AD1857JRSZ [ADI]

Stereo, Single Supply 16-, 18- and 20-Bit Sigma-Delta DACs; 立体声,单电源16-, 18-和20位Σ-Δ型DAC的
AD1857JRSZ
型号: AD1857JRSZ
厂家: ADI    ADI
描述:

Stereo, Single Supply 16-, 18- and 20-Bit Sigma-Delta DACs
立体声,单电源16-, 18-和20位Σ-Δ型DAC的

消费电路 商用集成电路 光电二极管
文件: 总16页 (文件大小:177K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Stereo, Single Supply  
16-, 18- and 20-Bit Sigma-Delta DACs  
a
AD1857/AD1858  
P RO D UCT O VERVIEW  
FEATURES  
T he AD1857/AD1858 are complete single-chip stereo digital  
audio playback components. T hey each comprise an advanced  
digital interpolation filter, a revolutionary “linearity-compensated”  
multibit sigma-delta (∑∆) modulator with dither, a jitter-tolerant  
DAC, switched capacitor and continuous time analog filters and  
analog output drive circuitry. Other features include digital  
de-emphasis processing and mute. T he AD1857/AD1858  
support continuously variable sample rates with essentially  
linear phase response, and support 50/15 µs digital de-emphasis  
intended for “Redbook” 44.1 kHz sample frequency playback  
from Compact Discs. T he user must provide a master clock that  
is synchronous with the left/right clock at 256 or 384 times the  
Low Cost, High Perform ance Stereo DACs  
128 Tim es Oversam pling Interpolation Filter  
Multibit ⌺⌬ Modulator w ith Triangular PDF Dither  
Discrete Tim e and Continuous Tim e Analog  
Reconstruction Filters  
Extrem ely Low Out-of-Band Energy  
Buffered Outputs w ith 2 kOutput Load Drive  
94 dB Dynam ic Range, –90 dB THD+N Perform ance  
Digital De-em phasis and Mute  
؎0.1؇C Maxim um Phase Linearity Deviation  
Continuously Variable Sam ple Rate Support  
Pow er-Dow n Mode  
16-, 18- and 20-Bit I2S-J ustified, Left-J ustified Modes  
Offered on AD1857  
intended sample frequency.  
T he AD1857/AD1858 have a simple but very flexible serial data  
input port that allows for glueless interconnection to a variety of  
ADCs, DSP chips, AES/EBU receivers and sample rate con-  
verters. T he AD1857 serial data input port can be configured  
in either 16-bit, 18-bit or 20-bit left-justified or I2S-justified  
modes. T he AD1858 serial data input port can be configured in  
either 16-bit right-justified or DSP serial port compatible modes.  
T he AD1857/AD1858 accept serial audio data in MSB first,  
twos-complement format. A power-down mode is offered to  
minimize power consumption when the device is inactive. T he  
AD1857/AD1858 operate from a single +5 V power supply.  
T hey are fabricated on a single monolithic integrated circuit and  
housed in 20-pin SSOP packages for operation over the  
temperature range 0°C to +70°C.  
Accepts 24-Bit Word  
16-Bit Right-J ustified and DSP Serial Port Modes  
Offered on AD1858  
Single +5 V Supply  
20-Pin SSOP Package  
APPLICATIONS  
Digital Cable TV and Direct Broadcast Satellite Set-Top  
Decoder Boxes  
Video Laser Disk, Video CD and CD-I Players  
High Definition Televisions, Digital Audio Broadcast  
Receivers  
CD, CD-R, DAT, DCC and MD Players  
Digital Audio Workstations, Com puter Multim edia  
Products  
FUNCTIO NAL BLO CK D IAGRAM  
CLOCK  
IN  
CLOCK  
MODE  
DIGITAL  
SUPPLY  
COMMON  
MODE  
2
16-/18-/20-BIT  
3
DIGITAL  
SERIAL DATA  
INTERFACE  
VOLTAGE  
REFERENCE  
CLOCK  
CIRCUIT  
DATA INPUT  
AD1857/AD1858  
128x  
INTERPOLATION  
FILTER  
MULTIBIT  
Σ∆ MODULATOR  
OUTPUT  
BUFFER  
ANALOG  
FILTER  
DAC  
MUTE  
SERIAL  
MODE  
ANALOG  
OUTPUTS  
128x  
INTERPOLATION  
FILTER  
ANALOG  
FILTER  
MULTIBIT  
Σ∆ MODULATOR  
OUTPUT  
BUFFER  
DAC  
MUTE  
4
DE-EMPHASIS  
MUTE  
ANALOG  
SUPPLY  
POWER-DOWN/RESET  
REV. 0  
Inform ation furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assum ed by Analog Devices for its  
use, nor for any infringem ents of patents or other rights of third parties  
which m ay result from its use. No license is granted by im plication or  
otherwise under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norw ood, MA 02062-9106, U.S.A.  
Tel: 617/ 329-4700  
Fax: 617/ 326-8703  
World Wide Web Site: http:/ / w w w .analog.com  
© Analog Devices, Inc., 1997  
AD1857/AD1858–SPECIFICATIONS  
TEST CO ND ITIO NS UNLESS O TH ERWISE NO TED  
Supply Voltages (AVDD, DVDD  
Ambient T emperature  
)
+5.0 V  
25°C  
Input Clock (FMCLK  
Input Signal  
)
11.2896 MHz (256 × FS Mode)  
1.0013 kHz  
–0.5 dB Full Scale  
44.1 kHz  
20 Hz to 20 kHz  
18 Bits  
Input Sample Rate  
Measurement Bandwidth  
AD1857 Input Data Wordwidth  
AD1858 Input Data Wordwidth  
Load Capacitance  
16 Bits  
100 pF  
Load Impedance  
47 kΩ  
Input Voltage HI (VIH  
)
2.4 V  
Input Voltage LO (VIL)  
0.8 V  
I2S-Justified Mode (Ref. Figure 7) for AD1857, Right-Justified Mode (Ref. Figure 8) for AD1858.  
Performance of the right and left channels are identical (exclusive of the Interchannel Gain Mismatch and Interchannel Phase Deviation specifications).  
Values in bold typeface are tested, all others are guaranteed, not tested.  
ANALO G P ERFO RMANCE  
Min  
Typ  
Max  
Units  
AD1857 Resolution  
AD1858 Resolution  
18  
16  
Bits  
Bits  
Dynamic Range (20 Hz to 20 kHz, –60 dB Input)  
No A-Weight Filter  
With A-Weight Filter  
91  
94  
–90  
0.003  
dB  
dB  
dB  
%
T otal Harmonic Distortion + Noise  
–85  
0.006  
Analog Outputs  
Single-Ended Output Range (± Full Scale)  
Output Impedance at Each Output Pin  
Output Capacitance at Each Output Pin  
Out-of-Band Energy (0.5 × FS to 100 kHz)  
CMOUT  
2.8  
3.0  
<200  
3.2  
V p-p  
pF  
dB  
V
20  
–72.5  
2.4  
2.1  
2.25  
DC Accuracy  
Gain Error  
Interchannel Gain Mismatch  
Gain Drift  
Interchannel Crosstalk (EIAJ method)  
Interchannel Phase Deviation  
Mute Attenuation  
±3.0  
0.01  
150  
–120  
±0.1  
–100  
؎7.5  
؎0.2  
300  
%
dB  
ppm/°C  
dB  
Degrees  
