Z8018220AEC [ZILOG]

IC MPU ZIP 20MHZ 100VQFP;
Z8018220AEC
型号: Z8018220AEC
厂家: ZILOG, INC.    ZILOG, INC.
描述:

IC MPU ZIP 20MHZ 100VQFP

文件: 总109页 (文件大小:821K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PRELIMINARY PRODUCT SPECIFICATION  
Z80182/Z8L182  
ZILOG INTELLIGENT PERIPHERAL  
CONTROLLER (ZIP)  
FEATURES  
Z8S180 MPU  
Two ESCCChannels with 32-Bit CRC  
Three 8-Bit Parallel I/O Ports  
- Code Compatible with Zilog Z80®/Z180CPU  
- Extended Instructions  
- Operating Frequency: 33 MHz/5V or 20 MHz/3.3V  
- Two DMA Channels  
16550 Compatible MIMIC Interface for  
- On-Chip Wait State Generators  
- Two UART Channels  
Direct Connection to PC, XT, AT Bus  
- Two 16-Bit Timer Counters  
- On-Chip Interrupt Controller  
- On-Chip Clock Oscillator/Generator  
- Clocked Serial I/O Port  
100-Pin Package Styles (QFP, VQFP)  
(0.8 Micron CMOS 5120 Technology)  
Individual WSG for RAMCS and ROMCS  
- Fully Static  
- Low EMI Option  
GENERAL DESCRIPTION  
The Z80182/Z8L182 is a smart peripheral controller IC for  
modem (in particular V. Fast applications), fax, voice  
messaging and other communications applications. It  
uses the Z80180 microprocessor (Z8S180 MPU core)  
linked with two channels of the industry standard Z85230  
ESCC (Enhanced Serial Communications Controller), 24  
bitsofparallelI/O,anda16550MIMICfordirectconnection  
to the IBM PC, XT, AT bus.  
errorcorrectiononoutgoingandincomingdata.Inexternal  
applications, three 8-bit parallel ports are available for  
drivingLEDsorotherdevices. Figure1showstheZ80182/  
Z8L182 block diagram, while the pin assignments for the  
QFP and the VQFP packages are shown in Figures 2 and  
3, respectively. All references in this document to the  
Z80182, or Z182 refer to both the Z80182 and Z8L182.  
Notes:  
All Signals with a preceding front slash, "/", are active Low, e.g.,  
B//W (WORD is active Low); /B/W (BYTE is active Low, only).  
The Z80182/Z8L182 allows complete flexibility for both  
internal PC and external applications. Also current PC  
modem software compatibility can be maintained with the  
Z80182/Z8L182 ability to mimic the 16550 UART chip. The  
Z80180 acts as an interface between the ESCCand  
16550 MIMIC interface when used in internal applications,  
and between the two ESCC channels in the external  
applications. This interface allows data compression and  
Power connections follow conventional descriptions below:  
Connection  
Circuit  
Device  
Power  
Ground  
VCC  
GND  
VDD  
VSS  
DS971820600  
3-1  
PS009801-0301  
Z80182/Z8L182  
ZILOG INTELLIGENT PERIPHERAL  
Zilog  
P R E L I M I N A R Y  
GENERAL DESCRIPTION (Continued)  
D7-D0  
EV1  
EV2  
Control  
GLU  
Logic  
A19-A0  
Bus  
Transceiver  
Z8S180  
(Static Z80180)  
MPU Core  
Tx Data  
85230  
85230  
ESCC  
Channel  
B
ESCC  
Channel  
A
Rx Data  
ESCC  
Control  
/TRxCB  
16550  
MIMIC  
Interface  
/ROMCS  
/RAMCS  
Address  
Decode  
8-Bit Parallel  
Port C  
8-Bit Parallel  
Port B  
8-Bit Parallel  
Port A  
MUX  
MUX  
MUX  
85230  
ESCC Ch. A  
or Port C  
16550 MIMIC  
or ESCC  
85230 Ch. B  
and PortA  
Z180 Signals  
or Port B  
Note: Conventional use of the term "MPU side" refers to all interface through the Z180 MPU  
core and "PC side" refers to all interface through the16550 MIMIC interface.  
Figure 1. Z80182/Z8L182 Functional Block Diagram  
DS971820600  
3-2  
PS009801-0301  
Z80182/Z8L182  
Zilog  
ZILOG INTELLIGENT PERIPHERAL  
P R E L I M I N A R Y  
100  
/INT0  
/INT1/PC6  
/INT2/PC7  
ST  
80  
75  
70  
65  
60  
/TRXCB/HA0  
TXDB//HDDIS  
/CTSB//HWR  
/DCDB//HRD  
TXDA  
90  
95  
85  
1
A0  
5
A1  
/TRXCA  
A2  
RXDA  
VDD  
A3  
A4  
IEI  
A5  
A6  
10  
15  
/IOCS/IEO  
VSS  
A7  
/RTXCA  
A8  
/SYNCA/PC4  
/DCDA/PC0  
/CTSA/PC1  
/MWR/PC2//RTSA  
/DTR//REQA/PC3  
/W//REQA/PC5  
PA7/HD7  
PA6/HD6  
PA5/HD5  
PA4/HD4  
PA3/HD3  
PA2/HD2  
PA1/HD1  
PA0/HD0  
EV2  
A9  
A10  
A11  
A12  
VSS  
A13  
A14  
A15  
A16  
A17  
Z80182/Z8L182  
100-Pin QFP  
20  
25  
A18/TOUT  
VDD  
A19  
D0  
D1  
D2  
D3  
55  
50  
EV1  
/ROMCS  
/RAMCS  
35  
40  
45  
30  
Figure 2. Z80182/Z8L182 100-Pin QFP Pin Configuration  
DS971820600  
3-3  
PS009801-0301  
Z80182/Z8L182  
ZILOG INTELLIGENT PERIPHERAL  
Zilog  
P R E L I M I N A R Y  
GENERAL DESCRIPTION (Continued)  
75  
70  
65  
60  
55  
51  
TXDB//HDDIS  
/TRXCB/HA0  
RXDB/HA1  
/RTXCB/HA2  
/SYNCB//HCS  
/HALT  
/RFSH  
/IORQ  
/MRD//MREQ  
E
50  
45  
40  
35  
76  
80  
EV1  
/ROMCS  
/RAMCS  
/TEND1//RTSB//HRXRDY  
VDD  
/DREQ1  
CKS//W//REQB//HTXRDY  
TXS//DTR//REQB/HINTR  
CKA1//TEND0  
VSS  
CKA0//DREQ0  
RXS//CTS1/PB7  
RXA1/PB6  
TXA1/PB5  
RXA0/PB4  
TXA0/PB3  
/DCD0/PB2  
/CTS0/PB1  
/RTS0/PB0  
D7  
85  
/M1  
/WR  
/RD  
PHI  
VSS  
XTAL  
EXTAL  
/WAIT  
Z80182/Z8L182  
100-Pin VQFP  
90  
/BUSACK  
/BUSREQ  
/RESET  
/NMI  
/INT0  
/INT1/PC6  
/INT2/PC7  
95  
30  
26  
D6  
D5  
D4  
D3  
100  
D2  
1
5
25  
10  
15  
20  
Figure 3. Z80182/Z8L182 100-Pin VQFP Pin Configuration  
DS971820600  
3-4  
PS009801-0301  
Z80182/Z8L182  
Zilog  
ZILOG INTELLIGENT PERIPHERAL  
P R E L I M I N A R Y  
Z180 CPU SIGNALS  
A19-A0. Address Bus (input/output, active High, tri-state).  
A19-A0 form a 20-bit address bus. The Address Bus  
provides the address for memory data bus exchanges up  
to 1 Mbyte, and I/O data bus exchanges up to 64K. The  
address bus enters a high impedance state during reset  
and external bus acknowledge cycles, as well as during  
SLEEP and HALT states. This bus is an input when the  
external bus master is accessing the on-chip peripherals.  
Address line A18 is multiplexed with the output of PRT  
channel 1 (TOUT, selected as address output on reset).  
/MRD. Memory Read (input/output, active Low, tri-state).  
/MRD is active when both the internal /MREQ and /RD are  
active. /MRD is multiplexed with /MREQ on the /MRD  
//MREQ pin. The /MRD//MREQ pin is an input during  
adapter modes; is tri-state during bus acknowledge if  
/MREQ function is selected; and is inactive High if /MRD  
function is selected. The default function on power up is  
/MRD and may be changed by programming bit 3 of the  
Interrupt Edge/Pin MUX Register (xxDFH).  
/MWR. Memory Write (input/output, active Low, tri-state).  
/MWR is active when both the internal /MREQ and /WR are  
active. This /RTSA or PC2 combination is pin multiplexed  
with/MWRonthe/MWR/PC2//RTSApin.Thedefaultfunction  
ofthispinonpowerupis/MWR, whichmaybechangedby  
programming bit 3 in the Interrupt Edge/Pin MUX Register  
(xxDFH).  
D7-D0. Data Bus (bi-directional, active High, tri-state). D7-  
D0 constitute an 8-bit bi-directional data bus, used for the  
transferofinformationtoandfromI/Oandmemorydevices.  
Thedatabusentersthehighimpedancestateduringreset  
and external bus acknowledge cycles, as well as during  
SLEEP and HALT states.  
/RD.Read(input/output,activeLow,tri-state)./RDindicates  
that the CPU wants to read data from memory or an I/O  
device. The addressed I/O or memory device should use  
this signal to gate data onto the CPU data bus.  
/WAIT. (input/output active Low). /WAIT indicates to the  
MPU that the addressed memory or I/O devices are not  
ready for a data transfer. This input is used to induce  
additionalclockcyclesintothecurrentmachinecycle. The  
/WAIT input is sampled on the falling edge of T2 (and  
subsequent wait states). If the input is sampled Low, then  
additional wait states are inserted until the /WAIT input is  
sampled High, at which time execution will continue.  
/WR.Write(input/output,activeLow,tri-state)./WRindicates  
that the CPU data bus holds valid data to be stored at the  
addressed I/O or memory location.  
/IORQ. I/O Request (input/output, active Low, tri-state).  
/IORQ indicates that the address bus contains a valid I/O  
addressforanI/OreadorI/Owriteoperation. /IORQisalso  
generated, along with /M1, during the acknowledgment of  
the /INT0 input signal to indicate that an interrupt response  
vector can be placed onto the data bus. This signal is  
analogous to the IOE signal of the Z64180.  
/HALT. Halt/Sleep Status (input/output, active Low). This  
output is asserted after the CPU has executed either the  
HALT or SLEEP instruction, and is waiting for either non-  
maskable or maskable interrupts before operation can  
resume. It is also used with the /M1 and ST signals to  
decode status of the CPU machine cycle. On exit of HALT/  
SLEEP mode, the first instruction fetch can be delayed by  
16 clock cycles after the /HALT pin goes High, if HALT 16  
feature is selected.  
/M1. Machine Cycle 1 (input/output, active Low). Together  
with /MREQ, /M1 indicates that the current cycle is the  
opcode fetch cycle of an instruction execution; unless  
/M1E bit in the OMCR is cleared to 0. Together with /IORQ,  
/M1 indicates that the current cycle is for an interrupt  
acknowledge. Itisalsousedwiththe/HALTandSTsignals  
to decode status of the CPU machine cycle. This signal is  
analogous to the /LIR signal of the Z64180.  
/BUSACK. Bus Acknowledge (input/output, active Low).  
/BUSACK indicates to the requesting device, the MPU  
address and data bus, and some control signals, have  
entered their high impedance state.  
/BUSREQ. Bus Request (input, active Low). This input is  
used by external devices (such as DMA controllers) to  
request access to the system bus. This request has a  
higher priority than /NMI and is always recognized at the  
end of the current machine cycle. This signal will stop the  
CPU from executing further instructions and places the  
address/databusesandothercontrolsignals,intothehigh  
impedance state.  
/MREQ. Memory Request (input/output, active Low, tri-  
state). /MREQ indicates that the address bus holds a valid  
address for a memory read or memory write operation.  
This signal is analogous to the /ME signal of the Z64180.  
/MREQ is multiplexed with /MRD on the /MRD//MREQ pin.  
The /MRD//MREQ pin is an input during adapter modes; is  
tri-state during bus acknowledge if the /MREQ function is  
selected; and is inactive High if /MRD function is selected.  
DS971820600  
3-5  
PS009801-0301  
Z80182/Z8L182  
ZILOG INTELLIGENT PERIPHERAL  
Zilog  
P R E L I M I N A R Y  
Z180 CPU SIGNALS (Continued)  
/NMI. Non-maskable interrupt (input, negative edge  
triggered). /NMI has a higher priority than /INT and is  
always recognized at the end of an instruction, regardless  
of the state of the interrupt enable flip-flops. This signal  
forces CPU execution to continue at location 0066H.  
/INT1, /INT2.MaskableInterruptRequests1and2(inputs,  
active Low). This signal is generated by external I/O  
devices. The CPU will honor these requests at the end of  
thecurrentinstructioncycleaslongasthe/NMI,/BUSREQ,  
and /INT0 signals are inactive. The CPU acknowledges  
these interrupt requests with an interrupt acknowledge  
cycle. Unlike the acknowledgment for /INT0, during this  
cycle neither the /M1 or /IORQ signals become active.  
These pins may be programmed to provide an active Low  
level on rising or falling edge interrupts. The level of the  
external /INT1 and /INT2 pins may be read through bits  
PC6 and PC7 of parallel Port C. Pin /INT1/PC6 multiplexes  
/INT1 and PC6. Pin /INT2/PC7 multiplexes /INT2 and PC7.  
/INT0. Maskable Interrupt Request 0 (input/output active  
Low). This signal is generated by external I/O devices. The  
CPU will honor this request at the end of the current  
instructioncycleaslongasthe/NMIand/BUSREQsignals  
are inactive. The CPU acknowledges this interrupt request  
with an interrupt acknowledge cycle. During this cycle,  
both the /M1 and /IORQ signals become active. The  
internal Z180 MPU’s /INT0 source is: /INT0 or ESCC or the  
MIMIC. This input is level triggered. /INT0 is an open-drain  
output, so you can connect other open-drain interrupts  
onto the circuit in addition to haveing a pull-up to VCC.  
/RFSH. Refresh (input/output, active Low, tri-state).  
Together with /MREQ, /RFSH indicates that the current  
CPU machine cycle and the contents of the address bus  
should be used for refresh of dynamic memories. The low  
order 8 bits of the address bus (A7-A0) contain the refresh  
address. This signal is analogous to the /REF signal of the  
Z64180.  
Z180 MPU UART AND SIO SIGNALS  
CKA0,CKA1. AsynchronousClocks0and1(bi-directional,  
active High). These pins are the transmit and receive  
clocks for the synchronous channels. CKA0 is multiplexed  
with/DREQ0ontheCKA0//DREQ0pin.CKA1ismultiplexed  
with /TEND0 on the CKA1//TEND0 pin.  
TxA0. Transmit Data 0 (output, active High). This signal is  
the transmitted data from the ASCI channel 0. This pin is  
multiplexed with PB3 (parallel Port B, bit 3) on the  
TxA0/PB3 pin.  
TxS. Clocked Serial Transmit Data (output, active High).  
ThislineisthetransmitteddatafromtheCSIOchannel.TxS  
is multiplexed with the ESCC signal (/DTR//REQB) and the  
16550 MIMIC interface signal HINTR on the TxS//DTR  
//REQB//HINTR pin.  
CKS. Serial Clock (bi-directional, active High). This line is  
clock for the CSIO channel and is multiplexed with the  
ESCC signal (/W//REQB) and the 16550 MIMIC interface  
signal /HTxRDY on the CKS//W//REQB//HTxRDY pin.  
/DCD0. Data Carrier Detect 0 (input, active Low). This is a  
programmable modem control signal for ASCI channel 0.  
/DCD0 is multiplexed with the PB2 (parallel Port B, bit 2) on  
the /DCD0/PB2 pin.  
RxA0. Receive Data 0 (input, active High). This signal is  
the receive data to ASCI channel 0. This pin is multiplexed  
with PB4 (parallel Port B, bit 4) on the RxA0/PB4.  
RxS. Clocked Serial Receive Data (input, active High).  
This line is the receive data for the CSIO channel. RxS is  
multiplexed with the /CTS1 signal for ASCI channel 1 and  
with PB7 (parallel Port B, bit 7) on the RxS//CTS1/PB7 pin.  
/RTS0. Request to Send 0 (output, active Low). This is a  
programmable modem control signal for ASCI channel 0.  
ThispinismultiplexedwithPB0(parallelPortB,bit0)onthe  
/RTS0/PB0 pin.  
RxA1. Received Data ASCI channel 1 (input, active High).  
ThispinismultiplexedwithPB6(parallelPortB,bit6)onthe  
RxA1/PB6 pin.  
/CTS0. Clear to Send 0 (input, active Low). This line is a  
modem control signal for the ASCI channel 0. This pin is  
multiplexed with PB1 (parallel Port B, bit 1) on the /CTS0  
/PB1 pin.  
TxA1. Transmitted Data ASCI Channel 1 (output, active  
High). This pin is multiplexed with PB5 (parallel Port B, bit  
5) on the TxA1/PB5 pin.  
DS971820600  
3-6  
PS009801-0301  
Z80182/Z8L182  
Zilog  
ZILOG INTELLIGENT PERIPHERAL  
P R E L I M I N A R Y  
Z180 MPU DMA SIGNALS  
/TEND0. Transfer End 0 (output, active Low). This output  
is asserted active during the last write cycle of a DMA  
operation. It is used to indicate the end of the block  
transfer. /TEND0 is multiplexed with CKA1 on the  
CKA1//TEND0 pin.  
/DREQ0. DMA request 0 (input, active Low). /DREQ0 is  
used to request a DMA transfer from DMA channel 0. The  
DMA channel monitors the input to determine when an  
external device is ready for a read or write operation. This  
input can be programmed to be either level or edge  
sensed. /DREQ0 is multiplexed with CKA0 on the  
CKA0//DREQ0 pin.  
/TEND1. Transfer End 1 (output, active Low). This output  
is asserted active during the last write cycle of a DMA  
operation. It is used to indicate the end of the block  
transfer. /TEND1 is multiplexed with the ESCC signal  
/RTSB and the 16550 MIMIC interface signal /HRxRDY on  
the /TEND1//RTSB//HRxRDY pin.  
/DREQ1. DMA request 1 (input, active Low). /DREQ1 is  
used to request a DMA transfer from DMA channel 1. The  
DMA channel monitors the input to determine when an  
external device is ready for a read or write operation. This  
input can be programmed to be either level or edge  
sensed.  
Z180MPU TIMER SIGNALS  
TOUT. Timer Out (output, active High). TOUT is the pulse  
output from PRT channel 1. This line is multiplexed with  
A18 of the address bus on the A18/TOUT pin.  
Z85230 ESCCSIGNALS  
TxDA. Transmit Data (output, active High). This output  
signal transmits channel A’s serial data at standard TTL  
levels. This output can be tri-stated during power down  
modes.  
control. /TRxCB may supply the receive clock or the  
transmit clock in the input mode or supply the output of the  
Digital Phase-Locked Loop (DPLL), the crystal oscillator,  
the baud rate generator, or the transmit clock in output  
mode. In Z80182/Z8L182 mode 1 /TRxCB is multiplexed  
with the 16550 MIMIC interface HA0 input on the  
/TRxCB/HA0 pin.  
TxDB. Transmit Data (output, active High). This output  
signal transmits channel B’s serial data at standard TTL  
levels. In Z80182/Z8L182 mode 1, TxDB is multiplexed  
with the 16550 MIMIC interface /HDDIS signal on the  
TxDB//HDDIS pin.  
/RTxCA. Receive/Transmit Clock (input, active Low). The  
functions of this pin are under channel A program control.  
In channel A, /RTxCA may supply the receive clock, the  
transmit clock, the clock for the baud rate generator, or the  
clock for the DPLL. This pin can also be programmed for  
use by the /SYNCA pin as a crystal oscillator. The receive  
clock may be 1, 16, 32, or 64 times the data rate in  
asynchronous mode.  
RxDA. Receive Data (inputs, active High). These inputs  
receive channel A’s serial data at standard TTL levels.  
RxDB. Receive Data (input, active High). These inputs  
receive channel B’s serial data at standard TTL levels. In  
Z80182/Z8L182 mode 1 RxDB is multiplexed with the  
16550 MIMIC HA1 input on the RxDB/HA1 pin.  
/RTxCB. Receive/Transmit Clock (input, active Low). The  
functions of this pin are under channel B program control.  
In channel B, /RTxCB may supply the receive clock, the  
transmit clock, the clock for the baud rate generator, or the  
clock for the DPLL. This pin can also be programmed for  
use by the /SYNCB pin as a crystal oscillator. The receive  
clock may be 1, 16, 32, or 64 times the data rate in  
asynchronous mode. In Z80182/Z8L182 mode 1 the  
/RTxCB signal is multiplexed with 16550 MIMIC interface  
HA2 input on the /RTxCB/HA2 pin.  
/TRxCA. Transmit/Receive Clock (input or output, active  
Low). ThefunctionsofthispinareunderchannelAprogram  
control. /TRxCA may supply the receive clock or the  
transmit clock in the Input mode or supply the output of the  
digital phase-locked loop, the crystal oscillator, the baud  
rate generator, or the transmit clock in the output mode.  
/TRxCB. Transmit/Receive Clock (input or output, active  
Low). ThefunctionsofthispinareunderchannelBprogram  
DS971820600  
3-7  
PS009801-0301  
Z80182/Z8L182  
ZILOG INTELLIGENT PERIPHERAL  
Zilog  
P R E L I M I N A R Y  
Z85230 ESCC SIGNALS (Continued)  
/SYNCA,/SYNCB.Synchronization(inputs/outputs,active  
Low). These pins can act as either inputs, outputs, or as  
part of the crystal oscillator circuit. In the Asynchronous  
Receive mode (crystal oscillator option not selected),  
these pins are inputs similar to /CTS and /DCD. In this  
mode, transitions on these lines affect the state of the Sync  
/Hunt status bits in Read Register 0, but have no other  
function. /SYNCA is also multiplexed with PC4 (parallel  
Port C, bit 4) on the /SYNCA/PC4 pin.  
/DCDB. Data Carrier Detect (input, active Low). This pin’s  
functionality is similar to /DCDA but applicable to the  
channel B receiver. In Z80182/Z8L182 mode 1, /DCDB is  
multiplexed with the 16550 MIMIC interface /HRD input on  
the /DCDB//HRD pin.  
/RTSA. Request to Send (output, active Low). When the  
Request to Send (RTS) bit in Write Register 5 channel A is  
set, the /RTSA signal goes Low. When the RTS bit is reset  
in the Asynchronous mode and auto enables is on, the  
signal goes High after the transmitter is empty. In  
Synchronous mode or in Asynchronous mode with auto  
enables off, the /RTSA pin strictly follows the state of the  
RTS bit. The pin can be used as general-purpose output.  
/RTSA is multiplexed with PC2 (parallel Port C bit 2). This  
/RTSA or PC2 combination is pin multiplexed with /MWR  
(active when both the internal /MREQ and /WR are active)  
on the /MWR/PC2//RTSA pin. The default function of this  
pin on power-up is /MWR which may be changed by  
programming bit 3 in the Interrupt Edge/Pin MUX Register  
(xxDFH).  
InExternalSynchronizationmodewiththecrystaloscillator  
not selected, these lines also act as inputs. In this mode  
/SYNC must be driven Low two receive clock cycles after  
the last bit in the sync character is received. Character  
assembly begins on the rising edge of the receive clock  
immediately preceding the activation of /SYNC.  
In the Internal Synchronization mode, (Monosync and  
Bisync) with the crystal oscillator not selected, these pins  
act as outputs and are active only during the part of the  
receive clock cycle in which sync characters are  
recognized. The sync condition is not latched, so these  
outputsareactiveeachtimeasynccharacterisrecognized  
(regardless of the character boundaries). In SDLC mode,  
these pins act as outputs and are valid on receipt of a flag.  
InZ80182/Z8L182mode1the/SYNCBsignalismultiplexed  
with the 16550 MIMIC interface /HCS input on the /SYNCB  
//HCS pin.  
/RTSB. Request to Send (output, active Low). This pin is  
similar in functionality as /RTSA but is applicable on  
channel B. The /RTSB signal is multiplexed with the Z180  
MPU /TEND1 signal and the 16550 MIMIC interface  
/HRxRDY signal on the /TEND1//RTSB//HRxRDY pin.  
/DTR//REQA. Data Terminal Ready (output, active Low).  
This pin functions as it is programmed into the DTR bit. It  
can also be used as general-purpose output (transmit) or  
as request lines for the DMA controller. The ESCC allows  
full duplex DMA transfers. /DTR//REQA is also multiplexed  
with PC3 (parallel Port C, bit 3) on the /DTR//REQA  
/PC3 pin.  
/CTSA. Clear To Send (input, active Low). If this pin is  
programmed as auto enable, a Low on this input enables  
the channel A transmitter. If not programmed as auto  
enable, it may be used as a general-purpose input. The  
input is Schmitt-trigger buffered to accommodate slow  
rise-timeinput. TheESCCdetectstransitionsonthisinput  
and can interrupt the Z180MPU on either logic level  
transitions. /CTSA is multiplexed with PC1 (parallel Port C,  
bit 1) on the /CTSA/PC1 pin.  
/DTR//REQB. Data Terminal Ready (output, active Low).  
This pin functions as it is programmed into the DTR bit. It  
can also be used as general-purpose output (transmit) or  
as request lines for the DMA controller. The ESCC allows  
full duplex DMA transfers. The /DTR//REQB signal is  
multiplexed with the Z180 MPU TxS signal and the 16550  
MIMIC interface HINTR signal on the /TxS//DTR//REQB  
//HINTR pin.  
/CTSB. Clear To Send (input, active Low). This pin is  
similar to /CTSA’s functionality but is applicable to the  
channelBtransmitter.InZ80182/Z8L182mode,the/CTSB  
signal is multiplexed with the 16550 MIMIC interface /HWR  
input on the /CTSB //HWR pin.  
/DCDA. Data Carrier Detect (input, active Low). This pin  
functions as receiver enables if it is programmed as an  
auto enable bit; otherwise, it may be used as a general-  
purpose input pin. The pin is Schmitt-trigger buffered to  
accommodate slow rise-time signals. The ESCC detects  
transitions on this pin and can interrupt the Z180 MPU on  
either logic level transitions. /DCDA is also multiplexed  
with PC0 (parallel Port C, bit 0) on the /DCDA/PC0 pin.  
/W//REQA. Wait/Request (output, open drain when  
programmed for the Wait function, driven High or Low  
when programmed for a Request function). This dual-  
purpose output can be programmed as Request (receive)  
lines for a DMA controller or as Wait lines to synchronize  
the Z180 MPU to the ESCC data rate. The reset state is  
Wait. The ESCC allows full duplex DMA transfers.  
/W//REQA is also multiplexed with PC5 (parallel Port C, bit  
5) on the /W//REQA/PC5 pin.  
DS971820600  
3-8  
PS009801-0301  
Z80182/Z8L182  
Zilog  
ZILOG INTELLIGENT PERIPHERAL  
P R E L I M I N A R Y  
/W//REQB. Wait/Request (output, open drain when  
programmed for the Wait function, driven High or Low  
when programmed for a Request function). This pin is  
similar in functionality to /W//REQA but is applicable on  
channel B. The /W//REQB signal is multiplexed with the  
Z180 MPU CKS signal and the 16550 MIMIC interface  
/HTxRDY signal on the CKS//W//REQB//HTxRDY pin.  
16550 MIMIC INTERFACE SIGNALS  
HD7-HD0.HostDataBus(input/output,tri-state). InZ80182/  
Z8L182 mode 1, the host data bus is used to communicate  
between the 16550 MIMIC interface and the PC/XT/AT. It  
is multiplexed with the PA7-PA0 of parallel Port A when the  
Z80182/Z8L182 is in mode 0.  
/HRD. Host Read (input, active Low). In Z80182/Z8L182  
mode 1, this input is used by the PC/XT/AT to signal the  
16550 MIMIC interface that a read operation is taking  
place. In Z80182/Z8L182 mode 0, this pin is multiplexed  
with the ESCC /DCDB signal on the /DCDB//HRD pin.  
/HDDIS. HostDriverDisable(output,activeLow).InZ80182/  
Z8L182 mode 1, this signal goes Low whenever the  
PC/XT/AT is reading data from the 16550 MIMIC interface.  
