AD1859 [ADI]

Stereo, Single-Supply 18-Bit Integrated DAC; 立体声,单电源, 18位,集成DAC
AD1859
型号: AD1859
厂家: ADI    ADI
描述:

Stereo, Single-Supply 18-Bit Integrated DAC
立体声,单电源, 18位,集成DAC

文件: 总16页 (文件大小:305K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Stereo, Single-Supply  
18-Bit Integrated ⌺⌬ DAC  
a
AD1859  
P RO D UCT O VERVIEW  
FEATURES  
T he AD1859 is a complete 16-/18-bit single-chip stereo digital  
audio playback subsystem. It comprises a variable rate digital  
interpolation filter, a revolutionary multibit sigma-delta (∑∆)  
modulator with dither, a jitter-tolerant DAC, switched capacitor  
and continuous time analog filters, and analog output drive cir-  
cuitry. Other features include an on-chip stereo attenuator and  
mute, programmed through an SPI-compatible serial control  
port.  
Com plete, Low Cost Stereo DAC System in a Single Die  
Package  
Variable Rate Oversam pling Interpolation Filter  
Multibit ⌺⌬ Modulator w ith Triangular PDF Dither  
Discrete and Continuous Tim e Analog Reconstruction  
Filters  
Extrem ely Low Out-of-Band Energy  
64 Step (1 dB/ Step) Analog Attenuator w ith Mute  
Buffered Outputs w ith 2 kOutput Load Drive  
Rejects Sam ple Clock J itter  
94 dB Dynam ic Range, –88 dB THD+N Perform ance  
Option for Analog De-em phasis Processing w ith  
External Passive Com ponents  
؎0.1؇ Maxim um Phase Linearity Deviation  
Continuously Variable Sam ple Rate Support  
Digital Phase Locked Loop Based Asynchronous Master  
Clock  
On-Chip Master Clock Oscillator, Only External Crystal  
Is Required  
T he key differentiating feature of the AD1859 is its asynchro-  
nous master clock capability. Previous ∑∆ audio DACs re-  
quired a high frequency master clock at 256 or 384 times the  
intended audio sample rate. T he generation and management  
of this high frequency synchronous clock is burdensome to the  
board level designer. T he analog performance of conventional  
single bit ∑∆ DACs is also dependent on the spectral purity of  
the sample and master clocks. T he AD1859 has a digital Phase  
Locked Loop (PLL) which allows the master clock to be asyn-  
chronous, and which also strongly rejects jitter on the sample  
clock (left/right clock). T he digital PLL allows the AD1859 to  
be clocked with a single frequency (27 MHz for example) while  
the sample frequency (as determined from the left/right clock)  
can vary over a wide range. T he digital PLL will lock to the  
new sample rate in approximately 100 ms. Jitter components  
15 Hz above and below the sample frequency are rejected by  
6 dB per octave. T his level of jitter rejection is unprecedented  
in audio DACs.  
Pow er-Dow n Mode  
Flexible Serial Data Port (I2S-J ustified, Left-J ustified,  
Right-J ustified and DSP Serial Port Modes)  
SPI* Com patible Serial Control Port  
Single +5 V Supply  
28-Pin SOIC and SSOP Packages  
APPLICATIONS  
Digital Cable TV and Direct Broadcast Satellite Set-Top  
Decoder Boxes  
Digital Video Disc, Video CD and CD-I Players  
High Definition Televisions, Digital Audio Broadcast  
Receivers  
CD, CD-R, DAT, DCC, ATAPI CD-ROM and MD Players  
Digital Audio Workstations, Com puter Multim edia  
Products  
T he AD1859 supports continuously variable sample rates with  
essentially linear phase response, and with an option for external  
analog de-emphasis processing. T he clock circuit includes an  
on-chip oscillator, so that the user need only provide an external  
crystal. T he oscillator may be overdriven, if desired, with an ex-  
ternal clock source.  
(continued on page 7)  
FUNCTIO NAL BLO CK D IAGRAM  
CONTROL  
DATA  
REFERENCE  
FILTER AND  
GROUND  
DIGITAL  
SUPPLY  
ASYNCHRONOUS  
CLOCK/CRYSTAL  
INPUT  
2
3
2
DPLL/CLOCK  
MANAGER  
DE-EMPHASIS  
SWITCH LEFT  
SERIAL  
CONTROL  
INTERFACE  
VOLTAGE  
REFERENCE  
AD1859  
COMMON MODE  
MULTIBIT  
ANALOG  
FILTER  
VARIABLE RATE  
INTERPOLATION  
ATTEN/  
OUTPUT  
BUFFER  
DAC  
DAC  
∑∆ MODULATOR  
MUTE  
SERIAL  
DATA  
INTERFACE  
16- OR 18-BIT  
DIGITAL DATA  
INPUT  
6
ANALOG  
OUTPUTS  
MULTIBIT  
∑∆ MODULATOR  
ANALOG  
FILTER  
VARIABLE RATE  
INTERPOLATION  
ATTEN/  
MUTE  
OUTPUT  
BUFFER  
DE-EMPHASIS  
SWITCH RIGHT  
2
DE-EMPHASIS  
MUTE  
ANALOG  
SUPPLY  
POWER  
DOWN/RESET  
*SPI is a registered trademark of Motorola, Inc.  
REV. A  
Inform ation furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assum ed by Analog Devices for its  
use, nor for any infringem ents of patents or other rights of third parties  
which m ay result from its use. No license is granted by im plication or  
otherwise under any patent or patent rights of Analog Devices.  
© Analog Devices, Inc., 1996  
One Technology Way, P.O. Box 9106, Norw ood. MA 02062-9106, U.S.A.  
Tel: 617/ 329-4700 Fax: 617/ 326-8703  
AD1859–SPECIFICATIONS  
TEST CO ND ITIO NS UNLESS O TH ERWISE NO TED  
Supply Voltages (AVDD, DVDD  
Ambient T emperature  
)
+5.0  
25  
V
°C  
Input Clock (FMCLK  
Input Signal  
)
27.1656  
1001.2938 Hz  
MHz  
–0.5  
44.1  
dB Full Scale  
kHz  
Input Sample Rate  
Measurement Bandwidth  
Input Data Word Width  
Load Capacitance  
10 Hz to 20 kHz  
18  
Bits  
pF  
V
100  
2.4  
0.8  
Input Voltage HI (VIH  
)
Input Voltage LO (VIL)  
V
NOT ES  
I2S-Justified Mode (Ref. Figure 3).  
Device Under T est (DUT ) is bypassed, decoupled and dc-coupled as shown in Figure 17 (no de-emphasis circuit).  
Performance of the right and left channels are identical (exclusive of “Interchannel Gain Mismatch” and “Interchannel Phase Deviation” specifications).  
Attenuation setting is 0 dB.  
Values in bold typeface are tested; all others are guaranteed, not tested.  
ANALO G P ERFO RMANCE  
Min  
Typ  
Max  
Units  
Resolution  
18  
Bits  
Dynamic Range (20 to 20 kHz, –60 dB Input)  
(No A-Weight Filter)  
(With A-Weight Filter)  
85.7  
88  
91  
94  
–88  
0.004  
dB  
dB  
dB  
%
T otal Harmonic Distortion + Noise  
–84  
0.0063  
Analog Outputs  
Single-Ended Output Range (±Full Scale)  
Output Impedance at Each Output Pin  
Output Capacitance at Each Output Pin  
External Load Impedance (T HD +N –84 dB)  
Out-of-Band Energy (0.5 × FS to 100 kHz)  
CMOUT  
2.8  
3.0  
17  
3.2  
24  
20  
V p-p  
pF  
dB  
V
750  
2K  
–72.5  
2.45  
2.05  
2.25  
DC Accuracy  
Gain Error  
±1  
؎5  
%
Interchannel Gain Mismatch  
Gain Drift  
Interchannel Crosstalk (EIAJ Method)  
Interchannel Phase Deviation  
Attenuator Step Size  
Attenuator Range Span  
Mute Attenuation  
De-Emphasis Switch (EMPL, EMPR) DC Resistance  
0.01  
140  
0.225  
270  
dB  
ppm/°C  
dB  
Degrees  
dB  
dB  
101  
±0.1  
1.0  
–62.5  
–74.2  
10  
0.6  
–61.5  
–70  
3
1.4  
–63.5  
dB  
50  
D IGITAL INP UTS  
Min  
Typ  
Max  
Units  
Input Voltage HI (VIH  
)
2.4  
V
Input Voltage LO (VIL)  
0.8  
6
6
V
Input Leakage (IIH @ VIH = 2.4 V)  
Input Leakage (IIL @ VIL = 0.8 V)  
Input Capacitance  
1
1
µA  
µA  
pF  
20  
REV. A  
–2–  
AD1859  
D IGITAL TIMING (Guaranteed over –40°C to +105°C, AVDD = DVDD = +5.0 V ± 10%)  
Min  
Typ  
Max  
Units  
tDBH  
tDBL  
tDBP  
tDLS  
tDLH  
tDDS  
tDDH  
tCCH  
tCCL  
tCCP  
tCSU  
tCHD  
tCLD  
tCLL  
tCLH  
tPDRP  
BCLK HI Pulse Width  
BCLK LO Pulse Width  
BCLK Period  
LRCLK Setup  
LRCLK Hold (DSP Serial Port Style Mode Only)  
SDAT A Setup  
25  
25  
50  
5
0
0
5
15  
15  
30  
0
5
15  
5
10  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SDAT A Hold  
CCLK HI Pulse Width  
CCLK LO Pulse Width  
CCLK Period  
CDAT A Setup  
CDAT A Hold  
CLAT CH Delay  
CLAT CH LO Pulse Width  
CLAT CH HI Pulse Width  
PD/RST LO Pulse Width  
4 MCLK P er iods  
(≈150 ns @ 27 MH z)  
tMCP  
FMC  
tMCH  
tMCL  
MCLK Period  
30  
17  
15  
15  
37  
27  
60  
33  
ns  