dB  
–100  
–90  
De-emphasis Gain Error  
±0.1  
dB  
D IGITAL I/O  
Min  
Max  
Units  
Input Voltage HI (VIH  
)
2.4  
V
Input Voltage LO (VIL)  
0.8  
10  
10  
20  
V
Input Leakage (IIH @ VIH = 2.4 V)  
Input Leakage (IIL @ VIL = 0.8 V)  
Input Capacitance  
µA  
µA  
pF  
REV. 0  
–2–  
AD1857/AD1858  
D IGITAL TIMING (Guar anteed over 0°C to +70°C, AVD D = D VD D = +5.0 V ± 5%)  
Min  
Max  
Units  
tDML  
tDMH  
tDMP  
tDML  
tDMH  
tDMP  
tDBH  
tDBL  
tDBP  
MCLK LO Pulse Width (256 × FS Mode)  
MCLK HI Pulse Width (256 × FS Mode)  
MCLK Period (256 × FS Mode)  
MCLK LO Pulse Width (384 × FS Mode)  
MCLK HI Pulse Width (384 × FS Mode)  
MCLK Period (384 × FS Mode)  
BCLK HI Pulse Width  
BCLK LO Pulse Width  
BCLK Period  
LRCLK Setup  
LRCLK Hold  
35  
40  
88.577  
25  
25  
59.0514  
20  
20  
354.308  
20  
5
5
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tDLS  
tDLH  
tDDS  
tDDH  
tPDRP  
SDAT A Setup  
SDAT A Hold  
PD/RST LO Pulse Width  
10  
4 MCLK Periods  
(355 ns @ 11.2896 MHz)  
P O WER  
Min  
Typ  
Max  
Units  
Supplies  
Voltage, Analog and Digital  
Analog Current  
Analog Current – Power-Down  
Digital Current  
Digital Current – Power-Down  
Dissipation  
4.75  
5
5.25  
40  
60  
25  
11  
V
35  
30  
20  
5
mA  
µA  
mA  
mA  
Operation – Both Supplies  
Operation – Analog Supply  
Operation – Digital Supply  
Power-Down – Both Supplies  
Power Supply Rejection Ratio  
1 kHz 300 mV p-p Signal at Analog Supply Pins  
20 kHz 300 mV p-p Signal at Analog Supply Pins  
275  
175  
100  
25  
325  
200  
125  
56  
mW  
mW  
mW  
mW  
–60  
–50  
dB  
dB  
TEMP ERATURE RANGE  
Min  
Typ  
Max  
Units  
Specifications Guaranteed  
Functionality Guaranteed  
Storage  
25  
°C  
°C  
°C  
0
–55  
70  
125  
ABSO LUTE MAXIMUM RATINGS*  
Min  
Typ  
Max  
Units  
DVDD to DGND  
AVDD to AGND  
Digital Inputs  
Analog Outputs  
AGND to DGND  
Reference Voltage  
Soldering  
–0.3  
–0.3  
DGND – 0.3  
AGND – 0.3  
–0.3  
6
6
V
V
V
V
V
DVDD + 0.3  
AVDD + 0.3  
0.3  
Indefinite Short Circuit to Ground  
+300  
10  
°C  
sec  
*Stresses greater than those listed under Absolute Maximum Ratings may cause permanent damage to the device. T his is a stress rating only; functional operation of the  
device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions  
for extended periods may affect device reliability.  
REV. 0  
–3–  
AD1857/AD1858  
P ACKAGE CH ARACTERISTICS  
Min  
Typ  
Max  
Units  
θJA (T hermal Resistance [Junction-to-Ambient])  
θJC (T hermal Resistance [Junction-to-Case])  
195  
13  
°C/W  
°C/W  
D IGITAL FILTER CH ARACTERISTICS  
Min  
Max  
Units  
Passband Ripple  
Stopband1 Attenuation  
48 kHz FS  
±0.045  
dB  
dB  
62  
Passband  
Stopband  
0
21.312  
6117  
kHz  
kHz  
26.688  
44.1 kHz FS  
Passband  
Stopband  
0
19.580  
5620  
kHz  
kHz  
24.520  
32 kHz FS  
Passband  
Stopband  
0
14.208  
4078  
kHz  
kHz  
17.792  
Other FS  
Passband  
Stopband  
Group Delay  
Group Delay Variation  
0
0.444  
127.444  
40/FS  
0
FS  
FS  
sec  
µs  
0.556  
ANALO G FILTER CH ARACTERISTICS  
Min  
Typ  
Max  
Units  
Passband Ripple  
Stopband Attenuation (at 64 × FS)  
–0.075  
dB  
dB  
58  
NOT ES  
1Stopband nominally repeats itself at multiples of 128 × FS, where FS is the input word rate. T hus the digital filter will attenuate to 62 dB across the frequency  
spectrum, except for a range ±0.55 × FS wide at multiples of 128 × FS.  
Specifications subject to change without notice.  
O RD ERING GUID E  
P ackage  
P IN CO NFIGURATIO N  
P ackage  
O ption*  
1
2
20  
19  
18  
17  
16  
15  
SDATA  
BCLK  
MCLK  
PD/RST  
MODE  
NC  
Model  
Tem perature  
D escription  
3
LRCLK  
AD1857JRS  
0°C to +70°C  
AD1857JRSRL 0°C to +70°C  
20-Lead SSOP  
20-Lead SSOP  
RS-20  
4
DV  
DD  
RS-20 on  
13" Reels  
RS-20  
RS-20 on  
13" Reels  
AD1857  
AD1858  
TOP VIEW  
5
DGND  
MUTE  
DEEMP  
384/256  
6
AD1858JRS 0°C to +70°C  
AD1858JRSRL 0°C to +70°C  
20-Lead SSOP  
20-Lead SSOP  
(Not to Scale)  
AV  
DD  
14 AV  
DD  
7
8
13  
12  
OUTR  
OUTL  
AGND  
9
AGND  
*RS = Shrink Small Outline  
10  
11 FILT  
CMOUT  
NC = NO CONNECT  
CAUTIO N  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection. Although  
the AD1857/AD1858 feature proprietary ESD protection circuitry, permanent damage may occur on  
devices subjected to high energy electrostatic discharges. T herefore, proper ESD precautions are  
recommended to avoid performance degradation or loss of functionality.  
WARNING!  
ESD SENSITIVE DEVICE  
–4–  
REV. 0  
AD1857/AD1858  
P IN LIST  
D igital Audio Ser ial Input Inter faces  
P in Nam e  
Num ber  
I/O  
D escription  
SDAT A  
20  
I
Serial input, MSB first, containing two channels of 16, 18 or 20 bits (AD1857) or  
16 bits (AD1858) of twos complement data per channel.  
BCLK  
19  
I
Bit clock input for input data. Need not run continuously; may be gated or used in a  
burst fashion.  
LRCLK  
18  
3
I
I
Left/right clock input for input data. Must run continuously.  
MODE  
Input serial data port mode control. Selects between I2S-justified (HI) and left-justified  
(LO) on the AD1857. Selects between DSP serial port style mode (HI) and right-  
justified (LO) on the AD1858. The state of the mode pin should be changed only when  
the AD1857/AD1858 is held in reset (PD/RST LO). Otherwise, the AD1857/  
AD1858 serial port may lose synchronism.  
Contr ol and Clock Signals  
P in Nam e  
Num ber  
I/O  
D escription  
PD/RST  
2
I
Power-Down/Reset. T he AD1857/AD1858 are placed in a low power consumption  
“sleep” mode when this pin is held LO. T he AD1857/AD1858 are reset on the  
rising edge of this signal. Connect HI for normal operation.  
DEEMP  
5
I
De-emphasis. Digital de-emphasis is enabled when this input signal is HI. T his is  
