ZMD31050D

更新时间:2024-09-18 06:09:29
品牌:ZMD
描述:Advanced Differential Sensor Signal Conditioner

ZMD31050D 概述

Advanced Differential Sensor Signal Conditioner 先进的差分传感器信号调理器

ZMD31050D 数据手册

通过下载ZMD31050D数据手册来全面了解它。这个PDF文档包含了所有必要的细节,如产品概述、功能特性、引脚定义、引脚排列图等信息。

PDF下载
ZMD31050  
Advanced Differential Sensor Signal Conditioner  
Datasheet  
PRELIMINARY  
Features  
Brief Description  
ZMD31050 is a CMOS integrated circuit for highly-  
accurate amplification and sensor-specific correction  
of bridge sensor signals. The device provides digital  
compensation of sensor offset, sensitivity,  
temperature drift and non-linearity by a 16-bit RISC  
micro controller running a correction algorithm with  
correction coefficients stored in non-volatile  
EEPROM.  
·
·
Digital compensation of sensor offset, sensitivity,  
temperature drift and non-linearity  
Accommodates nearly all bridge sensors types  
(signal spans from 1 up to 275mV/V processable)  
Digital one-shot calibration: quick and precise  
Selectable temperature compensation reference:  
bridge, thermistor, internal diode or external diode  
Output options: voltage (0...5V), current  
(4...20mA), PWM, I2C, SPI, ZACwireTM (one-  
wire-interface), alarm  
·
·
·
The ZMD31050 accommodates virtually any bridge  
sensor (e.g. piezo-resistive, ceramic-thickfilm or steel  
membrane based). In addition, the IC can interface a  
separate temperature sensor.  
·
·
Adjustable output resolution (up to 15 bits) versus  
sampling rate (up to 3.9kHz)  
Selectable bridge excitation: ratiometric voltage,  
constant voltage or constant current  
Input channel for separate temperature sensor  
Sensor connection and common mode check  
(Sensor aging detection)  
operation temperature, depending on product  
version, up to -40...+125°C (-55...+150°C  
derated)  
The bi-directional digital interfaces (I2C, SPI,  
ZACwireTM) can be used for a simple PC-controlled  
one-shot calibration procedure, in order to program a  
set of calibration coefficients into an on-chip  
EEPROM. Thus a specific sensor and a ZMD31050  
are mated digitally: fast, precise and without the cost  
overhead associated with laser trimming, or  
mechanical potentiometer methods.  
·
·
·
·
·
Supply voltage +2.7V...+5.5V  
Available in SSOP16 or as die  
§ Application kit available (SSOP16 samples,  
calibration PCB, calibration software, technical  
documentation)  
§ Support for industrial mass calibration  
available  
Benefits  
·
·
No external trimming components required  
PC-controlled configuration and calibration via  
digital bus interface - simple, low cost  
High accuracy (±0.1% FSO @ -25...85°C;  
±0.25% FSO @ -40...125°C)  
§ Quick circuit customization possible for large  
production volumes  
·
Application Circuit (Examples)  
Fig.2: Two wire 4...20mA (5...40V) configuration,  
temperature compensation via internal diode  
Fig.1: Ratiometric measurement with voltage output,  
temperature compensation via external diode  
Copyright © 2004, ZMD AG, Rev. 0.7, 2004-09-02, PRELIMINARY  
1/20  
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written  
consent of the copyright owner. The Information furnished in this publication is preliminary and subject to changes without notice.  
ZMD31050  
Advanced Differential Sensor Signal Conditioner  
Datasheet  
PRELIMINARY  
Contents  
1.  
CIRCUIT DESCRIPTION ............................................................................................................3  
1.1 SIGNAL FLOW ...........................................................................................................................3  
1.2 APPLICATION MODES.................................................................................................................4  
1.3 ANALOG FRONT END (AFE).......................................................................................................5  
1.3.1.  
1.3.2.  
1.3.3.  
1.3.4.  
Programmable Gain Amplifier........................................................................................5  
Analogue Sensor Offset Compensation - Extended Zero Shift (XZC)............................5  
Measurement Cycle Realized by Multiplexer .................................................................6  
Analog-to-Digital Converter............................................................................................7  
1.4 SYSTEM CONTROL ....................................................................................................................8  
1.5 OUTPUT STAGE.........................................................................................................................9  
1.5.1.  
1.5.2.  
1.5.3.  
Analog Output..............................................................................................................10  
Comparator Module (ALARM Output)..........................................................................10  
Serial Digital Interface..................................................................................................10  
1.6 VOLTAGE REGULATOR.............................................................................................................11  
1.7 ERROR DETECTION .................................................................................................................11  
2.  
3.  
4.  
5.  
APPLICATION CIRCUIT EXAMPLES ......................................................................................13  
ESD/LATCH-UP-PROTECTION...............................................................................................13  
PIN CONFIGURATION AND PACKAGE...................................................................................14  
IC CHARACTERISTICS............................................................................................................15  
5.1 ABSOLUTE MAXIMUM RATINGS.................................................................................................15  
5.2 OPERATING CONDITIONS  
(VOLTAGES RELATED TO VSS) ......................................................15  
5.3 BUILD IN CHARACTERISTICS.....................................................................................................16  
5.3.8 Cycle Rate versus A/D-Resolution......................................................................................17  
5.3.9 PWM Frequency .................................................................................................................17  
5.4 ELECTRICAL PARAMETERS  
(VOLTAGES RELATED TO VSS) ....................................................18  
5.5 INTERFACE CHARACTERISTICS .................................................................................................19  
6.  
7.  
8.  
9.  
TEST ........................................................................................................................................20  
RELIABILITY............................................................................................................................20  
CUSTOMIZATION ....................................................................................................................20  
RELATED DOCUMENTS .........................................................................................................20  
Copyright © 2004, ZMD AG, Rev. 0.7, 2004-09-02, PRELIMINARY  
2/20  
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written  
consent of the copyright owner. The Information furnished in this publication is preliminary and subject to changes without notice.  