In Z80182/Z8L182 mode 0, this pin is multiplexed with the  
ESCCTxDB signal on the TxDB//HDDIS pin.  
HINTR. Host Interrupt (output, active High). In Z80182/  
Z8L182 mode 1, this output is used by the 16550 MIMIC  
interfacetosignalthePC/XT/ATthataninterruptispending.  
In Z80182/Z8L182 mode 0, this pin is multiplexed with the  
ESCC (/DTR//REQB) signal and the Z180 MPU TxS signal  
on the TxS//DTR//REQB//HINTR pin.  
HA2-HA0. Host Address (input). In Z80182/Z8L182 mode  
1, these pins are the address inputs to the 16550 MIMIC  
interface. This address determines which register the  
PC/XT/AT accesses. HA0 is multiplexed with /TRxCB on  
the /TRxCB/HA0 pin; HA1 is multiplexed with RxDB on the  
RxDB/HA1 pin; HA2 is multiplexed with /RTxCB on the  
/RTxCB/HA2 pin.  
/HTxRDY. Host Transmit Ready (output, active Low). In  
Z80182/Z8L182 mode 1, this output is used by the 16550  
MIMIC in DMA mode to signal the PC/XT/AT that the  
Transmit Holding Register is empty. In Z80182/Z8L182  
mode 0, this pin is multiplexed with the ESCC (/W//REQB)  
signal and the Z180 MPU CKS signal on the CKS//W//  
REQB//HTxRDY pin.  
/HCS. Host Chip Select (input, active Low). In Z80182/  
Z8L182 mode 1, this input is used by the PC/XT/AT to  
selectthe16550MIMICinterfaceforanaccess.InZ80182/  
Z8L182 mode 0, it is multiplexed with the ESCC /SYNCB  
signal on the SYNCB//HCS pin.  
/HRxRDY. Host Receive Ready (output, active Low). In  
Z80182/Z8L182 mode 1, this output is used by the 16550  
MIMIC interface in DMA mode to signal the PC/XT/AT that  
a data byte is ready in the Receive Buffer. In Z80182/  
Z8L182 mode 0, this pin is multiplexed with the ESCC  
/RTSB signal and the Z180 MPU /TEND1 signal on the  
/TEND1/RTSB /HRxRDY pin.  
/HWR. Host Write (Input, active Low). In Z80182/Z8L182  
mode 1, this input is used by the PC/XT/AT to signal the  
16550 MIMIC interface that a write operation is taking  
place. In Z80182/Z8L182 mode 0, this input is multiplexed  
with the ESCC /CTSB signal on the /CTSB//HWR pin.  
PARALLEL PORTS  
PA7-PA0.ParallelPortA(input/output). Theselinescanbe  
configured as inputs or outputs on a bit-by-bit basis when  
the Z80182/Z8L182 is operated in mode 0. These pins are  
multiplexedwiththeHD7-HD0whentheZ80182/Z8L182is  
in mode 1.  
PC7-PC0. Parallel Port C (input/output). These lines can  
be configured as inputs or outputs on a bit-by-bit basis for  
bits PC5-PC0. Bits PC7 and PC6 are input only and read  
the level of the external /INT2 and /INT1 pins. When /INT2  
and/or /INT1 are in edge capture mode, writing a 1 to the  
respective PC7, PC6 bit clears the interrupt capture latch;  
writinga0hasnoeffect.BitsPC5-PC0aremultiplexedwith  
the following pins from ESCC channel A: (/W//REQA),  
/SYNCA, (/DTR//REQA), /RTSA, /MWR, /CTSA, /DCDA.  
The Port function is selected through a bit in the System  
Configuration Register.  
PB7-PB0.ParallelPortB(input/output). Theselinescanbe  
configured as inputs or outputs on a bit-by-bit basis when  
the Port function is selected in the System Configuration  
register. The pins are multiplexed with the following Z180  
peripheral functions: /RTS0, /CTS0, /DCD0, TxA0, RxA0,  
TxA1, RxA1, (RxS//CTS1).  
DS971820600  
3-9  
PS009801-0301  
Z80182/Z8L182  
ZILOG INTELLIGENT PERIPHERAL  
Zilog  
P R E L I M I N A R Y  
EMULATION SIGNALS  
EV1, EV2. Emulation Select (input). These two pins  
determine the emulation mode of the Z180 MPU (Table 1).  
Table 1. Evaluation Modes  
EV1 Description  
Normal mode, on-chip Z180 bus master  
Mode  
EV2  
0
1
2
3
0
0
1
1
0
1
0
1
Emulation Adapter Mode  
Emulator Probe Mode  
Reserved for Test  
SYSTEM CONTROL SIGNALS  
ST.Status(output,activeHigh).Thissignalisusedwiththe  
/M1 and /HALT output to decode the status of the CPU  
machine cycle. If unused, this pin should be pulled to VDD.  
/RAMCS. RAM Chip Select (output, active Low). Signal  
used to access RAM based upon the Address and the  
RAMLBR and RAMUBR registers and /MREQ.  
/RESET. Reset Signal (input, active Low). /RESET signal is  
used for initializing the MPU and other devices in the  
system. It must be kept in the active state for a period of at  
least three system clock cycles.  
/ROMCS. ROM Chip Select (output, active Low). Signal  
used to access ROM based upon the address and the  
ROMBR register and /MREQ.  
E. Enable Clock (output, active High). Synchronous  
IEI.Interrupt Enable Signal (input, active High). IEI is used  
with the IEO to form a priority daisy chain when there is  
more than one interrupt-driven peripheral.  
machine cycle clock output during bus transactions.  
XTAL. Crystal (input, active High). Crystal oscillator  
connection.Thispinshouldbeleftopenifanexternalclock  
is used instead of a crystal. The oscillator input is not a TTL  
level (reference DC characteristics).  
IEO. Interrupt Enable Output Signal (output, active High).  
Inthedaisy-chaininterruptcontrol,IEOcontrolstheinterrupt  
of external peripherals. IEO is active when IEI is 1 and the  
CPU is not servicing an interrupt from the on-chip  
peripherals. This pin is multiplexed with /IOCS on the  
/IOCS/IEO pin. The /IOCS function is the default on Power  
On or Reset conditions and is changed by programming  
bit 2 in the Interrupt Edge/Pin MUX Register.  
EXTAL.ExternalClock/Crystal(input,activeHigh).Crystal  
oscillator connections to an external clock can be input to  
theZ80180onthispinwhenacrystalisnotused. Thisinput  
is Schmitt triggered.  
PHI. System Clock (output, active High). The output is  
used as a reference clock for the MPU and the external  
system. The frequency of this output is reflective of the  
functional speed of the processor. In clock divide-by-two  
mode, the pHI frequency is half that of the crystal or input  
clock.Ifdivide-by-onemodeisenabled,thePHIfrequency  
is equivalent to that of crystal or input frequency. The PHI  
frequency is also fed to the ESCC core. If running over 20  
MHz (5V) or 10 MHz (3V) the PHI-ESCC frequency divider  
should be enabled to divide the PHI clock by two prior to  
feeding into the ESCC core.  
/IOCS. Auxiliary Chip Select Output Signal (output, active  
Low). This pin is multiplexed with /IEO on the /IOCS/IEO  
pin. /IOCS is an auxiliary chip select that decodes A7, A6,  
/IORQ, /M1 and effectively decodes the address space  
xx80H to xxBFH for I/O transactions. A15 through A8 are  
not decoded so that the chip select is active in all pages of  
I/Oaddressspace. The/IOCSfunctionisthedefaultonthe  
/IOCS/IEO pin after Power On or Reset conditions and is  
changed by programming bit 2 in the Interrupt Edge/Pin  
MUX Register.  
DS971820600  
3-10  
PS009801-0301  
Z80182/Z8L182  
Zilog  
ZILOG INTELLIGENT PERIPHERAL  
P R E L I M I N A R Y  
MULTIPLEXED PIN DESCRIPTIONS  
A18/TOUT. During Reset, this pin is initialized as an A18 pin.  
If either TOC1 or TOC0 bit of the Timer Control Register  
(TCR) is set to 1, The TOUT function is selected. If TOC1 and  
TOC0 bits are cleared to 0, the A18 function is selected.  
Table 2. Triple Multiplexed Pins  
Bit 1  
Bit 2  
Master Configuration Register  
0
0
1
1
0
1
0
1
/TEND1,TxS,CKS  
/RTSB,/DTR//REQB,/W//REQB  
/TEND1,TxS,CKS  
In normal user mode (on-chip bus master), the A18 signal  
for the chip select logic is obtained from the CPU before  
the external pin is muxed as A18/TOUT. Therefore, the  
selection of T will not affect the operation of the 182 chip  
select logic.OHUTowever, in adapter mode (off-chip bus  
master), the A18 signal MUST be provided by the external  
bus master.  
/HRxRDY,//HTxRDY,HINTR  
Thepinsbelowaremultiplexedbaseduponthevalueofbit  
1 of the System Configuration register. If bit 1 is 0, then the  
Z80182/Z8L182Mode0(non-16550MIMICmode)signals  
are selected; if bit 1 is 1, then Z80182/Z8L182 Mode 1  
(16550 MIMIC mode) signals are selected. On Reset,  
Z80182/Z8L182 Mode 0 is always selected as shown in  
Table 3.  
CKA0//DREQ0. During Reset, this pin is initialized as  
CKA0 pin. If either DM1 or SM1 in the DMA Mode Register  
(DMODE) is set to 1, /DREQ0 function is always selected.  
CKA1//TEND0. During Reset, this pin is initialized as  
CKA1 pin. If CKA1D bit in the ASCI control register  
Ch1(CNTLA1) is set to 1, /TEND0 function is selected. If  
CKA1D bit is set to 0, CKA1 function is selected.  
Table 3. Mode 0 and Mode 1 Multiplexed Pins  
Z80182/Z8L182  
Mode 0  
Z80182/Z8L182  
Mode 1  
TxDB  
RxDB  
/HDDIS  
HA1  
HA0  
HA2  
/HCS  
/HWR  
/HRD  
HD7-HD0  
RxS//CTS1. During Reset, this pin is initialized as the RxS  
pin. If CTS1E bit in the ASCI status register Ch1 (STAT1) is  
set to 1, /CTS1 function is selected. If CTS1E bit is set to 0,  
RxS function is selected. This pin is also multiplexed with  
PB7 based on bit 6 in the System Configuration Register.  
/TRxCB  
/RTxCB  
/SYNCB  
/CTSB  
/DCDB  
PA7-PA0  
The pins below are triple-multiplexed based upon the  
values of bit 1 and bit 2 of the System Configuration  
Register. The pins are configured as Table 2 specifies. On  
Reset, both bits 1 and 2 are 0, so /TEND1,TxS,CKS are  
selected.  
DS971820600  
3-11  
PS009801-0301  
Z80182/Z8L182  
ZILOG INTELLIGENT PERIPHERAL  
Zilog  
P R E L I M I N A R Y  
Ports B and C Multiplexed Pin Descriptions  
Ports B and C are pin multiplexed with the Z180 ASCI  
functions and part of ESCC channel A. The MUX function  
iscontrolledbybits7-5intheSystemConfigurationRegister.  
The MUX is organized as shown in Table 4.  
Note 1:  
WhenthePortfunction(PB1)isselected, theinternalZ180/  
CTS0 is always driven Low. This ensures that the ASCI  
channel 0 of the Z180MPU is enabled to transmit data.  
Table 4. Multiplexed Port Pins  
Note 2:  
Interrupt Edge /Pin MUX register, bit 3 chooses between  
the /MWR or PC2//RTSA combination; the System  
Configuration Register bit 7 chooses between PC2 and  
/RTSA.  
Port Mode  
Function  
ASCI/ESCC Mode  
Function  
PB7  
RxS,/CTS1  
RxA1  
TxA1  
PB6 Select with bit 6=1  
PB5 System Config Reg.  
Refer to Table 5 for the 1st, 2nd and 3rd pin functions.  
PB4  
RxA0  
PB3  
TxA0  
PB2 Select with bit 5=1  
/DCD0  
PB1 System Config Reg.  
PB0  
PC7  
/CTS0 (Note 1)  
/RTS0  
Always Reads /INT2 Ext.  
Status  
PC6  
Always Reads /INT1 Ext.  
Status  
PC5  
PC4  
/W//REQA  
/SYNCA  
PC3 Select with bit 7=1  
PC2 System Config Reg.  
PC1  
PC0  
/DTR//REQA  
/RTSA (Note 2)  
/CTSA  
/DCDA  
DS971820600  
3-12  
PS009801-0301  
Z80182/Z8L182  
Zilog  
ZILOG INTELLIGENT PERIPHERAL  
P R E L I M I N A R Y  
Table 5. Primary, Secondary and Tertiary Pin Functions  
Pin Number  
1st  
2nd  
3rd  
MUX  
VQFP  
QFP  
Function  
Function  
Function  
Control  
1
2
3
4
5
4
5
6
7
8
ST  
A0  
A1  
A2  
A3  
6
7
8
9
9
A4  
A5  
A6  
A7  
A8  
10  
11  
12  
13  
10  
11  
12  
13  
14  
15  
14  
15  
16  
17  
18  
A9  
A10  
A11  
A12  
VSS  
16  
17  
18  
19  
20  
19  
20  
21  
22  
23  
A13  
A14  
A15  
A16  
A17  
21  
22  
23  
24  
25  
24  
25  
26  
27  
28  
A18/TOUT  
V
AD1D9  
D0  
D1  
26  
27  
28  
29  
30  
29  
30  
31  
32  
33  
D2  
D3  
D4  
D5  
D6  
31  
32  
33  
34  
35  
34  
35  
36  
37  
38  
D7  
/RTS0  
/CTS0  
/DCD0  
TxA0  
PB0  
PB1  
PB2  
PB3  
SYS CONF REG Bit 5  
SYS CONF REG Bit 5  
SYS CONF REG Bit 5  
SYS CONF REG Bit 5  
36  
37  
38  
39  
40  
39  
40  
41  
42  
43  
RxA0  
TxA1  
RxA1  
RxS//CTS1  
CKA0//DREQ0  
PB4  
PB5  
PB6  
PB7  
SYS CONF REG Bit 5  
SYS CONF REG Bit 6  
SYS CONF REG Bit 6  
SYS CONF REG Bit 6  
DS971820600  
3-13  
PS009801-0301  
Z80182/Z8L182  
ZILOG INTELLIGENT PERIPHERAL  
Zilog  
P R E L I M I N A R Y  
MULTIPLEXED PIN DESCRIPTIONS (Continued)  
Table 5. Primary, Secondary and Tertiary Pin Functions (Continued)  
Pin Number  
1st  
2nd  
3rd  
MUX  
VQFP  
QFP  
Function  
Function  
Function  
Control  
41  
42  
43  
44  
45  
44  
45  
46  
47  
48  
VSS  
CKA1//TEND0  
TxS  
CKS  
/DTR//REQB  
/W//REQB  
HINTR  
/HTxRDY  
SYS CONF REG Bit 1,2  
SYS CONF REG Bit 1,2  
/DREQ1  
46  
47  
48  
49  
50  
49  
50  
51  
52  
53  
VDD  
/TEND1  
/RAMCS  
/ROMCS  
EV1  
/RTSB  
/HRxRDY  
SYS CONF REG Bit 1,2  
51  
52  
53  
54  
55  
54  
55  
56  
57  
58  
EV2  
PA0  
PA1  
PA2  
PA3  
HD0  
HD1  
HD2  
HD3  
SYS CONF REG Bit 1  
SYS CONF REG Bit 1  
SYS CONF REG Bit 1  
SYS CONF REG Bit 1  
56  
57  
58  
59  
60  
59  
60  
61  
62  
63  
PA4  
PA5  
PA6  
PA7  
HD4  
HD5  
HD6  
HD7  
PC5  
SYS CONF REG Bit 1  
SYS CONF REG Bit 1  
SYS CONF REG Bit 1  
SYS CONF REG Bit 1  
SYS CONF REG Bit 7  
/W//REQA  
61  
62  
63  
64  
65  
64  
65  
66  
67  
68  
/DTR//REQA  
/MWR  
/CTSA  
/DCDA  
/SYNCA  
PC3  
PC2  
PC1  
PC0  
PC4  
SYS CONF REG Bit 7  
SYS CONF REG Bit 7 *  
SYS CONF REG Bit 7  
SYS CONF REG Bit 7  
SYS CONF REG Bit 7  
RTSA  
66  
67  
68  
69  
70  
69  
70  
71  
72  
73  
/RTxCA  
VSS  
/IOCS  
IEI  
IEO  
INT EDG/PIN REG Bit 2  
VDD  
DS971820600  
3-14  
PS009801-0301  
Z80182/Z8L182  
Zilog  
ZILOG INTELLIGENT PERIPHERAL  
P R E L I M I N A R Y  
Table 5. Primary, Secondary and Tertiary Pin Functions (Continued)  
Pin Number  
1st  
2nd  
3rd  
MUX  
VQFP  
QFP  
Function  
Function  
Function  
Control  
71  
72  
73  
74  
75  
74  
75  
76  
77  
78  
RxDA  
/TRxCA  
TxDA  
/DCDB  
/CTSB  
/HRD  
/HWR  
SYS CONF REG Bit 1  
SYS CONF REG Bit 1  
76  
77  
78  
79  
80  
79  
80  
81  
82  
83  
TxDB  
/TRxCB  
RxDB  
/RTxCB  
/SYNCB  
/HDDIS  
HA0  
HA1  
HA2  
/HCS  
SYS CONF REG Bit 1  
SYS CONF REG Bit 1  
SYS CONF REG Bit 1  
SYS CONF REG Bit 1  
SYS CONF REG Bit 1  
81  
82  
83  
84  
85  
84  
85  
86  
87  
88  
/HALT  
/RFSH  
/IORQ  
/MRD  
E
/MREQ  
INT EDG/PIN REG Bit 3  
86  
87  
88  
89  
90  
89  
90  
91  
92  
93  
/M1  
/WR  
/RD  
PHI  
VSS  
91  
92  
93  
94  
95  
94  
95  
96  
97  
98  
XTAL  
EXTAL  
/WAIT  
/BUSACK  
/BUSREQ  
96  
97  
98  
99  
100  
99  
100  
1
2
3
/RESET  
/NMI  
/INT0  
/INT1  
/INT2  
PC6**  
PC7**  
Notes:  
* Also controlled by Interrupt Edge/Pin MUX Register  
** PC7 and PC6 are inputs only and can read values of /INT1 and /INT2.  
DS971820600  
3-15  
PS009801-0301  
Z80182/Z8L182  
ZILOG INTELLIGENT PERIPHERAL  
Zilog  
P R E L I M I N A R Y  
Z80182/Z8L182 FUNCTIONAL DESCRIPTION  
Functionally, the on-chip Z182 MPU and ESCCare the  
same as the discrete devices (Figure 1). Therefore, for a  
detailed description of each individual unit, refer to the  
Product Specification/Technical Manuals of each discrete  
product. The following subsections describe each of the  
individual units of the Z182.  
Z182 MPU FUNCTIONAL DESCRIPTION  
This unit provides all the capabilities and pins of the Zilog  
Z8S180 MPU (Static Z80180 MPU). Figure 4 shows the  
S180 MPU Block Diagram of the Z182. This allows 100%  
software compatibility with existing Z180(and Z80®)  
software.Thefollowingisanoverviewofthemajorfunctional  
units of the Z182.  
Bus State Control  
CPU  
Interrupt  
Timing &  
Clock  
Generator  
Ø
16-Bit  
Programmable  
Reload Timers  
(2)  
/DREQ1  
/TEND  
DMACs  
(2)  
A18  
/TOUT  
TxS  
RxS//CTS  
CKS  
TxA0  
Clocked  
Serial I/O  
Port  
CKA0 /DREQ0  
Asynchronous  
SCI  
RxA0  
(Channel 0)  
/RTS0  
/CTS0  
/DCD0  
TxA1  
Asynchronous  
SCI  
(Channel 1)  
MMU  
CKA1 /TEND0  
RxA1  
A19-A0  
D7-D0  
Figure 4. S180 MPU Block Diagram of Z182  
DS971820600  
3-16  
PS009801-0301  
Z80182/Z8L182  
Zilog  
ZILOG INTELLIGENT PERIPHERAL  
P R E L I M I N A R Y  
Z182 CPU  
Memory Management Unit (MMU)  
The Z182 CPU is 100% software compatible with the Z80®  
CPU and has the following additional features:  
The Memory Management Unit (MMU) allows the user to  
map the memory used by the CPU (64 Kbytes of logical  
addressing space) into 1 Mbyte of physical addressing  
space. The organization of the MMU allows object code  
compatibility with the Z80 CPU while offering access to an  
extended memory space. This is accomplished by using  
an effective common area-banked area scheme.  
Faster Execution Speed. The Z182 CPU is “fine tuned,”  
making execution speed, on average, 10% to 20% faster  
than the Z80 CPU.  
Enhanced DRAM Refresh Circuit. Z182 CPU’s DRAM  
refresh circuit does periodic refresh and generates an  
8-bit refresh address. It can be disabled or the refresh  
period adjusted, through software control.  
DMA Controller  
The Z182 MPU has two DMA controllers. Each DMA  
controller provides high-speed data transfers between  
memory and I/O devices. Transfer operations supported  
are memory-to-memory, memory-to/from-I/O, and I/O-to-  
I/O. Transfer modes supported are request, burst, and  
cycle steal. The DMA can access the full 1 Mbytes  
addressing range with a block length up to 64 Kbytes and  
can cross over 64K boundaries.  
Enhanced Instruction Set. The Z182 CPU has seven  
additional instructions to those of the Z80 CPU, which  
include the MLT (Multiply) instruction.  
HALT and Low Power Modes of Operation. The Z182  
CPU has HALT and Low Power modes of operation, which  
are ideal for the applications requiring low power  
consumption like battery operated portable terminals.  
Asynchronous Serial Communication Interface  
(ASCI)  
This unit provides two individual full-duplex UARTs. Each  
channel includes a programmable baud rate generator  
and modem control signals. The ASCI channels also  
support a multiprocessor communication format.  
System Stop Mode. When the Z182 is in System Stop  
mode, it is only the Z180 MPU that is in STOP mode.  
Standby and Idle Mode. Please refer to the Z8S180  
Product Specification for additional information on these  
two additional Low Power modes.  
Programmable Reload Timer (PRT)  
The Z182 MPU has two separate Programmable Reload  
Timers, each containing a 16-bit counter (timer) and count  
reload register. The time base for the counters is system  
clock divided by 20. PRT channel 1 provides an optional  
output to allow for waveform generation.  
Instruction Set. The instruction set of the Z182 CPU is  
identical to the Z180. For more details about each  
transaction, please refer to the Product Specification/  
Technical Manual for the Z180/Z80 CPU.  
Clocked Serial I/O (CSI/O)  
Z182 CPU Basic Operation  
TheCSI/Ochannelprovidesahalf-duplexserialtransmitter  
and receiver. This channel can be used for simple high-  
speed data connection to another CPU or MPU.  
Z182 CPU’s basic operation consists of the following  
events. These are identical to the Z180 MPU. For more  
details about each operation, please refer to the Product  
Specification/Technical Manual for the Z180.  
Programmable Wait State Generator  
To ease interfacing with slow memory and I/O devices, the  
Z182 MPU unit has a programmable wait state generator.  
ByprogrammingtheDMA/WAITControlRegister(DCNTL),  
uptothreewaitstatesareautomaticallyinsertedinmemory  
and I/O cycles. This unit also inserts wait states during on-  
chip DMA transactions. When using RAMCS and ROMCS  
wait state generators, the wait state controller with the  
mostprogrammedwaitstateswilldeterminethenumberof  
wait states inserted.  
Operation Code Fetch Cycle  
Memory Read/Write Operation  
Input/Output Operation  
Bus Request/Acknowledge Operation  
Maskable Interrupt Request Operation  
Trap and Non-Maskable Interrupt Request Operation  
HALT and Low Power Modes of Operation  
Reset Operation  
DS971820600  
3-17  
PS009801-0301  
Z80182/Z8L182  
ZILOG INTELLIGENT PERIPHERAL  
Zilog  
P R E L I M I N A R Y  
Z85230 ESCCFUNCTIONAL DESCRIPTION  
The Zilog Enhanced Serial Communication Controller  
ESCCisadualchannel,multiprotocoldatacommunication  
peripheral. The ESCC functions as a serial-to-parallel,  
parallel-to-serial converter/controller. The ESCC can be  
software-configured to satisfy a wide variety of serial  
communicationsapplications.Thedevicecontainsavariety  
of new, sophisticated internal functions including on-chip  
baudrategenerators,digitalphase-lockloops,andcrystal  
oscillators,whichdramaticallyreducetheneedforexternal  
logic.  
TheESCC(EnhancedSCC)ispinandsoftwarecompatible  
to the CMOS SCC version. The following enhancements  
were made to the CMOS SCC:  
Deeper Transmit FIFO (4 bytes)  
Deeper Receive FIFO (8 bytes)  
Programmable FIFO interrupt and DMA request level  
Seven enhancements to improve SDLC link layer  
supports:  
The ESCC handles asynchronous formats, synchronous  
byte-oriented protocols such as IBM® Bisync, and  
synchronous bit-oriented protocols such as HDLC and  
IBM SDLC. This versatile device supports virtually any  
serial data transfer application (telecommunication, LAN,  
etc.)  
- Automatic transmission of the opening flag  
- Automatic reset of Tx Underrun/EOM latch  
- Deactivation of /RTS pin after closing flag  
- Automatic CRC generator preset  
- Complete CRC reception  
- TxD pin automatically forced High with NRZI  
encoding when using mark idle  
- Status FIFO handles better frames with an ABORT  
- Receive FIFO automatically unlocked for special  
receive interrupts when using the SDLC status FIFO  
The device can generate and check CRC codes in any  
synchronous mode and can be programmed to check  
dataintegrityinvariousmodes.TheESCCalsohasfacilities  
for modem control in both channels in applications where  
these controls are not needed, the modem controls can be  
used for general-purpose I/O.  
Delayed bus latching for easier microprocessor  
interface  
With access to 14 Write registers and 7 Read registers per  
channel (number of the registers varies depending on the  
version), the user can configure the ESCC to handle all  
synchronous formats regardless of data size, number of  
stop bits, or parity requirements. The ESCC also  
accommodates all synchronous formats including  
character, byte, and bit-oriented protocols.  
NewprogrammablefeaturesaddedwithWriteRegister  
7' (WR seven prime)  
Write registers, 3, 4, 5 and 10 are now readable  
Read register 0 latched during access  
Within each operating mode, the ESCC also allows for  
protocol variations by checking odd or even parity bits,  
character insertion or deletion, CRC generation, checking  
breakandabortgenerationanddetection, andmanyother  
protocol-dependent features.  
DPLL counter output available as jitter-free transmitter  
clock source  
Enhanced /DTR, /RTS deactivation timing  
DS971820600  
3-18  
PS009801-0301  
Z80182/Z8L182  
Zilog  
ZILOG INTELLIGENT PERIPHERAL  
P R E L I M I N A R Y  
The following features are common to both the ESCC and  
the CMOS SCC:  
NRZ, NRZI or FM encoding/decoding. Manchester  
Code Decoding (Encoding with External Logic).  
Two independent full-duplex channels  
Baud Rate Generator in each Channel  
DigitalPhase-LockedLoop(DPLL)forClockRecovery  
Crystal Oscillator  
Synchronous/Isochronous data rates:  
- Up to 1/4 of the PCLK using external clock source  
- Up to 5 Mbits/sec at 20 MHz PCLK (ESCC).  
Asynchronous capabilities  
- 5, 6, 7 or 8 bits/character (capable of handling  
4 bits/character or less)  
The following features are implemented in the ESCCfor  
the Z80182/Z8L182 only:  
- 1, 1.5, or 2 stop bits  
New 32-bit CRC-32 (Ethernet Polynomial)  
- Odd or even parity  
- Times 1, 16, 32 or 64 clock modes  
- Break generation and detection  
- Parity, overrun and framing error detection  
ESCC Programmable Clock  
- programmed to be equal to system clock  
divided by one or two  
- programmed by Z80182 Enhancement Register  
Byte oriented synchronous capabilities:  
- Internal or external character synchronization  
- One or two sync characters (6 or 8 bits/sync  
character) in separate registers  
Note: The ESCCprogrammable clock must be  
programmedtodivide-by-twomodewhenoperatingabove  
the following conditions:  
- Automatic Cyclic Redundancy Check (CRC)  
generation/detection  
– PHI > 20 MHz at 5.0V  
– PHI > 10 MHz at 3.0V  
SDLC/HDLC capabilities:  
- Abort sequence generation and checking  
- Automatic zero insertion and detection  
- Automatic flag insertion between messages  
- Address field recognition  
- I-field residue handling  
- CRC generation/detection  
- SDLC loop mode with EOP recognition/loop entry  
and exit  
DS971820600  
3-19  
PS009801-0301  
Z80182/Z8L182  
ZILOG INTELLIGENT PERIPHERAL  
Zilog  
P R E L I M I N A R Y  
Z85230 ESCCBLOCK DIAGRAM  
For a detailed description of the Z85230 ESCC, refer to the ESCC Technical Manual. The following figure is the block  
diagram of the discrete ESCC, which was integrated into the Z182. The /INT line is internally connected to "INTO of the  
Z182.  