used to impose a 50/15 µs response characteristic on the output audio spectrum at  
an assumed 44.1 kHz sample rate.  
MUT E  
MCLK  
15  
1
I
I
Mute. Assert H I to mute both stereo analog outputs of the AD1857/AD1858.  
Deassert LO for normal operation.  
Master Clock Input. Connect to an external clock source at either 256 or 384 times  
the intended sample frequency as determined by the 384/256 pin. Must be synchro-  
nous with LRCLK, but may have any phase with respect to LRCLK.  
384/256  
6
I
Selects the master clock mode as either 384 times the intended sample frequency  
(H I) or 256 times the intended sample frequency (LO). T he state of this input  
should be hardwired to logic LO or logic HI or may be changed while the AD1857/  
AD1858 is in power-down/reset. It must not be changed while the AD1857/AD1858  
is operational.  
Analog Signals  
P in Nam e  
Num ber  
I/O  
D escription  
FILT  
11  
O
Voltage Reference Filter Capacitor Connection. Bypass and decouple the voltage  
reference with parallel 10 µF and 0.1 µF capacitors to the AGND pin.  
CMOUT  
10  
O
Voltage Reference Common Mode Output. Should be decoupled with 10 µF  
capacitor to the AGND pin or plane. T his output is available externally for dc  
coupling and level-shifting. CMOUT should not have any signal dependent load,  
or used where it will sink or source current.  
OUT L  
OUT R  
8
O
O
Left channel line level analog output.  
Right channel line level analog output.  
13  
P ower Supply Connections and Miscellaneous  
P in Nam e  
Num ber  
I/O  
D escription  
AVDD  
AGND  
DVDD  
DGND  
N/C  
7, 14  
9, 12  
17  
I
I
I
I
Analog Power Supply. Connect to analog +5 V supply.  
Analog Ground.  
Digital Power Supply. Connect to digital +5 V supply.  
Digital Ground.  
16  
4
No Connect. Reserved. Do not connect.  
REV. 0  
–5–  
AD1857/AD1858  
D EFINITIO NS  
Inter channel Gain Mism atch  
D ynam ic Range  
With identical near full-scale inputs, the ratio of outputs of the  
two stereo channels, expressed in decibels.  
T he ratio of a full-scale output signal to the integrated output  
noise in the passband (0 kHz to 20 kHz), expressed in decibels  
(dB). Dynamic range is measured with a –60 dB input signal  
and is equal to (S/[T HD+N]) + 60 dB. Note that spurious  
harmonics are below the noise with a –60 dB input, so the noise  
level establishes the dynamic range. T his measurement tech-  
nique is consistent with the recommendations of the Audio  
Engineering Society (AES17-1991) and the Electronic Industries  
Association of Japan (EIAJ CP-307).  
Gain D r ift  
Change in response to a near full-scale input with a change in  
temperature, expressed as parts-per-million (ppm) per °C.  
Cr osstalk (EIAJ Method)  
Ratio of response on one channel with a zero input, to a full-  
scale 1 kHz sine-wave input on the other channel, expressed in  
decibels.  
Inter channel P hase D eviation  
Total H ar m onic D istor tion + Noise (TH D +N)  
T he ratio of the root-mean-square (rms) value of a full-scale  
fundamental input signal to the rms sum of all other spectral  
components in the passband, expressed in decibels (dB) and  
as a percentage.  
Difference in output sampling times between stereo channels,  
expressed as a phase difference in degrees between 1 kHz  
inputs.  
P ower Supply Rejection  
With zero input, signal present at the output when a 300 mV  
p-p signal is applied to power supply pins, expressed in decibels  
of full scale.  
P assband  
T he region of the frequency spectrum unaffected by the  
attenuation of the digital interpolation filter.  
Gr oup D elay  
P assband Ripple  
Intuitively, the time interval required for an input pulse to  
appear at the converter’s output, expressed in seconds(s). More  
precisely, the derivative of radian phase with respect to radian  
frequency at a given frequency.  
T he peak-to-peak variation in amplitude response from equal-  
amplitude input signal frequencies within the passband,  
expressed in decibels.  
Stopband  
Gr oup D elay Var iation  
T he region of the frequency spectrum attenuated by the digital  
interpolation filter to the degree specified by “stopband  
attenuation.”  
T he difference in group delays at different input frequencies.  
Specified as the difference between the largest and the smallest  
group delays in passband, expressed in microseconds (µs).  
Gain Er r or  
D e-Em phasis Gain Er r or  
With a near full-scale input, the ratio of actual output to  
expected output, expressed as a percentage.  
A measure, expressed in decibels, of the difference between the  
ideal 50/15 µs de-emphasis filter response, and the actual 50/15 µs  
de-emphasis filter response.  
–6–  
REV. 0  
AD1857/AD1858  
Typical Performance Characteristics  
Figures 1 through 4 illustrate the typical performance of the  
AD1857/AD1858 as measured by an Audio Precision System  
T wo. Signal-to-Noise (dynamic range) T HD+N performance is  
shown under a range of conditions. Figure 5 shows the power  
supply rejection performance of the AD1857/AD1858. T he  
channel separation performance of the AD1857/AD1858 is  
shown in Figure 6. T he digital filter transfer function is shown  
in Figure 7.  
0
–10  
–20  
–30  
–40  
–50  
0
–10  
–20  
–30  
–40  
–50  
–60  
–60  
–70  
–80  
–70  
–80  
–90  
–90  
–100  
–110  
–100  
–110  
–120  
–130  
–140  
–150  
–120  
–130  
–140  
0
2.5  
5.0  
7.5  
10.0  
kHz  
12.5  
15.0  
17.5  
20.0  
0
2.5  
5.0  
7.5  
10.0  
kHz  
12.5  
15.0  
17.5  
20.0  
Figure 1. 1 kHz Tone at –0.5 dBFS  
Figure 3. THD+N vs. Frequency at –0.5 dBFS  
0
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
–120  
–130  
–140  
–100  
–110  
–120  
–130  
–140  
–100  
0
2.5  
5.0  
7.5  
10.0  