MHz  
ns  
MCLK Frequency (1/tMCP  
MCLK HI Pulse Width  
MCLK LO Pulse Width  
)
ns  
P O WER  
Min  
Typ  
Max  
Units  
Supplies  
Voltage, Analog and Digital  
Analog Current  
Analog Current—Power Down  
Digital Current  
Digital Current—Power Down  
Dissipation  
4.5  
29.5  
5
5.5  
mA  
15  
mA  
9.5  
V
36  
0.5  
30  
6
µA  
mA  
23.5  
Operation—Both Supplies  
Operation—Analog Supply  
Operation—Digital Supply  
Power Down—Both Supplies  
Power Supply Rejection Ratio  
265  
330  
180  
150  
48  
mW  
mW  
mW  
mW  
147.5  
117.5  
30  
1 kHz 300 mV p-p Signal at Analog Supply Pins  
20 kHz 300 mV p-p Signal at Analog Supply Pins  
55  
52  
dB  
dB  
TEMP ERATURE RANGE  
Min  
Typ  
Max  
Units  
Specifications Guaranteed  
Functionality Guaranteed  
Storage  
25  
°C  
°C  
°C  
–40  
–55  
+105  
+125  
P ACKAGE CH ARACTERISTICS  
Typ  
Units  
SOIC θJA (T hermal Resistance [Junction-to-Ambient])  
SOIC θJC (T hermal Resistance [Junction-to-Case])  
SSOP θJA (T hermal Resistance [Junction-to-Ambient])  
SSOP θJC (T hermal Resistance [Junction-to-Case])  
120.67  
13.29  
190.87  
15.52  
°C/W  
°C/W  
°C/W  
°C/W  
REV. A  
–3–  
AD1859  
ABSO LUTE MAXIMUM RATINGS*  
Min  
Typ  
Max  
Units  
DVDD to DGND  
AVDD to AGND  
Digital Inputs  
Analog Inputs  
AGND to DGND  
Reference Voltage  
Soldering  
–0.3  
–0.3  
DGND – 0.3  
AGND – 0.3  
–0.3  
6
6
V
V
V
V
V
DVDD + 0.3  
AVDD + 0.3  
0.3  
Indefinite Short Circuit to Ground  
+300  
10  
°C  
sec  
*Stresses greater than those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. T his is a stress rating only and functional operation  
of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating  
conditions for extended periods may affect device reliability.  
D IGITAL FILTER CH ARACTERISTICS  
Min  
Typ  
Max  
Units  
Passband Ripple  
Stopband1 Attenuation  
48 kHz FS  
Passband  
Stopband  
±0.045  
dB  
dB  
62  
0
21.312  
6117  
kHz  
kHz  
26.688  
44.1 kHz FS  
Passband  
Stopband  
0
19.580  
5620  
kHz  
kHz  
24.520  
32 kHz FS  
Passband  
Stopband  
0
14.208  
4078  
kHz  
kHz  
17.792  
Other FS  
Passband  
Stopband  
Group Delay  
Group Delay Variation  
0
0.444  
127.444  
40/FS  
0
FS  
FS  
sec  
µs  
0.556  
ANALO G FILTER CH ARACTERISTICS  
Min  
Typ  
Max  
Units  
Passband Ripple  
Stopband Attenuation (at 64 × FS)  
–0.075  
dB  
dB  
58  
NOT E  
1Stopband nominally repeats itself at multiples of 128 × FS, where FS is the input word rate. T hus the digital filter will attenuate to 62 dB across the frequency  
spectrum except for a range ±0.55 × FS wide at multiples of 128 × FS.  
P IN CO NNECTIO NS  
1
2
3
4
28  
27  
26  
FILT  
CMOUT  
DEEMP  
O RD ERING GUID E  
FGND  
EMPR  
EMPL  
OUTL  
Tem perature  
Range  
P ackage  
D escription  
P ackage  
O ption  
25 OUTR  
Model  
NC  
24  
23  
22  
21  
20  
5
6
7
8
9
NC  
AV  
NC  
AGND  
MUTE  
18/16  
DD  
AD1859  
TOP VIEW  
AD1859JR  
AD1859JRS  
–40°C to +105°C 28-Lead SOIC  
–40°C to +105°C 28-Lead SSOP  
R-28  
RS-28  
CLATCH  
CDATA  
(Not to Scale)  
IDPM0  
IDPM1  
10  
19  
18  
17  
16  
15  
CCLK  
DGND  
PD/RST 11  
12  
DV  
DD  
SDATA  
LRCLK  
13  
XTALI/MCLK  
XTALO  
14  
BCLK  
NC = NO CONNECT  
CAUTIO N  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection.  
Although the AD1859 features proprietary ESD protection circuitry, permanent damage may  
occur on devices subjected to high energy electrostatic discharges. T herefore, proper ESD  
precautions are recommended to avoid performance degradation or loss of functionality.  
WARNING!  
ESD SENSITIVE DEVICE  
–4–  
REV. A  
AD1859  
D EFINITIO NS  
Gain Er r or  
D ynam ic Range  
With a near full-scale input, the ratio of actual output to ex-  
pected output, expressed as a percentage.  
T he ratio of a full-scale output signal to the integrated output  
noise in the passband (0 to 20 kHz), expressed in decibels (dB).  
Dynamic range is measured with a –60 dB input signal and is  
equal to (S/[T HD+N]) + 60 dB. Note that spurious harmonics  
are below the noise with a –60 dB input, so the noise level es-  
tablishes the dynamic range. T his measurement technique is  
consistent with the recommendations of the Audio Engineering  
Society (AES17-1991) and the Electronics Industries Association  
of Japan (EIAJ CP-307).  
Inter channel Gain Mism atch  
With identical near full-scale inputs, the ratio of outputs of the  
two stereo channels, expressed in decibels.  
Gain D r ift  
Change in response to a near full-scale input with a change in  
temperature, expressed as parts-per-million (ppm) per °C.  
Cr osstalk (EIAJ m ethod)  
Ratio of response on one channel with a zero input to a full-scale  
1 kHz sine-wave input on the other channel, expressed in decibels.  
Total H ar m onic D istor tion + Noise (TH D +N)  
T he ratio of the root-mean-square (rms) value of a full-scale  
fundamental input signal to the rms sum of all other spectral  
components in the passband, expressed in decibels (dB) and  
percentage.  
Inter channel P hase D eviation  
Difference in output sampling times between stereo channels,  
expressed as a phase difference in degrees between 1 kHz inputs.  
P assband  
P ower Supply Rejection  
T he region of the frequency spectrum unaffected by the attenu-  
ation of the digital interpolation filter.  
With zero input, signal present at the output when a 300 mV  
p-p signal is applied to power supply pins, expressed in decibels  
of full scale.  
P assband Ripple  
T he peak-to-peak variation in amplitude response from equal-  
amplitude input signal frequencies within the passband, ex-  
pressed in decibels.  
Gr oup D elay  
Intuitively, the time interval required for an input pulse to ap-  
pear at the converter’s output, expressed in seconds (s). More  
precisely, the derivative of radian phase with respect to radian  
frequency at a given frequency.  
Stopband  
T he region of the frequency spectrum attenuated by the digi-  
tal interpolation filter to the degree specified by “stopband  
attenuation.”  
Gr oup D elay Var iation  
T he difference in group delays at different input frequencies.  
Specified as the difference between the largest and the smallest  
group delays in the passband, expressed in microseconds (µs).  
P IN D ESCRIP TIO NS  
D igital Audio Ser ial Input Inter face  
P in Nam e Num ber I/O D escription  
Ser ial Contr ol P or t Inter face  
P in Nam e Num ber I/O D escription  
SDAT A  
12  
I
Serial input, MSB first, contain-  
ing two channels of 16 or 18 bits  
of twos complement data per  
channel.  
CDAT A  
CCLK  
20  
I
I
I
Serial control input, MSB first,  
containing 8 bits of unsigned  
data per channel. Used for  
specifying channel specific  
attenuation and mute.  
BCLK  
14  
I
Bit clock input for input data.  
Need not run continuously; may  
be gated or used in a burst  
fashion.  
19  
Control clock input for control  
data. Control input data must  
be valid on the rising edge of  
CCLK. CCLK may be continu-  
ous or gated.  
LRCLK  
13  
9
I
I
Left/right clock input for input  
data. Must run continuously.  
IDPM0  
Input serial data port mode  
control zero. With IDPM1,  
defines one of four serial input  
modes.  
CLAT CH 21  
Latch input for control data. This  
input is rising edge sensitive.  
IDPM1  
10  
8
I
I
Input serial data port mode con-  
trol one. With IDPM0, defines  
one of four serial input modes.  
18/16  
18-bit or 16-bit input data mode  
control. Connect this signal HI  
for 18-bit input mode, LO for  
16-bit input mode.  
REV. A  
–5–  
AD1859  
P IN D ESCRIP TIO NS  
Analog Signals  
Contr ol and Clock Signals  
P in Nam e Num ber I/O D escription  