ZMD31050  
Advanced Differential Sensor Signal Conditioner  
Datasheet  
PRELIMINARY  
1.  
1.1  
Circuit Description  
Signal Flow  
Fig.3: Block diagram of ZMD31050  
PGA  
MUX  
ADC  
CMC  
DAC  
FIO1  
programmable gain amplifier  
multiplexer  
analog-to-digital converter  
calibration microcontroller  
digital-to-analog converter  
flexible I/O 1: analog out (voltage/current), PWM2,  
ZACwireTM (one-wire-interface)  
FIO2  
flexible I/O 2: PWM1, SPI data out, SPI slave select, Alarm1, Alarm2  
2
SIF  
serial interface: I C data I/O, SPI data in, clock  
PCOMP  
EEPROM  
TS  
ROM  
PWM  
programmable comparator  
for calibration parameters and configuration  
on-chip temperature sensor (pn-junction)  
for correction formula and –algorithm  
PWM module  
The ZMD31050’s signal path is partly analog (blue) and partly digital (red).  
The differential signal from the bridge sensor is pre-amplified by the programmable gain amplifier  
(PGA). The Multiplexer (MUX) transmits the signals from bridge sensor, external diode or separate  
temperature sensor to the ADC in a certain sequence (instead of the temp. diode the internal pn-  
junction (TS) can be used optionally). Afterwards the ADC converts these signals into digital values.  
The digital signal correction takes place in the calibration micro-controller (CMC). It is based on a  
special correction formula located in the ROM and on sensor-specific coefficients (stored into the  
EEPROM during calibration).  
Copyright © 2004, ZMD AG, Rev. 0.7, 2004-09-02, PRELIMINARY  
3/20  
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written  
consent of the copyright owner. The Information furnished in this publication is preliminary and subject to changes without notice.  
ZMD31050  
Advanced Differential Sensor Signal Conditioner  
Datasheet  
PRELIMINARY  
Dependent on the programmed output configuration the corrected sensor signal is output as analog  
value, as PWM signal or in digital format (SPI, I2C, ZACwireTM ). The output signal is provided at 2  
flexible I/O modules (FIO) and at the serial interface (SIF). The configuration data and the correction  
parameters can be programmed into the EEPROM via the digital interfaces.  
The modular circuit concept enables fast custom designs varying these blocks and, as a result,  
functionality and die size.  
1.2  
Application Modes  
For each application a configuration set has to be established (generally prior to calibration) by  
programming the on-chip EEPROM regarding to the following modes:  
§ Sensor channel  
-
-
Sensor mode: ratiometric voltage or current supply mode.  
Input range: The gain of the analog front end has to be chosen with respect to the maximum  
sensor signal span and the zero point of the ADC has to be set with respect to the possible input  
voltage range  
-
-
Additional offset compensation: The extended analog offset compensation has to be enabled if  
required, e.g. if the sensor offset voltage is near to or larger than the sensor span.  
Resolution/response time: The A/D converter has to be configured for resolution and converting  
scheme (first or second order). These settings influence the sampling rate, signal integration time  
and this way the noise immunity  
-
-
Sample order: The order and interval of multiplexed measurements (pressure, temperature, auto  
zero) has to be set  
Ability to invert the sensor bridge inputs  
§ Analog output  
-
-
Choice of output method (voltage value, current loop, PWM) for output register 1.  
Optional choice of output register 2: PWM module via IO1 or alarm out module via IO1/2.  
§ Digital communication: The preferred protocol and its parameter have to be set.  
§ Temperature  
-
-
The temperature measure channel for the temperature correction has to be chosen.  
Optional: the temperature measure channel as the second output has to be chosen.  
§ Supply voltage : For non-ratiometric output the voltage regulation has to be configured.  
Note: Not all possible combinations of settings are allowed (see section 1.5).  
The calibration procedure must include  
-
the set of coefficients of calibration calculation  
and depending on configuration,  
-
-
-
the adjustment of the extended offset compensation,  
the zero compensation of temperature measurement,  
the adjustment of the bridge current  
and if necessary  
-
-
the set of thresholds and delays for the alarms,  
the reference voltage.  
Copyright © 2004, ZMD AG, Rev. 0.7, 2004-09-02, PRELIMINARY  
4/20  
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written  
consent of the copyright owner. The Information furnished in this publication is preliminary and subject to changes without notice.  
ZMD31050  
Advanced Differential Sensor Signal Conditioner  
Datasheet  
PRELIMINARY  
1.3  
Analog Front End (AFE)  
The analog front end consists of the programmable gain amplifier (PGA), the multiplexer (MUX) and  
the analog-to-digital converter (ADC).  
1.3.1. Programmable Gain Amplifier  
The following tables show the adjustable gains, the processable sensor signal spans and the allowed  
common mode range.  
No.  
PGA Gain  
Max. span  
in mV/V  
Input range  
in % VDDA  
43 - 57  
38 - 62  
43 - 57  
40 - 59  
38 - 62  
40 - 59  
38 - 62  
40 - 59  
38 - 62  
43 - 57  
40 - 59  
38 - 62  
21 - 76  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
420  
280  
210  
140  
105  
70  
52,5  
35  
26,3  
14  
2
3
4
6
8
12  
16  
24  
32  
50  
80  
100  
280  
9,3  
7
2,8  
Table 1: Adjustable gains, resulting sensor signal spans and common mode ranges  
1.3.2. Analogue Sensor Offset Compensation - Extended Zero Shift (XZC)  
The ZMD31050 supports two methods of sensor offset cancellation (zero shift):  
·
·
digital offset correction  
analogue cancellation for large offset values (up to 300% of span)  
Digital sensor offset correction will be processed at the digital signal correction/conditioning by the  
CMC. Analogue sensor offset precompensation will be needed for compensating of large offset  
values, which would be overdrive the analogue signal path by uncompensated gaining. For analogue  
sensor offset precompensation an compensation voltage will be added in the analogue pregaining  
signal path (coarse offset removal). The analog offset compensation in the AFE can be adjusted by 6  
EEPROM bits. It allows a zero point shift up to 300% of the processable signal span.  