kHz  
12.5  
15.0  
17.5  
20.0  
–80  
–60  
–40  
–20  
0
dBFS  
Figure 2. 1 kHz Tone at –10 dBFS  
Figure 4. THD+N vs. Am plitude at 1 kHz  
REV. 0  
–7–  
AD1857/AD1858  
Typical Performance Characteristics (continued)  
–40  
–44  
0
–10  
–20  
–30  
–40  
–50  
–60  
–40  
–45  
–50  
–48  
–52  
–55  
LEFT CHANNEL  
RIGHT CHANNEL  
–56  
–60  
–65  
–60  
–64  
–68  
–72  
–76  
–80  
–70  
–80  
–90  
–100  
–110  
–120  
–130  
–140  
–70  
–75  
–80  
0
2.5  
5.0  
7.5  
10.0  
kHz  
12.5  
15.0  
17.5  
20.0  
0
2.5  
5.0  
7.5  
10.0  
kHz  
12.5  
15.0  
17.5  
20.0  
Figure 5. Power Supply Rejection to 300 m V p-p on AVDD  
Figure 6. Channel Separation vs. Frequency at –0.5 dBFS  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
–120  
–130  
–140  
–150  
–160  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
F
S
Figure 7. Digital Filter Signal Transfer Function to 3.5 ϫ FS  
–8–  
REV. 0  
AD1857/AD1858  
TH EO RY O F O P ERATIO N  
T he conventional problem limiting the performance of multibit  
sigma-delta converters is the nonlinearity of the passive circuit  
elements used to sum the quantization levels. Analog Devices has  
developed (and received patents on) a revolutionary architecture  
that overcomes the circuit element linearity problem that otherwise  
limits the performance of multibit sigma-delta audio converters.  
T his new architecture provides the AD1857/AD1858 with the  
same excellent differential nonlinearity and linearity drift (over  
temperature and time) specifications as single bit sigma-delta  
DACs.  
T he AD1857/AD1858 offer the advantages of sigma-delta con-  
version architectures (no component trims, low cost CMOS  
process technology, superb low-level linearity performance) with  
the advantages of conventional multibit R-2R resistive ladder  
audio DACs (continuously variable sample rate support, jitter  
tolerance, very low output noise, etc.).  
T he use of a multibit sigma-delta modulator means that the  
AD1857/AD1858 generate dramatically lower amounts of out-  
of-band noise energy, which greatly reduces the requirement on  
post DAC filtering. T he required post-filtering is integrated on  
the AD1857/AD1858. T he AD1857/AD1858s multibit sigma-  
delta modulator is also highly immune to digital substrate noise.  
T he AD1857/AD1858’s multibit modulator has another  
important advantage; it has a high immunity to substrate digital  
noise. Substrate noise can be a significant problem in mixed-  
signal designs, where it can produce intermodulation products  
that fold down into the audio band. T he AD1857/AD1858 are  
approximately eight times less sensitive to digital substrate noise  
(voltage reference noise injection) than equivalent single-bit  
sigma-delta modulator based DACs.  
Ser ial Audio D ata Inter face  
T he serial audio data interface uses the bit clock (BCLK) simply  
to clock the data into the AD1857/AD1858. T he bit clock may  
therefore be asynchronous to the L/R clock. T he left/right clock  
(LRCLK) is both a framing signal and the sample frequency  
input to the interpolation filter. T he left/right clock must be  
synchronous with MCLK, but may have any phase relationship  
with respect to MCLK; LRCLK is generally synchronously divided  
down from MCLK. T he SDAT A input carries the serial stereo  
digital audio in MSB first, twos-complement format.  
D ither Gener ator  
T he AD1857/AD1858 include an on-chip dither generator that  
is intended to further “whiten” the quantization noise introduced  
by the multibit DAC. T he dither has a triangular Probability  
Distribution Function (PDF) characteristic, which is generally  
considered to create the most favorable noise shaping of the  
residual quantization noise. The AD1857/AD1858 are among the  
first low cost IC audio DACs to include dithering.  
D igital Inter polation Filter  
T he purpose of the interpolator is to “oversample” the input  
data, i.e., to increase the sample rate so the first signal image is  
moved out to the oversample frequency, which relaxes the  
attenuation requirements on the analog reconstruction filter.  
T he AD1857/AD1858 interpolator increases the input data  
sample rate by 128. T he interpolation is performed using a  
multistage FIR digital filter structure. T he first stage is a droop  
equalizer; the second and third stages are halfband filters; and  
the fourth stage is a second-order comb filter. T he FIR filter  
implementation is multiplier-free, i.e., the multiplies are performed  
using shift-and-add operations. T he FIR filter coefficients have  
been recoded in a canonical sign digit format to enable the use  
of a compact arithmetic logic unit without a multiplier.  
Analog Filter ing  
The AD1857/AD1858 include a second-order switched  
capacitor discrete time low-pass filter followed by a first-order  
analog continuous time low-pass filter. T hese filters eliminate  
the need for any additional off-chip external reconstruction  
filtering. T his on-chip switched capacitor analog filtering is  
essential to reduce the deleterious effects of master clock jitter.  
D igital D e-Em phasis P r ocessing  
The AD1857/AD1858 include digital circuitry for implementing  
the 50/15 µs de-emphasis frequency response characteristic. A  
control pin DEEMP (Pin 5) enables de-emphasis when it is  
asserted HI. T he digital de-emphasis response assumes a sample  
frequency of 44.1 kHz. T he transfer function magnitude error  
of this digital filter is less than ±0.1 dB (from 0 kHz to 20 kHz)  
compared to a 50/15 µs continuous time filter. If the sample  
frequency is not 44.1 kHz, the de-emphasis frequency response  
will scale directly with frequency. T he 44.1 kHz FS digital de-  