P in Nam e Num ber  
I/O D escription  
PD/RST  
11  
I
Power down/reset. T he AD1859 is  
FILT  
28  
O
Voltage reference filter capacitor  
placed in a low power consumption  
“sleep” mode when this pin is held  
LO. T he AD1859 is reset on the  
rising edge of this signal. T he serial  
control port registers are reset to  
their default values. Connect HI  
for normal operation.  
connection. Bypass and decouple  
the voltage reference with paral-  
lel 10 µF and 0.1 µF capacitors  
to the FGND pin.  
FGND  
27  
1
I
Voltage reference filter ground.  
Use exclusively for bypassing and  
decoupling of the FILT pin  
(voltage reference).  
DEEMP  
2
I
De-emphasis. An external analog de-  
emphasis circuit network is enabled  
when this input signal is HI. T his  
circuit is typically used to impose a  
50/15 µs (or perhaps the CCIT T  
J.17) response characteristic on the  
output audio spectrum.  
CMOUT  
O
Voltage reference common-mode  
output. Should be decoupled  
with 10 µF capacitor to the AGND  
pin or plane. This output is available  
externally for dc-coupling and level-  
shifting. CMOUT should not have  
any signal dependent load, or where  
it will sink or source current.  
MUT E  
7
I
I
Mute. Assert HI to mute both  
stereo analog outputs of the AD1859.  
Deassert LO for normal operation.  
OUT L  
OUT R  
EMPL  
4
O
O
O
Left channel line level analog output.  
Right channel line level analog output.  
XT ALI/  
MCLK  
25  
3
16  
Crystal input or master clock input.  
Connect to one side of a quartz  
crystal to this input, or connect to  
an external clock source to over-  
drive the on-chip oscillator.  
De-emphasis switch connection  
for the left channel. Can be left  
unconnected if de-emphasis is not  
required in the target application.  
XT ALO  
15  
O
Crystal output. Connect to other  
side of a quartz crystal. Do not con-  
nect if using the XTALI/MCLK  
pin with an external clock source.  
EMPR  
26  
O
De-emphasis switch connection  
for the right channel. Can be left  
unconnected if de-emphasis is not  
required in the target application.  
P ower Supply Connections and Miscellaneous  
P in Nam e Num ber I/O D escription  
AVDD  
23  
I
Analog Power Supply. Connect  
to analog +5 V supply.  
AGND  
DVDD  
6
I
I
Analog Ground.  
17  
Digital Power Supply. Connect  
to digital +5 V supply.  
DGND  
NC  
18  
I
Digital Ground.  
5, 22, 24  
No Connect. Reserved. Do not  
connect.  
–6–  
REV. A  
AD1859  
(continued from page 1)  
the fourth stage is a second-order comb filter. T he FIR filter  
implementation is multiplier-free, i.e., the multiplies are per-  
formed using shift-and-add operations.  
T he AD1859 has a simple but very flexible serial data input port  
that allows for glueless interconnection to a variety of ADCs,  
DSP chips, AES/EBU receivers and sample rate converters.  
T he serial data input port can be configured in left-justified,  
I2S-justified, right-justified and DSP serial port compatible  
modes. T he AD1859 accepts 16- or 18-bit serial audio data in  
MSB-first, twos-complement format. A power-down mode is  
offered to minimize power consumption when the device is inac-  
tive. T he AD1859 operates from a single +5 V power supply. It  
is fabricated on a single monolithic integrated circuit using a  
0.6 µM CMOS double polysilicon, double metal process, and is  
housed in 28-pin SOIC and SSOP packages for operation over  
the temperature range –40°C to +105°C.  
Multibit Sigm a-D elta Modulator  
The AD1859 employs a four-bit sigma-delta modulator. Whereas a  
traditional single bit sigma-delta modulator has two levels of quan-  
tization, the AD1859’s has 17 levels of quantization. T raditional  
single bit sigma-delta modulators sample the input signal at 64  
times the input sample rate; the AD1859 samples the input sig-  
nal at nominally 128 times the input sample rate. T he addi-  
tional quantization levels combined with the higher oversampling  
ratio means that the AD1859 DAC output spectrum contains  
dramatically lower levels of out-of-band noise energy, which is a  
major stumbling block with more traditional single bit sigma-  
delta architectures. T his means that the post-DAC analog re-  
construction filter has reduced transition band steepness and  
attenuation requirements, which equates directly to lower phase  
distortion. Since the analog filtering generally establishes the  
noise and distortion characteristic of the DAC, the reduced  
requirements translate into better audio performance.  
TH EO RY O F O P ERATIO N  
T he AD1859 offers the advantages of sigma-delta conversion  
architectures (no component trims, low cost CMOS process  
technology, superb low level linearity performance) with the  
advantages of conventional multibit R-2R resistive ladder audio  
DACs (no requirement for any high frequency synchronous master  
clocks [e.g., 256 or 384 × FS] continuously variable sample rate  
support, jitter tolerance, low output noise, etc.).  
Multibit sigma-delta modulators bring an additional benefit:  
they are essentially free of stability (and therefore potential loop  
oscillation) problems. T hey are able to use a wider range of the  
voltage reference, which can increase the overall dynamic range  
of the converter.  
T he use of a multibit sigma-delta modulator means that the  
AD1859 generates dramatically lower amounts of out-of-band  
noise energy, which greatly reduces the requirement on post  
DAC filtering. T he required post-filtering is integrated on the  
AD1859. T he AD1859s multibit sigma-delta modulator is also  
highly immune to digital substrate noise.  
T he conventional problem which limits the performance of  
multibit sigma delta converters is the nonlinearity of the passive  
circuit elements used to sum the quantization levels. Analog  
Devices has developed (and been granted patents on) a revolu-  
tionary architecture which overcomes the component linearity  
problem that otherwise limits the performance of multibit sigma  
delta audio converters. T his new architecture provides the  
AD1859 with the same excellent differential nonlinearity and  
linearity drift (over temperature and time) specifications as  
single bit sigma-delta DACs.  
T he digital phase locked loop feature gives the AD1859 an un-  
precedented jitter rejection feature. T he bandwidth of the first  
order loop filter is 15 Hz; jitter components on the input  
left/right clock are attenuated by 6 dB per octave above and be-  
low 15 Hz. Jitter on the crystal time base or MCLK input is re-  
jected as well (by virtue of the on-chip switched capacitor filter),  
but this clock should be low jitter because it is used by the DAC  
to convert the audio from the discrete time (sampled) domain to  
the continuous time (analog) domain. T he AD1859 includes an  
on-chip oscillator, so that the user need only provide an inexpen-  
sive quartz crystal or ceramic resonator as an external time base.  
T he AD1859s multibit modulator has another important ad-  
vantage; it has a high immunity to substrate digital noise. Sub-  
strate noise can be a significant problem in mixed-signal  
designs, where it can produce intermodulation products that  
fold down into the audio band. T he AD1859 is approximately  
eight times less sensitive to digital substrate noise (voltage refer-  
ence noise injection) than equivalent single bit sigma-delta  
modulator based DACs.  
Ser ial Audio D ata Inter face  
T he serial audio data interface uses the bit clock (BCLK) simply  
to clock the data into the AD1859. T he bit clock may, there-  
fore, be asynchronous to the L/R clock. T he left/right clock  