Transmit Logic  
Transmit FIFO  
Transmit MUX  
TxDA  
4 Bytes  
Data Encoding & CRC  
Generation  
Channel A  
Exploded View  
/TRxCA  
/RTxCA  
Receive and Transmit Clock Multipexer  
Digital  
Phase-Locked  
Loop  
Crystal  
Oscillator  
Amplifier  
Baud Rate  
Generator  
/CTSA  
/DCDA  
Modem/Control Logic  
Receive Logic  
/SYNCA  
/RTSA  
/DTRA//REQA  
Rec. Status* Rec. Data*  
FIFO FIFO  
Receive MUX  
RxDA  
CRC Checker,  
Data Decode &  
Sync Character  
Detection  
SDLC Frame Status FIFO  
10 x 19  
*
8 bytes each  
Internal  
Control  
Logic  
Channel A  
Register  
Channel A  
Databus  
Control  
CPU & DMA  
Bus Interface  
/INT  
/INTACK  
IEI  
Channel B  
Interrupt  
Control  
Logic  
Channel B  
Register  
Interrupt  
Control  
IEO  
Figure 5. ESCC Block Diagram  
DS971820600  
3-20  
PS009801-0301  
Z80182/Z8L182  
Zilog  
16550 MIMIC INTERFACE FUNCTIONAL DESCRIPTION  
ZILOG INTELLIGENT PERIPHERAL  
P R E L I M I N A R Y  
The Z80182/Z8L182 has a 16550 MIMIC interface that  
allows it to mimic the 16550 device. It has all the interface  
pins necessary to connect to the PC/XT/AT bus. It contains  
thecompleteregistersetofthe partwiththesameinterrupt  
structure. The data path allows parallel transfer of data to  
and from the register set by the internal Z80180 of the  
Z80182/Z8L182. There is no shift register associated with  
the mimic of the 16550 UART. This interface saves the  
application from doing a serial transfer before performing  
data compression or error correction on the data.  
Two eight-bit timers are also available to control the data  
transfer rate of the 16550 MIMIC interface. Their input is  
tied to the ESCC channel B divide clock, so a down count  
of 24 bits is possible. An additional two eight bit timers are  
available for programming the FIFO timeout feature (Four  
Character Time Emulation) for both Receive and Transmit  
FIFO’s.  
The16550MIMICinterfacesupportsthePC/XT/ATinterrupt  
structure as well as an additional mode that allows for a  
wired Logic AND interrupt structure.  
Control of the register set is maintained by six priority  
encoded interrupts to the Z80182/Z8L182. When the PC/  
XT/AT writes to THR, MCR, LCR, DLL, DLM, FCR or reads  
the RBR, an interrupt to the Z80182/Z8L182 is generated.  
Eachinterruptcanbeindividuallymaskedofforallinterrupts  
can be disabled by writing a single bit. Both mode 0 and  
mode 2 interrupts are supported by the 16550 MIMIC  
interface.  
The 16550 MIMIC interface is also capable of high speed  
parallel DMA transfers by using two control lines and the  
transmitandreceiveregistersofthe16550MIMICinterface.  
All registers of the 16550 MIMIC interface are accessible  
in any page of I/O space since only the lowest eight  
address lines are decoded. See Figure 6 for a block  
diagram of the 16550 MIMIC interface.  
16550 MIMIC Side  
or PC Side Interface  
MPU Side  
Interface  
Receive  
Timer  
4
PC  
Z80180  
Address  
Addr/Decode  
Control/  
Config  
16550 MIMIC  
Register Set  
Transmit  
Timer  
Register  
8
PC  
Databus  
Z80180  
IRQ  
Control  
6
8
Databus  
Z80180  
Databus  
2
PC DMA CNTL  
PC IRQ  
DMA  
Control  
2
1
PC IRQ  
Z80180  
DMA  
Control  
Figure 6. 16550 MIMIC Block Diagram  
DS971820600  
3-21  
PS009801-0301  
Z80182/Z8L182  
ZILOG INTELLIGENT PERIPHERAL  
Zilog  
P R E L I M I N A R Y  
16550 MIMIC FIFO DESCRIPTION  
The receiver FIFO consists of a 16-word FIFO capable of  
storingeightdatabitsandthreeerrorbitsforeachcharacter  
stored (Figure 7). Parity error, Framing error and Break  
detect bits are stored along with the data bits by copying  
their value from three shadow bits that are Write Only bits  
for the Z80180 MPU LSR address. The three shadow bits  
are cleared after they are copied to the FIFO memory. In  
FIFO mode, to write error bits into the receiver FIFO, the  
MPU must first write the Parity, Framing and Break detect  
status to the Line Status Register (shadow bits) and then  
write the character associated into the receiver buffer. The  
data and error bits will then move into the same address in  
the FIFO. The error bits become available to the PC side of  
the interface when that particular location becomes the  
next address to read (top of FIFO). At that time, they may  
either be read by the PC by accessing them in the LSR, or  
they may cause an interrupt to the PC interface if so  
enabled.Theerrorbitsaresetbytheerrorstatusofthebyte  
at the top of the FIFO, but may only be cleared by reading  
the LSR. If successive reads of the receiver FIFO are  
performed without reading the LSR, the status bits will be  
set if any of the bytes read have the respective error bit set.  
See Table 6 for the setting and clearing of the Line Status  
Register bits.  
error  
3
MPU Write  
LSR Shadow  
B2-B4  
3
PC Read  
LSR  
B2-B4  
Internal Clock  
Internal Clock  
R
16x3  
Error  
Bits  
W
R
I
T
E
16x8  
E
A
D
Data Bits  
PC  
Cntrl  
Line  
MPU  
CNTL  
Line  
Sync  
Sync  
8
B
U
F
F
E
R
B
U
F
F
E
R
8
5
MPU  
PC Side  
Databus  
(PC Side Read)  
Databus  
(MPU Side Write)  
Write  
Pointer  
Read  
Pointer  
ALU  
FIFO Control  
Register  
Internal Clock  
PC  
IRQ  
MPU  
IRQ  
16550  
MIMIC or  
PC Side  
Interface  
MPU Side  
Interface  
Figure 7. 16550 MIMIC Receiver FIFO Block Diagram  
DS971820600  
3-22  
PS009801-0301  
Z80182/Z8L182  
Zilog  
ZILOG INTELLIGENT PERIPHERAL  
P R E L I M I N A R Y  
Table 6. 16550 Line Status Register  
How to Set  
Error  
Description  
How to Clear  
Error in  
RCVR  
FIFO  
At least one data byte available  
in FIFO with one error  
At least one error in receiver  
FIFO  
When there are no more  
errors  
*TEMT  
Transmitter empty  
MPU writes a 1  
MPU writes a 0  
† *THRE  
Transmitter holding  
register is empty  
When MPU has  
read or emptied  
the holding register  
When holding register  
is not empty  
Break  
Detect  
Break occurs when  
received data input  
is held in logic-0  
MPU writes 1  
There is a  
PC-side read  
of the LSR  
for longer than a  
full word transmission  
Framing  
Error  
Received character  
did not have a valid  
stop bit  
MPU writes 1  
MPU writes 1  
There is a  
PC-side read  
of the LSR  
Parity  
Error  
Received character  
did not have correct  
even or odd parity  
There is a  
PC-side read  
of the LSR  
Overrun  
Error  
Overlapping received  
characters, thereby  
destroying the  
MPU makes  
two writes  
to receiver  
There is a  
PC-side read  
of the LSR  
previous character  
buffer register  
†Data  
Ready  
Indicates complete  
incoming data has  
been received  
MPU writes to  
RCVR FIFO or  
receiver buffer  
register  
Empty Receiver  
or Receiver FIFO  
Notes:  
* The TEMT and THRE bits take on different functions when  
TEMT/Double Buffer mode is enabled.  
† These signals are delayed to HOST when using character  
emulation delay.  
DS971820600  
3-23  
PS009801-0301  
Z80182/Z8L182  
ZILOG INTELLIGENT PERIPHERAL  
Zilog  
P R E L I M I N A R Y  
16550 MIMIC FIFO DESCRIPTION (Continued)  
The PC interface may be interrupted when 1, 4, 8 or 14  
bytes are available in the receiver FIFO by setting bits 6  
and 7 in the FCR (FIFO Control Register, PC address 02H)  
totheappropriatevalue.IftheFIFOisnotempty,butbelow  
the above trigger value, a timeout interrupt is available if  
the receiver FIFO is not written by the MPU or read by the  
PC from an interval determined by the Character Timeout  
Timer. This is an additional Timer with MPU access only  
that is used to emulate the 16550 4 character timeout  
delay.  
The timer receives the ESCC /TRxCB as its input clock.  
Software must determine the correct values to program  
into the Receiver Timeout register and the ESCC TRxCB to  
achieve the correct delay interval for timeout. These  
interrupts are cleared by the FIFO reaching the trigger  
point or by resetting the Timeout Interval Timer by FIFO  
MPU write or PC read access.  
With FIFO mode enabled, the MPU is interrupted when the  
receiver FIFO is empty, corresponding to bit 5 being set  
in the IUS/IP register (MPU access only). This bit  
corresponds to a PC read of the receive buffer in non-FIFO  
(16450) mode. The interrupt source is cleared when the  
FIFO becomes non-empty or the MPU reads the IUS/IP  
register.  
The Receive FIFO timeout timers are designed to reload  
and begin countdown after every read or write of the Rx  
FIFO, regardless of the Rx trigger level or number of bytes  
intheFIFO.Therefore,itispossibletogetTimeoutinterrupts  
moreoftenthanReceivedatainterrupts.Inordertoclosely  
emulate a 16550, a receive timeout timer enhancement is  
provided.Whenenablingthisfeature,thetimeouttimerwill  
not begin counting down until the character emulation  
timer for each byte of data in the Rx FIFO has expired.  
Note: Enabling this feature will facilitate increased  
16550 compatibility but may impede throughput. If the  
Receive Timeout interrupt occurs, the PC HOST will only  
be allowed to read up to 4-5 consecutive characters  
before the Data Ready bit is forced to zero (even if there  
is still more data in FIFO). This is required to maintain  
character pacing.  
The transmitter FIFO is 16-byte FIFO with PC write and  
MPU read access (Figure 8). In FIFO mode, the PC  
receives an interrupt when the transmitter becomes empty  
correspondingtobit5beingsetintheLSR. Thisbitandthe  
interrupt source are cleared when the transmit FIFO  
becomesnon-emptyortheInterruptIdentificationRegister  
(IIR) register is read by the PC.  
Internal Clock  
R
Internal Clock  
W
R
16x8  
Data Bits  
E
A
D
I
Sync  
Sync  
PC  
Cntrl  
Line  
MPU  
CNTL  
Line  
T
E
B
U
F
F
E
R
B
U
F
F
E
R
8
5
8
PC Side  
Databus  
(PC Side Write)  
MPU  
Databus  
(MPU Side Read)  
Write  
Pointer  
Read  
Pointer  
ALU  
Internal  
Clock  
FIFO  
Control  
Register  
PC  
IRQ  
MPU  
IRQ  
16550  
MPU Side  
Interface  
MIMIC or  
PC Side  
Interface  
Figure 8. 16550 MIMIC Transmitter FIFO Block Diagram  
DS971820600  
3-24  
PS009801-0301  
Z80182/Z8L182  
Zilog  
ZILOG INTELLIGENT PERIPHERAL  
P R E L I M I N A R Y  
which is an additional 8-bit timer with SCC TxRCB as the  
input source. If the transmitter FIFO is non-empty and no  
PCwriteorMPUreadoftheFIFOhastakenplacewithinthe  
timer interval, a timeout occurs causing a corresponding  
interrupt to the MPU.  
On the MPU interface, the transmitted data available can  
be programmed to interrupt the MPU on 1, 4, 8 or 14 bytes  
of available data by seeing the appropriate value in the  
MPU FSCR control register (MPU write only xxECH) bits 6  
and 7. A timeout feature exists, Transmit Timeout Timer,  
Z80182/Z8L182 MIMIC SYNCHRONIZATION CONSIDERATIONS  
Because of the asynchronous nature of the FIFO’s on the  
MIMIC, some synchronization plan must be provided to  
prevent conflict from the dual port accesses of the MPU  
and the PC.  
Another potential problem is that of simultaneous access  
of the MPU and PC to any of the various ‘mailbox’ type  
registers. This is solved by dual buffering of the various  
read/write registers. During a read access by either the  
MPU or PC to a mailbox register, the data in the output or  
slave portion of the buffered register is not permitted to  
change. Any write that might take place during this time  
willbestoredintheinputofmasterpartoftheregister. The  
correspondingstatus/interruptisresetappropriatelybased  
on the write having followed the read to the register. For  
example,theIUS/IPbitfortheLCRwritewillnotbecleared  
by the MPU read of the LCR if a simultaneous write to the  
LCR by the PC takes place. Instead the LSR data will  
change after the read access and IUS/IP bit 3 remains at  
logic 1.  
To solve this problem, I/O to the FIFO is buffered and the  
buffers allow both PC and MPU to access the FIFO  
asynchronously. Read and Write requests are then  
synchronizedbymeansoftheMPUclock.Incomingsignals  
are buffered in such a way that metastable input levels are  
stabilized to valid 1 or 0 levels. Actual transfers to and from  
the buffers, from and to the FIFO memory, are timed by the  
MPU clock. ALU evaluation is performed on a different  
phase than the transfer to ensure stable pointer values.  
DS971820600  
3-25  
PS009801-0301  
Z80182/Z8L182  
ZILOG INTELLIGENT PERIPHERAL  
Zilog  
P R E L I M I N A R Y  
Z80182 MIMIC DOUBLE BUFFERING FOR THE TRANSMITTER  
The Z80182 Rev DA implements double buffering for the  
transmitterin16450modeandsetstheTEMTbitintheLSR  
Register automatically.  
6. MPU reads TSR buffer;  
7. TEMT bit in LSR Register for MPU is set with no delay  
whenever the TSR buffer is empty;  
Whenthisfeatureisenabledandcharacterdelayemulation  
is being used (see Figure 9):  
8. WhentheTSRbufferisreadbyMPUandTHRRegister  
is empty and one character delay timer reaches zero,  
the TEMT bit in the LSR Register for Host is set from 0  
to 1.  
1. The PC THRE bit in the LSR Register is set when the  
THR Register is empty;  
2. PC Host writes to the 16450 THR Register;  
The PC THRE bit in the LSR Register is reset whenever the  
THR Register is full and set whenever THR Register is  
empty.  
3. Whenever the Z80182 TSR buffer is empty and one  
character delay timer is in a timed-out state, the byte  
from the THR Register is transferred to the TSR buffer;  
the timer is in timed-out state after FIFO Reset or after  
Host TEMT is set. This allows a dual write to THR when  
Host TEMT is set.  
MPU IREQ and DMA Request for the transmit data is  
trigger whenever TSR buffer is full and cleared whenever  
TSR buffer is empty.  
If character delay emulation is not used the TEMT bit in the  
LSR Register is set whenever both the THR Register and  
the TSR buffer are both empty. The Host TEMT bit is clear  
if there is data in either the TSR buffer of THR Register.  
4. Restartcharacterdelaytimer(timerreloadsandcounts  
down) with byte transfer from THR Register to the TSR  
buffer;  
5. Whenever the TSR buffer is full, the TEMT bit in MPU  
LSR Register is reset with no delay;  
Host Write  
16450  
THR  
Register  
Empty/Full  
Host & MPU THRE =  
1
0
THR to TSR  
delay  
transfer  
Byte Transfer if:  
- THRE=0;  
- TSR = 1;  
- Character delay timer is timed out.  
Note: Timer reloads and counts down  
whenever data is transferred from THR to TSR.  
TSR  
Transmit  
Shift Reg.  
Emulation  
Empty/Full  
(MPU TEMT) TSRE =  
Added TSR Buffer for the  
transmit data  
1
0
Host TEMT = 1 if - THRE = 1  
- TSRE = 1  
- Emulation delay timer is timed out  
Note: MPU sees TSR bit in the LSR Register as TEMT bit  
Figure 9. TEMT Emulation Logic Implementation  
DS971820600  
3-26  
PS009801-0301  
Z80182/Z8L182  
Zilog  
ZILOG INTELLIGENT PERIPHERAL  
P R E L I M I N A R Y  
PARALLEL PORTS FUNCTIONAL DESCRIPTION  
The Ports are controlled through two registers: the Port  
Direction Control Register and the Port Data Register.  
(Please see register description for Ports A, B and C).  
The Z80182/Z8L182 has three 8-bit bi-directional Ports.  
Each bit is individually programmable for input or output  
(with the exception of PC6 and PC7 which are inputs only).  
PROGRAMMING  
The following subsections explain and define the  
parametersforI/OAddressassignments. Thethreetables  
in this section describe the mapping of the common  
registers shared by the MPU and the 16550 MIMIC. The  
MPU address refers to the I/O address as accessed from  
the MPU side (the Z180MPU interface side of the 16550  
MIMIC). Note that only the lowest eight address lines are  
decoded for Z182 peripheral access. The full sixteen  
address lines are decoded for on-chip Z180 MPU access.  
The PC address (coined because the UART is common in  
PCs)istheaddressneededtoaccesstheMIMICregisters  
through the MIMIC interface signals. The MIMIC interface  
signals are multiplexed with the ESCC channel B and the  
Port A signals, and must be activated through the System  
Configuration Register and the Interrupt Edge/Pin MUX  
Register.  
Table 7. Z80182/Z8L182 MPU Registers  
MPU Addr  
Register Name  
PC Addr  
Z80182/Z8L182 MPU Control Registers  
0000H to 00x3FH  
None  
(Relocatable to 0040H to 007FH  
or 0080H to 00BFH)  
Note:  
“x” indicates don’t care condition  
Table 8. Z80182/Z8L182 MIMIC Register MAP  
Register Name  
MPU Addr/Access  
PC Addr/Access  
MMC MIMIC Master Control Register  
IUS/IP Interrupt Pending  
IE Interrupt Enable  
xxFFH  
xxFEH  
xxFDH  
xxFCH  
xxFAH  
xxFBH  
xxECH  
xxEAH  
xxEBH  
xxF0H  
xxF0H  
xxF1H  
None  
xxE9H  
XXE9H  
xxF3H  
xxF4H  
xxF5H  
xxF6H  
xxF7H  
xxF8H  
xxF9H  
R/W  
R/Wb7  
R/W  
R/W  
R/W  
R/W  
R/W7-4  
R/W  
None  
None  
None  
None  
None  
None  
None  
None  
None  
00H  
00H  
01H  
02H  
02H  
None  
03H  
04H  
05H  
06H  
IVEC Interrupt Vector  
TTCR Transmit Time Constant  
RTCR Receive Time Constant  
FSCR FIFO Status and Control  
RTTC Receive Timeout Time Constant  
TTTC Transmit Timeout Time Constant  
RBR Receive Buffer Register  
THR Transmit Holding Register  
IER Interrupt Enable Register  
IIR Interrupt Identification  
FCR FIFO Control Register  
MM REGISTER  
LCR Line Control Register  
MCR Modem Control Register  
LSR Line Status Register  
MSR Modem Status Register  
SCR Scratch Register  
R/W  
W only  
R only  
R only  
DLAB=0 R only  
DLAB=0 W only  
DLAB=0 R/W  
R only  
R only  
W only  
R only  
W only  
R/W  
R/W  
R only  
R only  
R/W  
DLAB=1 R/W  
DLAB=1 R/W  
R only  
R/Wb6432  
R/Wb7-4  
R only  
R only  
R only  
07H  
00H  
01H  
DLL Divisor Latch (LSByte)  
DLM Divisor Latch (MSByte)  
DS971820600  
3-27  
PS009801-0301  
Z80182/Z8L182  
ZILOG INTELLIGENT PERIPHERAL  
Zilog  
P R E L I M I N A R Y  
PROGRAMMING (Continued)  
Table 9. Z80182/Z8L182 ESCC, PIA and MISC Registers  
MPU Addr/Access  
Register Name  
PC Addr/Access  
WSG Chip Select Register  
Z80182 Enhancements Register  
PC Data Direction Register  
PC Data Register  
Interrupt Edge/Pin MUX Control  
ESCC Chan A Control Register  
ESCC Chan A Data Register  
ESCC Chan B Control Register  
ESCC Chan B Data Register  
PB Data Direction Register  
PB Data Register  
RAMUBR RAM Upper Boundary Register  
RAMLBR RAM Lower Boundary Register  
ROM Address Boundary Register  
PA Data Direction Register  
PA Data Register  
xxD8H  
xxD9H  
xxDDH  
xxDEH  
xxDFH  
xxE0H  
xxE1H  
xxE2H  
xxE3H  
xxE4H  
xxE5H  
xxE6H  
xxE7H  
xxE8H  
xxEDH  
xxEEH  
xxEFH  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
System Configuration Register  
DS971820600  
3-28  
PS009801-0301  
Z80182/Z8L182  
Zilog  
ZILOG INTELLIGENT PERIPHERAL  
P R E L I M I N A R Y  
Z182 MPU CONTROL REGISTERS  
Figures 10 through 50 refer to the Z80182/Z8L182 MPU  
Control registers. For additional information, refer to the  
Z8S180 Product Specification and Technical Manual.  
ASCI CHANNELS CONTROL REGISTERS  
CNTLA0  
Addr 00H  
MPBR/  
EFR  
MPE  
Bit  
RE  
TE  
/RTS0  
MOD2 MOD1 MOD0  
Upon RESET  
R/W  
0
0
0
1
0
0
0
x
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
MODE Selection  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Start + 7-Bit Data + 1 Stop  
Start + 7-Bit Data + 2 Stop  
Start + 7-Bit Data + Parity + 1 Stop  
Start + 7-Bit Data + Parity + 2 Stop  
Start + 8-Bit Data + 1 Stop  
Start + 8-Bit Data + 2 Stop  
Start + 8-Bit Data + Parity + 1 Stop  
Start + 8-Bit Data + Parity + 2 Stop  
Read - Multiprocessor Bit Receive  
Write - Error Flag Reset  
Request To Send  
Transmit Enable  
Receive Enable  
Multiprocessor Enable  
Figure 10a. ASCI Control Register A (Ch. 0)  
DS971820600  
3-29  
PS009801-0301  
Z80182/Z8L182  
ZILOG INTELLIGENT PERIPHERAL  
Zilog  
P R E L I M I N A R Y  
ASCI CHANNELS CONTROL REGISTERS (Continued)  
Addr 01H  
MOD2 MOD1 MOD0  
CNTLA1  
MPE  
MPBR/  
EFR  
Bit  
CKA1D  
RE  
TE  
Upon RESET  
R/W  
0
0
0
1
x
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
MODE Selection  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Start + 7-Bit Data + 1 Stop  
Start + 7-Bit Data + 2 Stop  
Start + 7-Bit Data + Parity + 1 Stop  
Start + 7-Bit Data + Parity + 2 Stop  
Start + 8-Bit Data + 1 Stop  
Start + 8-Bit Data + 2 Stop  
Start + 8-Bit Data + Parity + 1 Stop  
Start + 8-Bit Data + Parity + 2 Stop  
Read - Multiprocessor Bit Receive  
Write - Error Flag Reset  
CKA1 Disable  
Transmit Enable  
Receive Enable  
Multiprocessor Enable  
Figure 10b. ASCI Control Register A (Ch. 1)  
DS971820600  
3-30  
PS009801-0301  
Z80182/Z8L182  
Zilog  
ZILOG INTELLIGENT PERIPHERAL  
P R E L I M I N A R Y  
Addr 02H  
CNTLB0  
/CTS/  
PS  
Bit  
MPBT MP  
PE0  
DR  
SS2  
SS1  
SS0  
Upon Reset  
R/W  
Invalid  
R/W  
0
0
0
1
1
1
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Clock Source and Speed Select  
Divide Ratio  
Parity Even or Odd  
Clear To Send/Prescale  
Multiprocessor  
Multiprocessor Bit Transmit  
† /CTS - Depending on the condition of /CTS pin.  
PS - Cleared to 0.  
General  
PS = 0  
PS = 1  
Divide Ratio  
(Divide Ratio = 10)  
(Divide Ratio = 30)  
SS, 2, 1, 0  
DR = 0 (x16)  
DR = 1 (x64)  
DR = 0 (x16)  
DR = 1 (x64)  
000  
001  
010  
011  
100  
101  
110  
111  
Ø ÷ 160  
Ø ÷ 320  
Ø ÷ 640  
Ø ÷ 1280  
Ø ÷ 2560  
Ø ÷ 5120  
Ø ÷ 10240  
Ø ÷ 640  
Ø ÷ 480  
Ø ÷ 960  
Ø ÷ 1920  
Ø ÷ 3840  
Ø ÷ 7680  
Ø ÷ 15360  
Ø ÷ 30720  
Ø ÷ 61440  
Ø ÷ 122880  
Ø ÷ 1280  
Ø ÷ 2580  
Ø ÷ 5120  
Ø ÷ 10240  
Ø ÷ 20480  
Ø ÷ 40960  
Ø ÷ 1920  
Ø ÷ 3840  
Ø ÷ 7680  
Ø ÷ 15360  
Ø ÷ 30720  
External Clock (Frequency < Ø ÷ 40)  
Figure 11. ASCI Control Register B (Ch. 0)  
DS971820600  
3-31  
PS009801-0301  
Z80182/Z8L182  
ZILOG INTELLIGENT PERIPHERAL  
Zilog  
P R E L I M I N A R Y  
ASCI CHANNELS CONTROL REGISTERS (Continued)  
Addr 03H  
CNTLB1  
/CTS/  
PS  
Bit  
MPBT MP  
PE0  
DR  
SS2  
SS1  
SS0  
Upon Reset  
R/W  
Invalid  
R/W  
0
0
0
0
1
1
1
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Clock Source and Speed Select  
Divide Ratio  
Parity Even or Odd  
Read - Status of /CTS pin  
Write - Select PS  
Multiprocessor  
Multiprocessor Bit Transmit  
General  
PS = 0  
PS = 1  
Divide Ratio  
SS, 2, 1, 0  
(Divide Ratio = 10)  
DR = 0 (x16)  
(Divide Ratio = 30)  
DR = 0 (x16)  
DR = 1 (x64)  
DR = 1 (x64)  
000  
001  
010  
011  
100  
101  
110  
*111  
Ø ÷ 160  
Ø ÷ 320  
Ø ÷ 640  
Ø ÷ 1280  
Ø ÷ 2560  
Ø ÷ 5120  
Ø ÷ 10240  
Ø ÷ 640  
Ø ÷ 480  
Ø ÷ 960  
Ø ÷ 1920  
Ø ÷ 3840  
Ø ÷ 7680  
Ø ÷ 15360  
Ø ÷ 30720  
Ø ÷ 61440  
Ø ÷ 122880  
Ø ÷ 1280  
Ø ÷ 2580  
Ø ÷ 5120  
Ø ÷ 10240  
Ø ÷ 20480  
Ø ÷ 40960  
Ø ÷ 1920  
Ø ÷ 3840  
Ø ÷ 7680  
Ø ÷ 15360  
Ø ÷ 30720  
External Clock (Frequency < Ø ÷ 40)  
Note:  
* Baud rate is external clock rate ÷16; therefore, Ø ÷(40 x 16)  
is maximum baud rate using external clocking.  
Figure 12. ASCI Control Register B (Ch. 1)  
DS971820600  
3-32  
PS009801-0301  
Z80182/Z8L182  
Zilog  
ZILOG INTELLIGENT PERIPHERAL  
P R E L I M I N A R Y  
Addr 04H  
STAT0  
RDRF OVRN PE  
FE  
0
RIE /DCD0 TDRE  
TIE  
0
Bit  
Upon Reset  
R/W  
0
0
0
0
††  
R
R
R
R
R
R/W  
R
R/W  
Transmit Interrupt Enable  
Transmit Data Register  
Empty  
Data Carrier Detect  
Receive Interrupt Enable  
Framing Error  
Parity Error  
Over Run Error  
Receive Data Register Full  
† /DCD0 - Depending on the condition of /DCD0 Pin.  