emphasis frequency response is shown in Figure 8.  
Multibit Sigm a-D elta Modulator  
T he AD1857/AD1858 employ a 4-bit second-order sigma-delta  
modulator. Whereas a traditional single-bit sigma-delta  
modulator has two levels of quantization, the AD1857/AD1858’s  
has 17 levels of quantization. T raditional single-bit sigma-delta  
modulators sample the input signal at 64 times the input sample  
rate; the AD1857/AD1858 sample the input signal at 128 times  
the input sample rate. T he additional quantization levels  
combined with the high oversampling ratio means that the  
AD1857/AD1858 DAC output spectrum contains dramatically  
lower levels of out-of-band noise energy, which is a major  
stumbling block with more traditional single-bit sigma-delta  
architectures. This means that the post-DAC analog reconstruction  
filter has reduced transition band steepness and attenuation  
requirements, which directly equates to lower phase distortion.  
Since the analog filtering generally establishes the noise and  
distortion characteristic of the DAC, the reduced requirements  
translate into better audio performance.  
T1 = 50µs  
0
T2 = 15µs  
–10  
F2  
F1  
10.61  
3.183  
FREQUENCY – kHz  
Multibit sigma-delta modulators bring an additional benefit:  
they are essentially free of stability (and therefore potential loop  
oscillation) problems. T hey are able to scale the output signal  
to a wider range of the voltage reference, which can increase the  
overall dynamic range of the converter.  
Figure 8. Digital De-Em phasis Frequency Response  
REV. 0  
–9–  
AD1857/AD1858  
O P ERATING FEATURES  
Ser ial Input P or t Modes  
Ser ial D ata Input P or t  
T he AD1857/AD1858 use an input pin to control the mode  
configuration of the input data port. MODE (Pin 3) programs  
the input data port mode as follows:  
T he AD1857/AD1858 use the frequency of the left/right and  
master input clocks to determine the input sample rate. Gen-  
erally, the master clock (MCLK) is divided down to synthesize  
the left/right clock (LRCLK). LRCLK must run continuously  
and transition twice per stereo sample period (except in the left-  
justified DSP serial port style mode, when it transitions four  
times per stereo sample period). T he bit clock (BCLK) is edge-  
sensitive and may be used in a gated or burst mode, i.e., a  
stream of pulses during data transmission followed by periods of  
inactivity. T he bit clock is only used to write the audio data  
into the serial input port. It is important that the left/right clock  
is “clean,” with monotonic rising and falling edge transitions  
and no excessive overshoot or undershoot that could cause false  
clock triggering of the AD1857/AD1858.  
Figure 9 shows the AD1857 left-justified mode. LRCLK is HI  
for the left channel, and LO for the right channel. Data is valid  
on the rising edge of BCLK. T he MSB is left-justified to an  
LRCLK transition, with no MSB delay. T he left-justified mode  
can be used in the 16-, 18- or 20-bit input mode.  
MODE (P in 3)  
AD 1857 Serial Input P ort Mode  
LO  
HI  
Left-Justified (See Figure 9)  
I2S-Justified (See Figure 10)  
T he AD1857/AD1858s flexible serial data input port accepts  
data in twos-complement, MSB first format. T he left channel  
data field always precedes the right channel data field. T he  
input data consists of 16, 18 or 20 bits (16 bits only to the  
AD1858). All digital inputs are specified to T T L logic levels.  
T he input data port is configured by a control pin, MODE,  
Pin 3. T he AD1857 and the AD1858 are identical except for  
the serial data input port modes offered. T he AD1857 offers  
I2S-justified and left-justified modes, for 16-, 18- or 20-bit data  
words. T he AD1858 offers right-justified and DSP serial port  
style mode for 16-bit data words.  
MODE (P in 3)  
AD 1858 Serial Input P ort Mode  
LO  
HI  
Right-Justified (See Figure 11)  
Left-Justified DSP Serial Port Style  
(See Figure 12)  
Figure 10 shows the AD1857 I2S-justified mode. LRCLK is  
LO for the left channel, and HI for the right channel. Data is  
valid on the rising edge of BCLK. T he MSB is left-justified to  
an LRCLK transition, but with a single BCLK period delay.  
T he I2S-justified mode can be used in the 16-, 18- or 20-bit  
input mode.  
Note: During the first 30,000 MCLK cycles after coming out of  
reset, the AD1857/AD1858 synchronizes its internal sequencer  
counter to the incoming LRCLK. After this period of time, it is  
assumed that the LRCLK and the internal AD1857/AD1858  
output channels could be switched (L to R and R to L). Therefore,  
if the incoming LRCLK is stopped and then restarted with a  
different phase, the AD1857/AD1858 should be reset again to  
synchronize with this new clock.  
Figure 11 shows the AD1858 the right-justified mode. LRCLK  
is HI for the left channel, and LO for the right channel. Data is  
valid on the rising edge of BCLK. T he MSB is delayed 16-bit  
clock periods from an LRCLK transition so that when there are  
64 BCLK periods per LRCLK period, the LSB of the data will  
be right-justified to the next LRCLK transition.  
LRCLK  
RIGHT CHANNEL  
LEFT CHANNEL  
INPUT  
BCLK  
INPUT  
SDATA  
MSB  
MSB-1 MSB-2  
MSB MSB-1 MSB-2  
LSB+2 LSB+1  
LSB  
MSB  
MSB-1  
LSB+2 LSB+1  
LSB  
INPUT  
Figure 9. AD1857 Left-J ustified Mode  
LRCLK  
INPUT  
LEFT CHANNEL  
RIGHT CHANNEL  
BCLK  
INPUT  
SDATA  
INPUT  
MSB  
MSB MSB-1 MSB-2  
MSB MSB-1 MSB-2  
LSB+2 LSB+1  
LSB  
LSB+2 LSB+1  
LSB  
Figure 10. AD1857 I2S-J ustified Mode  
LRCLK  
INPUT  
RIGHT CHANNEL  
LEFT CHANNEL  
BCLK  
INPUT  
SDATA  
INPUT  
MSB MSB-1 MSB-2  
MSB MSB-1 MSB-2  
LSB  
LSB+2 LSB+1 LSB  
LSB+2 LSB+1 LSB  
Figure 11. AD1858 Right-J ustified Mode  
–10–  
REV. 0  
AD1857/AD1858  
LRCLK  