The zero point shift of the temperature measurements can also be adjusted by 6 EEPROM bits.  
Copyright © 2004, ZMD AG, Rev. 0.7, 2004-09-02, PRELIMINARY  
5/20  
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written  
consent of the copyright owner. The Information furnished in this publication is preliminary and subject to changes without notice.  
ZMD31050  
Advanced Differential Sensor Signal Conditioner  
Datasheet  
PRELIMINARY  
Approx. maximum  
PGA gain  
Max. span in  
mV/V  
Offset shift per step  
in % full span  
offset shift in mV/V  
15%  
9%  
15%  
9%  
6%  
9%  
6%  
9%  
6%  
15%  
9%  
6%  
1%  
+/- 9  
420  
280  
210  
140  
105  
70  
52,5  
35  
26,3  
14  
2
3
4
6
8
12  
16  
24  
32  
50  
80  
100  
280  
+/- 8  
+/- 18  
+/- 16  
+/- 14  
+/- 33  
+/- 29  
+/-66  
+/- 59  
+/- 230  
+/-220  
+/- 180  
+/- 87  
9,3  
7
2,8  
Table 2 : Extended zero shift ranges  
1.3.3. Measurement Cycle Realized by Multiplexer  
The Multiplexer selects, depending on EEPROM settings, the following inputs in a certain sequence.  
§ Bridge temperature signal measured by external diode  
§ Bridge temperature signal measured by internal pn-junction  
§ Bridge temperature signal measured by bridge resistors  
§ Separate temperature signal measured by external thermistor  
§ Internal offset of the input channel measured by input short circuiting  
§ Pre-amplified bridge sensor signal  
®
Start routine  
The complete measurement cycle is  
controlled by the CMC. The cycle diagram  
at the right shows its principle structure.  
n
1
n
1
n
1
Pressure measurement  
Temp 1 auto zero  
®
®
®
®
®
®
®
®
®
®
Pressure measurement  
Temp 1 measurement  
Pressure measurement  
Pressure auto zero  
The EEPROM adjustable parameters are:  
§ Pressure measurement count,  
n=<1,2,4,8,16,32,64,128>  
§ Enable temperature measurement 2,  
e2=<0,1>  
n * e2 Pressure measurement  
e2 Temp 2 auto zero  
n * e2 * Pressure measurement  
After Power ON the start routine is called.  
It contains the pressure and auto zero  
measurement. When enabled it measures the  
temperature and its auto zeros.  
e2 * Temp 2 measurement  
Fig. 4: Measurement cycle ZMD31050  
Copyright © 2004, ZMD AG, Rev. 0.7, 2004-09-02, PRELIMINARY  
6/20  
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written  
consent of the copyright owner. The Information furnished in this publication is preliminary and subject to changes without notice.  
ZMD31050  
Advanced Differential Sensor Signal Conditioner  
Datasheet  
PRELIMINARY  
1.3.4. Analog-to-Digital Converter  
The ADC is a charge balancing converter in full differential switched capacitor technique. It can be  
used as first or second order converter:  
In the first order mode it is inherently monotone and insensitive against short and long term instability  
of the clock frequency. The conversion time depends on the desired resolution and can be roughly  
calculated by:  
tc= 2R ms  
The available resolutions are R=<9,10,11,12,13,14,15>.  
The result of the AD conversion is a relative counter result corresponding to the following equation:  
VIN /VREF = ZOUT/N - ZS  
ZOUT:  
N:  
number of counts (result of the conversion)  
total number of counts (=2R)  
VIN:  
VREF:  
ZS:  
differential input voltage of ADC  
differential reference voltage  
zero point shift (ZS=1/16, 1/8, 1/4, 1/2, controlled by the EEPROM content)  
With the ZS value a sensor input signal can be shifted in the optimal input range of the ADC.  
In the second order mode two conversions are stacked with the advantage of much shorter  
conversion time and the drawback of a lower noise immunity caused by the shorter signal integration  
period. The conversion time at this mode is roughly calculated by:  
tc= 2(R+3)/2 ms  
The available resolutions are R=<10,11,12,13,14,15>. The result of the AD conversion is a relative  
counter result corresponding to the following equations:  
VIN /VREF = ZOUT/N – ZS  
ZOUT = Z1 * (N2/2) + Z2  
N = N1 * N2  
Z1:  
Z2:  
N1:  
N2  
VIN:  
VREF:  
ZS:  
number of counts (result of the 1st conversion)  
number of counts (result of the 2nd conversion)  
total number of counts 1st conversion (=2(R+1)/2  
total number of counts 2nd conversion (=2(R+1)/2  
differential input voltage of ADC  
)
)
differential reference voltage  
zero point shift (RS=1/16, 1/8, 1/4, 1/2, controlled by CMC)  
Copyright © 2004, ZMD AG, Rev. 0.7, 2004-09-02, PRELIMINARY  
7/20  
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written  
consent of the copyright owner. The Information furnished in this publication is preliminary and subject to changes without notice.  
ZMD31050  
Advanced Differential Sensor Signal Conditioner  
Datasheet  
PRELIMINARY  
Note: The AD conversion time is only a part of a whole sample cycle. Thus the sample rate is lower  
then the AD conversion rate.  