(LRCLK) is both a framing signal, and the sample frequency input  
to the digital phase locked loop. The left/right clock (LRCLK) is  
the signal that the AD1859 actually uses to determine the input  
sample rate, and it is the jitter on LRCLK that is rejected by the  
digital phase locked loop. T he SDAT A input carries the serial  
stereo digital audio in MSB first, twos-complement format.  
D ither Gener ator  
T he AD1859 includes an on-chip dither generator, which is in-  
tended to further reduce the quantization noise introduced by  
the multibit DAC. T he dither has a triangular Probability Dis-  
tribution Function (PDF) characteristic, which is generally con-  
sidered to create the most favorable noise shaping of the residual  
quantization noise. T he AD1859 is among the first low cost, IC  
audio DACs to include dithering.  
D igital Inter polation Filter  
T he purpose of the interpolator is to “oversample” the input  
data, i.e., to increase the sample rate so that the attenuation re-  
quirements on the analog reconstruction filter are relaxed. T he  
AD1859 interpolator increases the input data sample rate by a  
variable factor depending on the sample frequency of the incom-  
ing digital audio. T he interpolation is performed using a multi-  
stage FIR digital filter structure. T he first stage is a droop  
equalizer; the second and third stages are half-band filters; and  
Analog Filter ing  
T he AD1859 includes a second-order switched capacitor dis-  
crete time low-pass filter followed by a first-order analog con-  
tinuous time low-pass filter. T hese filters eliminate the need for  
any additional off-chip external reconstruction filtering. T his  
on-chip switched capacitor analog filtering is essential to reduce  
the deleterious effects of any remaining master clock jitter.  
REV. A  
–7–  
AD1859  
O ption for Analog D e-em phasis P r ocessing  
T he phase detector automatically switches the loop filter into  
“slow” mode as phase lock is gradually obtained. T he loop  
bandwidth is 15 Hz in slow mode. Since the loop filter is first  
order, the digital PLL will reject jitter on the left/right clock  
above 15 Hz, with an attenuation of 6 dB per octave. T he jitter  
rejection frequency response is shown in Figure 1.  
T he AD1859 includes three pins for implementing an external  
analog 50/15 µs (or possibly the CCIT T J. 17) de-emphasis fre-  
quency response characteristic. A control pin DEEMP (Pin 2)  
enables de-emphasis when it is asserted HI. T wo analog out-  
puts, EMPL (Pin 3) and EMPR (Pin 26) are used to switch the  
required analog components into the output stage of the AD1859.  
An analog implementation of de-emphasis is superior to a digital  
implementation in several ways. It is generally lower noise, since  
digital de-emphasis is usually created using recursive IIR filters,  
which inject limit cycle noise. Also the digital de-emphasis is be-  
ing applied in front of the primary analog noise generation source,  
the DAC modulator, and its high frequency noise contributions  
are not attenuated. An analog de-emphasis circuit is down-  
stream from the relatively “noisy” DAC modulator and thus pro-  
vides a more effective noise reduction role (which was the original  
intent of the emphasis/de-emphasis scheme). A final key advan-  
tage of analog de-emphasis is that it is sample rate invariant, so  
that users can fully exploit the sample rate range of the AD1859  
and simultaneously use de-emphasis. Digital implementations gen-  
erally only support fixed, standard sample rates.  
0
–6  
–12  
–18  
–24  
–30  
–36  
–42  
–48  
–54  
–60  
0
15 30 60 120 240 480 960 1920 3840 7680 15360  
Hz ABOVE OR BELOW THE SAMPLE FREQUENCY  
D igital P hase Locked Loop  
T he digital PLL is adaptive, and locks to the applied sample rate  
(on the LRCLK Pin 13) in 100 ms to 200 ms. T he digital PLL  
is initially in “fast” mode, with a wide lock capture bandwidth.  
Figure 1. Digital PLL J itter Rejection  
O P ERATING FEATURES  
Ser ial D ata Input P or t  
Ser ial Input P or t Modes  
T he AD1859 uses the frequency of the left/right input clock to  
determine the input sample rate. LRCLK must run continu-  
ously and transition twice per stereo sample period (except in  
the left-justified DSP serial port style mode, when it transitions  
four times per stereo sample period). T he bit clock (BCLK) is  
edge sensitive and may be used in a gated or burst mode (i.e., a  
stream of pulses during data transmission followed by periods of  
inactivity). T he bit clock is only used to write the audio data  
into the serial input port. It is important that the left/right clock  
is “clean” with monotonic rising and falling edge transitions and  
no excessive overshoot or undershoot which could cause false  
clock triggering of the AD1859.  
T he AD1859 uses two multiplexed input pins to control the  
mode configuration of the input data port. IDPM0 and IDPM1  
program the input data port mode as follows:  
ID P M1  
ID P M0  
Serial Input P ort Mode  
LO  
LO  
HI  
HI  
LO  
HI  
LO  
HI  
Right-Justified (See Figure 2)  
I2S-Justified (See Figure 3)  
Left-Justified (See Figure 4)  
Left-Justified DSP Serial Port Style  
(See Figure 5)  
Figure 2 shows the right-justified mode. LRCLK is HI for the  
left channel, and LO for the right channel. Data is valid on the  
rising edge of BCLK. T he MSB is delayed 14-bit clock periods  
(in 18-bit input mode) or 16-bit clock periods (in 16-bit input  
mode) from an LRCLK transition, so that when there are 64  
BCLK periods per LRCLK period, the LSB of the data will be  
right-justified to the next LRCLK transition.  
T he AD1859s flexible serial data input port accepts data in  
twos-complement, MSB-first format. T he left channel data  
field always precedes the right channel data field. T he input  
data consists of either 16 or 18 bits, as established by the 18/16  
input control (Pin 8). All digital inputs are specified to T T L  
logic levels. T he input data port is configured by control pins.  
LRCLK  
RIGHT CHANNEL  
LEFT CHANNEL  
INPUT  
BCLK  
INPUT  
SDATA  
INPUT  
LSB+2 LSB+1  
LSB  
MSB  
LSB+2 LSB+1  
MSB-1 MSB-2  
LSB  
MSB  
MSB-2  
LSB  
MSB-1  
Figure 2. Right-J ustified Mode  
–8–  
REV. A  
AD1859  
Figure 3 shows the I2S-justified mode. LRCLK is LO for the left  
channel, and HI for the right channel. Data is valid on the rising  
edge of BCLK. The MSB is left-justified to an LRCLK transition  
but with a single BCLK period delay. T he I2S-justified mode  
can be used in either the 16-bit or the 18-bit input mode.  
Note that in 16-bit input mode, the AD1859 is capable of a 32  
× FS BCLK frequency “packed mode” where the MSB is left-  
justified to an LRCLK transition, and the LSB is right-justified  
to an LRCLK transition. LRCLK is HI for the left channel,  
and LO for the right channel. Data is valid on the rising edge of  
BCLK. Packed mode can be used when the AD1859 is pro-  
grammed in either right-justified or left-justified mode. Packed  
mode is shown in Figure 6.  
Figure 4 shows the left-justified mode. LRCLK is HI for the  
left channel, and LO for the right channel. Data is valid on the  
rising edge of BCLK. T he MSB is left-justified to an LRCLK  
transition, with no MSB delay. T he left-justified mode can be  
used in either the 16-bit or the 18-bit input mode.  
Ser ial Contr ol P or t  
T he AD1859 serial control port is SPI compatible. SPI  
(Serial Peripheral Interface) is a serial port protocol popularized  
by Motorola’s family of microcomputer and microcontroller  
products. T he write-only serial control port gives the user ac-  