INPUT  
LEFT CHANNEL  
RIGHT CHANNEL  
BCLK  
INPUT  
SDATA  
INPUT  
MSB  
MSB  
MSB-1  
LSB+2 LSB+1  
LSB  
MSB  
MSB-1  
LSB+2 LSB+1 LSB  
MSB-1  
Figure 12. AD1858 Left-J ustified DSP Serial Port Style  
LRCLK  
INPUT  
RIGHT CHANNEL  
LEFT CHANNEL  
BCLK  
INPUT  
SDATA  
INPUT  
MSB  
MSB-1 MSB-2  
LSB+2  
LSB+1  
LSB  
MSB  
LSB+2  
LSB  
MSB-1 MSB-2  
LSB+1  
LSB  
MSB  
MSB-1  
Figure 13. AD1857/AD1858 32 
؋
 FS Packed Mode  
Figure 12 shows the AD1858 left-justified DSP serial port style  
mode. LRCLK must pulse HI for at least one bit clock period  
before the MSB of the left channel is valid, and LRCLK must  
pulse HI again for at least one bit clock period before the MSB  
of the right channel is valid. Data is valid on the falling edge of  
BCLK. Note that in this mode, it is the responsibility of the DSP  
to ensure that the left data is transmitted with the first LRCLK  
pulse, the right data is transmitted with the second LRCLK pulse,  
and synchronism is maintained from that point forward.  
found within 1024 input sample periods (approximately 23  
milliseconds at 44.1 kHz), the output is muted regardless.  
O utput D r ive, Buffer ing and Loading  
The AD1857/AD1858 analog output stage is able to drive a 2 kΩ  
load. If lower impedance loads must be driven, an external  
buffer stage such as the Analog Devices SSM2142 should be  
used. T he analog output is generally ac coupled with a 10 µF  
capacitor as shown in Figure 21. It is possible to dc couple the  
AD1857/AD1858 output into an op amp stage using the  
CMOUT signal as a bias point.  
Note that in 16-bit input mode, the AD1857/AD1858 are  
capable of a 32 × FS BCLK frequency “packed mode” where  
the MSB is left-justified to an LRCLK transition, and the LSB  
is right-justified to an LRCLK transition. LRCLK is HI for the  
left channel, and LO for the right channel. Data is valid on the  
rising edge of BCLK. Packed mode can be used when the  
AD1857 is programmed in left-justified mode, or when the  
AD1858 is programmed in right-justified mode. Packed mode  
is shown in Figure 13.  
O n-Chip Voltage Refer ence  
T he AD1857/AD1858 include an on-chip voltage reference that  
establishes the output voltage range. T he nominal value of this  
reference is +2.25 V, which corresponds to a line output voltage  
swing of 3 V p-p. T he line output signal is centered around a  
voltage established by the CMOUT (common-mode output)  
(Pin 10). T he reference must be bypassed both on the FILT  
input (Pin 11) with 10 µF and 0.1 µF capacitors, and on the  
CMOUT output (Pin 10) with 10 µF and 0.1 µF capacitors, as  
shown in Figure 21. Both the FILT pin and the CMOUT pin  
use the AGND ground. T he on-chip voltage reference may be  
overdriven with an external reference source by applying this  
voltage to the FILT pin. CMOUT and FILT must still be  
bypassed as shown in Figure 21. An external reference can be  
useful to calibrate multiple AD1857/AD1858 DACs to the same  
gain. Reference bypass capacitors larger than those suggested  
can be used to improve the signal-to-noise performance of the  
AD1857/AD1858.  
Master Clock  
T he synchronous master clock of the AD1857/AD1858 is  
supplied by an external clock source applied to MCLK. Figure  
14 shows example connections. Do not change the state of the  
384/256 pin while the AD1857/AD1858 is operational; this pin  
should be hardwired LO or HI. Alternatively, its state may be  
changed while the PD/RST pin is asserted LO.  
MCLK FREQUENCY  
SAMPLE RATE  
12.288MHz  
11.2896MHz  
8.192MHz  
18.432MHz  
16.9344MHz  
12.288MHz  
48kHz  
44.1kHz  
32kHz  
P ower -D own and Reset  
The PD/RST input (Pin 2) is used to control the power consumed  
by the AD1857/AD1858. When PD/RST is held LO, the  
AD1857/AD1858 are placed in a low dissipation power-down  
state. When PD/RST is brought H I, the AD1857/AD1858  
become ready for normal operation. T he master clock (MCLK,  
Pin 1) must be running for a successful reset or power-down  
operation to occur. T he PD/RST signal must be LO for a  
minimum of four master clock periods (326 ns with a 12.288 MHz  
MCLK frequency).  
256 MODE  
384 MODE  
384/256 = HI  
384/256 = LO  
1
6
MCLK  
384/256  
Figure 14. AD1857/AD1858 Clock Connections  
D igital Mute  
T he AD1857/AD1858 offer a control pin that mutes the analog  
output. By asserting the MUT E (Pin 15) signal HI, both the  
left channel and the right channel are muted. T he AD1857/  
AD1858 have been designed to minimize pops and clicks when  
muting and unmuting the device. T he AD1857/AD1858  
include a zero crossing detector which attempts to implement  
mute on waveform zero crossings only. If a zero crossing is not  
When the PD/RST input (Pin 2) is brought HI, the AD1857/  
AD1858 are reset. All registers in the AD1857/AD1858 digital  
engine (serial data port, interpolation filter and modulator) are  
zeroed, and the amplifiers in the analog section are shorted  
during the reset operation. T he AD1857/AD1858 have been  
designed to minimize pops and clicks when entering and exiting  
the power-down state.  
REV. 0  
–11–  
AD1857/AD1858  
Contr ol Signals  
Figure 18 shows the suggested interface to the Philips SAA2500*  
MPEG audio decoder IC. T he SAA2500 supports 18 bits of  
data using an I2S-compatible output format.  
The MODE and DEEMP control inputs are normally connected  
HI or LO to establish the operating state of the AD1857/AD1858.  
They can be changed dynamically (and asynchronously to the  
LRCLK and the master clock) as long as they are stable before  
the first serial data input bit (i.e., the MSB) is presented to the  
AD1857/AD1858.  
BCLK  
19  
18  
SCK  
WS  
SD  
LRCLK  
SAA2500  
20 SDATA  
AD1857  
AP P LICATIO N ISSUES  