ADC  
Order Resolution*  
Bit  
Max. Output Resolution  
Sample Rate  
Digital  
Analog  
Bit  
PWM  
Bit  
Bit  
Hz  
1
9
9
9
9
1302  
781  
434  
230  
115  
10  
11  
12  
13  
14  
15  
10  
11  
12  
13  
14  
15  
10  
11  
12  
13  
14  
15  
10  
11  
12  
13  
14  
15  
10  
11  
11  
11  
11  
11  
10  
11  
11  
11  
11  
11  
10  
11  
12  
12  
12  
12  
10  
11  
12  
12  
12  
12  
59  
30  
2
3906  
3906  
3906  
1953  
1953  
977  
Table 2: Output resolution versus sample rate  
*ADC Resolution should be 1 or 2 Bits higher then applied Output Resolution  
1.4  
System Control  
The system control has the following features:  
§ Control of the I/O relations and of the measurement cycle regarding to the EEPROM-stored  
configuration data  
§ 16 bit correction calculation for each measurement signal using the EEPROM stored calibration  
coefficients and ROM-based algorithms  
§ Started by internal POC, internal clock - generator or external clock  
§ For safety improvement the EEPROM data are proved with a signature within initialization  
procedure, the registers of the CMC are steadily observed with a parity check. Once an error is  
detected, the error flag of the CMC is set and the outputs are driven to a diagnostic value  
Note: The conditioning includes up to third order sensor input correction. The available adjustment  
ranges depend on the specific calibration parameters, a detailed description will be issued  
later. To give a rough idea: Offset compensation and linear correction are only limited by the  
loose of resolution it will cause, the second order correction is possible up to about 30% full  
scale difference to straight line, third order up to about 20%. The temperature calibration  
includes first and second order correction and should be fairly sufficient in all relevant cases.  
Copyright © 2004, ZMD AG, Rev. 0.7, 2004-09-02, PRELIMINARY  
8/20  
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written  
consent of the copyright owner. The Information furnished in this publication is preliminary and subject to changes without notice.  
ZMD31050  
Advanced Differential Sensor Signal Conditioner  
Datasheet  
PRELIMINARY  
1.5  
Output Stage  
Used serial IF  
Used I/O pins  
The ZMD31050 provides the following I/O  
pins: OUT, IO1, IO2 and SDA.  
No.  
I2C  
SPI  
OUT  
IO1  
IO2  
SDA  
1
2
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
Data I/O  
Data I/O  
Data I/O  
Data I/O  
Data I/O  
Data I/O  
Data I/O  
Data I/O  
Data I/O  
Data I/O  
Data I/O  
Data I/O  
Data I/O  
Data I/O  
Data I/O  
Data I/O  
Data I/O  
Data I/O  
Data in  
ALARM1  
Via these pins the following signal formats  
can be output: Analog (voltage/current),  
PWM, Data (SPI/I2C), Alarm.  
3
ALARM2  
ALARM2  
4
ALARM1  
PWM1  
PWM1  
5
The following values can be provided at the  
O/I pins: bridge sensor signal, temperature  
signal 1, temperature signal 2, alarm.  
6
ALARM2  
7
Analog  
Analog  
Analog  
Analog  
Analog  
Analog  
PWM2  
PWM2  
PWM2  
PWM2  
PWM2  
PWM2  
8
ALARM1  
9
ALARM2  
ALARM2  
Note:  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
ALARM1  
PWM1  
PWM1  
The Alarm signal only refers to the bridge  
sensor signal, but never to a temperature  
signal.  
ALARM2  
Due to the necessary pin sharing there are  
restrictions to the possible combinations of  
outputs and interface connections.  
The table beside gives an overview about  
possible combinations.  
ALARM1  
ALARM2  
ALARM2  
ALARM1  
PWM1  
PWM1  
ALARM2  
X
X
Data out Slave select  
Note:  
20  
21  
22  
23  
Data out Slave select  
Data in  
In the SPI mode the pin IO2 is used as  
Slave select. Thus no Alarm 2 can be output  
in this mode.  
ALARM1  
Data out Slave select  
PWM1  
-
-
X
X
X
Data in  
-
Data in  
-
Analog  
Analog  
Data out Slave select  
Data out Slave select  
Data in  
-
ALARM1  
Data out Slave select  
PWM1  
-
24  
X
Analog  
Data in  
-
-
25  
26  
X
X
PWM2  
PWM2  
Data out Slave select  
Data in  
Data out Slave select  
Data in  
-
ALARM1  
Data out Slave select  
PWM1  
-
27  
X
PWM2  
Data in  
-
-
Table 3: Output configurations overview  
Copyright © 2004, ZMD AG, Rev. 0.7, 2004-09-02, PRELIMINARY  
9/20  
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written  
consent of the copyright owner. The Information furnished in this publication is preliminary and subject to changes without notice.  
ZMD31050  
Advanced Differential Sensor Signal Conditioner  
Datasheet  
PRELIMINARY  
1.5.1. Analog Output  
For the analog output 3 registers of 12 bit depth are available, which can store the actual pressure  
and the results of temperature measurement 1 and 2. Each register can be independently switched to  
one of two output slots connected to the Pin OUT and IO1 respectively. In these output slots different  
output modules are available according to the following table:  
Output slot:  
Voltage  
OUT  
x
x
IO1  
PWM  
x
Table 5:Analog output configuration  
The Voltage module consists of an 11bit resistor string - DAC with buffered output and a subsequent  
inverting amplifier with class AB rail-to-rail OPAMP. The two feedback nets are connected to the Pins  
FBN and FBP. This structure offers wide flexibility for the output configuration, for example voltage  
output and 4 to 20 mA current loop output. To short circuit the analog output against VSS or VDDA  
does not damage the ZMD31050.  