†† /CTS0 Pin  
TDRE  
L
H
1
0
Figure 13. ASCI Status Register  
STAT1  
Addr 05H  
Bit  
Upon Reset  
R/W  
RDRF OVRN PE  
FE  
0
RIE CTS1E TDRE TIE  
0
0
0
0
0
1
0
R
R
R
R
R/W R/W  
R
R/W  
Transmit Interrupt Enable  
Transmit Data Register  
Empty  
/CTS1 Enable  
Receive Interrupt Enable  
Framing Error  
Parity Error  
Over Run Error  
Receive Data Register Full  
Figure 14. ASCI Status Register (Ch. 1)  
DS971820600  
3-33  
PS009801-0301  
Z80182/Z8L182  
ZILOG INTELLIGENT PERIPHERAL  
Zilog  
P R E L I M I N A R Y  
ASCI CHANNELS CONTROL REGISTERS (Continued)  
TDR0  
Write Only  
TSR1  
Read Only  
Addr 06H  
Addr 09H  
7
6
5
4
3
2
1
0
x
x
x
x
x
x
x
x
Transmit Data  
Received Data  
Figure 15. ASCI Transmit Data Register (Ch. 0)  
Figure 18. ASCI Receive Data Register (Ch. 1)  
BRK0  
TDR1  
Write Only  
Read/Write  
Addr 12H  
Addr 07H  
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
Break generate bit  
0 = no break  
1 = break  
Transmit Data  
Break detect bit  
0 = no break  
1 = break  
Figure 16. ASCI Transmit Data Register (Ch. 1)  
Break feature bit  
0 = dissolve  
1 = enable  
TSR0  
Read Only  
Figure 19. ASCI Break Control Register (Ch. 0)  
Addr 08H  
x
x
x
x
x
x
x
x
Received Data  
BRK1  
Read/Write  
Addr 13H  
7
6
5
4
3
2
1
0
Figure 17. ASCI Receive Data Register (Ch. 0)  
Break generate bit  
0 = no break  
1 = break  
Break detect bit  
0 = no break  
1 = break  
Break feature enable bit  
0 = disable  
1 = enable  
Figure 20. ASCI Break Control Register (Ch. 1)  
DS971820600  
3-34  
PS009801-0301  
Z80182/Z8L182  
Zilog  
ZILOG INTELLIGENT PERIPHERAL  
P R E L I M I N A R Y  
CSI/O REGISTERS  
CNTR  
EF  
Addr 0AH  
Bit  
EIE  
0
RE  
0
TE  
0
-
SS2 SS1 SS0  
Upon Reset  
R/W  
1
1
1
1
0
R
R/W R/W R/W  
R/W R/W R/W  
Speed Select  
Transmit Enable  
Receive Enable  
End Interrupt Enable  
End Flag  
SS2, 1, 0  
Baud Rate  
SS2, 1, 0  
Baud Rate  
000  
001  
010  
011  
Ø ÷ 20  
Ø ÷ 40  
Ø ÷ 80  
Ø ÷ 100  
100  
101  
110  
111  
Ø ÷ 320  
Ø ÷ 640  
Ø ÷ 1280  
External Clock  
(Frequency < Ø ÷ 20)  
Figure 21. CSI/O Control Register  
TRDR  
Read/Write  
Addr 0BH  
7
6
5
4
3
2
1
0
Read - Received Data  
Write - Transmit Data  
Figure 22. CSI/O Transmit/Receive Data Register  
DS971820600  
3-35  
PS009801-0301  
Z80182/Z8L182  
ZILOG INTELLIGENT PERIPHERAL  
Zilog  
P R E L I M I N A R Y  
TIMER DATA REGISTERS  
TMDR0L  
Read/Write  
TMDR0H  
Read/Write  
Addr 0CH  
Addr 0DH  
7
6
5
4
3
2
1
0
15 14 13 12 11 10 9  
8
When Read, read Data Register L  
before reading Data Register H.  
Figure 23. Timer 0 Data Register L  
Figure 25. Timer 0 Data Register H  
TMDR1L  
Read/Write  
Addr 14H  
7
6
5
4
3
2
1
0
TMDR1H  
Read/Write  
Addr 15H  
15 14 13 12 11 10 9  
8
Figure 24. Timer 1 Data Register L  
When Read, read Data Register L  
before reading Data Register H.  
Figure 26. Timer 1 Data Register H  
TIMER RELOAD REGISTERS  
RLDR0L  
Read/Write  
RLDR0H  
Read/Write  
Addr 0EH  
Addr 0FH  
7
6
5
4
3
2
1
0
15 14 13 12 11 10  
9
8
Figure 27. Timer 0 Reload Register L  
Figure 29. Timer 0 Reload Register H  
RLDR1L  
Read/Write  
RLDR1H  
Read/Write  
Addr 16H  
Addr 17H  
15 14 13 12 11 10  
7
6
5
4
3
2
1
0
9
8
Figure 28. Timer 1 Reload Register L  
Figure 30. Timer 1 Reload Register H  
DS971820600  
3-36  
PS009801-0301  
Z80182/Z8L182  
Zilog  
ZILOG INTELLIGENT PERIPHERAL  
P R E L I M I N A R Y  
TIMER CONTROL REGISTER  
Addr 10H  
TCR  
Bit  
TIF1 TIF0 TIE1 TIE0 TOC1 TOC0 TDE1 TDE0  
Upon Reset  
0
0
0
0
0
0
0
0
R/W  
R
R
R/W R/W R/W R/W R/W R/W  
Timer Down Count Enable 1,0  
Timer Output Control 1,0  
Timer Interrupt Enable 1,0  
Timer Interrupt Flag 1,0  
TOC1,0 A15/TOUT  
00  
01  
10  
11  
Inhibited  
Toggle  
0
1
Figure 31. Timer Control Register  
DS971820600  
3-37  
PS009801-0301  
Z80182/Z8L182  
ZILOG INTELLIGENT PERIPHERAL  
Zilog  
P R E L I M I N A R Y  
FREE RUNNING COUNTER  
FRC  
Read Only  
Addr 18H  
7
6
5
4
3
2
1
0
Figure 32. Free Running Counter  
CPU CONTROL REGISTER  
CPU Control Register (CCR) Addr 1FH  
D7 D6 D5 D4 D3 D2 D1 D0  
0
0
0
0
0
0
0
0
Figure 33. CPU  
Note: See Figure 49 for full description.  
DMA REGISTERS  
SAR0L  
Read/Write  
SA7  
Addr 20H  
SA0  
SAR0H  
Read/Write  
SA15  
Addr 21H  
SA8  
SAR0B  
Read/Write  
Addr 22H  
SA16  
SA19  
-
-
-
-
Bits 0-2 (3) are used for SAR0B  
A19, A18, A17, A16 DMATransfer Request  
x
x
x
x
x
x
x
x
0
0
1
1
0
1
0
1
/DREQ0 (external)  
RDR0 (ASCI0)  
RDR1 (ASCI1)  
Not Used  
Figure 34. DMA 0 Source Address Registers  
DS971820600  
3-38  
PS009801-0301  
Z80182/Z8L182  
Zilog  
ZILOG INTELLIGENT PERIPHERAL  
P R E L I M I N A R Y  
DMA REGISTERS  
MAR1L  
Read/Write  
DAR0L  
Read/Write  
DA7  
Addr 28H  
Addr 23H  
DA0  
MA7  
MA0  
DAR0H  
Read/Write  
DA15  
MAR1H  
Read/Write  
Addr 24H  
DA8  
Addr 29H  
MA8  
MA15  
DAR0B  
Read/Write  
DA19  
MAR1B  
Read/Write  
Addr 25H  
DA16  
Addr 2AH  
MA16  
MA19  
-
-
-
-
-
-
-
-
Bits 0-2 (3) are used for DAR0B  
A19, A18, A17, A16 DMATransfer Request  
Figure 37. DMA 1 Memory Address Registers  
x
x
x
x
x
x
x
x
0
0
1
1
0
1
0
1
/DREQ0 (external)  
TDR0 (ASCI0)  
TDR1 (ASCI1)  
Not Used  
IAR1L  
Read/Write  
Addr 2BH  
IA0  
IA7  
Figure 35. DMA 0 Destination Address Registers  
IAR1H  
Read/Write  
Addr 2CH  
IA8  
IA15  
BCR0L  
Read/Write  
Addr 26H  
BC0  
BC7  
Figure 38. DMA I/O Address Registers  
BCR0H  
Read/Write  
Addr 27H  
BC8  
BC15  
BCR1L  
Read/Write  
Addr 2EH  
BC0  
BC7  
Figure 36. DMA 0 Byte Counter Registers  
BCR1H  
Read/Write  
Addr 2FH  
BC8  
BC15  
Figure 39. DMA 1 Byte Count Registers  
DS971820600  
3-39  
PS009801-0301  
Z80182/Z8L182  
ZILOG INTELLIGENT PERIPHERAL  
Zilog  
P R E L I M I N A R Y  
DMA REGISTERS (Continued)  
DSTAT  
Addr 30H  
Bit  
Upon Reset  
R/W  
-
DE1 DE0 /DWE1 /DWE0 DIE1 DIE0  
DIME  
0
0
1
1
0
0
1
0
R
R/W R/W  
W
W
R/W R/W  
DMA Master Enable  
DMA Interrupt Enable 1, 0  
DMA Enable Bit Write Enable 1, 0  
DMA Enable Ch 1, 0  
Figure 40. DMA Status Register  
DMODE  
Addr 31H  
-
-
-
Bit  
Upon Reset  
R/W  
DM1 DM0  
SM1  
0
SM0 MMOD  
1
1
0
0
0
0
1
R/W  
R/W  
R/W  
R/W  
R/W  
Memory MODE Select  
Ch 0 Source Mode 1, 0  
Ch 0 Destination Mode 1, 0  
DM1, 0  
00  
01  
10  
11  
Destination  
Address  
DAR0+1  
DAR0-1  
DAR0 Fixed  
DAR0 Fixed  
SM1, 0  
Source  
M
M
M
I/O  
Address  
SAR0+1  
SAR0-1  
SAR0 Fixed  
SAR0 Fixed  
M
M
M
00  
01  
10  
11  
I/O  
MMOD  
Mode  
Cycle Steal Mode  
Burst Mode  
0
1
Figure 41. DMA Mode Registers  
DS971820600  
3-40  
PS009801-0301  
Z80182/Z8L182  
Zilog  
ZILOG INTELLIGENT PERIPHERAL  
P R E L I M I N A R Y  
DCNTL  
Addr 32H  
IWI0 DMS1 DMS0 DIM1 DIM0  
Bit  
Upon Reset  
R/W  
MWI1 MWI0 IWI1  
1
1
1
1
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
DMA Ch 1 I/O Memory  
Mode Select  
/DREQi Select, i = 1, 0  
I/0 Wait Insertion  
Memory Wait Insertion  
*
MWI1, 0  
No. of Wait States  
IWI1, 0  
No. of Wait States  
00  
01  
10  
11  
0
1
2
3
00  
01  
10  
11  
1
2
3
4
DMSi  
Sense  
1
0
Edge Sense  
Level Sense  
DM1, 0  
Transfer Mode  
Address Increment/Decrement  
00  
01  
10  
11  
M - I/O  
M - I/O  
I/O - M  
I/O - M  
MAR1+1  
MAR1-1  
IAR1 Fixed  
IAR1 Fixed  
IAR1 Fixed  
IAR1 Fixed  
MAR1+1  
MAR1-1  
Note:  
* If using ROM/RAM Chip Select wait state generators,  
the Z180 wait state generator should be set to 0.  
Figure 42. DMA/WAIT Control Register  
DS971820600  
3-41  
PS009801-0301  
Z80182/Z8L182  
ZILOG INTELLIGENT PERIPHERAL  
Zilog  
P R E L I M I N A R Y  
MMU REGISTERS  
CBR  
CB7  
Addr 38H  
Bit  
Upon Reset  
R/W  
CB6  
0
CB5  
0
CB4  
CB3  
CB2  
CB1  
CB0  
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
MMU Common Base  
Register  
Figure 43. MMU Common Base Register  
BBR  
Addr 39H  
Bit  
Upon Reset  
R/W  
BB6  
0
BB5  
0
BB4  
BB3  
BB2  
BB1  
BB0  
BB7  
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
MMU Bank Base Register  
Figure 44. MMU Bank Base Register  
CBAR  
Addr 3AH  
Bit  
Upon Reset  
R/W  
CA3  
1
CA2  
CA1  
1
CA0  
BA3  
BA2  
BA1  
BA0  
1
1
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
MMU Bank Area Register  
MMU Common Area Register  
Figure 45. MMU Common/Bank Area Register  
DS971820600  
3-42  
PS009801-0301  
Z80182/Z8L182  
Zilog  
ZILOG INTELLIGENT PERIPHERAL  
P R E L I M I N A R Y  
SYSTEM CONTROL REGISTERS  
IL  
Addr 33H  
Bit  
Upon Reset  
R/W  
IL7  
0
IL6  
0
IL5  
0
-
-
-
-
-
0
0
0
0
0
R/W R/W R/W  
Interrupt Vector Low  
Figure 46. Interrupt Vector Low Register  
Addr 34H  
ITC  
Bit  
TRAP UFO  
-
-
-
ITE2 ITE1 ITE0  
Upon Reset  
R/W  
0
0
1
1
1
0
0
1
R/W  
R
R/W R/W R/W  
/INT Enable 2, 1, 0  
Undefined Fetch Object  
TRAP  
Figure 47. INT/TRAP Control Register  
Addr 36H  
RCR  
REFE REFW  
Bit  
Upon Reset  
R/W  
-
-
-
-
CYC1 CYC0  
1
1
1
1
1
1
0
0
R/W R/W  
R/W R/W  
Cycle Select  
Refresh Wait State  
Refresh Enable  
CYC1, 0  
Interval of Refresh Cycle  
00  
01  
10  
11  
10 states  
20 states  
40 states  
80 states  
Figure 48. Refresh Control Register  
DS971820600  
3-43  
PS009801-0301  
Z80182/Z8L182  
ZILOG INTELLIGENT PERIPHERAL  
Zilog  
P R E L I M I N A R Y  
SYSTEM CONTROL REGISTERS (Continued)  
OMCR  
Addr 3EH  
-
-
-
-
-
M1E /M1TE /IOC  
Bit  
Upon Reset  
R/W  
1
1
1
1
1
1
1
1
R/W  
W
R/W  
I/O Compatibility  
/M1 Temporary Enable  
/M1 Enable  
Note:  
This register should be programmed to 0x0xxxxxb  
(x = don't care) as a part of Initialization.  
Figure 49. Operation Mode Control Register  
ICR  
Addr 3FH  
-
-
-
-
-
IOA7 IOA6 IOSTP  
Bit  
Upon Reset  
R/W  
0
0
0
1
1
1
1
1
R/W R/W R/W  
I/O Stop  
I/O Address  
Combination of 11  
is reserved  
Figure 50. I/O Control Register  
DS971820600  
3-44  
PS009801-0301  
Z80182/Z8L182  
Zilog  
ZILOG INTELLIGENT PERIPHERAL  
P R E L I M I N A R Y  
ADDITIONAL FEATURES ON THE Z182 MPU  
Thefollowingisadetaileddescriptionoftheenhancements  
to the Z8S180 from the standard Z80180 in the areas of  
STANDBY, IDLE, and STANDBY-QUICK RECOVERY  
modes.  
I/Os are still operating. In I/O STOP mode, the on-chip I/Os  
are in a stopped state while leaving the CPU running. In  
SYSTEM STOP mode, both the CPU and the on-chip I/Os  
areinthestoppedstatetoreducethecurrentconsumption.  
TheZ8S180hasaddedtwoadditionalpower-downmodes,  
STANDBY and IDLE, to reduce the current consumption  
even further. The differences among these power-down  
modes are summarized in Table 10.  
Add-On Features  
There are five different power-down modes. SLEEP and  
SYSTEM STOP are inherited from the Z80180. In SLEEP  
mode, the CPU is in a stopped state while the on-chip  
Table 10. Power Down Modes  
Recovery  
Power-Down  
Modes  
CPU  
Core  
On-Chip  
I/O  
Recovery Time  
(Minimum)  
OSC.  
CLKOUT  
Source  
SLEEP  
I/O STOP  
Stop  
Running  
Stop  
Stop  
Stop  
Running  
Stop  
Stop  
Stop  
Stop  
Running  
Running  
Running  
Running  
Stop  
Running  
Running  
Running  
Stop  
RESET, Interrupts  
By Programming  
RESET, Interrupts  
RESET, Interrupts, BUSREQ 8 +1.5 Clock  
RESET, Interrupts, BUSREQ 217 +1.5 Clock (Normal Recovery)  
26 +1.5 Clock (Quick Recovery)  
1.5 Clock  
-
1.5 Clock  
SYSTEM STOP  
IDLE  
STANDBY  
Stop  
Notes:  
IDLE and STANDBY modes are only offered in Z8S180. Note that the  
minimum recovery time can be achieved if INTERRUPT is used as the  
Recovery Source.  
STANDBY Mode  
The Z8S180 has been designed to save power. Two low-  
power programmable power-down modes have been  
added; STANDBY mode and IDLE mode. The  
STANDBY/IDLE mode is selected by multiplexing D6 and  
D3 of the CPU Control Register (CCR, I/O Address = 1FH).  
To enter STANDBY mode:  
18-bit counter has been added in the Z8S180 to allow for  
oscillator stabilization. When the part receives an external  
IRQ or BUSREQ during STANDBY mode, the oscillator is  
restarted and the timer counts down 217 counts before  
acknowledgment is sent to the interrupt source.  
Therecoverysourceneedstoremainassertedforduration  
of the 217 count, otherwise standby will be resumed.  
1. Set D6 and D3 to 1 and 0, respectively.  
2. Set the I/O STOP bit (D5 of ICR,  
ThefollowingisadescriptionofhowthepartexitsSTANDBY  
for different interrupts and modes of operation.  
I/O Address = 3FH) to 1.  
3. Execute the SLEEP instruction.  
STANDBY Mode Exit with /RESET  
The /RESET input needs to be asserted for a duration long  
enough for the crystal oscillator to stabilize and then exit  
from the STANDBY mode. When /RESET is de-asserted, it  
goes through the normal reset timing to start instruction  
execution at address (logical and physical) 0000H.  
When the part is in STANDBY mode, it behaves similar to  
the SYSTEM STOP mode which currently exists on the  
Z80180,exceptthattheSTANDBYmodestopstheexternal  
oscillator,internalclocksandreducespowerconsumption  
to typically 50 µA..  
The clocking is resumed within the Z8S180 and at the  
system clock output after /RESET is asserted when the  
crystal oscillator is restarted, but not yet stabilized.  
Since the clock oscillator has been stopped, a restart of  
the oscillator requires a period of time for stabilization. An  
DS971820600  
3-45  
PS009801-0301  
Z80182/Z8L182  
ZILOG INTELLIGENT PERIPHERAL  
Zilog  
P R E L I M I N A R Y  
STANDBY Mode Exit with BUS REQUEST  
Optionally, if the BREXT bit (D5 of CPU Control Register)  
is set to 1, the Z8S180 exits STANDBY mode when the  
/BUSREQ input is asserted; the crystal oscillator is then  
restarted. An internal counter automatically provides time  
for the oscillator to stabilize, before the internal clocking  
and the system clock output of the Z8S180 are resumed.  
IfanExternalMaskableInterruptinputisasserted,theCPU  
responds according to the status of the Global Interrupt  
Enable Flag IEF1 (determined by the ITE1 bit) and the  
settings of the corresponding interrupt enable bit in the  
Interrupt/Trap Control Register (ITC: I/O Address = 34H):  
a. If an interrupt source is disabled in the ITC, asserting  
the corresponding interrupt input would not cause the  
Z8S180toexitSTANDBYmode.Thisistrueregardless  
of the state of the Global Interrupt Enable Flag IEF1.  
TheZ8S180relinquishesthesystembusaftertheclocking  
is resumed by:  
- Tri-State the address outputs A19 through A0.  
b. If the Global Interrupt Flag IEF1 is set to 1, and if an  
interrupt source is enabled in the ITC, asserting the  
corresponding interrupt input causes the Z8S180 to  
exit STANDBY mode. The CPU performs an interrupt  
acknowledgesequenceappropriatetotheinputbeing  
asserted when clocking is resumed if:  
- Tri-State the bus control outputs /MREQ, /IORQ,  
/RD and /WR.  
- Asserting /BUSACK  
The Z8S180 regains the system bus when /BUSREQ is  
deactivated. The address outputs and the bus control  
outputs are then driven High; the STANDBY mode is  
exited.  
- The interrupt input follows the normal interrupt  
daisy chain protocol.  
- Theinterruptsourceisactiveuntiltheacknowledge  
cycle is completed.  
If the BREXT bit of the CPU Control Register (CCR) is  
cleared, asserting the /BUSREQ would not cause the  
Z8S180 to exit STANDBY mode.  
c. If the Global Interrupt Flag IEF1 is disabled, i.e., reset  
to 0, and if an interrupt source is enabled in the ITC,  
asserting the corresponding interrupt input will still  
cause the Z8S180 to exit STANDBY mode. The CPU  
will proceed to fetch and execute instructions that  
followtheSLEEPinstructionwhenclockingisresumed.  
If STANDBY mode is exited due to a reset or an external  
interrupt,theZ8S180remainsrelinquishedfromthesystem  
bus as long as /BUSREQ is active.  
STANDBY Mode Exit with External  
Interrupts  
STANDBY mode can be exited by asserting input /NMI.  
The STANDBY mode may also exit by asserting /INT0,  
/INT1 or /INT2, depending on the conditions specified in  
the following paragraphs.  
If the External Maskable Interrupt input is not active until  
clocking resumes, the Z8S180 will not exit STANDBY  
mode. If the Non-Maskable Interrupt (/NMI) is not active  
untilclockingresumes, theZ8S180stillexitstheSTANDBY  
mode even if the interrupt sources go away before the  
timer times out, because /NMI is edge-triggered. The  
condition is latched internally once /NMI is asserted Low.  
/INT0 wake-up requires assertion throughout duration of  
clock stabilization time (217 clocks).  
IDLE Mode  
IDLE mode is another power-down mode offered by the  
Z8S180. To enter IDLE mode:  
If exit conditions are met, the internal counter provides  
timeforthecrystaloscillatortostabilize,beforetheinternal  
clocking and the system clock output within the Z8S180  
are resumed.  
1. Set D6 and D3 to 0 and 1, respectively.  
2. Set the I/O STOP bit (D5 of ICR,  
1. Exit with Non-Maskable Interrupts  
I/O Address = 3FH) to 1.  
If /NMI is asserted, the CPU begins a normal NMI interrupt  
acknowledge sequence after clocking resumes.  
3. Execute the SLEEP instruction.  
2. Exit with External Maskable Interrupts  
DS971820600  
3-46  
PS009801-0301  
Z80182/Z8L182  
Zilog  
ZILOG INTELLIGENT PERIPHERAL  
P R E L I M I N A R Y  
When the part is in IDLE mode, the clock oscillator is kept  
oscillating, but the clock to the rest of the internal circuit,  
includingtheCLKOUT, isstoppedcompletely. IDLEmode  
is exited in a similar way as STANDBY mode, i.e., RESET,  
BUS REQUEST or EXTERNAL INTERRUPTS, except that  
the217 bitwake-uptimerisbypassed;allcontrolsignalsare  
asserted eight clock cycles after the exit conditions are  
gathered.  
When the part is in STANDBY-QUICK RECOVERY mode,  
the operation is identical to STANDBY mode except when  
exit conditions are gathered, i.e., RESET, BUS REQUEST  
or EXTERNAL INTERRUPTS; the clock and other control  
signals are recovered sooner than the STANDBY mode.  
Note: If STANDBY-QUICK RECOVERY is enabled, the  
user must make sure stable oscillation is obtained within  
64 clock cycles.  
STANDBY-QUICK RECOVERY Mode  
STANDBY-QUICK RECOVERY mode is an option offered  
in STANDBY mode to reduce the clock recovery time in  
STANDBY mode from 217 clock cycles (6.5 ms at 20 MHz)  
to 26 clock cycles (3.2 µs at 20 MHz). This feature can only  
be used when providing an oscillator as clock source.  
CPU Control Register  
The Z8S180 has an additional register which allows the  
programmer to select options that directly affect the CPU  
performanceaswellascontrollingtheSTANDBYoperating  
mode of the chip. The CPU Control Register (CCR) allows  
theprogrammertochangethedivide-by-twointernalclock  
todivide-by-one.Inaddition,applicationswhereEMInoise  
is a problem, the Z8S180 can reduce the output drivers on  
selected groups of pins to 25% of normal pad driver  
capabilitywhichminimizestheEMInoisegeneratedbythe  
part.  
To enter STANDBY-QUICK RECOVERY mode:  
1. Set D6 and D3 to 1 and 1, respectively.  
2. Set the I/O STOP bit (D5 of ICR,  
I/O Address = 3FH) to 1.  
3. Execute the SLEEP instruction.  
CPU Control Register (CCR)Addr 1FH  
D7 D6 D5 D4 D3 D2 D1 D0  
0
0
0
0
0
0
0
0
Clock Divide  
0 = XTAL/2  
1 = XTAL/1  
LNAD/DATA  
0 = Standard Drive  
1 = 25% Drive On  
A19-A0, D7-D0  
Standby/Idle Enable  
00 = No Standby  
01 = Idle After Sleep  
10 = Standby After Sleep  
11 = Standby After Sleep  
64 Cycle Exit  
LNCPUCTL  
0 = Standard Drive  
1 = 25% Drive On CPU  
Control Signals  
Reserved  
(Quick Recovery)  
LNPHI  
BREXT  
0 = Standard Drive  
1 = 25% Drive On  
EXT.PHI Clock  
0 = Ignore BUSREQ  
In Standby/Idle  
1 = Standby/Idle Exit  
on BUSREQ  
Figure 51. CPU Control Register  
DS971820600  
3-47  
PS009801-0301  
Z80182/Z8L182  
ZILOG INTELLIGENT PERIPHERAL  
Zilog  
P R E L I M I N A R Y  
CPU Control Register  
recovery is reduced to 64 clock cycles after the exit  
conditions are gathered. Similarly, in STANDBY mode, the  
Z8S180entersSTANDBYafterfetchingthesecondopcode  
of a SLEEP instruction, if the I/O STOP bit is set.  
Bit 7. Clock Divide Select. Bit 7 of the CCR allows the  
programmer to set the internal clock to divide the external  
clock by 2 if the bit is 0 and divide-by-one if the bit is 1.  
Upon reset, this bit is set to 0 and the part is in  
divide-by-two mode. Since the on-board oscillator is not  
guaranteed to operate above 20 MHz, an external source  
must be used to achieve the maximum 33 MHz operation  
of the part, i.e., an external clock at 66 MHz with 50% duty  
cycle.  
Bit 5. BREXT. This bit controls the ability of the Z8S180 to  
honor a bus request during STANDBY mode. If this bit is  
set to 1 and the part is in STANDBY mode, a BUSREQ is  
honored after the clock stabilization timer is timed out.  
Bit 4. LNPHI. This bit controls the drive capability on the  
PHI Clock output. If this bit is set to 1, the PHI Clock output  
is reduced to 25% of its drive capability.  
If an external oscillator is used in divide-by-one mode, the  
minimum pulse width requirement must be satisfied.  
Bits 6 and 3. STANDBY/IDLE Enable. These two bits are  
usedforenabling/disablingtheIDLEandSTANDBYmode.  
Bit 2. Reserved  
Bit 1. LNCPUCTL. This bit controls the drive capability of  
the CPU Control pins. When this bit is set to 1, the output  
drive capability of the following pins is reduced to 25% of  
the original drive capability:  
Setting D6, D3 to 0 and 1, respectively, enables the IDLE  
mode. In the IDLE mode, the clock oscillator is kept  
oscillating but the clock to the rest of the internal circuit,  
including the CLKOUT, is stopped. The Z8S180 enters  
IDLE mode after fetching the second opcode of a SLEEP  
instruction, if the I/O STOP bit is set.  