cess to channel specific mute and attenuation. T he AD1859  
serial control port consists of three signals, control clock CCLK  
(Pin 19), control data CDAT A (Pin 20), and control latch  
CLAT CH (Pin 21). T he control data input (CDAT A) must be  
valid on the control clock (CCLK) rising edge, and the control  
clock (CCLK) must only make a LO to HI transition when  
there is valid data. T he control latch (CLAT CH) must make a  
LO to HI transition after the LSB has been clocked into the  
AD1859, while the control clock (CCLK) is inactive. T he tim-  
ing relation between these signals is shown in Figure 7.  
Figure 5 shows the left-justified DSP serial port style mode.  
LRCLK must pulse HI for at least one bit clock period before  
the MSB of the left channel is valid, and LRCLK must pulse HI  
again for at least one bit clock period before the MSB of the  
right channel is valid. Data is valid on the falling edge of  
BCLK. T he left-justified DSP serial port style mode can be  
used in either the 16-bit or the 18-bit input mode. Note that in  
this mode, it is the responsibility of the DSP to ensure that the  
left data is transmitted with the first LRCLK pulse, and that the  
right data is transmitted with the second LRCLK pulse, and  
that synchronism is maintained from that point forward.  
LRCLK  
LEFT CHANNEL  
INPUT  
RIGHT CHANNEL  
BCLK  
INPUT  
SDATA  
INPUT  
MSB  
MSB-1 MSB-2  
LSB+2 LSB+1  
LSB  
LSB+2 LSB+1  
MSB  
MSB-1 MSB-2  
LSB  
MSB  
Figure 3. I2S-J ustified Mode  
LRCLK  
INPUT  
RIGHT CHANNEL  
LEFT CHANNEL  
BCLK  
INPUT  
SDATA  
INPUT  
MSB  
MSB-1 MSB-2  
LSB+2 LSB+1  
LSB  
MSB  
MSB-1 MSB-2  
LSB+2 LSB+1  
LSB  
MSB  
MSB-1  
Figure 4. Left-J ustified Mode  
LRCLK  
INPUT  
RIGHT CHANNEL  
LEFT CHANNEL  
BCLK  
INPUT  
SDATA  
INPUT  
LSB+2 LSB+1  
LSB  
MSB  
MSB-1  
MSB  
MSB-1  
LSB+2 LSB+1  
LSB  
MSB  
MSB-1  
Figure 5. Left-J ustified DSP Serial Port Style Mode  
LRCLK  
INPUT  
RIGHT CHANNEL  
LEFT CHANNEL  
BCLK  
INPUT  
SDATA  
INPUT  
LSB+2 LSB+1  
LSB  
MSB  
MSB-1 MSB-2  
LSB+2 LSB+1  
LSB  
MSB  
MSB-1  
LSB  
MSB  
MSB-1 MSB-2  
Figure 6. 32 × FS Packed Mode  
REV. A  
–9–  
AD1859  
CCLK  
CDATA  
D5  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
D7  
D6  
MSB  
LSB  
MSB  
CLATCH  
Figure 7. Serial Control Port Tim ing  
MSB  
LSB  
DATA7  
DATA6  
Mute  
DATA5  
Atten5  
DATA4  
Atten4  
DATA3  
Atten3  
DATA2  
Atten2  
DATA1  
Atten1  
DATA0  
Atten0  
LEFT/RIGHT  
Right Channel = HI Mute = HI  
Left Channel = LO Normal = LO  
00 0000 = 0.0dB  
00 0001 = –1.0dB  
00 0010 = –2.0dB  
00 0011 = –3.0dB  
00 0100 = –4.0dB  
00 0101 = –5.0dB  
00 0110 = –6.0dB  
00 0111 = –7.0dB  
00 1000 = –8.0dB  
*
*
*
11 1101 = –61.0dB  
11 1110 = –62.0dB  
11 1111 = –63.0dB  
Figure 8. Serial Control Bit Definitions  
T he serial control port is byte oriented. T he data is MSB first,  
and is unsigned. T here is a control register for the left channel  
and a control register for the right channel, as distinguished by  
the MSB (DAT A7). T he bits are assigned as shown in Figure 8.  
Highest Sample Rate = Master Clock Frequency ÷ 512  
T he lowest sample rate supported can be computed as follows:  
Lowest Sample Rate = Master Clock Frequency ÷ 1024  
The left channel control register and the right channel control reg-  
ister have identical power up and reset default settings. DATA6,  
the Mute control bit, reset default state is LO, which is the nor-  
mal (nonmuted) setting. DATA5:0, the Atten5 through Atten0  
control bits, have a reset default value of 00 0000, which is an  
attenuation of 0.0 dB (i.e., full scale, no attenuation). The intent  
with these reset defaults is to enable AD1859 applications with-  
out requiring the use of the serial control port. For those users  
that do not use the serial control port, it is still possible to mute  
the AD1859 output by using the external MUT E (Pin 7) signal.  
It is recommended that the output be muted for approximately  
1000 input sample periods during power-up or following any  
radical sample rate change (>5%) to allow the digital phase  
locked loop to settle.  
AD1859  
AD1859  
XTALI/MCLK  
XTALO  
XTALI/MCLK  
XTALO  
NC  
20-64pF  
27MHz CRYSTAL CONNECTION  
20-64pF  
27MHz  
27MHz  
27MHz OSCILLATOR CONNECTION  
Figure 9. Crystal and Oscillator Connections  
Figure 10 illustrates these relations. As can be seen in Figure 10,  
a 27 MHz MCLK or crystal frequency supports audio sample  
rates from approximately 28 kHz to 52 kHz.  
76  
Note that the serial control port timing is asynchronous to the  
serial data input port timing. Changes made to the attenuator  
level will be updated on the next edge of the LRCLK after the  
CLAT CH write pulse. T he AD1859 has been designed to re-  
solve the potential for metastability between the LRCLK edge  
and the CLAT CH write pulse rising edge. T he attenuator set-  
ting is guaranteed to be valid even if the LRCLK edge and the  
CLAT CH rising edge occur essentially simultaneously.  
HIGHEST  
L/R SAMPLE RATE  
68  
(MCLK/512)  
60  
52  
LOWEST  
L/R SAMPLE RATE  
(MCLK/1024)  
44  
36  
28  
20  
O n-Chip O scillator and Master Clock  
T he asynchronous master clock of the AD1859 can be supplied  
by either an external clock source applied to XT ALI/MCLK or  
by connecting a crystal across the XT ALI/MCLK and XT ALO  
pins, and using the on-chip oscillator. If a crystal is used, it  
should be fundamental-mode and parallel-tuned. Figure 9  
shows example connections.  
18  
20  
22  
24  
26  
28  
30  
32  
34  
36  
XTAL/MCLK FREQUENCY – MHz  
Figure 10. MCLK Frequency vs. L/R Clock Frequency  
Mute and Attenuation  
T he range of audio sample rates (as determined from the  
LRCLK input) supported by the AD1859 is a function of the  
master clock rate (i.e., the crystal frequency or external clock  
source frequency) applied. T he highest sample rate supported  
can be computed as follows:  
T he AD1859 offers two methods of muting the analog output.  
By asserting the MUT E (Pin 7) signal HI, both the left channel  
and the right channel are muted. As an alternative, the user can  
assert the mute bit in the serial control registers HI for indi-  
vidual mute of either the left channel or the right channel. T he  
–10–  
REV. A  
AD1859  
AD1859 has been designed to minimize pops and clicks when  
muting and unmuting the device. T he AD1859 includes a zero  
crossing detector which attempts to implement attenuation  
changes on waveform zero crossings only. If a zero crossing is  
not found within 1024 input sample periods (approximately  
23 ms at 44.1 kHz), the attenuation change is made regardless.  
AP P LICATIO NS ISSUES  
Inter face to MP EG Audio D ecoder s  
Figure 11 shows the suggested interface to the Analog Devices  
ADSP-21xx family of DSP chips, for which several MPEG  
audio decode algorithms are available. The ADSP-21xx supports  
16 bits of data using a left-justified DSP serial port style format.  
O utput D r ive, Buffer ing and Loading  
T he AD1859 analog output stage is able to drive a 2 kload. If  
lower impedance loads must be driven, an external buffer stage  
such as the Analog Devices SSM2142 should be used. T he  
analog output is generally ac coupled with a 10 µF capacitor,  
even if the optional de-emphasis circuit is not used, as shown in  
Figure 17. It is possible to dc couple the AD1859 output into an  
op amp stage using the CMOUT signal as a bias point.  
SCLK  
RFS  
TFS  
DT  
14 BCLK  
13  
NC  
NC  
LRCLK  
ADSP-21xx  
AD1859  
SDATA  
IDPM0  
IDPM1  
12  
9
HI  
10  
8
HI  
DR  
18/16  
LO  
O n-Chip Voltage Refer ence  
Figure 11. Interface to ADSP-21xx  