The PWM module provides pulse streams with signal dependent duty cycle. The PWM - frequency  
depends on resolution and clock divider. The maximum resolution is 12 bit, the maximum PWM -  
frequency is 4 kHz (9 bit). If both, second PWM and SPI protocol are activated, the output pin IO1 is  
shared between the PWM output and the SPI_SDO output of the serial interface (Interface  
communication interrupts the PWM output).  
1.5.2. Comparator Module (ALARM Output)  
The comparator module consists of two comparator channels connectable to IO1 and IO2  
respectively. Each of them can be independently programmed referring to the parameters threshold,  
hysteresis, switching direction and on/off – delay, additional a window comparator mode is available.  
1.5.3. Serial Digital Interface  
The ZMD31050 includes a serial digital interface which is able to communicate in three different  
communication protocols – I2CTM, SPITM and ZACwireTM (one wire communication).  
In the SPI mode the pin IO2 operates as slave select input, the pin IO1 as data output.  
Initializing Communication  
After power-on the interface is for about 20ms (start window) in the state ZACwire. During the start  
window it is possible to communicate via the one wire interface (pin OUT).  
Detecting a proper request inside the start window the interface stays in the state ZACwire. This state  
can be left by certain commands or a new power-on.  
If no request happens during the start window then the serial interface switches to I2C or SPI mode  
Copyright © 2004, ZMD AG, Rev. 0.7, 2004-09-02, PRELIMINARY  
10/20  
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written  
consent of the copyright owner. The Information furnished in this publication is preliminary and subject to changes without notice.  
ZMD31050  
Advanced Differential Sensor Signal Conditioner  
Datasheet  
PRELIMINARY  
(depending on EEPROM settings) and the OUT pin is used as analog output or as PWM output (also  
depending on EEPROM settings.  
The start window can generally be disabled (or enabled) by a special EEPROM setting.  
For detailed description of the serial interfaces see “ZMD31050 Functional Description”.  
1.6  
Voltage Regulator  
For ratiometric applications 3V to 5V (+/- 10%) the external supply voltage can be used for sensor  
element biasing. If an absolute analog output is desired then the internal voltage regulator with  
external power regulation element (FET) can be used. It is bandgap reference based and designed  
for an external supply range from Vdda + 7V to 40V. With the voltage regulator the internal supply  
and sensor bridge voltage can be varied between 3V and 5V.  
1.7  
Error Detection  
A check of the sensor bridge for broken wires which is done permanently by two comparators  
watching the input voltage of each input (between 0.5V … VDDA-0.5V ).  
This error states as well as the digital errors (CRC, parity) are indicated by forcing the output voltage  
into the diagnostic region, which is above 97.5% and below 2.5% of the VDDA supply. The following  
table shows the system response for different faults.  
Detected fault  
Diagnostic level on analog out  
Delay of detection  
Signature error of EEPROM  
Parity error of RAM  
lower  
lower  
upper  
upper  
upper  
1ms  
1ms  
1ms  
1ms  
1ms  
Lost of bridge positive supply  
Lost of bridge negative supply  
Open bridge connection  
Table 6: System response for different diagnostic faults  
The ZMD31050 detects various possible errors. A detected error is signalized by changing into a  
diagnostic mode. In this case the analog output is set to High or Low (maximum or minimum possible  
output value) and the output registers of the digital serial interface are set to a significant error code  
(see Table 7). Note that the error detection functionality (except the CRC-check regarding the  
EEPROM content) has to be enabled by configuration words.  
Copyright © 2004, ZMD AG, Rev. 0.7, 2004-09-02, PRELIMINARY  
11/20  
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written  
consent of the copyright owner. The Information furnished in this publication is preliminary and subject to changes without notice.  
ZMD31050  
Advanced Differential Sensor Signal Conditioner  
Datasheet  
PRELIMINARY  
Detectable Error  
Description  
Sets SIF-Out to Sets Analog Out to  
Diagnostic Mode  
CRC-Check during read out of  
EEPROM after Power On or after  
SIF-Command COPY_EEP2RAM  
CRC-Error  
CAAA  
Low  
RAM Parity Error  
Parity-Check at every RAM access  
(Enabled by CFGAPP:SCCD)  
CF0F  
CE38  
Low  
Low  
Register Parity Error  
Permanent Parity-Check of  
Configuration Registers  
(Enabled by CFGAPP:SCCD)  
Sensor Connection  
Connection-Check of Sensor Bridge  
(Enabled by CFGAPP:SCCD)  
CFCF  
High  
High  
Common Mode Voltage Check if Bridge Common Mode Voltage  
E000 + VCM,13bit  
out of limits  
is complies the programmed limits  
(Enabled by CFGCYC:ECMV)  
VCM,13bit  
Measured Common  
Mode Voltage  
:
(13 significant Bits)  
Table 7:Error Codes  
Copyright © 2004, ZMD AG, Rev. 0.7, 2004-09-02, PRELIMINARY  
12/20  
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written  
consent of the copyright owner. The Information furnished in this publication is preliminary and subject to changes without notice.  
ZMD31050  
Advanced Differential Sensor Signal Conditioner  
Datasheet  
PRELIMINARY  
2.  
Application Circuit Examples  
ZMD  
31050  
ZMD  
31050  
Example 1  
Example 2  
Typical ratiometric measurement with voltage  
output, temperature compensation via external  
diode, internal VDD regulator and supply lost  
diagnosis (bridge must not be at VDDA) is used  
0-10V output configuration, supply regulator,  
temperature compensation via internal diode,  
internal VDD regulator and bridge in voltage  
mode  
ZMD  
31050  
ZMD  
31050  
Example 3  
Example 4  
Absolute voltage output, constant current biasing Ratiometric measurement, 3 – wire connection  
of the sensor bridge, temperature compensation for end of line calibration of the sensor module,  
by bridge voltage drop measurement  
temperature measurement with external  
voltage divider incl. thermistor  
3.  