- /BUSACK  
- /RD  
- /WR  
- /M1  
- /MREQ  
- /IORQ  
- /RFSH  
- /HALT  
- /TEND1  
Setting D6, D3 to 1 and 0, respectively, enables the  
STANDBY mode. In the STANDBY mode, the clock  
oscillator is stopped completely. The Z8S180 enters  
STANDBY after fetching the second opcode of a SLEEP  
instruction, if the I/O STOP bit is set.  
- E  
Bit 0. LNAD/DATA. This bit controls the drive capability of  
the Address/Data bus output drivers. If this bit is set to 1,  
the output drive capability of the Address and Data bus  
output is reduced to 25% of its original drive capability.  
Setting D6, D3 to 1 and 1, respectively, enables the  
STANDBY-QUICK RECOVERY mode. In this mode, its  
operationsareidenticaltoSTANDBYexceptthattheclock  
DS971820600  
3-48  
PS009801-0301  
Z80182/Z8L182  
Zilog  
ZILOG INTELLIGENT PERIPHERAL  
P R E L I M I N A R Y  
Z85230 ESCCCONTROL REGISTERS  
See Figures 52 and 53 for the ESCC Control registers. For  
additional information, refer to the ESCC Product  
Specification /Technical Manual.  
Whenthe16550MIMICinterfaceisenabled,ESCCchannel  
B is disconnected from the output pins. The channel B  
/TRxCB clock is connected to the Transmit and Receive  
timers of the 16550 MIMIC interface. It is recommended  
that /TRxCB be programmed as an output with proper  
baudratevaluestotimeoutthetransmitterandreceiver  
of the 16550 MIMIC interface.  
The Z80182/Z8L182 has two ESCC channels. They can be  
accessed in any page of I/O space since only the lowest  
eight address lines are decoded for access. Their Z180™  
MPU Address locations are shown in Table 11.  
Table 11. ESCC Control and Data Map  
ESCC Channel A  
ESCC Channel B  
Control  
Data  
Z180 MPU Address xxE0H  
Z180 MPU Address xxE1H  
Control  
Data  
Z180 MPU Address xxE2H  
Z180 MPU Address xxE3H  
DS971820600  
3-49  
PS009801-0301  
Z80182/Z8L182  
ZILOG INTELLIGENT PERIPHERAL  
Zilog  
P R E L I M I N A R Y  
PROGRAMMING THE ESCC™  
TheESCCcontainswriteregistersineachchannelthatare  
programmed by the system separately to configure the  
functional uniqueness of the channels.  
Divide-by-two should be programmed when running the  
Z182 beyond:  
- 20 MHz, 5V  
- 10 MHz, 3V  
In the ESCC, the data registers are directly addressed by  
selecting a High on the D//C pin. With all other registers  
(with the exception of WR0 and RR0), programming the  
write registers requires two write operations and reading  
the read registers, both a write and a read operation. The  
first write is to WR0 and contains three bits that point to the  
selected register. The second write is the actual control  
word for the selected read register accessed. All of the  
ESCC registers, including the data registers, may be  
accessedinthisfashion. Thepointerbitsareautomatically  
cleared after the read or write operation so that WR0 (or  
RR0) is addressed again.  
Note:Upon power-up or reset the system clock is equal to  
the ESCC clock.  
Initialization. The system program first issues a series of  
commands to initialize the basic mode of operation. This  
is followed by other commands to qualify conditions within  
the selected mode. For example, in the Asynchronous  
mode, character length, clock rate, number of stop bits,  
and even or odd parity should be set first. Then the  
interruptmodeisset,andfinally,thereceiverandtransmitter  
are enabled.  
With the Z80182/Z8L182, a new feature is implemented in  
the ESCC. The Transmitter and Receiver is now capable of  
sending and comparing a 32-bit CRC-32 (Ethernet  
Polynomial):  
WriteRegisters. TheESCCcontains16writeregisters(17  
counting the transmit buffer) in each channel. These write  
registers are programmed separately to configure the  
functional "personality" of the channels. There are two  
registers (WR2 and WR9) shared by the two channels that  
are accessed through either of them. WR2 contains the  
interrupt vector for both channels, while WR9 contains the  
interrupt control bits and reset commands. A new register,  
WR7', was added to the ESCC and may be written to if  
WR15, D0 is set. Figure 50 shows the format of each write  
register.  
x32 + x26 +x23 +x22 + x16 + x12 + x11 +x10 + x8 + x7 + x5 + x4 +  
x2 + x + 1  
This feature is enabled by access to WR7' Bit 7, which  
selects the 32-bit CRC polynomial for the transmitter and  
receiver and overrides any selection of SDLC/CRC-16  
CRCs. When the 32-bit CRC override feature is enabled,  
thetransmitterwillonlysend32-bitCRCwhenCRCistobe  
sent.Onthereceiveside,theCRCcomparison/calculation  
will be done only on 32-bit CRC values. The result of the  
32-bit CRC comparison will be maintained in RR1 bit D6 in  
place of the 16-bit CRC comparison result. The 32-bit CRC  
compare result will also be maintained in the 10x19 FIFO  
for frames in which 32-bit CRC is enabled. The CRC still  
canbepresettoall0sorall1s.32-bitCRCisdisabledupon  
power-up or reset.  
Read Registers. The ESCC contains ten read registers  
(eleven,countingthereceivebuffer(RR8)ineachchannel).  
Four of these may be read to obtain status information  
(RR0, RR1, RR10, and RR15). Two registers (RR12 and  
RR13) are read to learn the baud rate generator time  
constant. RR2 contains either the unmodified interrupt  
vector (channel A) or the vector modified by status  
information(channelB).RR3containstheInterruptPending  
(IP) bits (channel A only). RR6 and RR7 contain the  
information in the SDLC Frame Status FIFO, but is only  
read when WR15, D2 is set. If WR7' D6 is set, Write  
Registers WR3, WR4, WR5, WR7, and WR10 can be read  
as RR9, RR4, RR5, and RR14, respectively. Figure 51  
shows the format of each Read register.  
Note: The ESCC cannot do simultaneous calculation/  
comparison using both 16-bit and 32-bit CRC.  
Also,fortheZ80182/Z8L182only,theclockprovidedtothe  
ESCC core is equal to the system clock divided by 1 or 2.  
The divider is programmed in the Z80182 Enhancement  
Register bit 3.  
DS971820600  
3-50  
PS009801-0301  
Z80182/Z8L182  
Zilog  
ZILOG INTELLIGENT PERIPHERAL  
P R E L I M I N A R Y  
CONTROL REGISTERS  
Write Register 2  
Write Register 0 (non-multiplexed bus mode)  
D7 D6 D5 D4 D3 D2 D1 D0  
D7 D6 D5 D4 D3 D2 D1 D0  
V0  
V1  
V2  
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
Register 0  
Register 1  
Register 2  
Register 3  
Register 4  
Register 5  
Register 6  
Register 7  
Register 8  
Register 9  
Register 10  
Register 11  
Register 12  
Register 13  
Register 14  
Register 15  
V3  
Interrupt  
Vector  
V4  
V5  
V6  
V7  
*
Write Register 3  
D7 D6 D5 D4 D3 D2 D1 D0  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Null Code  
Point High  
Reset Ext/Status Interrupts  
Send Abort (SDLC)  
Enable Int on Next Rx Character  
Reset Tx Int Pending  
Error Reset  
Rx Enable  
Sync Character Load Inhibit  
Address Search Mode (SDLC)  
Rx CRC Enable  
Reset Highest IUS  
Enter Hunt Mode  
0
0
1
1
0
1
0
1
Null Code  
Reset Rx CRC Checker  
Reset Tx CRC Generator  
Reset Tx Underrun/EOM Latch  
Auto Enables  
0
0
1
1
0
1
0
1
Rx 5 Bits/Character  
Rx 7 Bits/Character  
Rx 6 Bits/Character  
Rx 8 Bits/Character  
With Point High Command  
*
Write Register 1  
Write Register 4  
D7 D6 D5 D4 D3 D2 D1 D0  
D7 D6 D5 D4 D3 D2 D1 D0  
Ext Int Enable  
Parity Enable  
Tx Int Enable  
Parity EVEN//ODD  
Parity is Special Condition  
0
0
1
1
0
1
0
1
Sync Modes Enable  
0
0
1
1
0
1
0
1
Rx Int Disable  
1 Stop Bit/Character  
1 1/2 Stop Bits/Character  
2 Stop Bits/Character  
Rx Int On First Character or Special Condition  
Int On All Rx Characters or Special Condition  
Rx Int On Special Condition Only  
WAIT/DMA Request On  
Receive//Transmit  
0
0
1
1
0
1
0
1
8-Bit Sync Character  
16-Bit Sync Character  
SDLC Mode (01111110 Flag)  
External Sync Mode  
/WAIT/DMA Request Function  
WAIT/DMA Request Enable  
0
0
1
1
0
1
0
1
X1 Clock Mode  
X16 Clock Mode  
X32 Clock Mode  
X64 Clock Mode  
Figure 52. Write Register Bit Functions  
DS971820600  
3-51  
PS009801-0301  
Z80182/Z8L182  
ZILOG INTELLIGENT PERIPHERAL  
Zilog  
P R E L I M I N A R Y  
CONTROL REGISTERS (Continued)  
Write Register 5  
D7 D6 D5 D4 D3 D2 D1 D0  
Tx CRC Enable  
RTS  
/SDLC/CRC-16  
Tx Enable  
Send Break  
0
0
1
1
0
1
0
1
Tx 5 Bits(Or Less)/Character  
Tx 7 Bits/Character  
Tx 6 Bits/Character  
Tx 8 Bits/Character  
DTR  
Write Register 6  
D7 D6 D5 D4 D3 D2 D1 D0  
Sync7 Sync6 Sync5 Sync4  
Sync3 Sync2 Sync1 Sync0  
Sync3 Sync2 Sync1 Sync0  
Sync3 Sync2 Sync1 Sync0  
Monosync, 8 Bits  
Monosync, 6 Bits  
Bisync, 16 Bits  
Bisync, 12 Bits  
SDLC  
Sync1 Sync0 Sync5 Sync4  
Sync7 Sync6 Sync5 Sync4  
Sync3 Sync2 Sync1 Sync0  
ADR7 ADR6 ADR5 ADR4  
ADR7 ADR6 ADR5 ADR4  
1
1
1
1
ADR3 ADR2 ADR1 ADR0  
x
x
x
x
SDLC (Address Range)  
Write Register 7  
D7 D6 D5 D4 D3 D2 D1 D0  
Sync7 Sync6 Sync5 Sync4  
Sync5 Sync4 Sync3 Sync2  
Sync15 Sync14 Sync13 Sync12 Sync11 Sync10 Sync9 Sync8  
Sync11 Sync10 Sync9 Sync8 Sync7 Sync6 Sync5 Sync4  
Sync3 Sync2 Sync1 Sync0  
Sync1 Sync0  
Monosync, 8 Bits  
Monosync, 6 Bits  
Bisync, 16 Bits  
Bisync, 12 Bits  
SDLC  
x
x
0
1
1
1
1
1
1
0
Figure 52. Write Register Bit Functions (Continued)  
DS971820600  
3-52  
PS009801-0301  
Z80182/Z8L182  
Zilog  
ZILOG INTELLIGENT PERIPHERAL  
P R E L I M I N A R Y  
Write Register 10  
WR 7' Prime  
D7 D6 D5 D4 D3 D2 D1 D0  
D7 D6 D5 D4 D3 D2 D1 D0  
6-Bit//8-Bit Sync  
Loop Mode  
Auto Tx Flag  
Auto EOM Reset  
Abort//Flag On Underrun  
Mark//Flag Idle  
Auto RTS Deactivation  
Rx FIFO Int Level  
Go Active On Poll  
DTR/REQ Timing Mode  
Tx FIFO Int Level  
0
0
1
1
0
1
0
1
NRZ  
NRZI  
FM1 (Transition = 1)  
FM0 (Transition = 0)  
Extended Read Enable  
32-bit CRC Enable  
CRC Preset I//O  
Write Register 9  
D7 D6 D5 D4 D3 D2 D1 D0  
Write Register 11  
D7 D6 D5 D4 D3 D2 D1 D0  
VIS  
NV  
DLC  
0
0
1
1
0
1
0
1
/TRxC Out = Xtal Output  
/TRxC Out = Transmit Clock  
/TRxC Out = BR Generator Output  
/TRxC Out = DPLL Output  
MIE  
Status High//Status Low  
Software INTACK Enable  
/TRxC O/I  
0
0
1
1
0
1
0
1
Transmit Clock = /RTxC Pin  
Transmit Clock = /TRxC Pin  
Transmit Clock = BR Generator Output  
Transmit Clock = DPLL Output  
0
0
1
1
0
1
0
1
No Reset  
Not used  
Channel Reset  
Force Hardware Reset  
0
0
1
1
0
1
0
1
Receive Clock = /RTxC Pin  
Receive Clock = /TRxC Pin  
Receive Clock = BR Generator Output  
Receive Clock = DPLL Output  
/RTxC Xtal//No Xtal  
Figure 52. Write Register Bit Functions (Continued)  
DS971820600  
3-53  
PS009801-0301  
Z80182/Z8L182  
ZILOG INTELLIGENT PERIPHERAL  
Zilog  
P R E L I M I N A R Y  
CONTROL REGISTERS (Continued)  
Write Register 12  
Write Register 14  
D7 D6 D5 D4 D3 D2 D1 D0  
D7 D6 D5 D4 D3 D2 D1 D0  
BR Generator Enable  
BR Generator Source  
/DTR/Request Function  
Auto Echo  
TC0  
TC1  
TC2  
TC3  
Lower Byte of  
Time Constant  
Local Loopback  
TC4  
TC5  
TC6  
TC7  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Null Command  
Enter Search Mode  
Reset Missing Clock  
Disable DPLL  
Set Source = BR Generator  
Set Source = /RTxC  
Set FM Mode  
Set NRZI Mode  
Write Register 13  
D7 D6 D5 D4 D3 D2 D1 D0  
Write Register 15  
D7 D6 D5 D4 D3 D2 D1 D0  
TC8  
TC9  
WR7' SDLC Feature Enable  
Zero Count IE  
TC10  
TC11  
TC12  
TC13  
TC14  
TC15  
Upper Byte of  
Time Constant  
SDLC FIFO Enable  
DCD IE  
Sync/Hunt IE  
CTS IE  
Tx Underrun/EOM IE  
Break/Abort IE  
Figure 52. Write Register Bit Functions (Continued)  
DS971820600  
3-54  
PS009801-0301  
Z80182/Z8L182  
Zilog  
ZILOG INTELLIGENT PERIPHERAL  
P R E L I M I N A R Y  
Read Register 0  
Read Register 3  
D7 D6 D5 D4 D3 D2 D1 D0  
D7 D6 D5 D4 D3 D2 D1 D0  
Rx Character Available  
0
Zero Count  
Tx Buffer Empty  
DCD  
0
0
Ext/Status IP  
Tx IP  
Sync/Hunt  
CTS  
Rx IP  
0
Tx Underrun/EOM  
Break/Abort  
0
Read Register 6*  
Read Register 1  
D7 D6 D5 D4 D3 D2 D1 D0  
D7 D6 D5 D4 D3 D2 D1 D0  
BC0  
BC1  
BC2  
BC3  
BC4  
BC5  
BC6  
BC7  
All Sent  
Residue Code 2  
Residue Code 1  
Residue Code 0  
Parity Error  
Rx Overrun Error  
CRC/Framing Error  
End of Frame (SDLC)  
*Can only be accessed if the SDLC FIFO enhancement  
is enabled (WR15 bit D2 set to 1)  
SDLC FIFO Status and Byte Count (LSB)  
Read Register 2  
D7 D6 D5 D4 D3 D2 D1 D0  
Read Register 7*  
V0  
V1  
V2  
D7 D6 D5 D4 D3 D2 D1 D0  
BC8  
Interrupt  
Vector  
V3  
V4  
V5  
V6  
V7  
BC9  
BC10  
BC11  
BC12  
BC13  
FDA: FIFO Data Available  
1 = Status Reads from FIFO  
0 = Status Reads from EMSCC  
FOS: FIFO Overflow Status  
1 = FIFO Overflowed  
0 = Normal  
*Can only be accessed if the SDLC FIFO enhancement  
is enabled (WR15 bit D2 set to 1)  
SDLC FIFO Status and Byte Count (LSB)  
Figure 52. Write Register Bit Functions (Continued)  
DS971820600  
3-55  
PS009801-0301  
Z80182/Z8L182  
ZILOG INTELLIGENT PERIPHERAL  
Zilog  
P R E L I M I N A R Y  
CONTROL REGISTERS (Continued)  
Read Register 13  
Read Register 10  
D7 D6 D5 D4 D3 D2 D1 D0  
D7 D6 D5 D4 D3 D2 D1 D0  
TC8  
TC9  
TC10  
0
On Loop  
0
TC11  
0
Upper Byte  
of Time Constant  
TC12  
Loop Sending  
0
TC13  
TC14  
TC15  
Two Clocks Missing  
One Clock Missing  
Read Register 15  
Read Register 12  
D7 D6 D5 D4 D3 D2 D1 D0  
D7 D6 D5 D4 D3 D2 D1 D0  
0
TC0  
TC1  
TC2  
TC3  
Zero Count IE  
SDLC Status FIFO Enable  
DCD IE  
Lower Byte  
of Time Constant  
Sync/Hunt IE  
CTS IE  
TC4  
TC5  
TC6  
TC7  
Tx Underrun/EOM IE  
Break/Abort IE  
Figure 53. Read Register Bit Functions  
DS971820600  
3-56  
PS009801-0301  
Z80182/Z8L182  
Zilog  
Z182 MISCELLANEOUS CONTROL AND INTERFACE REGISTERS  
ZILOG INTELLIGENT PERIPHERAL  
P R E L I M I N A R Y  
Figures 54 through 65 describe miscellaneous registers  
that control the Z182 configuration, RAM/ROM chip select,  
interrupt and various status and timers.  
System Configuration Register  
Bit 7 Port C Select  
When this bit is set to 1, bit 8 parallel Port C is selected on  
the multiplexed pins. When this bit is reset to 0 then these  
multiplexed pins take ESCCChannel A functions.  
D7 D6 D5 D4 D3 D2 D1 D0  
0
0
0
0
0
0
0
0
Bit 6 PB7-PB5 Select  
Daisy Chain  
0=ESCC  
1=16550 MIMIC> ESCC  
When this bit is set to 1, parallel Port B bits 7 through 5 are  
selected on the multiplexed pins. When this bit is reset to  
0, these multiplexed pins become RxA1, TxA1 and RxS/  
CTS1.  
> 16550 MIMIC  
ESCC/MIMIC  
0=ESCC Channel B  
1=16550 MIMIC Interface  
Tri-Muxed Pins  
0=Z80180  
1=ESCC Channel/16550 MIMIC  
Bit 5 PB4-PB0 Select  
When this bit is set to 1, parallel Port B bits 4 through 0 are  
selected on the multiplexed pins. When this bit is reset to  
0, these multiplexed pins take ASCI channel 0 functions.  
Disable ROMs  
0=ROM Sel Enabled  
1=ROM Sel Disabled  
DOUT  
0=No Data Out  
1=Data Out  
Bit 4 DD ROM Emulator Mode Enable  
When thiOsUTbit is set to 1, the Z182 is in “ROM emulator  
mode”. In this mode, bus direction for certain transaction  
periods are set to the opposite direction to export internal  
bus transactions outside the Z80182/Z8L182. This allows  
the use of ROM emulators/logic analyzers for application  
development (see Tables 12a and 12b).  
Port PB4-PB0 Select  
0=ASCI Channel 0 Func  
1=PB4-PB0 Selected  
Port PB7-PB5 Select  
0=RXA1, TXA1, (RXS,/CTS1)  
1=PB7-PB5 Selected  
Port C Select  
0=ESCC Channel A Func  
1=Port C Selected  
Note: The word “Out” means that the Z182 data bus  
directionisinoutputmode,Inmeansinputmode,andZ”  
means high impedance. DDOUT stands for Data Direction  
OutandisthestatusoftheD4bitintheSystemConfiguration  
Register (SCR).  
Figure 54. System Configuration Register  
(Z180 MPU Read/Write, Address xxEFH)  
Table 12a. Data Bus Direction (Z182 Bus Master)  
I/O And Memory Transactions  
I/O Write I/O Read  
to On-Chip From On-Chip to Off-Chip From Off-Chip  
I/O Write  
I/O Read  
Write  
To  
Read  
From  
Z80182  
/Z8L182  
Peripherals  
Peripherals  
Peripherals  
Peripherals  
Memory Mode Refresh Idle Mode  
Z80182  
Out  
Z
Out  
In  
Out  
In  
Z
Z
/Z8L182  
Data Bus  
(DDOUT =0)  
Z80182  
Out  
Out  
Out  
In  
Out  
In  
Z
Z
/Z8L182  
Data Bus  
(DDOUT =1)  
DS971820600  
3-57  
PS009801-0301  
Z80182/Z8L182  
ZILOG INTELLIGENT PERIPHERAL  
Zilog  
P R E L I M I N A R Y  
Z182 MISCELLANEOUS CONTROL AND INTERFACE REGISTERS  
Table 12b. Data Bus Direction (Z182 Bus Master)  
Interrupt Acknowledge Transaction  
Intack For  
On-Chip  
Intack For  
Off-Chip  
Peripheral (IEI=1)  
Peripheral (IEI=0)  
Z80182/Z8L182  
Data Bus  
(DDOUT=0)  
Z
In  
In  
Z80182/Z8L182  
Data Bus  
Out  
(DDOUT=1)  
Table 13a. Data Bus Direction (Z80182/Z8L182 is not Bus Master)  
I/O And Memory Transactions  
I/O Write I/O Read  
to On-Chip From On-Chip to Off-Chip From Off-Chip  
I/O Write  
I/O Read  
Write  
To  
Read  
From  
Z80182  
Peripherals  
Peripherals  
Peripherals  
Peripherals  
Memory Mode Refresh Idle Mode  
Z80182  
In  
Out  
Z
Z
Z
In  
Z
Z
/Z8L182  
Data Bus  
DDOUT=0)  
Z80182  
In  
Out  
Z
Z
Z
In  
Z
Z
/Z8L182  
Data Bus  
(DDOUT=1)  
Table 13b. Data Bus Direction (Z80182/Z8L182 is not Bus Master)  
Interrupt Acknowledge Transaction  
Intack For  
Intack For  
Off-Chip  
On-Chip  
Peripheral  
Peripheral  
Z80182/Z8L182  
Data Bus  
(DDOUT=0)  
Out  
Out  
In  
In  
Z80182/Z8L182  
Data Bus  
(DDOUT=1)  
DS971820600  
3-58  
PS009801-0301  
Z80182/Z8L182  
Zilog  
Z182 MISCELLANEOUS CONTROL AND INTERFACE REGISTERS  
ZILOG INTELLIGENT PERIPHERAL  
P R E L I M I N A R Y  
Bit 1 ESCCChannel B/MIMIC  
Bit 3 Disable ROMs  
If this bit is 0, Mode 0 is selected.  
If this bit is 1, Mode 1 is selected.  
Ifthisbitis1,itdisablestheROMCSpin.Ifitis0,addresses  
below the ROM boundary set by the ROMBR register will  
cause the ROMCS pin to go Low.  
Mode 0:  
Channel A ESCC Enabled  
Channel B ESCC Enabled  
PIA Port Enabled  
Bit 2 Tri-Muxed Pins Select  
The Z80182/Z8L182 has three pins that are triple  
multiplexed and controlled by bit 2 and bit 1. Table 14  
shows the different modes.  
16550 MIMIC Interface Disabled  
Mode 1:  
Table 14. SCR Control for Triple Multiplexed Pins  
Channel A ESCC enabled  
Channel B outputs disabled  
PIA disabled  
Bit 2  
Bit 1  
System Configuration Register  
0
0
1
1
0
1
0
1
/TEND1,TxS,CKS  
/TEND1,TxS,CKS  
/RTSB,(/DTR//REQB),(/W//REQB)  
/HRxRDY,//HTxRDY,HINTR  
16550 MIMIC Interface Enabled  
Bit 0 Daisy Chain  
This bit is used to set interrupt priority of the ESCC and  
16550 MIMIC interface. If it is 0, the ESCC is higher up in  
thedaisychainthanthe16550MIMICinterface.Ifitis1,the  
16550 interface is higher up than the ESCC. Note that  
/INT0 is used for both MIMIC and ESCC Interrupts.  
/RAMCS AND /ROMCS REGISTERS  
To assist decoding of ROM and RAM blocks of memory,  
three more registers and two pins have been added to the  
Z80182/Z8L182. The two pins are /ROMCS and /RAMCS.  
The three registers are RAMUBR, RAMLBR and ROMBR.  
D7 D6 D5 D4 D3 D2 D1 D0  
D7 D6 D5 D4 D3 D2 D1 D0  
1
1
1
1
1
1
1
1
Upon reset  
1
1
1
1
1
1
1
1
Upon reset  
A19-A12  
A19-A12  
Figure 56. RAMLBR  
(Z180 MPU Read/Write, Address xxE7H)  
Figure 55. RAMUBR  
(Z180 MPU Read/Write, Address xxE6H)  
DS971820600  
3-59  
PS009801-0301  
Z80182/Z8L182  
ZILOG INTELLIGENT PERIPHERAL  
Zilog  
P R E L I M I N A R Y  
/RAMCS AND /ROMCS REGISTERS (Continued)  
RAMUBR, RAMLBR RAM Upper Boundary Range,  
RAM Lower Boundary Range  
Because /ROMCS takes priority over /RAMCS, the latter  
will never be asserted until the value in the ROMBR and  
RAMLBR registers are re-initialized to lower values.  
These two registers specify the address range for the  
/RAMCS signal. When accessed memory addresses are  
lessthanorequaltothevalueprogrammedintheRAMUBR  
and greater than or equal to the value programmed in the  
RAMLBR, /RAMCS is asserted. The A18 signal from the  
CPU is taken before it is multiplexed with TOUT. In the case  
that these registers are programmed to overlap,  
/ROMCS takes priority over /RAMCS (/ROMCS is asserted  
and /RAMCS is inactive).  
D7 D6 D5 D4 D3 D2 D1 D0  
1
1
1
1
1
1
1
1
Upon reset  
A19-A12  
Figure 57. ROMBR  
(Z180 MPU Read/Write, Address xxE8H)  
ChipSelectsignalsaregoingactivefortheaddressrange:  
/ROMCS: (ROMBR) >= A19-A12 >= 0  
/RAMCS: (RAMUBR) >= A19-A12 >= (RAMLBR)  
ROMBR ROM Address Boundary Register  
This register specifies the address range for the /ROMCS  
signal. When accessed, memory addresses are less than  
or equal to the value programmed in this register, the  
/ROMCS signal is asserted.  
These registers are set to FFH at POR, and the boundary  
addresses of ROM and RAM are as follows:  
ROM lower boundary address  
(fixed) = 00000H  
The A18 signal from the CPU is obtained before it is  
multiplexed with TOUT. This signal can be forced to a “1”  
(inactive state) by setting bit 3 in the System Configuration  
Register, toallowtheusertooverlaytheRAMareaoverthe  
ROM area.  
ROM upper boundary address  
(ROMBR register) = 0FFFFFH  
RAM lower boundary address  
(RAMLBR register) = 0FFFFFH  
RAM upper boundary address  
(RAMUBR register) = 0FFFFFH  
Z80182 Improvement to the Wait State Generator  
A separate Wait State Generator is provided for access  
memoryusing/ROMCSand/RAMCS.Asingle8-bitregister  
is added to enable/disable this feature as well as provide  
two3-bitfieldsthatprovide1to8waitsforeachchipselect.  
There are two wait state generators in the Z182. The actual  
number of wait states inserted is the greatest number of  
both the Z180 WSG and the chip select WSG. In order to  
use the Chip Select WSG, the Z180 WSG should be  
programmed to 0 wait states.  
WSG Chip Select Register (Z80182 address D8H)  
D7 D6 D5 D4 D3 D2 D1 D0  
Bit 7  
/RAMCS Wait State Generator Enable.  
Disable on power-up or reset.  
0
0
/ROMCS  
Wait States  
1-8  
Bits 6-4 /RAMCS Wait States 1 to 8.  
Eight wait states on power-up or reset.  
/ROMCS Wait  
State Generator  
Enable  
Bit 3  
/ROMCS Wait State Generator Enable.  
Disable on power-up or reset.  
/RAMCS Wait  
States 1-8  
/RAMCS Wait State  
Generator Enable  
Bits 2-0 /ROMCS Wait States 1 to 8.  