T he AD1859 includes an on-chip voltage reference that estab-  
lishes the output voltage range. T he nominal value of this refer-  
ence is +2.25 V which corresponds to a line output voltage  
swing of 3 V p-p. T he line output signal is centered around a  
voltage established by the CMOUT (common mode) output  
(Pin 1). T he reference must be bypassed both on the FILT in-  
put (Pin 28) with 10 µF and 0.1 µF capacitors, and on the  
CMOUT output (Pin 1) with a 10 µF and 0.1 µF capacitors, as  
shown in Figures 17 and 18. T he FILT pin must use the  
FGND ground, and the CMOUT pin must use the AGND  
ground. T he on-chip voltage reference may be overdriven with  
an external reference source by applying this voltage to the  
FILT pin. CMOUT and FILT must still be bypassed as shown  
in Figures 17 and 18. An external reference can be useful to  
calibrate multiple AD1859 DACs to the same gain. Reference  
bypass capacitors larger than those suggested can be used to im-  
prove the signal-to-noise performance of the AD1859.  
Figure 12 shows the suggested interface to the T exas Instru-  
ments T MS320AV110 MPEG audio decoder IC. T he  
T MS320AV110 supports 18 bits of data using a right-justified  
output format.  
SCLK  
LRCLK  
14 BCLK  
TEXAS  
INSTRUMENTS  
13  
LRCLK  
AD1859  
TMS320AV110  
SDATA  
IDPM0  
IDPM1  
12  
9
PCMDATA  
PCMCLK  
LO  
LO  
HI  
10  
8
48 x F  
TO  
1536 x F  
S
18/16  
S
Figure 12. Interface to TMS320AV110  
Figure 13 shows the suggested interface to the LSI Logic L64111  
MPEG audio decoder IC. T he L64111 supports 16 bits of data  
using a left-justified output format.  
P ower D own and Reset  
T he PD/RST input (Pin 11) is used to control the power con-  
sumed by the AD1859. When PD/RST is held LO, the AD1859  
is placed in a low dissipation power-down state. When PD/RST  
is brought HI, the AD1859 becomes ready for normal operation.  
T he master clock (XT ALI/MCLK, Pin 16) must be running for  
a successful reset or power-down operation to occur. The PD/RST  
signal must be LO for a minimum of four master clock periods  
(approximately 150 ns with a 27 MH z XT ALI/MCLK  
frequency).  
SCLKO  
LRCLKO  
SERO  
14 BCLK  
LSI LOGIC  
L64111  
13  
LRCLK  
AD1859  
SDATA  
IDPM0  
IDPM1  
12  
9
LO  
HI  
SYSCLK  
10  
8
384 x F  
OR  
S
18/16  
LO  
512 x F  
S
Figure 13. Interface to L64111  
When the PD/RST input (Pin 11) is asserted brought HI, the  
AD1859 is reset. All registers in the AD1859 digital engine (se-  
rial data port, interpolation filter and modulator) are zeroed, and  
the amplifiers in the analog section are shorted during the reset  
operation. T he two registers in the serial control port are initial-  
ized to their default values. T he user should wait 100 ms after  
bringing PD/RST HI before using the serial data input port and  
the serial control input port in order for the digital phase locked  
loop to re-acquire lock. T he AD1859 has been designed to  
minimize pops and clicks when entering and exiting the power-  
down state.  
Figure 14 shows the suggested interface to the Philips SAA2500  
MPEG audio decoder IC. T he SAA2500 supports 18 bits of  
data using an I2S compatible output format.  
14 BCLK  
SCK  
WS  
PHILIPS  
13  
12  
9
LRCLK  
AD1859  
SAA2500  
SDATA  
SD  
IDPM0  
IDPM1  
HI  
LO  
HI  
FSCLKIN  
10  
8
256 x F  
OR  
S
18/16  
384 x F  
S
Contr ol Signals  
T he IDPM0, IDPM1, 18/16, and DEEMP control inputs are  
normally connected HI or LO to establish the operating state of  
the AD1859. T hey can be changed dynamically (and asynchro-  
nously to the LRCLK and the master clock) as long as they are  
stable before the first serial data input bit (i.e., the MSB) is pre-  
sented to the AD1859.  
Figure 14. Interface to SAA2500  
REV. A  
–11–  
AD1859  
Figure 15 shows the suggested interface to the Zoran ZR38000  
DSP chip, which can act as an MPEG audio or AC-3 audio  
decoder. T he ZR38000 supports 16 bits of data using a left-  
justified output format.  
14 BCLK  
DA-BCK  
DA-LRCK  
DA-DATA  
DA-XCK  
C-CUBE  
CL480  
13  
LRCLK  
AD1859  
SDATA  
IDPM0  
IDPM1  
12  
9
LO  
LO  
LO  
10  
8
256 x F  
OR  
S
18/16  
14 BCLK  
SCKB  
WSB  
384 x F  
S
ZORAN  
13  
LRCLK  
AD1859  
ZR38000  
SDATA  
IDPM0  
IDPM1  
12  
9
SDB  
LO  
HI  
SCKIN  
Figure 16. Interface to CL480  
Layout and D ecoupling Consider ations  
10  
8
256 x F  
S
18/16  
LO  
T he recommended decoupling, bypass circuits for the AD1859  
are shown in Figure 17. Figure 17 illustrates a connection dia-  
gram for systems which do not require de-emphasis support.  
T he recommended circuit connection for system including de-  
emphasis is shown in Figure 18.  
Figure 15. Interface to ZR38000  
Figure 16 shows the suggested interface to the C-Cube  
Microsystems CL480 MPEG system decoder IC. T he CL480  
supports 16 bits of data using a right-justified output format.  
+5V ANALOG  
20-64pF  
20-64pF  
1µF  
µCONTROLLER  
0.1µF  
27MHz  
10µF  
0.1µF  
10µF  
23  
AV  
21  
6
20  
19  
16  
15  
28  
27  
1
FILT  
FGND  
CCLK CLATCH XTALI/MCLK XTALO  
AGND CDATA  
DD  
12 SDATA  
14 BLCK  
BIAS VOLTAGE  
FOR EXTERNAL USE  
CMOUT  
0.1µF  
10µF  
5
DSP OR  
AUDIO  
NC  
13  
9
LRCLK  
IDPM0  
IDPM1  
18/16  
24  
4
AD1859  
NC  
DECODER  
LEFT LINE  
OUTPUT  
OUTL  
10  
8
1kΩ  
1kΩ  
2.2nF  
2.2nF  
3
EMPL  
OUTR  
EMPR  
10µF  
RIGHT LINE  
OUTPUT  
25  
26  
DV  
NC  
22  
DEEMP  
2
MUTE  
7
DGND  
18  
PD/RST  
DD  
17  
11  
30Ω  
0.01µF  
1µF  
(CHIP RESISTOR  
PREFERRED)  
µCONTROLLER  
+5V DIGITAL  
Figure 17. Recom m ended Circuit Connection (Without De-em phasis)  
+5V ANALOG  
1µF  
20-64pF  
20-64pF  
µCONTROLLER  
0.1µF  
27MHz  
10µF  
0.1µF  
20  
23  
AV  
21  
6
19  
16  
15  
28  
27  
1
FILT  
FGND  
CCLK CLATCH XTALI/MCLK XTALO  
AGND CDATA  
DD  
12 SDATA  
14 BLCK  
BIAS VOLTAGE  
CMOUT  
FOR EXTERNAL USE  
10µF  
0.1µF  
5
DSP OR  
AUDIO  
DECODER  
NC  
13  
9
LRCLK  
IDPM0  
IDPM1  
18/16  
24  
4
AD1859  
NC  
1µF  
LEFT LINE  
OUTPUT  
OUTL  
10  
8
2.2nF  
1kΩ  
1kΩ  
470Ω  
3
10MΩ  
EMPL  
OUTR  
EMPR  
33nF  
NPO  
25  
26  
1µF  
RIGHT LINE  
OUTPUT  
DV  
DEEMP  
2
MUTE  
7
DGND  
18  
NC  
22  
PD/RST  
DD  
2.2nF  
470Ω  
17  
11  
10MΩ  
33nF  
NPO  
30Ω  
0.01µF  
1µF  
(CHIP RESISTOR  
PREFERRED)  
µCONTROLLER  
OPTIONAL DE-EMPHASIS  
CIRCUIT SHOWN  
+5V DIGITAL  
Figure 18. Recom m ended Circuit Connection (With De-em phasis)  
–12–  
REV. A  
AD1859  
tDBH  
tDBP  
P CB and Gr ound P lane Recom m endations  
BCLK  
T he AD1859 ideally should be located above a split ground  
plane, with the digital pins over the digital ground plane, and  
the analog pins over the analog ground plane. T he split should  
occur between Pins 6 and 7 and between Pins 22 and 23 as  
shown in Figure 19. T he ground planes should be tied together  
at one spot underneath the center of the package with an ap-  
proximately 3 mm trace. T his ground plane strategy minimizes  
RF transmission and reception as well as maximizes the AD1859’s  
analog audio performance.  
tDLS  
tDBL  
LRCLK  
tDLH  
tDDS  
SDATA  
LEFT-JUSTIFIED  
DSP SERIAL  
PORT STYLE  
MODE  
MSB  
tDDH  
MSB-1  
Figure 21. Serial Data Input Port Tim ing DSP Serial  
Port Style  
T he serial control port timing is shown in Figure 22. T he mini-  
mum control clock HI pulse width is tCCH, and the minimum  
control clock LO pulse width is tCCL. T he minimum control  
clock period is tCCP. T he control data minimum setup time is  
1
2
CMOUT  
DEEMP  
EMPL  
28 FILT  
27 FGND  
ANALOG  
GROUND PLANE  
3
26  
25  
24  
23  
22  
EMPR  
OUTR  
OUTL  
4
t
CSU, and the minimum control data hold time is tCHD. T he  
5
NC  
AGND  
MUTE  
18/16  
NC  