ESD/Latch-Up-Protection  
All Pins have an ESD Protection of >2000V (except the Pins INN,INP,FBP with > 1200V) and a  
Latch-up protection of ±100mA or of +8V/ –4V (to VSS/VSSA).  
ESD Protection referred to the human body model is tested with devices in SSOP16 packages during  
product qualification. The ESD test follows the human body model with 1.5kOhm/100pF based on MIL  
883, Method 3015.7.  
Copyright © 2004, ZMD AG, Rev. 0.7, 2004-09-02, PRELIMINARY  
13/20  
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written  
consent of the copyright owner. The Information furnished in this publication is preliminary and subject to changes without notice.  
ZMD31050  
Advanced Differential Sensor Signal Conditioner  
Datasheet  
PRELIMINARY  
4.  
Pin Configuration and Package  
Pin-No.  
Name  
Description  
Remarks  
10  
OUT  
Analog output & dig. out  
after power on  
Analog output & PWM1/Frequ. Output  
&one wire interface i/o  
11  
9
FBP  
FBN  
Positive feedback connection output stage  
Analog input/output  
Analog input/output  
Negative feedback connection output stage & crystal  
connection pin for Frequ. Output  
1
8
VDDA  
VDD  
VSS  
SCL  
SDA  
VINP  
VINN  
VBR  
IN3  
Positive analog supply voltage  
Supply  
Positive digital supply voltage  
Negative supply voltage  
Supply  
15  
6
Ground  
Digital input, pull-up  
Digital input, pull-up  
Analog input  
Analog input  
Analog input/output  
Analog input  
I²C clock & SPI clock  
7
Data i/o for I²C & data in for SPI  
Positive input sensor bridge  
Negative input sensor bridge  
Bridge top sensing in bridge current out  
14  
16  
13  
2
Resistive temperature sensor input & external clock  
input  
12  
3
IR_TEMP  
Analog in/out  
Analog output  
Digital IO  
Current source resistor i/o & temp. diode in  
VGATE Gate voltage for external regulator FET  
4
IO1  
IO2  
SPI data out & ALARM1 & PWM2 Output  
SPI chip select & ALARM2  
5
Digital IO  
The standard package of the ZMD31050 is a SSOP16 (5.3mm body width) with lead-pitch 0.65mm:  
FBN  
OUT  
VDD  
SDA  
SCL  
FBP  
IR_TEMP  
VBR  
IO2  
IO1  
VINP  
VGATE  
IN3  
VSS  
VINN  
VDDA  
Copyright © 2004, ZMD AG, Rev. 0.7, 2004-09-02, PRELIMINARY  
14/20  
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written  
consent of the copyright owner. The Information furnished in this publication is preliminary and subject to changes without notice.  
ZMD31050  
Advanced Differential Sensor Signal Conditioner  
Datasheet  
PRELIMINARY  
5.  
5.1  
IC Characteristics  
Absolute Maximum Ratings  
No. Parameter  
Symbol min  
VDDAMR -0.3  
typ  
max  
Unit Conditions  
5.1.1 Digital Supply  
Voltage  
6.5  
V
to VSS  
5.1.2 Analog Supply  
Voltage  
VDDAAMR -0.3  
6.5  
V
to VSS  
5.1.3 Voltage at all analog  
and digital I/O - Pins  
VINA,  
VOUTA  
-0.3  
VDDA  
+0.3  
V
Exception s. 5.1.4  
5.1.4 Voltage at Pin FBP  
VFBP,AMR -1.2  
TSTG -45  
VDDA  
+0.3  
V
4 .. 20mA – Interface  
5.1.5 Storage temperature  
150  
°C  
5.2  
Operating Conditions  
(Voltages related to VSS)  
No. Parameter  
Symb min  
ol  
typ  
max  
Unit Conditions  
5.2.1 Ambient temperature  
TAMB  
TADV  
-40  
-25  
125  
85  
°C  
°C  
5.2.2 Ambient temperature  
advanced performance  
5.2.3 Analog Supply Voltage VDDA  
2.7  
5.5  
V
Ratiometric mode  
5.2.4 Digital Supply Voltage  
VDD  
1.05  
VDDA  
V
2.6  
5.2.5 External Supply  
Voltage  
Vsupp VDDA  
2V  
+
40  
V
In voltage regulator  
mode with external  
JFET  
5.2.6 Common mode input  
range  
VINCM 0.25  
0.65  
VDDA absolute ratings in  
temperature range1  
5.2.7 Input Voltage Pin FBP VIN,FBP  
-1  
3.0 2  
VDDA  
25.0  
V
5.2.8 Sensor Bridge  
Resistance  
RBR  
full temperature range  
4 .. 20mA – Interface  
kW  
5.0  
1 See also chapter 1.3.1  
2 no limitations with an external connection between VDDA and VBR  
Copyright © 2004, ZMD AG, Rev. 0.7, 2004-09-02, PRELIMINARY  
15/20  
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written  
consent of the copyright owner. The Information furnished in this publication is preliminary and subject to changes without notice.  