Eight wait states on power-up or reset.  
Figure 58. WSG Chip Select Register  
(Z180 MPU Read/Write, Address xxD8H)  
DS971820600  
3-60  
PS009801-0301  
Z80182/Z8L182  
Zilog  
INTERRUPT EDGE/PIN MUX REGISTER  
ZILOG INTELLIGENT PERIPHERAL  
P R E L I M I N A R Y  
D7 D6 D5 D4 D3 D2 D1 D0  
0
1
0
1
1
1
0
0
Halt Recovery Select  
1 16 Cycle delay on Halt recovery  
0 No wait delay on Halt recovery  
Low Noise Select  
1 Select low noise for Z182(not Z180)  
0 Select normal drive for Z182 pins  
IEO,/IOCS Select  
1 Select/IOCS Function  
0 Select IEO Function  
/MREQ, /MRD, PC2, /RTSA, /MWR Select  
1 Select /MRD, /MWR  
0 Select /MREQ, PC2, /RTSA  
/INT1 Mode Select  
0X Normal Level Detect  
10 Falling (Neg) Edge Det  
11 Rising (Pos) Edge Det  
/INT2 Mode Select  
0X Normal Level Detect  
10 Falling (Neg) Edge Det  
11 Rising (Pos) Edge Det  
Figure 59. Interrupt Edge/Pin MUX Register  
(Z180 MPU Read/Write, Address xxDFH)  
Bits 7-6. These bits control the interrupt capture logic for  
the external /INT2 PIN. When programmed as ‘0X’, the  
/INT2 pin performs as the normal level detecting interrupt  
pin. Whenprogrammedas10thenegativeedgedetection  
is enabled. Any falling edge latches an active Low on the  
internal/INT2oftheZ180.Thisinterruptmustbeclearedby  
writinga1tobit7ofthePortCDataRegister.Programming  
thesecontrolbitsto11enablesrisingedgeinterruptstobe  
latched. The latch is cleared in the same fashion as the  
falling edge.  
this bit to 0 the /MREQ Z180 function is enabled, as well as  
the PC2//RTSA function on the PC2//RTSA//MWR pin. If the  
/MREQ Z180 function is enabled, any external bus master  
mustbepreventedfromassertingZ182'sIRDsignalunless  
accessing Z182's IO.  
Bit2.Thisbitselectsthe/IOCSfunctionwhichisthedefault  
for power up and /RESET conditions. By programming this  
bit to 0 the IEO function is enabled for this multiplexed pin.  
Bit 1. This bit selects the low noise or normal drive feature  
for the Z182 pins . The default at power up is normal drive  
for Z182 pins. By programming this bit to 1, low noise for  
the Z182 pins is chosen and the output drive capability of  
the following pins is reduced to 25% of the original drive  
capability:  
Bits 5-4. These bits control the interrupt capture logic for  
the external /INT1 PIN. When programmed as ‘0X’, the  
/INT1 pin performs as the normal level detecting interrupt  
pin.Whenprogrammedas10,thenegativeedgedetection  
is enabled. Any falling edge latches an active Low on the  
internal/INT1oftheZ180.Thisinterruptmustbeclearedby  
writinga1tobit6ofthePortCDataRegister.Programming  
thesecontrolbitsto11enablesrisingedgeinterruptstobe  
latched. The latch is cleared in the same fashion as the  
fallingedge.EdgedetectlogiccannotbeusedinEmulation  
Adaptor EV mode 1.  
- CKS  
- RxS/CTS1  
- TxS  
- CKA1/TEND0  
- TxA1  
- CKA0/DREQ0  
- TxA0  
Programming this bit to 0 selects normal drive for the Z182  
pins. Refer to the Z8S180 Product Specification for Low  
noise control of Z180 pins.  
Bit 3. Programming this bit to 1 selects the /MRD and the  
/MWR functions. The default for power up and /RESET  
conditions is 1, i.e., the /MRD and /MWR. By programming  
DS971820600  
3-61  
PS009801-0301  
Z80182/Z8L182  
ZILOG INTELLIGENT PERIPHERAL  
Zilog  
P R E L I M I N A R Y  
INTERRUPT EDGE/PIN MUX REGISTER (Continued)  
Bit 0. Programming this bit to 1 selects a 16 cycle wait  
delay on recovery from HALT. Halt Recovery is disabled if  
bit 5 of the enhancement register is set to 1. A 0 selects no  
wait delay on Halt recovery.  
Notes:  
1. This assumes that BUSREQ is not activated during the  
halt.  
2. Thisassumesthattherefreshisnotenabled.Thiswould  
not be a logical case since the address bus is tri-stated  
during the Halt mode.  
If Halt Recovery is selected, the following pins assume the  
followingstatesduringhaltandduringtherecovery,whether  
it is in HALT, SLP, IDLE or STBY Modes:  
3. There is no control on the E line during the halt recovery  
so transitions on the pin are possible.  
Address = Z  
Data Bus = Z  
RD = Z  
4. This is only true if MWR function is enabled.  
WR = Z  
MREQ/MRD = Z  
M1 = 1  
The Halt recovery mode is implemented by applying wait  
states to the next CPU operation following the exit from  
halt. All signals listed above are forced to their specified  
state (unless otherwise noted) during halt and also during  
the recovery state. Sixteen cycles after the halt pin goes  
High the signals are released to their normal state, then  
eight wait states are inserted to allow proper access to  
accommodate slow memories.  
ST = 1  
IORQ = 1  
BUSACK = 1  
RFSH = 1  
E
= Note 3  
IOCS = Z  
MWR = 1 (Note 4)  
After the first memory access, the wait states will be  
inserted as programmed in the wait state generators.  
In addition, if bit 4 of the Z80182 Enhancement Register is  
set,theTxDApinwillbetri-statedduringHaltandRecovery  
modes.  
DS971820600  
3-62  
PS009801-0301  
Z80182/Z8L182  
Zilog  
ZILOG INTELLIGENT PERIPHERAL  
P R E L I M I N A R Y  
16550 MIMIC INTERFACE REGISTERS  
MIMIC Master Control Register (MMC)  
Both counters are single pass and stop on a count of Zero.  
Their purpose is to delay data transfer just as if the 16550  
UART had to shift the data in and out. This is provided to  
alleviate any software problems a high speed continuous  
data transfer might cause to existing software. If this is not  
a concern, then data can be read and written as fast as the  
two machines can access the devices. In FIFO mode of  
operation , the timers are used to delay the status to the PC  
interfacebythetime requiredtoactuallyshiftthecharacters  
out, or in, if an actual UART were present.  
The 16550 MIMIC interface is controlled by the MMC  
register. Setting it allows for different modes of operation  
such as using the 8-bit counters, DMA accesses, and  
which IRQ structure is used with the PC/XT/AT.  
D7 D6 D5 D4 D3 D2 D1 D0  
0
0
0
0
0
0
0
0
VIS Vector Include Status  
0 Mode 0 Interrupts  
1 Mode 2 Interrupts  
Bit 5 Transmit DMA Enable (Read/Write)  
If this bit is set to 1, it enables the Transmit DMA function.  
HINTR  
00 Normal  
Bit 4 Receive DMA Enable (Read/Write)  
If this bit is set to 1, it enables the Receive DMA function.  
01 Wire And  
10 Out 2 Control  
11 Reserved  
Bit 3 Receive DMA Channel Select (Read/Write)  
Rx DMA 0=Chan 0 Z180  
1=Chan 1 Z180  
Tx DMA 0=Chan 1 Z180  
1=Chan 0 Z180  
If bit 3 is set to 0, then Receive DMA transfer is done  
through Z180 DMA channel 0 and the Transmit DMA is  
done through DMA channel 1. If bit 3 is set to 1, then  
Receive DMA transfer is done through Z180 DMA channel  
1 and the Transmit DMA is done through DMA channel 0.  
Rx DMA Enable  
Tx DMA Enable  
Rx Timer Enable  
Tx Timer Enable  
Bits 2,1 Interrupt Select (Read/Write).  
See Table 15.  
Figure 60. MIMIC Master Control Register  
(Z180 MPU Read/Write, Address xxFFH)  
Bit 0 Vector Include Status (Read/Write)  
Thisbitisusedtoselecttheinterruptresponsemodeofthe  
Z180. A 0 in this bit enables Mode 0 interrupts; a 1 enables  
Mode 2 response.  
Bit 7 Transmit Emulation Delay Counter Enable  
(Read/Write)  
Table 15. MIMIC Master Control Register  
Interrupt Select  
If bit 7 is set to 1, it enables the transmit delay timer. When  
the Z180 reads the Transmit Register, it loads the transmit  
delay timer from the Transmit Time Constant Register and  
enables the timer to count down to zero. This timer delays  
setting the Transmit Holding Register Empty (THRE) bit  
until the timer times out. If this bit is 0, then THRE is set  
immediately on a Z180 read of the Transmit Register. This  
bit also enables the emulation timer used in Transmitter  
Double Buffering.  
Bit 2  
Bit 1  
HINTR Function  
0
0
HINTR is set to normal 16550 MIMIC mode.  
A fully driven output is required when  
external priority arbiters are used.  
0
1
A wired AND condition on the HINTR pin is  
possible to the PC/XT/AT. The interrupt  
is active High with only the pull-up  
Bit 6 Receive Emulation Delay Counter Enable  
(Read/Write)  
of the HINTR pin driving; otherwise this  
pin is tri-state. Wired AND is needed when  
an external arbiter is not available.  
If bit 6 is set to 1, it enables the receive delay timer. When  
the Z180 writes to the Receive Buffer, it loads the receive  
delay timer from the Receive Time Constant Register and  
enables the timer to count down to zero. This timer delays  
setting the Data Ready (DR) bit in the LSR until the timer  
timesout.Ifthisbitis0thenDRissetimmediatelyonaZ180  
write to the Receive Buffer.  
1
1
0
1
HINTR is driven when out 2 of the Modem  
Control Register is 1. HINTR is tri-state  
when MCR out 2 is 0.  
RESERVED  
DS971820600  
3-63  
PS009801-0301  
Z80182/Z8L182  
ZILOG INTELLIGENT PERIPHERAL  
Zilog  
P R E L I M I N A R Y  
IUS/IP Register  
TheIUS/IPRegisterisusedbytheZ180MPUtodetermine  
the source of the interrupt. This register will have the  
appropriate bit set when an interrupt occurs.  
Bit 5 Transmitter Timeout with Data in FIFO (Read  
Only)  
This bit is set when the transmitter FIFO has been idle (no  
readorwriteandtimerdecrementstozero)withdatabytes  
below the trigger level. It is cleared when the FIFO is read  
or written.  
D7 D6 D5 D4 D3 D2 D1 D0  
0
0
0
0
0
0
0
0
Bit 4 Receive Buffer Read (Read Only)  
This bit is set when the PC/XT/AT reads the Receive Buffer  
Register. It is reset when the Z180 MPU writes to the  
Receive Buffer Register. In FIFO mode, this bit is set upon  
the PC reading all the data in the receive FIFO. Note:RBR  
is set and interrupts when the receive FIFO has been  
emptied by the PC. This bit and interrupt are cleared when  
one or more bytes are written into the receive FIFO by the  
MPU.  
Interrupt Pending  
6 THR Write  
5 TTO Transmitter Timeout  
4 RBR Read  
3 MCR Write  
2 LCR Write  
1 DLL Write  
1 DLM Write  
0 FCR Write or Tx Overrun  
Interrupt Under Service (RD)  
Reset Highest IUS (WR)  
Bit 3 Modem Control Register Write (Read Only)  
This bit is set when the PC/XT/AT writes to the Modem  
Control Register. It is reset when the Z180MPU reads the  
Modem Control Register.  
Figure 61. IUS/IP Register  
(Z180 MPU, Address xxFEH)  
Bit 7 Interrupt Under Service (Read/Write)  
This bit represents a logical OR of each individual IUS bit  
fortheinternalMIMICinterruptdaisychain.AnIUSbitisset  
when an interrupt is registered (IP set) and enabled (IE  
set), the incoming IEI daisy chain is active (chain enabled)  
and an interrupt acknowledge cycle is entered. By writing  
a 1 to this bit the highest priority IUS bit that is set will be  
reset. Writing a 0 to this bit has no effect.  
Bit 2 Line Control Register Write (Read Only)  
This bit is set when the PC/XT/AT writes to the Line Control  
Register. It is reset when the Z180 MPU reads the Line  
Control Register.  
Bit 1 Divisor Latch LS/MS Write (Read Only)  
ThisbitissetwhenthePC/XT/ATwritestotheDivisorLatch  
Least Significant or Most Significant bytes. It is reset when  
the PC reads the LS/MS register(s). To determine which  
byte(s) have been written, the Z180 must read either LS or  
MS locations and then repoll this bit. If only one location is  
interrupting, the interrupt is cleared when that location is  
read by the Z180.  
ThisshouldbedoneattheendofeveryMIMICInterrupt  
Service routine.  
Bit 6 Transmit Holding Register Written (Read Only)  
This bit is set when the PC/XT/AT writes to the Transmit  
Holding Register. It is reset when the Z180 MPU reads the  
Transmit Holding Register. In FIFO mode, this bit is set  
when the trigger level is reached (4,8,14 bytes available).  
Note: The THR bit is set (interrupts) when the transmitter  
FIFOreachesthedataavailabletriggerlevelsetintheMPU  
FCRcontrolregister.Thebitandinterruptsourceiscleared  
when the number of data bytes falls below the set trigger  
level.  
Bit 0 FIFO Control Register Write (Read Only)  
This bit is set when the PC/XT/AT writes to the FCR. This bit  
is also set when Transmit occurs. It is reset when the Z180  
MPU reads this register.  
DS971820600  
3-64  
PS009801-0301  
Z80182/Z8L182  
Zilog  
ZILOG INTELLIGENT PERIPHERAL  
P R E L I M I N A R Y  
Interrupt Enable Register  
Priority of interrupts are in this order:  
The IE Register allows each of the 16550/8250 interrupts  
totheZ180MPUtobemaskedoffindividuallyorglobally.  
(Highest)  
6
5
4
3
2
1
1
0
THR IRQ  
TTO IRQ  
RBR IRQ  
MCR IRQ  
LCR IRQ  
DLL IRQ  
DLM IRQ  
D7 D6 D5 D4 D3 D2 D1 D0  
0
0
0
0
0
0
0
0
Interrupt Enable  
6 Enable THR IRQ  
5 Enable TTO IRQ  
4 RBR IRQ  
(Lowest)  
FCR or Tx OVERRUN IRQ  
3 Enable LCR IRQ  
2 Enable MCR IRQ  
1 Enable DLL/DLM IRQ  
0 Enable FCR IRQ  
Interrupt Vector Register  
The Interrupt Vector Register contains either the opcode  
(Z180 Interrupt Mode 0) or the modified vector used as the  
lower address for a Z180 interrupt service routine (Z180  
Interrupt Mode 2), depending upon the VIS bit in the MMC  
Register (MIMIC Master Control Register). If the VIS bit is  
0, then Z180 Mode 0 interrupt is selected; if VIS is 1, then  
Z180 Mode 2 is selected. Note that in Z180 Interrupt Mode  
0, the data input to the MPU during the interrupt  
acknowledge cycle is an instruction opcode; in Z180  
Interrupt Mode 2, this data (modified depending on the  
source of the interrupt) becomes part of an address from  
which to get the starting address of the interrupt service  
routine.  
MIE  
Figure 62. IE Register  
(Z180 MPU, Address xxFDH)  
Bit 7 Master Interrupt Enable (Read/Write)  
If bit 7 is 0, all interrupts from the 16550 MIMIC are masked  
off. Ifthisbitis1, theninterruptsareenabledindividuallyby  
setting the appropriate bit.  
Bit 6 Enable THR Interrupt (Read/Write)  
If this bit is 1, it enables the Transmit Holding Register  
Interrupt.  
D7 D6 D5 D4 D3 D2 D1 D0  
Bit 5 Enable TTO Interrupt (Read/Write)  
0
0
0
0
0
0
0
0
If this bit is 1, it enables the Transmitter Timeout Interrupt.  
This interrupts the CPU when characters remain in the  
FIFO below the trigger level and the FIFO is not read or  
written for the length of time in the transmitter timeout  
register.  
0/Opcode  
Status/Opcode  
Upper Nibble IVEC  
Bit 4 Enable RBR Interrupt (Read/Write)  
If this bit is 1, it enables the Receive Buffer Register  
Interrupt.  
Figure 63. IVEC Register  
(Z180 MPU, Address xxFCH)  
Bits 7-4 Upper Nibble IVEC (Read/Write)  
Bit 3 Enable LCR Interrupt (Read/Write)  
If this bit is 1, it enables the Line Control Register interrupt.  
ThesefourbitsgenerateeitheranopcodeforZ180Interrupt  
Mode 0, or the upper four bits of the interrupt modified  
vector used as an 8-bit address to support the Z180  
Interrupt Mode 2. These bits are read/write and always  
read back what was last written to them.  
Bit 2 Enable MCR Interrupt (Read/Write)  
If this bit is 1, it enables the Modem Control Register  
Interrupt.  
Bits 3-1 Interrupt Modified Vector/Opcode  
(Read/Write Table 16)  
Bit 1 Enable DLL/DLM Interrupt (Read/Write)  
If this bit is 1, it enables the Divisor Latch Least and Most  
Significant Byte interrupts.  
These three bits are the Interrupt Status bits when VIS in  
the MMC register is 1 (Z180 Interrupt Mode 2). If VIS bit is  
0, thenthisfieldcontainsbit3-bit1oftheopcode. IftheVIS  
bit is 0, then these bits contain what was last written to  
them.  
Bit 0 Enable FCR Interrupt (Read/Write)  
If this bit is 1 , then interrupts are enabled for a PC write to  
the FIFO control register (FCR) or for occurrence of Tx  
Overrun.  
DS971820600  
3-65  
PS009801-0301  
Z80182/Z8L182  
ZILOG INTELLIGENT PERIPHERAL  
Zilog  
P R E L I M I N A R Y  
Interrupt Vector Register (Continued)  
Table 16. Interrupt Status Bits  
Bit 7 and Bit 6 XMIT Trigger MSB,LSB  
Thisfielddeterminesthenumberofbytesavailabletoread  
in the transmitter FIFO before an interrupt occurs to the  
MPU (Table 17).  
Bits 3, 2, 1  
Interrupt Request  
000  
001  
010  
011  
100  
101  
110  
111  
NO IRQ  
FCR or Tx OVRN IRQ  
DLL/DLM IRQ  
LCR IRQ*  
Table 17. Transmitter Trigger Level  
b7  
b6  
Level (# bytes)  
MCR IRQ*  
RBR IRQ  
TTO IRQ  
THR IRQ  
0
0
1
1
0
1
0
1
1
4
8
14  
Note:* The order of LCR and MCR does not follow that of the IE Register.  
Bit 0 0/Opcode (Read/Write)  
Bit 5 Receive Timeout Enable  
This bit is always 0 when the VIS bit is 1. If the VIS bit is 0,  
this bit reads back what was last written to it.  
This bit enables the Z80182/Z8L182 Receive Timeout  
Timer that is used to emulate the four character timeout  
delay that is specified by the 16550. If no read or write to  
the RCVR FIFO has taken place and data bytes are  
available, but are below the PC trigger level. If this timer  
reaches zero, an interrupt is sent to the PC.  
TheInterruptVectorRegisterservesbothinterruptmodes.  
When the VIS bit is 0, the last value written to the register  
can be read back. If the VIS bit is 1, and an interrupt is  
pending, the value read is the last value written to the  
uppernibbleplusthestatusfortheinterruptthatispending.  
If no interrupt is pending, then the last value written to the  
uppernibbleplusthelowernibbleisreadfromtheregister.  
Bit 4 Transmitter Timeout Enable  
This bit enables the Z80182/Z8L182 timer that is used to  
interrupt the Z180 MPU if characters are available, but are  
below the trigger level. The timer is enabled to count down  
if this bit is 1 and the number of bytes is below the set  
transmittertriggerlevel.Thetimerwilltimeoutandinterrupt  
the MPU if no read or write to the XMIT FIFO takes place  
within the timer interval.  
If the vector includes the status, then the lower four bits of  
the vector change asynchronously depending on the  
interrupting source. Since this vector changes  
asynchronously, then the interrupt service routine to read  
the IVEC register might read the source of the most recent  
IRQ/INTACK cycle if that IRQ does not have its IUS set.  
Bit 3 Reserved. Program to zero.  
Bit 2 (Reset value = 0) TEMT/Double Buffer  
When enabled the Tx buffer can hold one extra byte (2  
bytes total in 16450 mode). (Do not enable in 16550  
mode.)  
D7 D6 D5 D4 D3 D2 D1 D0  
0
0
0
0
0
0
0
0
16450 MIMIC mode Enable  
RTO Timeout Enhancement  
TEMT Enable  
TEMT Emulation  
If character delay emulation is not used the TEMT bit is  
automated. (Refer to page 26 for TEMT/Double Buffer  
information.)  
Reserved for  
Future Use  
Always write and  
read as 0  
XMIT Timeout Enable  
RCVR Timeout Enable  
Bit 1 RTO Timeout Enhancement  
(Reset value = 0) Setting this bit will enable the RTO  
timeout to emulate the 16550 device. When enabling this  
feature, the receive timeout timer will not begin counting  
down until the character emulation timer for each byte of  
data in the Rx FIFO has expired.  
XMIT Trigger LSB  
XMIT Trigger MSB  
Figure 64. FIFO Status and Control Register  
(Z180 MPU Read/Write, Address xxECH)  
DS971820600  
3-66  
PS009801-0301  
Z80182/Z8L182  
Zilog  
ZILOG INTELLIGENT PERIPHERAL  
P R E L I M I N A R Y  
Thisregistercontainsan8-bitconstantfordeterminingthe  
interval for the Transmit Timeout Timer. If allowed to  
decrement to zero, this timer interrupts the MPU by setting  
the THR bit in the IUS/IP register. This timer receives its  
input from the /TRxCB Clock of the SCC. The timer is  
enabled to down count when the enable bit in the FSR  
register is set and the trigger level has not been reached  
on the XMIT FIFO. The counter reloads each time there is  
a read or write to the XMIT FIFO.  
Bit 0 16450 MIMIC Mode Enable  
(Reset value=0) This bit = 1 will force the mimic into 16450  
mode. Bit 0 in the FCR reg is forced to zero as well as the  
mimic internal FIFO enable. When used, this bit should be  
programmed at MIMIC initialization and not modified  
afterwards.  
D7  
1
D6 D5 D4 D3 D2 D1 D0  
1
1
1
1
1
1
1
Transmit And Receive Timers  
Rec Timeout Constant  
Because of the speed at which data transfers can take  
place between the Z180MPU and the PC/XT/AT, two  
timershavebeenaddedtoalleviateanysoftwareproblems  
thatahighspeedparalleldatatransfermightcause.These  
timersallowtheprogrammertoslowdownthedatatransfer  
just as if the 16550 MIMIC interface had to shift the data in  
and out serially. The Timers receive their input from the  
/TRxCB Clock since, in 16550 MIMIC mode, the ESCC  
channel B is disabled. For example, the clock source for  
the8-bitregisters:RTTC(ReceiveTimeoutTimeConstant,  
xxEAH), TTTC (Transmit Timeout Time Constant, xxEBH),  
TTCR (Transmit Time Constant Register, xxFAH) and  
RTCR (Receive Time Constant Register, xxFBH) uses the  
/TRxCB Clock output. The /TRxCB Clock output needs to  
be generated by the ESCC’s channel B's 16-bit BRG as its  
clock source, thus allowing the programmer to access a  
total of 24 bits as a timer to slow down the data transfer.  
Figure 65. Receive Timeout Timer Constant  
(Z180 MPU Read/Write, Address xxEAH)  
Thisregistercontainsan8-bitconstantforemulationofthe  
16550 four character timeout feature. Software must  
determine the value to load into this register based on the  
bit rate and word length specified by the MIMIC interface  
with the PC. This timer receives its input from the /TRxCB  
Clock of the ESCC. This timer is enabled to down count  
whentheenablebitintheFSRregisterissetandthetrigger  
level interrupt has not been activated on the RCVR FIFO.  
The counter reloads and counts down each time there is  
a read or write to the RCVR FIFO.  
The receive timeout timer is enhanced to emulate the  
actual 16550 when bit 1 of the FIFO status and control  
registerisenabled.Undermostcircumstances,thisregister  
should be programmed for four character timers (40d,  
8-N-1).  
In most cases, ESCC Ch. B BRG should be programmed  
to output at a frequency equivalent to the desired serial  
transferrate.TheoutputoftheBRGshouldberoutedtothe  
/TRxCB pin.  
D7  
1
D6 D5 D4 D3 D2 D1 D0  
D7  
1
D6 D5 D4 D3 D2 D1 D0  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
Transmitter Time Constant  
XMIT Timeout Constant  
Figure 66. Transmit Timeout Timer Constant  
Figure 67. Transmitter Time Constant Register  
(Z180 MPU Read/Write, Address xxEBH)  
(Z180 MPU Read/Write, Address xxFAH)  
DS971820600  
3-67  
PS009801-0301  
Z80182/Z8L182  
ZILOG INTELLIGENT PERIPHERAL  
Zilog  
P R E L I M I N A R Y  
Transmit And Receive Timers (Continued)  
D7  
1
D6 D5 D4 D3 D2 D1 D0  
When a write from the PC/XT/AT is made to the Transmit  
HoldingRegister,aninterrupttotheZ180MPUisgenerated.  
The Z180 MPU then reads the data in the Transmit Holding  
Register.Uponthisread, iftheTransmittertimerisenabled,  
the time constant from the Transmitter Time Constant  
Register is loaded into the Transmitter timer and enables  
the count. After the timer reaches a count of zero the  
Transmit Holding Register Empty bit is set. However, the  
above is only true when the PC/XT/AT is reading the  
Transmit Holding Register Empty bit. To allow the Z180  
MPU to know that it has already read the byte of data,  
immediately following a read from the Transmit Holding  
Register, a mirrored Transmit Holding Register, Empty bit  
is set. This mirrored bit is always read back to the Z180  
MPU when it reads the Line Status Register.  
1
1
1
1
1
1
1
Receiver Time Constant  
Figure 68. Receive Time Constant Register  
(Z180 MPU Read/Write, Address xxFBH)  
When the Z180MPU writes to the Receive Buffer register  
and the Receive Timer is enabled, the Receive Timer is  
loadedwiththeReceiveTimeConstant,thetimerisenabled  
andcountsdowntozero. Whenthetimerreacheszero, the  
DataReadybitintheLineStatusRegisterisset. Aswiththe  
Transmit Timer, the Data Ready bit is also mirrored.  
ImmediatelyuponawritetotheReceiveBuffer,themirrored  
bitissettolettheZ180MPUknowthatthebytehasalready  
been written. If the timer is not enabled, then both Data  
Ready bits are set immediately upon a write to the Receive  
Buffer. The FIFO mode of operation is similar in that the  
status to the PC is always delayed by the time required for  
each character written to the FIFO by the Z180. The effect  
is that the PC will not see a FIFO trigger level or DMA  
request faster than would occur with a true UART when the  
delay feature is enabled.  
If the transmitter timer is not enabled when the Z180 MPU  
readstheTransmitHoldingRegister,bothTransmitHolding  
Register Empty bits are set immediately. In FIFO mode of  
operation, the effect is similar as the status to PC is always  
delayed such that a PC interrupt for empty FIFO will not  
occur before the time required for each character read  
from the FIFO by the Z180 has elapsed. The effect is that  
the PC will not see data requests from an empty FIFO any  
faster than would occur with a true UART when the delay  
feature is enabled. This timer is also used to delay data  
transfer for TSR buffer to Z80182 THR in double buffer  
mode.  
DS971820600  
3-68  
PS009801-0301  
Z80182/Z8L182  
Zilog  
ZILOG INTELLIGENT PERIPHERAL  
P R E L I M I N A R Y  
16550 MIMIC REGISTERS  
D7  
0
D6 D5 D4 D3 D2 D1 D0  
The Z80182/Z8L182 contains the following set of registers  
for interfacing with the PC/XT/AT.  