Inter face to MP EG Audio D ecoder s  
FSCLKIN  
HI  
HI  
MODE  
3
6
1
384/256  
Figure 15 shows the suggested interface to the Analog Devices  
ADSP-21xx family of DSP chips, for which several MPEG  
audio decode algorithms are available. T he ADSP-21xx  
supports 16 bits of data using a left-justified DSP serial port  
style format.  
MCLK  
256 x F  
s
Figure 18. Interface to SAA2500  
Figure 19 shows the suggested interface to the Zoran ZR38000*  
DSP chip, which can act as an MPEG audio or AC-3 audio  
decoder. T he ZR38000 supports 16 bits of data using a left-  
justified output format.  
19 BCLK  
SCLK  
RFS  
18 LRCLK  
NC  
NC  
SDATA  
MODE  
20  
3
TFS  
ADSP-21xx  
AD1858  
BCLK  
SCKB  
WSB  
19  
18  
20  
3
HI  
HI  
DT  
DR  
LRCLK  
6
384/256  
ZR38000  
SDATA  
SDB  
1
MCLK  
NC = NO CONNECT  
AD1857  
MODE  
SCKIN  
LO  
HI  
6
384/256  
Figure 15. Interface to ADSP-21xx  
1
MCLK  
Figure 16 shows the suggested interface to the T exas Instruments  
TMS320AV110* MPEG audio decoder IC. The TMS320AV110  
supports 18 bits of data using a right-justified output format.  
256 x F  
s
Figure 19. Interface to ZR38000  
Figure 20 shows the suggested interface to the C-Cube  
Microsystems CL480* MPEG system decoder IC. T he CL480  
supports 16 bits of data using a right-justified output format.  
SCLK  
LRCLK  
BCLK  
19  
18  
20  
3
LRCLK  
TMS320AV110  
PCMDATA  
SDATA AD1858  
PCMCLK  
HI  
HI  
MODE  
BCLK  
DA-BCK  
DA-LRCK  
DA-DATA  
19  
18  
6
384/256  
LRCLK  
MCLK  
1
CL480  
20  
SDATA  
256 x F  
s
AD1858  
3
6
1
MODE  
HI  
HI  
DA-XCK  
Figure 16. Interface to TMS320AV110  
384/256  
Figure 17 shows the suggested interface to the LSI Logic  
L64111* MPEG audio decoder IC. T he L64111 supports 16  
bits of data using a left-justified output format.  
MCLK  
256 x F  
s
Figure 20. Interface to CL480  
19 BCLK  
SCLKO  
LRCLKO  
SERO  
18  
20  
LRCLK  
L64111  
SDATA  
AD1857  
MODE  
384/256  
MCLK  
LO  
LO  
3
6
1
SYSCLK  
384 x F  
s
Figure 17. Interface to L64111  
*All trademarks are properties of their respective holders.  
–12–  
REV. 0  
AD1857/AD1858  
Layout and D ecoupling Consider ations  
T he recommended decoupling, bypass and output circuits for  
the AD1857/AD1858 are shown in Figure 21.  
MCLK  
1
2
3
4
5
6
7
8
9
20 SDATA  
PD/RST  
BCLK  
19  
18  
17  
16  
DIGITAL  
GROUND  
PLANE  
LRCLK  
MODE  
P CB and Gr ound P lane Recom m endations  
T he AD1857/AD1858 ideally should be located above a split  
ground plane, with the digital pins over the digital ground plane  
and the analog pins over the analog ground plane. T he split  
should occur between Pins 6 and 7, and between Pins 14 and  
15 as shown in Figure 22. T he ground planes should be linked  
with a ferrite bead. T his ground plane strategy maximizes the  
AD1857/AD1858s analog audio performance.  
DV  
DD  
NC  
DGND  
DEEMP  
15 MUTE  
384/256  
FERRITE  
BEAD  
AV  
14  
AV  
DD  
DD  
OUTL  
AGND  
13 OUTR  
12 AGND  
ANALOG  
GROUND  
PLANE  
CMOUT 10  
FILT  
11  
NC = NO CONNECT  
Figure 22. Recom m ended Ground Plane  
SAMPLE RATE  
MCLK FREQUENCY  
12.288MHz  
11.2896MHz  
8.192MHz  
18.432MHz  
16.9344MHz  
12.288MHz  
48kHz  
44.1kHz  
32kHz  
+5V  
ANALOG  
+5V  
ANALOG  
4.7µF  
4.7µF  
256 MODE  
384 MODE  
384/256 = HI  
384/256 = LO  
0.1µF  
0.1µF  
14  
AV  
1
9
6
7
AV  
MCLK  
AGND  
384/256  
DD  
DD  
11  
12  
FILT  
4.7µF  
0.1µF  
AGND  
20  
19  
18  
SDATA  
BLCK  
BIAS VOLTAGE  
FOR EXTERNAL  
USE  
10  
8
CMOUT  
OUTL  
AD1857/AD1858  
DSP OR  
AUDIO  
DECODER  
LRCLK  
2.2µF  
2.2µF  
LEFT LINE  
OUTPUT  
*
*
3
MODE  
DV  
RIGHT LINE  
OUTPUT  
OUTR 13  
MUTE DEEMP  
DGND  
16  
NC  
4
PD/RST  
DD  
17  
2
5
15  
0.01µF  
*OPTIONAL OUTPUT FILTER  
2.2µF  
1kΩ  
+
4.7µF  
µCONTROLLER  
LEFT LINE  
OUTPUT  
OUTL  
OUTR  
8
100k  
100k  
820pF  
1kΩ  
+5V  
DIGITAL  
NC = NO CONNECT  
2.2µF  
+
RIGHT LINE  
OUTPUT  
13  
820pF  
Figure 21. Recom m ended Circuit Connection  
REV. 0  
–13–  
AD1857/AD1858  
Tim ing D iagr am s  
minimum setup time is tDDS and the minimum serial data hold  
time is tDDH  
T he serial data port timing is shown in Figures 23 and 24. T he  
minimum bit clock HI pulse width is tDBH and the minimum bit  
clock LO pulse width is tDBL. T he minimum bit clock period is  
.
T he power-down/reset timing is shown in Figure 25. T he  
minimum reset LO pulse width is tPDRP (four MCLK periods)  
to accomplish a successful AD1857/AD1858 reset operation.  
t
DBP. T he left/right clock minimum setup time is tDLS and the  
left/right clock minimum hold time is tDLH. T he serial data  
tDBH  
tDBP  
BCLK  
tDBL  
tDLS  
LRCLK  
tDDS  
SDATA  
LEFT-JUSTIFIED  
MODE  
MSB  
tDDH  
MSB-1  
AD1857  
tDDS  
SDATA  
2
I S-JUSTIFIED  
MSB  
tDDH  
MODE  
AD1857  
tDDS  
tDDS  
MSB  
SDATA  
RIGHT-JUSTIFIED  
MODE  
LSB  
AD1858  
tDDH  
tDDH  
Figure 23. Serial Data Port Tim ing  
tDBH  
tDBP  
BCLK  
tDBL  
tDLS  
tDLH  
LRCLK  
tDDS  
MSB  
tDDH  
SDATA  
LEFT-JUSTIFIED  
DSP SERIAL  
MSB-1  
PORT STYLE MODE  
AD1858  
Figure 24. Serial Data Port Tim ing–DSP Serial Port Style Mode (AD1858 Only)  
MCLK  
PD/RST  
tPDRP  
Figure 25. Power-Down/Reset Tim ing  
–14–  
REV. 0  
AD1857/AD1858  
O UTLINE D IMENSIO NS  
D imensions shown in inches and (mm).  
20-Lead SSO P  
(RS-20)  
0.295 (7.50)  
0.271 (6.90)  
20  
11  
0.212 (5.38)  
0.205 (5.207)  
0.311 (7.9)  
0.301 (7.64)  
10  
1
0.07 (1.78)  
0.078 (1.98)  
PIN 1  
0.066 (1.67)  
0.068 (1.73)  
0.037 (0.94)  
8°  
0°  
0.0256  
(0.65)  
BSC  
0.022 (0.559)  
0.008 (0.203)  
0.002 (0.050)  
SEATING  
PLANE  
0.009 (0.229)  
0.005 (0.127)  
1. LEAD NO. 1 IDENTIFIED BY A DOT.  
2. LEADS WILL BE EITHER TIN PLATED OR SOLDER DIPPED  
IN ACCORDANCE WITH MIL-M-38510 REQUIREMENTS  
REV. 0  
–15–  
–16–  