ZMD31050  
Advanced Differential Sensor Signal Conditioner  
Datasheet  
PRELIMINARY  
5.2.9 Reference Resistor for RRef  
Bridge Current Source  
0.07  
50  
RBR ( leads to  
IBR = VDDA / (16·RRef))  
5.2.10 Stabilization Capacitor CVDDA  
100  
100  
470  
470  
50  
nF  
nF  
nF  
kW  
between VDDA  
and VSS, extern  
5.2.11 Optional Stabilization  
Capacitor  
CVDD  
0 3  
between VDD  
and VSS, extern  
5.2.12 Maximum allowed load CLout  
capacitance4  
Voltage mode  
5.2.13 Minimum allowed load  
resistance  
RLout  
2
2
Voltage mode,  
without supply voltage  
lost diagnosis  
0.5...4.5V mode,  
with supply voltage lost  
diagnosis  
5.2.14 Minimum allowed load  
resistance  
RLout  
25  
kW  
5.3  
Build In Characteristics  
No. Parameter  
Symbol  
min  
typ  
max  
Unit Conditions  
5.3.1. Selectable Input  
Span, Pressure  
VINSP  
1
275  
mV/V 4 Bit setting s. 3.3.1  
Measurement  
5.3.2 Selectable  
AnalogOffset  
Compensation  
Range  
-300%  
9
+300%  
15  
V
6 Bit setting  
InputSpan  
5.3.3 A/D Resolution  
5.3.4 D/A Resolution  
5.3.5 PWM - Resolution  
RESAD  
RESDA  
RESPWM  
ITSE  
Bit  
Bit  
Bit  
mA  
3 Bit setting  
11  
18  
@ analogue output  
9
12  
30  
5.3.6 Reference current  
for external  
10  
temperature diodes  
5.3.7 Sensitivity internal  
temperature diode  
ST,TSI  
2800 3200 3600  
ppm Raw values - without  
f.s. /K conditioning  
3 too small stabilization capacitors can increase noise level at the output  
4 if used, consider special requirements of OWI single wire interface stated in Appendix A  
Copyright © 2004, ZMD AG, Rev. 0.7, 2004-09-02, PRELIMINARY  
16/20  
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written  
consent of the copyright owner. The Information furnished in this publication is preliminary and subject to changes without notice.  
ZMD31050  
Advanced Differential Sensor Signal Conditioner  
Datasheet  
PRELIMINARY  
5.3.8 Cycle Rate versus A/D-Resolution  
( linear related to master clock frequency5 - values calculated at exact 2 MHz )  
ADC Order Resolution Conversion  
Cycle fcon  
Bit  
Hz  
1
9
1302  
781  
434  
230  
115  
59  
10  
11  
12  
13  
14  
15  
11  
12  
13  
14  
15  
30  
2
3906  
3906  
1953  
1953  
977  
5.3.9 PWM Frequency  
PWM  
Resolution  
PWM Freq./Hz at 2 MHz Clock5  
Clock Divider  
Bit  
9
10  
11  
12  
1
0,5  
1953  
977  
488  
244  
0,25  
977  
488  
244  
122  
0,125  
488  
244  
122  
61  
3906  
1953  
977  
488  
5 Internal RC – Oscillator: coarse adjustment to1, 2 and 4 MHz, fine tuning +/- 25% , external clock is also possible  
Copyright © 2004, ZMD AG, Rev. 0.7, 2004-09-02, PRELIMINARY  
17/20  
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written  
consent of the copyright owner. The Information furnished in this publication is preliminary and subject to changes without notice.  
ZMD31050  
Advanced Differential Sensor Signal Conditioner  
Datasheet  
PRELIMINARY  
5.4  
Electrical Parameters  
(Voltages related to VSS)  
No. Parameter  
Symbol min  
typ  
max  
Unit Conditions  
5.4.1 Supply / Regulation  
5.4.1.1 Supply current  
ISUM  
2.5  
2.0  
3.5  
2.5  
mA without bridge current  
and without load  
current,  
f
clk £ 2.2MHz  
Without bridge current,  
clk £ 1.2MHz, Bias-  
5.4.1.2 Supply current for  
current loop  
IS_CL  
f
Adjustment £ 1  
5.4.1.2 Temperature Coeff.  
Voltage Reference 1  
TCREF  
-200 +/- 50 200 ppm/K  
5.4.2 Analog Front End  
5.4.2.1 Parasitic differential  
input offset current1  
IIN  
-2  
2
nA  
temp. range 5.2.2., TADV  
-10  
10  
5.4.3 DAC & Analog Output (Pin OUT)  
5.4.3.1 Signal output range  
5.4.3.2 Slew rate 1  
VOUT  
0.025  
0.975 VDDA Voltage mode,  
assuming the maximal  
load of 2k  
SROUT  
0.1  
5
Voltage mode,  
CL<20nF  
V/ms  
5.4.3.3 Short circuit current  
limitation  
ImaxOUT  
10  
20  
mA  
No. Parameter  
Symbol min  
typ  
max  
Unit Conditions  
5.4.4 PWM Output (Pin OUT, IO1)  
5.4.4.1 PWM high voltage  
5.4.4.2 PWM low voltage  
5.4.4.3 PWM output slope1  
PWMVH 0.9  
VDDA  
VDDA  
V/ms  
RL > 10 kW  
RL > 10 kW  
CL < 1nF  
PWMVL  
PWMSL  
0.1  
15  
5.4.5 Temperature Sensors (Output IRT)  
STTSE 1450 1520 1590  
5.4.5.1 Sensitivity external  
diode or resistor  
meas.  
ppm Raw values - without  
f.s. / conditioning  
mV  
1
no measurement in serial production, parameter is guarantied by design and/or quality observation  
Copyright © 2004, ZMD AG, Rev. 0.7, 2004-09-02, PRELIMINARY  
18/20  
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written  
consent of the copyright owner. The Information furnished in this publication is preliminary and subject to changes without notice.  
ZMD31050  
Advanced Differential Sensor Signal Conditioner  
Datasheet  
PRELIMINARY  
5.4.6 Digital Outputs (IO1, IO2,OUT in digital mode)  
5.4.6.1 Output-High-Level  
5.4.6.2 Output-Low-Level  
5.4.6.3 Output Current1  
VOUTP,H  
VOUTP,L  
IOUTP  
0.9  
VDDA  
VDDA  
mA  
0.1  
4
5.4.7 System Response  
5.4.7.1 Setup time*1  
tIN  
2
5
ms Power up to first  
measure result at  
output, without OWI –  
start window  
5.4.7.2 Response time  
5.4.7.2 Overall accuracy  
tRES  
OA  
2/fCON  
3/fcon  
Deviation from ideal  
line including INL, gain  
and offset errors  
0.1%  
0.25%  
-25...+85°C oper. temp.  