minimum control latch delay is tCLD, the minimum control latch  
LO pulse width is tCLL, and the minimum control latch HI pulse  
AV  
DD  
6
7
NC  
width is tCLH  
CCLK  
.
8
21 CLATCH  
CDATA  
9
20  
19 CCLK  
IDPM0  
IDPM1  
tCCP  
tCCL  
10  
11  
DIGITAL  
GROUND PLANE  
18  
17  
16  
PD/RST  
DGND  
SDATA 12  
13  
DV  
DD  
tCCH  
tCSU  
XTALI/MCLK  
LRCLK  
BCLK 14  
15 XTALO  
CDATA  
LSB  
tCLH  
tCHD  
tCLD  
Figure 19. Recom m ended Ground Plane  
TIMING D IAGRAMS  
CLATCH  
tCLL  
T he serial data port timing is shown in Figures 20 and 21. T he  
minimum bit clock HI pulse width is tDBH , and the minimum bit  
clock LO pulse width is tDBL. T he minimum bit clock period is  
Figure 22. Serial Control Port Tim ing  
T he master clock (or crystal input) and power down/reset tim-  
ing is shown in Figure 23. T he minimum MCLK period is tMCP  
which determines the maximum MCLK frequency at FMC. T he  
minimum MCLK HI and LO pulse widths are tMCH and tMCL  
respectively. T he minimum reset LO pulse width is tPDRP (four  
t
DBP. T he left/right clock minimum setup time is tDLS, and the  
,
left/right clock minimum hold time is tDLH. T he serial data mini-  
mum setup time is tDDS, and the minimum serial data hold time  
,
is tDDH  
.
XT ALI/MCLK periods) to accomplish a successful AD1859 re-  
set operation.  
tDBH  
tDBP  
BCLK  
tDBL  
tDLS  
t
t
MCH  
MCP  
LRCLK  
XTALI/MCLK  
SDATA  
LEFT-  
JUSTIFIED  
MODE  
tDDS  
tDDH  
t
MCL  
MSB  
MSB-1  
PD/RST  
t
SDATA  
2
PDRP  
tDDS  
I
S-  
MSB  
JUSTIFIED  
MODE  
tDDS  
tDDS  
tDDH  
Figure 23. MCLK and Power Down/Reset Tim ing  
SDATA  
RIGHT-  
MSB  
LSB  
JUSTIFIED  
MODE  
tDDH  
tDDH  
Figure 20. Serial Data Port Tim ing  
REV. A  
–13–  
AD1859  
TYP ICAL P ERFO RMANCE  
20 Hz to 24 kHz bandwidth, while the analog performance is  
specified over a 20 Hz to 20 kHz bandwidth (i.e., the AD1859  
performs slightly better than the plots indicate). Figure 28  
shows the power supply rejection performance of the AD1859.  
T he channel separation performance of the AD1859 is shown in  
Figure 29. T he AD1859’s low level linearity is shown in Figure  
30. T he digital filter transfer function is shown in Figure 31.  
Figures 24 through 27 illustrate the typical analog performance  
of the AD1859 as measured by an Audio Precision System One.  
Signal-to-Noise (dynamic range) and T HD+N performance is  
shown under a range of conditions. Note that there is a small  
variance between the AD1859 analog performance specifica-  
tions and some of the performance plots. T his is because the  
Audio Precision System One measures T HD and noise over a  
0
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
F
= 44.1kHz  
FS = 44.1kHz  
–10  
S
THD+N vs dBFS @ 1kHz  
–20  
FFT @ –0.5dBFS  
–30  
–40  
–50  
–60  
–80  
–90  
–70  
–100  
–110  
–120  
–130  
–140  
–80  
–90  
–100  
–110  
0
2k  
4k  
6k  
8k  
10k 12k 14k 16k 18k 20k  
–100 –90 –80 –70 –60 –50 –40 –30 –20 –10  
AMPLITUDE – dBFS  
0
FREQUENCY – Hz  
Figure 24. 1 kHz Tone at –0.5 dBFS (16K-Point FFT)  
Figure 27. THD+N vs. Am plitude at 1 kHz  
0
–40  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
F
= 44.1kHz  
S
–45  
–50  
FFT @ –10dBFS  
LEFT CHANNEL  
RIGHT CHANNEL  
–55  
–60  
–80  
–90  
–65  
–70  
–75  
–80  
–100  
–110  
–120  
–130  
–140  
0
2k  
4k  
6k  
8k  
0
2k  
4k  
6k  
8k  
10k 12k 14k 16k 18k 20k  
10k 12k 14k 16k 18k 20k  
FREQUENCY – Hz  
FREQUENCY – Hz  
Figure 28. Power Supply Rejection to 300 m V p-p on AVDD  
Figure 25. 1 kHz Tone at –10 dBFS (16K-Point FFT)  
0
0
F
= 44.1kHz  
–10  
S
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
F
= 44.1kHz  
S
THD+N vs FREQ @ –0.5dBFS  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
–120  
0
2k  
4k  
6k  
8k  
10k 12k 14k 16k 18k 20k  
0
2k  
4k  
6k  
8k  
FREQUENCY – Hz  
10k 12k 14k 16k 18k 20k  
FREQUENCY – Hz  
Figure 29. Channel Separation vs. Frequency at –0.5 dBFS  
–14–  
REV. A  
Figure 26. THD+N vs. Frequency at –0.5 dBFS  
AD1859  
0
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–10  
–20  
–30  
–40  
100  
90  
–50  
–60  
–70  
–80  
10  
–90  
–80  
–90  
0%  
–100  
–110  
–100  
–110  
–120  
–130  
–140  
–120  
–130  
–140  
–150  
–160  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
0
2k  
4k  
6k  
8k 10k 12k 14k 16k 18k 20k 22k  
FREQUENCY – Hz  
F
S
Figure 31. Digital Filter Signal Transfer Function to  
3.5 × FS  
Figure 30. 1 kHz Tone at –90 dBFS (16K-Point FFT) Includ-  
ing Tim e Dom ain Plot Bandlim ited to 22 kHz  
Application Cir cuits  
perfectly acceptable. MPEG audio decoders are insensitive to  
this clock jitter (using these signals to clock audio data from their  
output serial port, and perhaps to decrement their audio/video  
synchronization timer), while the AD1859 will reject the left/right  
clock jitter by virtue of its on-chip digital phase locked loop.  
Contact Analog Devices Computer Products Division Customer  
Support at (617) 461-3881 or cpd_support@analog.com for more  
information on this NCO circuit.  
Figure 32 illustrates a 600 ohm line driver using the Analog  
Devices SSM2017 and SSM2142 components. Figure 33  
illustrates a “Numerically Controlled Oscillator” (NCO) that  
can be implemented in programmable logic or a system ASIC to  
provide the synchronous bit and left/right clocks from 27 MHz  
for MPEG audio decoders. Note that the bit clock and left/right  
clock outputs are highly jittered, but this jitter should be  
C5  
+15V  
100n  
C11  
100n  
C12  
100n  
+5VDD  
+5VCC  
C6  
100n  
+15V  
7
6
17  
23  
+V  
5Vrms  
4
3
8
7
VIN  
DVDD  
AVDD  
+OUT  
+SENSE  
1Vrms  
1Vrms  
3
1
4
3
+IN  
14  
13  
OUTL  
EMPL  
V+  
BCLK  
RG1  
6
U4  
SSM2142P  
LRCLK  
SDATA  
IDPM1  
IDPM0  
R1, 2k49  
OUT  
5
12  
10  
9
8
2
REF  
V–  
RG2  
–IN  
2
1
U2  
SSM2017P  
–SENSE  
–OUT  
4
GND  
8
AD1859-JR  
–V  
18/16  
25  
26  
C8  
100n  
OUTR  
EMPR  
R3  
600Ω  
21  
20  
19  
–15V  
+15V  
5
J1 P1  
P2 J2  
CLATCH  
CDATA  
CCLK  
C7  
100n  
C4  
100n  
1
1
2
3
4
5
1
2
3
4
5
1
–15V  
+15V  
2
3
4
5
2
3
4
5
7
11  
2
7
PD/RST  
DEEMP  
MUTE  
3
1
+IN  
VREF  
2.25V  
V+  
1
RG1  
R4  
CMOUT  
6
C3  
100n  
R2, 2k49  
600Ω  
OUT  
5
8
2
REF  
V–  
28  
27  
16  
15  
RG2  
–IN  
U3  
SSM2017P  
FILT  
XTALI/MCLK  
XTALO  
4
6
FGND  
+
MAX OUTPUT EACH  
CHANNEL  
C9  
100n  
C10  
+V  
4
3
C1  
8
7
DGND  
18  
AGND  
5Vrms  
VIN  
+OUT  
–15V  
4µ7  
100n  
6
10Vrms (166.7mV V = +22dBm)  
INTO 600Ω  
+SENSE  
U5  
SSM2142P  
–SENSE  
2
1
–OUT  
GND  
–V  
5
C2  
100n  
–15V  
Figure 32. 600 Ohm Balanced Line Driver  
REV. A  
–15–  
AD1859  
BCLK  
Q
T
13  
N [12..0]  
+
27 MHz  
MSB  
13-BIT  
ADDER  
SELECT K BUS WHEN K < N (MSB = 0)  
SELECT R BUS WHEN K > N (MSB = 1)  
13  
_
13  
RI BUS  
1
R BUS  
13  
13  
13  
13-BIT  
LATCH  
2 TO 1  
SELECTOR  
M [12..0]  
+
13-BIT  
ADDER  
K BUS  
L BUS  
13  
0
+
27MHz  
Figure 33. Num erically Controlled Oscillator Circuit  
O UTLINE D IMENSIO NS  
D imensions shown in inches and (mm).  
28-Lead Wide-Body SO  
(R-28)  
28-Lead Shrink Sm all O utline P ackage (SSO P )  
(RS-28)  
0.7125 (18.10)  
0.6969 (17.70)  
0.41 (10.50)  
0.39 (9.90)  
28  
15  
28  
15  
14  
1
14  
1
0.1043 (2.65)  
0.0926 (2.35)  
0.029 (0.74)  
0.010 (0.25)  
PIN 1  
x 45°  
0.073 (1.85)  
0.065 (1.65)  
PIN 1  
0.079 (2.0)  
MAX  
0.050 (1.27)  
0.016 (0.40)  
8°  
0°  
0.0500  
(1.27)  
BSC  
0.020 (0.49)  
0.013 (0.35)  
0.0118 (0.30)  
0.0040 (0.10)  
0.037 (0.95)  
0.022 (0.55)  
8°  
0°  
SEATING  
PLANE  
0.0125 (0.32)  
0.026  
(0.65)  
BSC  
0.015 (0.38)  
0.009 (0.22)  
0.002 (0.05)  
MIN  
SEATING  
PLANE  
0.01 (0.25)  
0.0091 (0.23)  
0.004 (0.09)  
–16–  
REV. A  