0
0
0
0
0
0
0
– Receive Buffer Register  
– Transmit Holding Register  
– Interrupt Enable Register  
– Interrupt Identification Register  
– FIFO Control Register  
Transmitter Holding Register  
Figure 70. Transmit Holding Register  
– Line Control Register  
– Modem Control Register  
– Line Status Register  
(PC Write Only, Address 00H, DLAB=0, R/W=Write)  
(Z180 MPU Read Only, Address xxF0H)  
– Modem Status Register  
– Scratch Register  
– Divisor Latch Least/Most Significant Bytes  
– FIFO Control Register  
Transmit Holding Register  
WhenthePC/XT/ATwritestotheTransmitHoldingRegister,  
the Z80182/Z8L182 responds by setting the appropriate  
bit in the IP register and by generating an interrupt to the  
Z180 MPU if it is enabled. When the Z180 MPU reads this  
register the Transmit Holding Register empty flag is set (if  
thetransmittertimerisenabled, thisbitissetafterthetimer  
times out). In FIFO mode of operation, this address is used  
to read (Z180) and write (PC) the Transmitter FIFO.  
These registers emulate the 16550 UART and enable the  
PC/XT/AT to interface with them as with an actual 16550  
UART. This allows the Z80182/Z8L182 to be software  
compatible with existing modem software.  
D7  
0
D6 D5 D4 D3 D2 D1 D0  
0
0
0
0
0
0
0
D7 D6 D5 D4 D3 D2 D1 D0  
0
0
0
0
0
0
0
0
Receive Buffer Register  
FIFO Enable  
RCVR FIFO Reset  
XMIT FIFO Reset  
Figure 69. Receive Buffer Register  
DMA Mode Select  
(PC Read Only, Address 00H, DLAB=0, R/W=Read)  
(Z180MPU Write Only, Address XXF0H)  
Reserved (Tx Overrun, MPU only)  
Reserved (FCR Write, MPU only)  
RCVR Trigger (LSB)  
RCVR Trigger (MSB)  
Receive Buffer Register  
WhentheZ180hasassembledabyteofdatatopasstothe  
PC/XT/AT, it places it in the Receive Buffer Register. If the  
Received Data Available interrupt is enabled then an  
interruptisgeneratedforthePC/XT/ATandtheDataReady  
bit is set (if the Receive Timer is enabled, the interrupt and  
setting of the Data Ready bit is delayed until after the timer  
times out). Also the shadowed bits of the Line Status  
Register are transferred to their respective bits when the  
Z180 MPU writes to the Receive Buffer Register (See Line  
StatusRegisterBits1,2,3and4).Thisallowsasimultaneous  
setting of error bits when the data is written to the Receive  
Buffer Register. In FIFO, mode this address is used to read  
(PC) and write (Z180) the Receive FIFO.  
Figure 71. FIFO Control Register  
(PC Write Only, Address 02H)  
(Z180 MPU Read Only, Address xxE9H)  
DS971820600  
3-69  
PS009801-0301  
Z80182/Z8L182  
ZILOG INTELLIGENT PERIPHERAL  
Zilog  
P R E L I M I N A R Y  
16550 MIMIC REGISTERS (Continued)  
FIFO Control Register  
Table 18. Receive Trigger Level  
b7  
b6  
Trigger Level, Number of Bytes  
Bit 6 and Bit 7 RCVR trigger LSB and MSB bits  
This 2-bit field determines the number of available bytes in  
the receiver FIFO before an interrupt to the PC occurs (see  
Table 18).  
0
0
1
1
0
1
0
1
1
4
8
14  
Bit 4 and Bit 5  
Reserved for future use (PC side). Note: From the MPU  
side, bit 4 and bit 5 flags two sources of interrupts. Bit 5 is  
a FIFO interrupt indicating that the FCR had changed; bit  
4 is a Tx overrun interrupt, indicating transmit overrun. A  
read of the FCR from the MCU side will clear a previously  
set bit 4 or bit 5.  
D7 D6 D5 D4 D3 D2 D1 D0  
0
0
0
0
0
0
0
0
Fast Interrupt Resolution  
16550/450 RCVR Overrun  
Bit 3 DMA mode select  
Setting this bit to 1 will cause the MIMIC DMA mode to  
change from mode 0 to mode 1 (if bit 0 is 1, FIFO mode is  
enabled).ThisaffectstheDMAmodeoftheFIFO.A1inthis  
bit enables multi-byte DMA).  
Figure 72. MIMIC Modification Register  
(Z180 MPU Write only, Address xxE9h)  
Bit 7-2 Reserved. Program to zero.  
Bit 2 XMIT FIFO Reset  
Setting this bit to 1 will cause the transmitter FIFO pointer  
logic to be reset; any data in the FIFO will be lost. This bit  
is self clearing; however a shadow bit exists that is cleared  
only when read by the Z180 MPU, allowing the MPU to  
monitor a FIFO reset by the PC.  
Bit 1 RCVR Overrun Modification  
The actual 16450/16550 device allows the last position in  
FIFO to be overwritten by DCE during receiver overrun  
condition. When this bit is enabled (programmed to 1) the  
last position in FIFO can be overwritten by Z180 during  
receiver overrun. This feature is disabled by default. When  
this modification is not enabled, the MIMIC will ignore any  
write to RBR during an overrun condition.  
Bit 1 RCVR FIFO Reset  
Setting this bit to 1 will cause the receiver FIFO pointer  
logic to be reset; any data in the FIFO will be lost. This bit  
is self clearing, however a shadow bit exists that is cleared  
only when read by the Z180 MPU, allowing the MPU to  
monitor a FIFO reset by the PC.  
Bit 0 Fast MIMIC-ESCC Interrupt Resolution  
When enabling this modification, the internal MIMIC IEO  
signal into the ESCC IEI input is forced Low when the  
MIMIC Interrupt line becomes active. This is required to  
prevent the ESCC from putting it's vector on the databus  
during an INTACK cycle (given that the MIMIC is  
programmed to have higher interrupt priority).  
Bit 0 FIFO Enable  
The PC writes this bit to logic 1 to put the 16550 MIMIC into  
FIFOmode. Thisbitmustbe1whenwritingtotheotherbits  
in this register or they will not be programmed. When this  
bit changes state, any data in the FIFO’s or transmitter  
holding and Receive Buffer Registers is lost and any  
pending interrupts are cleared. This feature can be forced  
in a disabled state by the MPU.  
When disabled, the internal MIMIC IEO becomes  
deasserted only after an interrupt acknowledge cycle. In  
this case, it is possible for the ESCC to force it's interrupt  
vector onto the data bus even when the MIMIC has a  
pending interrupt and is higher in priority.  
DS971820600  
3-70  
PS009801-0301  
Z80182/Z8L182  
Zilog  
ZILOG INTELLIGENT PERIPHERAL  
P R E L I M I N A R Y  
Although this bit is disabled by default, it is advised that  
this bit is enabled to prevent interrupt conflict between  
MIMIC and ESCC interrupts.  
Bits 3-1 Interrupt ID Bits  
This 3-bit field is used to determine the highest priority  
interrupt pending (see Table 19).  
Bit 0 Interrupt Pending  
D7 D6 D5 D4 D3 D2 D1 D0  
This bit is logic 0 and interrupt is pending.  
0
0
0
0
0
0
0
0
When the PC accesses the IIR, the contents of the register  
and all pending interrupts are frozen. Any new interrupts  
will be recorded, but not acknowledged, during the IIR  
access.  
0 if Interrupt Pending  
Interrupt ID bit (0)  
Interrupt ID bit (1)  
Interrupt ID bit (2)  
Always '0'  
D7 D6 D5 D4 D3 D2 D1 D0  
Always '0'  
0
0
0
0
0
0
0
0
FIFO Enabled Flag  
FIFO Enabled Flag  
Data Ready  
Overrun Error  
Parity Error  
Figure 73. Interrupt Identification Register  
(PC Read Only, Address 02H)  
(Z180 MPU no access)  
Framing Error  
Break Interrupt  
THRE  
TEMT  
Interrupt Identification Register  
Error in RCVR FIFO  
Bit 7 and Bit 6 FIFO’s Enabled  
These bits will read 1 if the FIFO mode is enabled on the  
MIMIC.  
Figure 74. Line Status Register  
(PC Read Only, Address 05H)  
(Z180 MPU Read/Write bits 6, 4, 3, 2, Address xxF5H)  
Bit 5 and Bit 4 Always Read 0  
Reserved bits.  
Table 19. Interrupt Identification Field  
b3  
b2  
b1  
Priority  
Interrupt Source  
INT Reset Control  
0
1
1
Highest  
Overrun, Parity, Framing error  
or Break detect bits set by MPU  
Read Line Status Register  
0
1
1
1
0
0
2nd  
2nd  
Received Data trigger level  
RCVR FIFO drops below trigger level  
Read RCVR FIFO  
Receiver Timeout with data  
in RCVR FIFO.  
0
0
1
3rd  
Transmitter Holding  
Register Empty.  
Writing to the Transmitter Holding  
Register or reading the Interrupt  
Identification Register when the  
THRE is the source of the interrupt.  
0
0
0
4th  
MODEM status: CTS,  
DSR, RI or DCD  
Reading the MODEM  
status register.  
DS971820600  
3-71  
PS009801-0301  
Z80182/Z8L182  
ZILOG INTELLIGENT PERIPHERAL  
Zilog  
P R E L I M I N A R Y  
16550 MIMIC REGISTERS (Continued)  
Bit 0 Data Ready  
Line Status Register  
This bit is set to 1 when received data is available, either in  
the RCVR FIFO (16550 mode) or Receive Buffer Register  
(16450 mode). This bit is set immediately upon the MPU  
writing data to the Receive Buffer or FIFO if the Receive  
Timer is not enabled but is delayed by the timer interval if  
the Receive Timer is enabled. For MPU read access a  
shadow bit exists so that the MPU does not see the delay  
thePCdoes.Bothbitsareclearedtologiczeroimmediately  
upon reading all the data in either the Receive Buffer or  
FIFO.  
Bit 7 Error in RCVR FIFO  
In16450mode,thisbitwillreadlogic0.In16550modethis  
bitissetifatleastonedatabyteisavailableintheFIFOwith  
one of its associated error bits set. This bit will clear when  
there are no more errors (or break detects) in the FIFO.  
Bit 6 Transmitter Empty  
This bit must be set or reset by the MPU by a write to this  
registerbit. IfDoubleBufferModeisenabled, theTEMTbit  
isset/resetautomatically.Thefunctionofthisbitismodified  
whenTEMT/DoubleBufferenhancementisselected.Refer  
to page 3-26 for TEMT/Double Buffer information.  
D7 D6 D5 D4 D3 D2 D1 D0  
0
0
0
0
0
0
0
0
Bit 5 Transmit Holding Register Empty, THRE  
Bit 0 Received Data Available Int.  
Bit 1 THRE Interrupt  
This bit is set to 1 when either the THR has been read  
(emptied) by the MPU (16450 mode) or the XMIT FIFO is  
empty (16550 mode). This bit is set to 0 when either the  
THRorXMITFIFObecomenon-empty.Ashadowbitexists  
so that the register bit setting to 1 is delayed by the  
Transmitter Timer if enabled. The MPU when reading this  
bitwillnotseethedelay. Bothshadowandregisterbitsare  
cleared when the PC writes to the THR of XMIT FIFO. The  
function of this bit is modified when TEMT/Double Buffer  
enhancement is selected. Refer to page 3-26 for  
TEMT/Double Buffer information.  
Bit 2 Receiver Line Status Int.  
Bit 3 MODEM Status Interrupt  
Bit 7, 6, 5, 4 Always 0  
Figure 75. Interrupt Enable Register  
(PC Read/Write, Address 01H)  
(Z180 MPU Read Only, Address xxF1H)  
Interrupt Enable Register  
Bit 2, 3, 4 Parity Error, Framing Error, Break Detect  
These bits are written, indirectly, by the MPU as follows:  
The bits are first written to shadow bit locations when the  
MPU write accesses the LSR. When the next character is  
written to the Receive Buffer or RCVR FIFO, the data in the  
shadow bits is then copied to the LSR (16450 mode) or  
FIFO RAM (16550 mode). In FIFO mode bits become  
available to the PC when the data byte associated with the  
bits is next to be read (top of FIFO). In FIFO mode, with  
successive reads of the receiver, the status bits will be set  
if an error occurs on any byte. Once the MPU writes to the  
Receive Buffer or RCVR FIFO, the shadow bits are auto  
cleared. TheregisterbitsarecleareduponthePCreading  
the LSR. In FIFO mode these bits will be set if any byte has  
the respective error bit set while the PC reads multiple  
characters from the FIFO.  
Bits 7, 6, 5, 4 Reserved  
These bits will always read 0 (PC and MPU).  
Bit 3 Modem Status IRQ  
If bits 0, 1, 2 or 3 of the Modem Status Register are set and  
this enable bit is a logic 1, then an interrupt to the PC is  
generated.  
Bit 2 Receive Line Status IRQ  
If bits 1, 2, 3 or 4 of the LSR are set and this enable bit is  
a logic 1, then an interrupt to the PC is generated.  
Bit 1 Transmit Holding Register Empty IRQ  
If bit 5 of the LSR is set and this enable bit is a logic 1, then  
an interrupt to the PC is generated.  
Bit 1 Overrun Error  
Bit 0 Received Data Available IRQ  
This bit is set if the Z180 MPU makes a second write to the  
Receive Buffer before the PC reads the data in the Buffer  
(16450 mode) or with a full RCVR FIFO (16550 mode.) No  
data will be transferred to the RCVR FIFO under these  
circumstances.ThisbitisresetwhenthePCreadstheLine  
Status Register.  
If bit 0 of the LSR is set or a Receive Timeout occurs and  
this enable bit is a logic 1, then an interrupt to the PC is  
generated.  
DS971820600  
3-72  
PS009801-0301  
Z80182/Z8L182  
Zilog  
ZILOG INTELLIGENT PERIPHERAL  
P R E L I M I N A R Y  
D7 D6 D5 D4 D3 D2 D1 D0  
Modem Control Register  
0
0
0
0
0
0
0
0
Bit 7-5 Reserved  
Reserved for future use, always 0.  
Word Length Sel.  
# of Stop Bits  
Parity Enable  
Even Parity Sel.  
Stick Parity  
Bit 4 Loop  
When this bit is set to 1, D3-D0 field reflects the status of  
Modem Status Register, as follows:  
Set Break  
DALB  
RI  
DCD  
DSR  
CTS  
=
=
=
=
Out 1  
Out 2  
DTR  
Figure 76. Line Control Register  
(PC Read/Write, Address 03H)  
RTS  
(Z180 MPU Read Only, Address xxF3H)  
Emulation of the 16550 UART loop back feature must be  
done by the Z180 MPU, except in the above conditions.  
Line Control Register  
Bit 3 Out 2  
This bit controls the tri-state on the HINTR pin if bits 2 and  
1 are 10. Otherwise it can be read by the Z180 MPU.  
Bit 7 Divisor Latch Access Bit (DALB)  
This bit allow access to the divisor latch by the PC/XT/AT.  
Ifthisbitissetto1, accesstotheTransmitter, Receiverand  
Interrupt Enable Registers is disabled. When an access is  
made to address 0 the Divisor Latch Least Significant byte  
is accessed. If an access is made to address 1, the Divisor  
Latch Most Significant byte is accessed.  
Bits 2, 1, 0  
These bits have no direct control of the 16550 MIMIC  
interface and the Z180 MPU must emulate the function if  
it is to be implemented.  
D7 D6 D5 D4 D3 D2 D1 D0  
Bit 6 - Bit 0  
These bits do not affect the Z80182/Z8L182 directly,  
however they can be read by the Z180 MPU and the 16550  
MIMIC modes can be emulated by the Z180 MPU.  
0
0
0
0
0
0
0
0
DCTS  
DDSR  
TERI  
DDCD  
CTS  
D7 D6 D5 D4 D3 D2 D1 D0  
0
0
0
0
0
0
0
0
DSR  
RI  
DTR  
DCD  
RTS  
Out 1  
Out 2  
Loop  
Figure 78. Modem Status Register  
(PC Read Only, Address 06H)  
(Z180 MPU Read/Write bits 7-4, Address xxF6H)  
Reserved  
Figure 77. Modem Control Register  
(PC Read/Write, Address 04H)  
(Z180 MPU Read Only, Address xxF4H)  
DS971820600  
3-73  
PS009801-0301  
Z80182/Z8L182  
ZILOG INTELLIGENT PERIPHERAL  
Zilog  
P R E L I M I N A R Y  
16550 MIMIC REGISTERS (Continued)  
Scratch Register  
Modem Status Register  
Bits 7-0 Scratch Register  
Bit 7 Data Carrier Detect  
This register is used by the PC/XT/AT programmer for  
temporary data storage. The Z180 MPU is able to read this  
register. If the PC/XT/AT writes to this register, no interrupt  
to the Z180 MPU is generated.  
This bit must be written by the Z180 MPU.  
Bit 6 Ring Indicator  
This bit must be written by the Z180 MPU.  
Bit 5 Data Set Ready  
D7 D6 D5 D4 D3 D2 D1 D0  
This bit must be written by the Z180 MPU.  
0
0
0
0
0
0
0
0
Bit 4 Clear to Send  
This bit must be written by the Z180MPU.  
Divisor Latch (MS)  
Figure 80. Divisor Latch (LS)  
Bit 3 Delta Data Carrier Detect  
(PC Read/Write, Address 00H and DLAB=1)  
(Z180 MPU Read Only, Address xxF8H)  
This bit is set to 1 whenever the Data Carrier Detect bit  
changes state. This bit is reset when the PC/XT/AT reads  
the Modem Status Register.  
Divisor Latch (LS)  
Bit 2 Trailing Edge Ring Indicator  
This bit is set to 1 on the falling edge of the Ring Indicator  
bit. This bit is reset when the PC/XT/AT reads the Modem  
Status Register.  
Bit 7-0 Divisor Latch Most Significant Byte (MS)  
This register contains the Low order byte of the Baud rate  
divisor. Writing to this register with the PC/XT/AT will  
generate an interrupt to the Z180 MPU. It can then read the  
Baud rate divisor and set up the application.  
Bit 1 Delta Data Set Ready  
This bit is set to 1 whenever the Data Set Ready bit  
changes state. This bit is reset when the PC/XT/AT reads  
the Modem Status Register.  
D7 D6 D5 D4 D3 D2 D1 D0  
0
0
0
0
0
0
0
0
Bit 0 Delta Clear To Send  
This bit is set to 1 whenever the Clear To Send bit changes  
state.ThisbitisresetwhenthePC/XT/ATreadstheModem  
Status Register.  
Scratch Register  
Figure 81. Divisor Latch (MS)  
(PC Read/Write, Address 01H and DLAB=1)  
(Z180 MPU Read Only, Address xxF9H)  
D7 D6 D5 D4 D3 D2 D1 D0  
0
0
0
0
0
0
0
0
Divisor Latch (LS)  
Divisor Latch (MS)  
Figure 79. Scratch Register  
(PC Read/Write, Address 07H)  
(Z180 MPU Read Only, Address xxF7H)  
Bit 7-0 Divisor Latch Most Significant Byte (MS)  
This register contains the High order byte of the Baud rate  
divisor. Writing to this register with the PC/XT/AT will  
generate an interrupt to the Z180 MPU. It can then read the  
Baud rate divisor and set up the application.  
DS971820600  
3-74  
PS009801-0301  
Z80182/Z8L182  
Zilog  
ZILOG INTELLIGENT PERIPHERAL  
P R E L I M I N A R Y  
Z80182 ENHANCEMENTS REGISTER  
Bit <7-6> Reserved  
two. Upon power-up or reset, the ESCC clock frequency is  
equal to the Z180 core's PHI clock output.  
Bit 5 Force Z180 Halt Mode  
If this bit is set to 1, it disables the 16 cycle halt recovery  
and halt control over the busses and pins. This bit is used  
toallowDMAandRefreshAccesstotakeplaceduringhalt  
(like Z180). This bit is set to 0 on reset.  
Note:If operating above 20 MHz/5V or 10 MHz/3V, this bit  
should be set for ESCC divide-by-two mode.  
D7 D6 D5 D4 D3 D2 D1 D0  
0
0
0
0
0
0
0
0
Bit 4 TxDA Tri-state  
The TxDA pin can be tri-stated on assertion of the /HALT  
pin. This prevents the TxDA from driving and external  
device when /HALT output is used to force other devices  
intopower-downmodes.Thisfeatureisdisabledonpower-  
uporreset. Itisalsocontrolledbybit5intheenhancement  
register, this feature is disabled if bit 5 is set.  
Reserved  
ESCC Clock Divider  
TxDA Tri-state  
Force Z180 Halt mode  
Reserved  
Bit 3 ESCC Clock Divider  
The ESCC clock can be provided with the Z180 core's PHI  
clock or by a PHI clock divide by 2 circuit. When this bit is  
set, the ESCC's clock will be Z180's PHI clock divided by  
Figure 82. Z80182 Enhancements Register  
(Z180 MPU Read/Write, Address xxD9H)  
DS971820600  
3-75  
PS009801-0301  
Z80182/Z8L182  
ZILOG INTELLIGENT PERIPHERAL  
Zilog  
P R E L I M I N A R Y  
PARALLEL PORTS REGISTERS  
data is stored in the internal buffer. The values of the PA  
Data Register are undefined after reset. Any bits that are  
output are then sent on to the output buffers.  
The Z80182/Z8L182 has three 8-bit bi-directional Ports.  
Each bit is individually programmable for input or output.  
ThePortsconsistoftworegistersthePortDirectionControl  
RegisterandthePortDataRegister. ThePortanddirection  
register can be accessed in any page of I/O space since  
only the lowest eight address lines are decoded. Bits PC7  
and PC6 are input only bits and have the special function  
of reading the external value of the /INT2 and /INT1 pins.  
Writing ‘1’ to these bits will clear the edge detect interrupt  
logic when operating /INT2 and/or /INT1 in edge detect  
mode.  
When the Z180 MPU reads the PA Data Register the data  
on the external pins is returned.  
D7 D6 D5 D4 D3 D2 D1 D0  
1
1
1
1
1
1
1
1
PB Data Direction Register  
0=Output  
1=Input  
When Port B and Port C bits 5-0 are deselected in the  
SystemConfigurationRegister,theDataandDataDirection  
Registersarestillavailableasread/writescratchregisters.  
If a Port is deselected and if the DDR bit is a ‘0’, then the  
writtenvaluetothatbitwillbelatchedandthisvaluecanbe  
read back. If a Port is deselected and if the DDR bit is a ‘1’,  
then you could read only the external pin value; any write  
tothatbitislatchedbutcanbereadbackonlywithDDR=0.  
Figure 85. PB, Port B, Data Direction Register  
(Z180 MPU Read/Write, Address xxE4H)  
The data direction register determines which are inputs  
and outputs in the PB Data Register. When a bit is set to 1  
the corresponding bit in the PB Data Register is an input.  
If the bit is 0 then the corresponding bit is an output.  
D7 D6 D5 D4 D3 D2 D1 D0  
1
1
1
1
1
1
1
1
D7 D6 D5 D4 D3 D2 D1 D0  
X
X
X
X
X
X
X
X
PA Data Direction Register  
0=Output  
1=Input  
PB Data Register  
Figure 83. PA, Port A, Data Direction Register  
Figure 86. PB, Port B, Data Register  
(Z180 MPU Read/Write, Address xxEDH)  
(Z180 MPU, Address xxE5H)  
The data direction register determines which are inputs  
and outputs in the PA Data Register. When a bit is set to 1  
the corresponding bit in the PA Data Register is an input.  
If the bit is 0, then the corresponding bit is an output.  
When the Z180 MPU writes to the PB Data Register the  
data is stored in the internal buffer. The values of Port B  
data register are undefined after reset. Any bits that are  
output are then sent on to the output buffers.  
When the Z180 MPU reads the PB Data Register, the data  
on the external pins is returned.  
D7 D6 D5 D4 D3 D2 D1 D0  
X
X
X
X
X
X
X
X
PA Data Register  
D7 D6 D5 D4 D3 D2 D1 D0  
X
X
1
1
1
1
1
1
Figure 84. PA, Port A, Data Register  
(Z180 MPU Read/Write, Address xxEEH)  
PC Direction Register  
When the Z180 MPU writes to the PA Data Register the  
Figure 87. PC, Port C, Data Direction Register  
(Z180 MPU Read/Write, Address xxDDH)  
DS971820600  
3-76  
PS009801-0301  
Z80182/Z8L182  
Zilog  
ZILOG INTELLIGENT PERIPHERAL  
P R E L I M I N A R Y  
The data direction register determines which are inputs  
and outputs in the PC Data Register. When a bit is set to 1  
the corresponding bit in the PC Data Register is an input.  
If the bit is 0, then the corresponding bit is an output.  
When the Z180 MPU writes to the PC Data Register, the  
data is stored in the internal buffer. The values of Port C  
data register are undefined after reset. Any bits that are  
output are then sent on to the output buffers.  
When the Z180 MPU reads the PC Data Register, the data  
on the external pins is returned.  
D7 D6 D5 D4 D3 D2 D1 D0  
X
X
X
X
X
X
X
X
Bits 6 and 7 serve the special function of reading the value  
of the external /INT2 and /INT1 lines. When operating  
either /INT2 or /INT1 in edge detection mode, the edge  
detect latch is reset by writing a 1 to bit 6 or 7 respectively.  
Writing a 0 has no effect. These latches should be reset  
at the end of an /INT1 or /INT2 interrupt service routine  
when using edge-triggered interrupt modes.  
PC Data Register  
/INT2, /INT1 Read Ext Data  
Write b7=1 Clears /INT2 Edge  
Write b6=1 Clears /INT1 Edge  
Figure 88. PC, Port C, Data Register  
(Z180 MPU Read/Write, Address xxDEH)  
16550 MIMIC INTERFACE DMA  
The 16550 MIMIC is also able to do direct DMA with the  
PC/XT/AT. DMA is enabled by setting bits 3, 4 and 5 of the  
Master Control Register. DMA is accomplished by using  
thetwoDMApinsandtheTransmitterHoldingandReceive  
Data Registers.  
disabled and the internal /DREQ0 is equal to the  
complement of the Transmit Holding Register Empty  
Shadow bit.  
Ifbit4is1,thenthe/HRxRDYpinisequaltothecomplement  
of the Data Ready bit. If bit 4 is 1 and bit 3 is 0 the external  
/DREQ0 pin of the Z180 MPU is disabled and the internal  
/DREQ0 is equal to the complement of the Data Ready  
Shadow bit. If bit 4 is 1 and bit 3 is 1 the external /DREQ1  
pin of the Z180 MPU is disabled and the internal /DREQ1  
is equal to the complement or the Data Ready Shadow bit.  
If bit 5 is 1, the /HTxRDY pin is equal to the complement of  
the Transmit Holding Register Empty bit. If bit 5 is 1 and bit  
3 is 0 the external /DREQ1 pin of the Z180 MPU is disabled  
and the internal /DREQ1 is equal to the complement of the  
Transmit Holding Register Empty Shadow bit. If bit 5 is 1  
and bit 3 is 1 the external /DREQ0 pin of the Z180 MPU is  
DS971820600  
3-77  
PS009801-0301  
Z80182/Z8L182  
ZILOG INTELLIGENT PERIPHERAL  
Zilog  
P R E L I M I N A R Y  
Z80182/Z8L182 MIMIC DMA CONSIDERATIONS  
As specified, the 16550 does not have any means of  
handling the error status bits in the FIFO in this multi-  
transfer mode. Such DMA transfers would require blocks  
with some checksum or other error checking scheme.  
For the PC Interface, the 16550 device has two modes of  
operation that need to be supported by the MIMIC. In  
single transfer mode, the DMA request line for the receiver  
goes active whenever there is at least one character in the  
RCVR FIFO. For the transmitter, the DMA request line is  
active on an empty XMIT FIFO and inactive on non-empty.  
For the MPU interface, the DMA is controlled by a non-  
empty transmit FIFO and by a non-full receive FIFO  
conditions (THRE and the DR bits in the LSR). If the delay  
timers are enabled, the respective shadow bits are used  
for DMA control. The effect of the DMA logic is to request  
DMA service when at least one byte of data is available to  
be read or written to the FIFO’s by the Z180. The Z180's  
DMAchannelcanbeprogrammedtotriggeronedgeoron  
level.  
In multi-transfer mode, the RCVR DMA goes active at the  
trigger level and inactive on RCVR FIFO empty. The XMIT  
DMA is active on non-full XMIT FIFO and inactive on a full  
XMIT FIFO.  
Bit 3 in the FCR controls the DMA mode for the PC  
interface. Ifa1isprogrammedintothisbit, multi-byteDMA  
is enabled. A 0 in this bit (default) enables single byte  
DMA.  
EMULATION MODES  
The Z80182/Z8L182 provides four modes of operation.  