-40...+125°C op. temp.  
5.4.7.3 Peak-to-Peak-  
Noise@output  
5
mV shorted inputs,  
bandwith £ 2kHz  
5.4.7.4 Ratiometricity Error  
RE  
500  
ppm ratiometric input signals  
* Depends on resolution and configuration - start routine begins approximately 0.8ms after power on  
5.5  
Interface Characteristics  
5.5.1 Multiport Serial Interfaces (I2C, SPI)  
5.5.1 Input-High-Level  
VIH  
VIL  
0.7  
0
1
VDDA  
5.5.2 Input-Low-Level  
5.5.3 Output-Low-Level  
5.5.4 LO SDA  
0.3  
0.1  
400  
400  
VDDA  
VOL  
VDDA Open-Drain, IOL = -3mA  
CL,SDA  
fSCL  
pF  
5.5.5 Clock frequency SCL  
kHz  
5.5.2 One Wire Serial Interface (ZACwire)  
5.5.1 Pull up resistance  
master  
ROWI,pu  
330  
W
5.5.2 OWI line resistance  
ROWI,line  
COWI,load  
0.05 ROWI,pu  
5.5.3 OWI load  
capacitance  
0.08  
tBIT  
/
20ms < tBIT < 100ms  
ROWI,pu  
5.5.4 Voltage level Low  
5.5.5 Voltage level High  
VOWI,low  
0.2  
VDD  
VOWI,high 0.75  
VDD  
Copyright © 2004, ZMD AG, Rev. 0.7, 2004-09-02, PRELIMINARY  
19/20  
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written  
consent of the copyright owner. The Information furnished in this publication is preliminary and subject to changes without notice.  
ZMD31050  
Advanced Differential Sensor Signal Conditioner  
Datasheet  
PRELIMINARY  
6.  
Test  
Parameters given in this specification are design objectives. Final parameters which will be tested  
during series production will be specified by ZMD after investigations in the engineering samples. The  
resulting data sheet includes all parameters which will be tested by ZMD. The test program is based  
on this data sheet. The fulfillment of the test specification is obligatory to deliver and obligates to  
purchase.  
See ZMD31050 Test Description for a detailed test flow and test conditions.  
7.  
Reliability  
A reliability investigation according to the in-house non-automotive standard will be performed.  
8.  
Customization  
For high-volume applications, which require an up- or downgraded functionality compared to the  
ZM31050, ZMD can customize the circuit design by adding or removing certain functional blocks.  
For it ZMD has a considerable library of sensor-dedicated circuitry blocks.  
Thus ZMD can provide a custom solution quickly. Please contact ZMD for further information.  
9.  
Related Documents  
·
·
·
·
·
·
ZMD31050 Feature Sheet  
ZMD31050 Functional Description  
ZMD31050 Application Kit Description  
ZMD31050 Development Status Report (including parts identification table)  
ZMD31050 Test Flow Description  
ZMD31050 Calibration DLL Description  
The information furnished here by ZMD is believed to be correct and accurate. However, ZMD shall not be liable  
to any licensee or third party for any damages, including, but not limited to, personal injury, property damage,  
loss of profits, loss of use, interruption of business or indirect, special, incidental, or consequential damages of  
any kind in connection with or arising out of the furnishing, performance, or use of this technical data. No  
obligation or liability to any licensee or third party shall result from ZMD’s rendering of technical or other  
services.  
ZMD Stuttgart Office  
Nord-West-Ring 34  
70974 Filderstadt - Bernhausen  
Tel.: +49 (0)711.674.517-0  
Fax: +49 (0)711.674.517-99  
sales@zmd.de  
ZMD AG  
Grenzstrasse 28  
01109 Dresden, Germany  
Tel.: +49 (0)351.8822.310  
Fax: +49 (0)351.8822.337  
sales@zmd.de  
ZMD America Inc.  
201 Old Country Road, Suite 204  
Melville, NY 11747  
Tel.: (631) 549-2666  
Fax: (631) 549-2882  
sensors@zmda.com  
www.zmd.biz  
For further  
information:  
www.zmd.biz  
www.zmd.biz  
Copyright © 2004, ZMD AG, Rev. 0.7, 2004-09-02, PRELIMINARY  
20/20  
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written  
consent of the copyright owner. The Information furnished in this publication is preliminary and subject to changes without notice.  

ZMD31050D 相关器件

型号 制造商 描述 价格 文档
ZMD31050DCG1-R IDT Sensor/Transducer, 获取价格
ZMD31050DCG1-T IDT Sensor/Transducer 获取价格
ZMD31050DIG1-T IDT Sensor/Transducer 获取价格
ZMD31050_09 ZMD Advanced Differential Sensor Signal Conditioner 获取价格
ZMD31150 ZMD Fast Automotive Sensor Signal Conditioner 获取价格
ZMD33 DIOTEC Surface mount Silicon-Zener Diodes (non-planar technology) 获取价格
ZMD33 SEMIKRON Zener silicon diodes 获取价格
ZMD33 EIC ZENER DIODES 获取价格
ZMD33B DIOTEC Surface mount Silicon-Zener Diodes (non-planar technology) 获取价格
ZMD36 DIOTEC Surface mount Silicon-Zener Diodes (non-planar technology) 获取价格

ZMD31050D 相关文章

  • Bourns 密封通孔金属陶瓷微调电位计产品选型手册(英文版)
    2024-09-20
    6
  • Bourns 精密环境传感器产品选型手册(英文版)
    2024-09-20
    9
  • Bourns POWrTher 负温度系数(NTC)热敏电阻手册 (英文版)
    2024-09-20
    8
  • Bourns GMOV 混合过压保护组件产品选型手册(英文版)
    2024-09-20
    6