相关型号:

AD1859JR

Stereo, Single-Supply 18-Bit Integrated DAC
ADI

AD1859JR-REEL

SERIAL INPUT LOADING, 18-BIT DAC, PDSO28, SOIC-28
ROCHESTER

AD1859JR-REEL

IC SERIAL INPUT LOADING, 18-BIT DAC, PDSO28, SOIC-28, Digital to Analog Converter
ADI

AD1859JRS

Stereo, Single-Supply 18-Bit Integrated DAC
ADI

AD1859JRS

SERIAL INPUT LOADING, 18-BIT DAC, PDSO28, SSOP-28
ROCHESTER

AD1859JRS-REEL

IC SERIAL INPUT LOADING, 18-BIT DAC, PDSO28, SSOP-28, Digital to Analog Converter
ADI

AD1859JRZ

Stereo, Single-Supply 18-Bit Integrated (Sigma Delta) DAC
ADI

AD1859JRZ-RL

Stereo, Single-Supply 18-Bit Integrated (Sigma Delta) DAC
ADI

AD1860N

SERIAL INPUT LOADING, 1.5 us SETTLING TIME, 18-BIT DAC, PDIP16, PLASTIC, DIP-16
ROCHESTER

AD1860N-J

18-Bit Digital-to-Analog Converter
ETC

AD1860N-K

SERIAL INPUT LOADING, 1.5 us SETTLING TIME, 18-BIT DAC, PDIP16, PLASTIC, DIP-16
ROCHESTER

AD1860R

SERIAL INPUT LOADING, 1.5 us SETTLING TIME, 18-BIT DAC, PDSO16, PLASTIC, SOIC-16
ROCHESTER