相关型号:

AD1857JRSZRL

IC SPECIALTY CONSUMER CIRCUIT, PDSO20, SSOP-20, Consumer IC:Other
ADI

AD1857_15

Stereo, Single Supply 16-, 18- and 20-Bit Sigma-Delta DACs
ADI

AD1858

Stereo, Single Supply 16-, 18- and 20-Bit Sigma-Delta DACs
ADI

AD1858JRS

Stereo, Single Supply 16-, 18- and 20-Bit Sigma-Delta DACs
ADI

AD1858JRSRL

Stereo, Single Supply 16-, 18- and 20-Bit Sigma-Delta DACs
ADI

AD1858_15

Stereo, Single Supply 16-, 18- and 20-Bit Sigma-Delta DACs
ADI

AD1859

Stereo, Single-Supply 18-Bit Integrated DAC
ADI

AD1859JR

Stereo, Single-Supply 18-Bit Integrated DAC
ADI

AD1859JR-REEL

SERIAL INPUT LOADING, 18-BIT DAC, PDSO28, SOIC-28
ROCHESTER

AD1859JR-REEL

IC SERIAL INPUT LOADING, 18-BIT DAC, PDSO28, SOIC-28, Digital to Analog Converter
ADI

AD1859JRS

Stereo, Single-Supply 18-Bit Integrated DAC
ADI

AD1859JRS

SERIAL INPUT LOADING, 18-BIT DAC, PDSO28, SSOP-28
ROCHESTER