.10  
5.00  
4.90  
16  
9
4.50  
4.40  
4.30  
6.40  
BSC  
1
8
PIN 1  
1.20  
MAX  
0.15  
0.05  
0.20  
0.09  
0.75  
0.60  
0.45  
8°  
0°  
0.30  
0.19  
0.65  
BSC  
SEATING  
PLANE  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-153-AB  
Figure 48. 16-Lead Thin Shrink Small Outline Package [TSSOP]  
(RU-16)  
Dimensions shown in millimeters  
Rev. C | Page 29 of 32  
 
AD5122/AD5142  
Data Sheet  
ORDERING GUIDE  
Package  
Option  
Model1, 2,3  
RAB (kΩ) Resolution Interface Temperature Range  
Package Description  
16-Lead LFCSP_WQ  
16-Lead LFCSP_WQ  
16-Lead LFCSP_WQ  
16-Lead TSSOP  
16-Lead TSSOP  
16-Lead TSSOP  
16-Lead TSSOP  
16-Lead TSSOP  
Branding  
AD5122BCPZ10-RL7  
AD5122BCPZ100-RL7  
AD5122WBCPZ10-RL7  
AD5122BRUZ10  
10  
128  
128  
128  
128  
128  
128  
128  
128  
256  
256  
256  
256  
256  
256  
256  
256  
SPI  
SPI  
SPI  
SPI  
SPI  
SPI  
SPI  
SPI  
SPI  
SPI  
SPI  
SPI  
SPI  
SPI  
SPI  
SPI  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
CP-16-22 DH8  
CP-16-22 DH9  
CP-16-22 DMY  
RU-16  
RU-16  
RU-16  
100  
10  
10  
100  
10  
10  
AD5122BRUZ100  
AD5122BRUZ10-RL7  
AD5122WBRUZ10-RL7  
AD5122BRUZ100-RL7  
AD5142BCPZ10-RL7  
AD5142BCPZ100-RL7  
AD5142WBCPZ10-RL7  
AD5142BRUZ10  
RU-16  
RU-16  
100  
10  
100  
10  
10  
100  
10  
16-Lead LFCSP_WQ  
16-Lead LFCSP_WQ  
16-Lead LFCSP_WQ  
16-Lead TSSOP  
16-Lead TSSOP  
16-Lead TSSOP  
CP-16-22 DH5  
CP-16-22 DH6  
CP-16-22 DN0  
RU-16  
RU-16  
RU-16  
AD5142BRUZ100  
AD5142BRUZ10-RL7  
AD5142WBRUZ10-RL7  
AD5142BRUZ100-RL7  
EVAL-AD5142DBZ  
10  
100  
16-Lead TSSOP  
16-Lead TSSOP  
RU-16  
RU-16  
Evaluation Board  
1 Z = RoHS Compliant Part.  
2 The evaluation board is shipped with the 10 kΩ RAB resistor option; however, the board is compatible with all of the available resistor value options.  
3 W = Qualified for Automotive Applications.  
AUTOMOTIVE PRODUCTS  
The AD5122W and AD5142W models are available with controlled manufacturing to support the quality and reliability requirements of  
automotive applications. Note that these automotive models may have specifications that differ from the commercial models; therefore,  
designers should review the Specifications section of this data sheet carefully. Only the automotive grade products shown are available for  
use in automotive applications. Contact your local Analog Devices account representative for specific product ordering information and  
to obtain the specific Automotive Reliability reports for these models.  
Rev. C | Page 30 of 32  
 
 
Data Sheet  
NOTES  
AD5122/AD5142  
Rev. C | Page 31 of 32  
AD5122/AD5142  
NOTES  
Data Sheet  
©2012–2017 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D10880-0-5/17(C)  
Rev. C | Page 32 of 32  

相关型号:

AD5122WBRUZ10-RL7

Dual Channel, 128-Position, SPI, Nonvolatile Digital Potentiometer
ADI

AD5122_17

Dual Channel, 128-/256-Position, SPI, Nonvolatile Digital Potentiometer
ADI

AD5123

Quad Channel, 128-/256-Position, I2C Nonvolatile Digital Potentiometer
ADI

AD51231

Quad Channel, 128-/256-Position, I2C Nonvolatile Digital Potentiometer
ADI

AD5123BCPZ10-RL7

Quad Channel, 128-/256-Position, I2C Nonvolatile Digital Potentiometer
ADI

AD5123BCPZ100-RL7

Quad Channel, 128-/256-Position, I2C Nonvolatile Digital Potentiometer
ADI

AD5124

The AD5124/AD5144/AD5144A potentiometers provide a nonvolatile solution for 128-/256-position adjustment applications, offering guaranteed low resistor tolerance errors of ±8% and up to ±6 mA current density in the Ax, Bx, and Wx pins.
ADI

AD5124BCPZ10-RL7

The AD5124/AD5144/AD5144A potentiometers provide a nonvolatile solution for 128-/256-position adjustment applications, offering guaranteed low resistor tolerance errors of ±8% and up to ±6 mA current density in the Ax, Bx, and Wx pins.
ADI

AD5124BCPZ100-RL7

The AD5124/AD5144/AD5144A potentiometers provide a nonvolatile solution for 128-/256-position adjustment applications, offering guaranteed low resistor tolerance errors of ±8% and up to ±6 mA current density in the Ax, Bx, and Wx pins.
ADI

AD5124BRUZ10

The AD5124/AD5144/AD5144A potentiometers provide a nonvolatile solution for 128-/256-position adjustment applications, offering guaranteed low resistor tolerance errors of ±8% and up to ±6 mA current density in the Ax, Bx, and Wx pins.
ADI

AD5124BRUZ10-RL7

The AD5124/AD5144/AD5144A potentiometers provide a nonvolatile solution for 128-/256-position adjustment applications, offering guaranteed low resistor tolerance errors of ±8% and up to ±6 mA current density in the Ax, Bx, and Wx pins.
ADI

AD5124BRUZ100

The AD5124/AD5144/AD5144A potentiometers provide a nonvolatile solution for 128-/256-position adjustment applications, offering guaranteed low resistor tolerance errors of ±8% and up to ±6 mA current density in the Ax, Bx, and Wx pins.
ADI