The modes are selected by the EV1 and EV2 pins. These  
fourmodesallowthesystemdevelopmentandcommercial  
production to be done with the same device. The four  
emulation modes are shown in Table 20.  
Table 20. EV2 and EV1, Emulation Mode Control  
EV2  
EV1  
EV Description  
Mode 0  
Mode 1  
Mode 2  
Mode 3  
0
0
1
1
0
1
0
1
Normal Mode, on-chip Z180 bus master  
Emulation Adapter Mode  
Emulator Probe Mode  
RESERVED, for Test Use Only  
Mode 0 Normal Mode  
This is the normal operating mode for the Z80182/Z8L182.  
throughtheemulationadapter.InEmulationAdaptorMode  
the Z182s, Z180 MPU and Z180 peripheral signals are tri-  
state or physically disconnected. The Z182 continues to  
provide its ESCC, MIMIC, chip select, and Port functions  
andsignalstothetargetsystem. TheMode1effectsonthe  
Z182 are shown in Table 21. Note that INT1-2 Edge Detect  
Logic cannot be used in Emulation Adaptor EV Mode 2.  
Mode 1 Emulation Adapter Mode  
TheEmulationAdaptorModeenablessystemdevelopment  
for the Z182 with a readily available Z180 emulator. The  
Emulator provides the Z180MPU and Z180 peripheral  
functions to the target system, with their signals passing  
DS971820600  
3-78  
PS009801-0301  
Z80182/Z8L182  
Zilog  
ZILOG INTELLIGENT PERIPHERAL  
P R E L I M I N A R Y  
EMULATION MODES (Continued)  
Table 21. Emulation Mode 1  
Mode 2 Emulation Probe Mode  
In the Emulator Probe Mode all of the Z182 output signals  
are tri-state. This scheme allows a Z182 emulator probe to  
grab on to the Z182 package leads on the target system.  
Normal  
Mode 0  
Emulation Adaptor  
Signal  
Mode 1  
PHI  
/M1  
/MREQ,/MRD  
/IORQ  
/RD  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Tri-state  
Input  
Output  
Input  
Mode 3 RESERVED (for test purposes only)  
This mode is reserved for test purpose only, do not use.  
Notes:  
Z182hastwobranchesofreset. /RESETcontrolstheZ182  
overallconfiguration, RAMandROMboundaries, plusthe  
ESCC, Port and the 16550 MIMIC interface. In Normal  
Mode, a "one shot" circuit samples the input of the /RESET  
pin to assert the internal reset to its proper duration. In  
Adapter Mode, this "one shot" circuit is bypassed. Note  
also that the Z180’s crystal oscillator is disabled in Mode  
1 and Mode 2.  
/WR  
/RFSH  
/HALT  
ST  
E
/BUSACK  
/WAIT  
A19,A18/TOUT  
A17-A0  
D7-D0  
TxA0  
/RTS0  
TxA1  
/INT0  
Output  
Output  
Input/Output  
Output  
Output  
Output  
Input  
Input  
In Mode 1 the emulator must provide /MREQ on the  
(/MREQ,/MRD) Z80182/Z8L182 pin (not /MRD); and A18  
(not TOUT) on the A18/TOUT pin.  
Input/Output  
Tri-state  
Tri-state  
Tri-state  
Output, Open-Drain  
SLEEP, HALT EFFECT ON MIMIC AND 182 SIGNALS  
The following signals are High-Z during SLEEP and HALT:  
The following Z80182/Z8L182 signals are driven High  
when Z180MPU enters a SLEEP or HALT state:  
/IOCS when so selected in the Interrupt  
Edge/Pin MUX Register.  
/MRD when selected in the Interrupt  
Edge/Pin MUX Register.  
/RD and /WR.  
/MWR when selected in the Interrupt  
A0-A19 (A18 if selected) always High-Z in power down.  
D0-D7 always High-Z in power down modes.  
Edge/Pin MUX Register.  
/ROMCS,/RAMCS always High in  
SLEEP or HALT.  
The MIMIC logic of the 182 is disabled during power down  
modes of the Z180.  
DS971820600  
3-79  
PS009801-0301  
Z80182/Z8L182  
ZILOG INTELLIGENT PERIPHERAL  
Zilog  
P R E L I M I N A R Y  
ABSOLUTE MAXIMUM RATINGS  
StressesgreaterthanthoselistedunderAbsoluteMaximum  
Ratingsmaycausepermanentdamagetothedevice. This  
is a stress rating only; operation of the device at any  
conditionabovethoseindicatedintheoperationalsections  
ofthesespecificationsisnotimplied.Exposuretoabsolute  
maximum rating conditions for extended periods may  
affect device reliability.  
Voltage on VCC with respect to VSS ........... –0.3V to +7.0V  
Voltages on all inputs  
with respect to VSS ........................... –0.3V to V +0.3V  
Operating Ambient Temperature ................... 0 tCoC+70°C  
Storage Temperature ............................55°C to +150°C  
STANDARD TEST CONDITIONS  
+5V  
The DC Characteristics and capacitance sections below  
apply for the following standard test conditions, unless  
otherwise noted. All voltages are referenced to GND (0V).  
Positive current flows into the referenced pin (Figure 89).  
2.1 k  
Available operating temperature range is:  
From Output  
Under Test  
S = 0°C to +70°C  
Voltage Supply Range:  
+4.50V VCC + 5.50V Z80182  
+3.0V VCC + 3.60V Z8L182  
100 pF  
250 µA  
All AC parameters assume a load capacitance of 100 pF.  
Add 10 ns delay for each 50 pF increase in load up to a  
maximum of 150 pF for the data bus and 100 pF for  
address and control lines. AC timing measurements are  
referencedto1.5volts(exceptforclock,whichisreferenced  
to the 10% and 90% points). Maximum capacitive load for  
CLK is 125 pF.  
Figure 89. Test Load Diagram  
Note:TheESCCCoreisonlyguaranteedtooperateat20  
MHz 5.0 volts or 10 MHz 3.3 volts. Upon reset, the Z182  
system clock is "divided by one" before clocking the  
ESCC. When Z182 is operated above 20 MHz 5.0 volts or  
10 MHz 3.3 volts, the ESCC should be programmed to  
"divide-by-two" mode.  
DS971820600  
3-80  
PS009801-0301  
Z80182/Z8L182  
Zilog  
ZILOG INTELLIGENT PERIPHERAL  
P R E L I M I N A R Y  
DC CHARACTERISTICS  
Z80182/Z8L182  
(VCC = 5V ±10%, VSS = 0V, over specified temperature range unless otherwise notes.)  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
Condition  
VIH1  
Input H Voltage  
VCC –0.6  
VCC +0.3  
V
/RESET, EXTAL, NMI  
Input H Voltage  
VIH2  
2.0  
VCC +0.3  
V
Except /RESET, EXTAL, NMI  
VIL1  
VIL2  
Input L Voltage  
/RESET, EXTAL, NMI  
Input L Voltage  
–0.3  
–0.3  
0.6  
0.8  
V
V
Except /RESET, EXTAL, NMI  
VOH1  
Output H Voltage  
All outputs  
Output H PHI  
2.4  
VCC –1.2  
VCC –0.6  
V
IOH = –200 µA  
IOH = –200 µA  
IOH= –200 µA  
VOH2  
VOL1  
V
V
Output L Voltage  
All outputs  
0.40  
IOL = 2.2 mA  
VOL2  
IIL  
Output L PHI  
0.40  
1.0  
V
IOL= 2.2 mA  
Input Leakage  
µA  
VIN = 0.5 - VCC –0.5  
Current All Inputs  
Except XTAL, EXTAL  
Tri-state Leakage Current  
ITL  
1.0  
µA  
VIN = 0.5 - VCC –0.5  
ICC*  
Power Dissipation*  
(Normal Operation)  
Power Dissipation*  
(SLEEP)  
Power Dissipation*  
(I/O STOP)  
60  
100  
TBD  
TBD  
TBD  
TBD  
5
120  
200  
TBD  
TBD  
TBD  
TBD  
10  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
f = 20 MHz  
f = 33 MHz  
f= 20 MHz  
f= 33 MHz  
f= 20 MHz  
f= 33 MHz  
f = 20 MHz  
f = 33 MHz  
Power Dissipation*  
(SYSTEM STOP mode)  
9
17  
IDLE Mode  
TBD  
TBD  
50  
TBD  
TBD  
mA  
mA  
µA  
f = 20 MHz  
f = 33 MHz  
f = 0 MHz †  
STANDBY Mode  
Pin Capacitance  
Cp  
12  
pF  
V = 0V, f = 1 MHz  
TAIN= 25°C  
Notes:  
These ICC values are preliminary and subject to change without notice.  
* VIH Min = VCC -1.0V, VIL Max = 0.8V (all output terminals are at no load)  
VCC = 5.0V; (IOH Low EMI) = -50 µA, IOL (Low EMI) = 500 µA  
† Device may take up to two seconds before stabilizing to steady state standby current.  
DS971820600  
3-81  
PS009801-0301  
Z80182/Z8L182  
ZILOG INTELLIGENT PERIPHERAL  
Zilog  
P R E L I M I N A R Y  
DC CHARACTERISTICS  
Z80182/Z8L182  
(VCC = 3.3V ±10%, VSS = 0V, over specified temperature range unless otherwise notes.)  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
Condition  
VIH1  
Input H Voltage  
VCC –0.6  
VCC +0.3  
V
/RESET, EXTAL, NMI  
Input H Voltage  
VIH2  
2.0  
VCC +0.3  
V
Except /RESET, EXTAL, NMI  
VIL1  
VIL2  
Input L Voltage  
/RESET, EXTAL, NMI  
Input L Voltage  
–0.3  
–0.3  
0.6  
0.8  
V
V
Except /RESET, EXTAL, NMI  
VOH1  
Output H Voltage  
All outputs  
2.15  
V
IOH = –200 µA  
VOH2  
VOL1  
Output H PHI  
VCC –0.6  
V
V
IOH= –200 µA  
Output L Voltage  
All outputs  
0.40  
IOL = 2.2 mA  
VOL2  
IIL  
Output L PHI  
0.40  
10  
V
IOL= 2.2 mA  
Input Leakage  
µA  
VIN = 0.5 - VCC –0.5  
Current All Inputs  
Except XTAL, EXTAL  
Tri-state Leakage Current  
ITL  
10  
80  
µA  
VIN = 0.5 - VCC –0.5  
f = 20 MHz  
ICC*  
Power Dissipation*  
(Normal Operation)  
Power Dissipation*  
(SLEEP)  
Power Dissipation*  
(I/O STOP)  
40  
TBD  
TBD  
4
mA  
TBD  
TBD  
8
mA  
mA  
mA  
f= 20 MHz  
f= 20 MHz  
f = 20 MHz  
Power Dissipation*  
(SYSTEM STOP mode)  
IDLE Mode  
STANDBY Mode  
TBD  
50  
TBD  
12  
mA  
µA  
f = 20 MHz  
f = 0 MHz †  
Cp  
Pin Capacitance  
pF  
VIN = 0V, f = 1 MHz  
TA = 25°C  
Notes:  
These ICC values are preliminary and subject to change without notice.  
* VIH Min = VCC -1.0V, VIL Max = 0.8V (all output terminals are at no load)  
VCC = 3.3V  
† Device may take up to two seconds before stabilizing to steady state current.  
DS971820600  
3-82  
PS009801-0301  
Z80182/Z8L182  
Zilog  
ZILOG INTELLIGENT PERIPHERAL  
P R E L I M I N A R Y  
TIMING DIAGRAMS  
Z180 MPU Timing  
Opcode Fetch Cycle  
I/O Write Cycle †  
I/O Read Cycle †  
T2 TW  
T1  
T2  
TW  
T3  
T1  
T3  
T1  
5
3
4
2
ø
1
6
Address  
/WAIT  
20  
19  
20  
19  
11  
12  
7
/MREQ  
/IORQ  
/RD  
7
29  
13  
11  
11  
8
9
11  
13  
28  
9
22  
25  
26 and 26a  
/WR  
/M1  
14  
10  
18  
15  
ST  
16  
21  
17  
16  
15  
Data  
IN  
27  
23  
24  
Data  
OUT  
63  
63  
62  
62  
67  
/RESET  
68  
67  
68  
Figure 90. CPU Timing  
(Opcode Fetch Cycle, Memory Read/Write Cycle  
I/O Read/Write Cycle)  
DS971820600  
3-83  
PS009801-0301  
Z80182/Z8L182  
ZILOG INTELLIGENT PERIPHERAL  
Zilog  
P R E L I M I N A R Y  
TIMING DIAGRAMS (Continued)  
Ø
32  
31  
/INTI  
33  
/NMI  
C7  
/INTSCC [4]  
/M1 [1]  
29  
/IORQ [1]  
16  
15  
/Data IN [1]  
39  
/MREQ [2]  
41  
40  
43  
/RFSH [2]  
35  
35  
34  
34  
/BUSREQ  
/BUSACK  
36  
38  
37  
38  
Address  
Data /MREQ,  
/RD, /WR,  
/IORQ  
43  
44  
[3]  
/HALT  
Notes:  
[1] During /INT0 acknowledge cycle [3] Output buffer is off at this point  
[2] During refresh cycle  
[4] Refer to Table C, parameter 7  
Figure 91. CPU Timing  
(/INT0 Acknowledge Cycle, Refresh Cycle, BUS RELEASE Mode  
HALT Mode, SLEEP Mode, SYSTEM STOP Mode)  
DS971820600  
3-84  
PS009801-0301  
Z80182/Z8L182  
Zilog  
ZILOG INTELLIGENT PERIPHERAL  
P R E L I M I N A R Y  
I/O Read Cycle  
TW  
I/O Write Cycle  
T2  
T1  
T2  
T3  
T1  
TW  
T3  
0
Address  
29  
13  
28  
22  
28  
9
29  
/IROQ  
/RD  
25  
/WR  
Figure 92. CPU Timing  
CPU or DMA Read/Write Cycle (Only DMA Write Cycle for /TENDi)  
T1  
T2  
Tw  
T3  
T1  
Ø
45  
[1]  
46  
/DREQi  
(At level  
sense)  
45  
[2]  
45  
/DREQi  
(At edge  
sence)  
18  
[4]  
47  
48  
/TENDi  
ST  
[3]  
17  
DMA Control Signals  
[1] tDRQS and tDRQH are specified for the rising edge of clock followed by T3.  
[2] tDRQS and tDRQH are specified for the rising edge of clock.  
[3] DMA cycle starts.  
[4] CPU cycle starts.  
Figure 93. DMA Control Signals  
DS971820600  
3-85  
PS009801-0301  
Z80182/Z8L182  
ZILOG INTELLIGENT PERIPHERAL  
Zilog  
P R E L I M I N A R Y  
TIMING DIAGRAMS (Continued)  
T1  
T2  
Tw  
Tw  
T3  
Ø
49  
50  
50  
49  
49  
50  
15  
16  
D7-D0  
Figure 94. E Clock Timing  
(Memory Read/Write Cycle  
I/O Read/Write Cycle)  
Ø
E
49  
50  
BUS RELEASE Mode  
SLEEP Mode  
SYSTEM STOP Mode  
Figure 95. E Clock Timing  
DS971820600  
3-86  
PS009801-0301  
Z80182/Z8L182  
Zilog  
ZILOG INTELLIGENT PERIPHERAL  
P R E L I M I N A R Y  
T2  
Tw  
T3  
T1  
T2  
Ø
50  
54  
49  
53  
52  
E
(Example:  
I/O Read -  
Opcode  
50  
Fetch)  
49  
53  
51  
E
(I/O Write)  
54  
Figure 96. E Clock Timing  
(Minimum timing example  
of PWEL and PWEH)  
Ø
Timer Data  
Reg = 0000H  
A18/TOUT  
55  
Figure 97. Timer Output Timing  
DS971820600  
3-87  
PS009801-0301  
Z80182/Z8L182  
ZILOG INTELLIGENT PERIPHERAL  
Zilog  
P R E L I M I N A R Y  
TIMING DIAGRAMS (Continued)  
SLP Instruction Fetch  
Next Opcode Fetch  
T3  
T1  
T2  
TS  
TS  
T1  
T2  
Ø
32  
31  
/INTi  
/NMI  
33  
A18-A0  
/MREQ, /M1  
/RD  
43  
44  
/HALT  
Figure 98. SLEEP Execution Cycle  
DS971820600  
3-88  
PS009801-0301  
Z80182/Z8L182  
Zilog  
ZILOG INTELLIGENT PERIPHERAL  
P R E L I M I N A R Y  
CSI/O Clock  
56  
56  
Transmit Data  
(Internal Clock)  
57  
57  
Transmit Data  
(External Clock)  
11 tcyc  
11 tcyc  
58  
59  
58  
59  
Receive Data  
(Internal Clock)  
11.5 tcyc  
16.5 tcyc  
11.5 tcyc  
16.5 tcyc  
Receive Data  
(External Clock)  
60  
61  
60  
61  
Figure 99. CSI/O Receive/Transmit Timing  
/MREQ  
71  
72  
/RAMCS  
/ROMCS  
/IORQ  
73  
72  
/IOCS  
Figure 100 /ROMCS and /RAMCS Timing  
DS971820600  
3-89  
PS009801-0301  
Z80182/Z8L182  
ZILOG INTELLIGENT PERIPHERAL  
Zilog  
P R E L I M I N A R Y  
TIMING DIAGRAMS (Continued)  
T1  
T2  
TW  
T3  
T1  
0
Address  
Address Valid  
7
8
9
11  
/MREQ  
13  
24  
/RD  
/WR  
22  
7
11  
11  
13  
24  
/MRD  
/MWR  
9
7
22  
Figure 101. /MWR and /MRD Timing  
65  
VIH1  
66  
69  
70  
EXTAL  
VIL1  
VIH1  
VIL1  
Figure 102. External Clock Rise Time and Fall Time  
Figure 103. Input Rise and Fall Time  
(Except EXTAL, /RESET)  
DS971820600  
3-90  
PS009801-0301  
Z80182/Z8L182  
Zilog  
ZILOG INTELLIGENT PERIPHERAL  
P R E L I M I N A R Y  
Z8S180 AC CHARACTERISTICS  
Table A. Z8L180 and Z8S180 Timings  
Z8L180  
20 MHz  
Min  
Z8S180  
33 MHz  
Min  
No.  
Sym  
Parameter  
Max  
Max  
Unit Note  
1
2
3
4
5
tcyc  
tCHW  
tCLW  
tcf  
Clock Cycle Time  
50  
15  
15  
2000  
30  
10  
10  
2000  
ns  
ns  
ns  
ns  
ns  
[1]  
[1]  
[1]  
[1]  
[1]  
Clock Pulse Width (High)  
Clock Pulse Width (Low)  
Clock Fall Time  
10  
10  
5
5
tcr  
Clock Rise Time  
6
7
8
9
tAD  
tAS  
tMED1  
tRDD1  
Address Valid from Clock Rise  
15  
15  
ns  
ns  
ns  
ns  
ns  
ns  
Address Valid to /MREQ, /IORQ, /MRD Fall  
Clock Fall to /MREQ Fall Delay  
Clock Fall to /RD, /MRD (/IOC=1)  
Clock Rise to /RD, /MRD Fall (/IOC=0)  
Clock Rise to /M1 Fall delay  
5
5
5
5
15  
25  
35  
35  
10  
15  
15  
15  
10  
tM1D1  
11  
12  
13  
14  
15  
tAH  
Address Hold time (/MREQ, /IORQ, /RD, /WR/MRD)  
Clock Fall to /MREQ Rise Delay  
Clock Fall to /RD, /MRD Rise Delay  
Clock Rise to /M1 Rise Delay  
ns  
ns  
ns  
ns  
ns  
tMED2  
tRDD2  
tM1D2  
tDRS  
25  
25  
40  
15  
15  
15  
Data Read Setup Time  
15  
0
15  
0
16  
17  
18  
19  
20  
tDRH  
tSTD1  
tSTD2  
tWS  
Data Read Hold Time  
Clock Edge to ST Fall  
Clock Edge to ST Rise  
/WAIT Setup Time to Clock Fall  
/WAIT Hold Time from Clock Fall  
ns  
ns  
ns  
ns  
ns  
30  
30  
15  
15  
15  
10  
10  
5
[2]  
tWH  
21  
22  
23  
24  
25  
tWDZ  
tWRD1  
tWDD  
tWDS  
Clock Rise to Data Float Delay  
Clock Rise to /WR,/MWR Fall Delay  
Clock Fall to Write Data Delay  
Write Data Setup Time to /WR,/MWR Fall  
Clock Fall to /WR Rise  
35  
25  
25  
20  
15  
15  
ns  
ns  
ns  
ns  
ns  
10  
10  
tWRD2  
25  
15  
26  
26a  
27  
tWRP  
/WR Pulse Width (Memory Write Cycles)  
/WR Pulse Width (I/O Write Cycles)  
Write Data Hold Time from /WR Rise  
Clock Fall to /IORQ Fall Delay (/IOC=1)  
Clock Rise to /IORQ Fall Delay (/IOC=0)  
Clock Fall /IOQR Rise Delay  
75  
130  
10  
45  
70  
5
ns  
ns  
ns  
ns  
ns  
ns  
tWDH  
tIOD1  
28  
25  
25  
25  
15  
15  
15  
29  
tIOD2  
30  
31  
32  
33  
34  
tIOD3  
tINTS  
tINTH  
tNMIW  
tBRS  
/M1 Fall to /IORQ Fall Delay  
/INT Setup Time to Clock Fall  
/INT Hold Time from Clock Fall  
/NMI Pulse Width  
100  
20  
10  
35  
10  
80  
15  
10  
25  
10  
ns  
ns  
ns  
ns  
ns  
/BUSREQ Setup Time to Clock Fall  
35  
36  
37  
38  
39  
40  
tBRH  
/BUSREQ Hold Time from Clock Fall  
Clock Rise to /BUSACK Fall Delay  
Clock Fall to /BUSACK Rise Delay  
Clock Rise to Bus Floating Delay Time  
/MREQ Pulse Width (High)  
10  
10  
ns  
ns  
ns  
ns  
ns  
ns  
tBAD1  
tBAD2  
tBZD  
tMEWH  
tMEWL  
25  
25  
40  
15  
15  
30  
35  
35  
25  
25  
/MREQ Pulse Width (Low)  
DS971820600  
3-91  
PS009801-0301  
Z80182/Z8L182  
ZILOG INTELLIGENT PERIPHERAL  
Zilog  
P R E L I M I N A R Y  
Z8S180 AC CHARACTERISTICS (Continued)  
Z8L180  
20 MHz  
Min  
Z8S180  
33 MHz  
Min  
No.  
Sym  
Parameter  
Max  
Max  
Unit Note  
41  
42  
43  
44  
45  
tRFD1  
tRFD2  
tHAD1  
tHAD2  
tDRQS  
Clock Rise to /RFSH Fall Delay  
Clock Rise to /RFSH Rise Delay  
Clock Rise to /HALT Fall Delay  
Clock Rise to /HALT Rise Delay  
/DREQi Setup Time to Clock Rise  
20  
20  
15  
15  
15  
15  
15  
15  
ns  
ns  
ns  
ns  
ns  
20  
20  
15  
15  
46  
47  
48  
49  
50  
tDRQH  
tTED1  
tTED2  
tED1  
/DREQi Hold Time from Clock Rise  
Clock Fall to /TENDi Fall Delay  
Clock Fall to /TENDi Rise Delay  
Clock Rise to E Rise Delay  
ns  
ns  
ns  
ns  
ns  
25  
25  
30  
30  
15  
15  
15  
15  
tED2  
Clock Edge to E Fall Delay  
51  
52  
53  
54  
55  
PWEH  
PWEL  
tEr  
tEf  
tTOD  
E Pulse Width (High)  
E Pulse Width (Low)  
Enable Rise Time  
Enable Fall Time  
Clock Fall to Timer Output Delay  
25  
50  
20  
40  
ns  
ns  
ns  
ns  
ns  
10  
10  
75  
10  
10  
50  
56  
57  
58  
tSTDI  
tSTDE  
tSRSI  
CSI/O Tx Data Delay Time  
(Internal Clock Operation)  
CSI/O Tx Data Delay Time  
(External Clock Operation)  
CSI/O Rx Data Setup Time  
(Internal Clock Operation)  
75  
60  
ns  
7.5 tcyc+100  
1
7.5 tcyc+100 ns  
tcyc  
1
59  
60  
61  
tSRHI  
tSRSE  
tSRHE  
CSI/O Rx Data Hold Time  
(Internal Clock Operation)  
CSI/O Rx Data Setup Time  
(External Clock Operation)  
CSI/O Rx Data Hold Time  
(External Clock Operation)  
1
1
1
1
1
1
tcyc  
tcyc  
tcyc  
62  
63  
64  
65  
tRES  
tREH  
tOSC  
tEXr  
/RESET Setup time to Clock Fall  
/RESET Hold time from Clock Fall  
Oscillator Stabilization Time  
40  
25  
25  
15  
ns  
ns  
ms  
ns  
20  
10  
20  
5
External Clock Rise Time (EXTAL)  
66  
67  
68  
69  
70  
71  
72  
tEXf  
tRr  
tRf  
tIr  
tIf  
External Clock Fall Time (EXTAL)  
/RESET Rise Time  
/RESET Fall Time  
Input Rise Time (Except EXTAL, /RESET)  
Input Fall Time (Except EXTAL, /RESET)  
/MREQ Valid to /ROMCS, /RAMCS Valid Delay  
/IORQ Valid to /IOCS Valid Delay  
10  
50  
50  
50  
50  
15  
15  
5
ns  
ms  
ms  
ns  
ns  
ns  
ns  
50  
50  
50  
50  
10  
10  
[2]  
[2]  
[2]  
[2]  
TdCS  
TdIOCS  
Notes:  
These AC parameters values are preliminary and subject to change without notice.  
[1] All specifications reflect 100% output drive (disabled slew rate limiting feature).  
[2] Specification 1 through 5 refer to PHI clock output.  
[3] Exceeds characterization (data propagation delay needs to be analyzed).  
DS971820600  
3-92  
PS009801-0301  
Z80182/Z8L182  
Zilog  
ZILOG INTELLIGENT PERIPHERAL  
P R E L I M I N A R Y  
ESCC Timing  
Ø
/WR  
/RD  
1
/W//REQ  
Wait  
2
/W//REQ  
Request  
3
4
/DTR//REQ  
Request  
5
/INT  
6
Figure 104. ESCC AC Parameter  
Table B. ESCC Timing Parameters  
20 MHz  
Max  
No.  
Symbol  
Parameter  
Min  
Unit  
1
2
3
TdWR(W)  
TdRD(W)  
TdWRf(REQ)  
/WR Fall to Wait Valid Delay  
/RD Fall to Wait Valid Delay  
/WR Fall to /W//REQ  
50  
50  
ns  
Not Valid Delay  
65  
65  
4
5
6
TdRDf(REQ)  
TdRdr(REQ)  
TdPC(INT)  
/RD Fall to /W//REQ  
Not Valid Delay  
/RD Rise to /DTR//REQ  
Not Valid Delay  
Clock to /INT Valid Delay  
TBD  
160  
DS971820600  
3-93  
PS009801-0301  
Z80182/Z8L182  
ZILOG INTELLIGENT PERIPHERAL  
Zilog  
P R E L I M I N A R Y  
AC CHARACTERISTICS (Continued)  
Z85230 General Timing Diagram  
PCLK  
1
/W//REQ  
Request  
2
/W//REQ  
Wait  
3
/RTxC, /TRxC  
Receive  
4
5
6
7
RxD  
8
9
/SYNC  
External  
10  
/TRxC, /RTxC  
Transmit  
11  
12  
TxD  
13  
/TRxC  
Output  
14  
15  
/RTxC  
16  
17  
/TRxC  
18  
21  
19  
20  
/CTS, /DCD  
21  
22  
/SYNC  
Input  
22  
Figure 105. General Timing Diagram  
DS971820600  
3-94  
PS009801-0301  
Z80182/Z8L182  
Zilog  
ZILOG INTELLIGENT PERIPHERAL  
P R E L I M I N A R Y  
Table C. Z85230 General Timing Table  
20 MHz  
No.  
Symbol  
Parameter  
Min  
Max  
Notes  
1
2
3
4
TdPC(REQ)  
TdPC(W)  
TsRxC(PC)  
TsRxD(RxCr)  
/PCLK to W/REQ Valid  
/PCLK to Wait Inactive  
/RxC to /PCLK Setup Time  
RxD to /RxC Setup Time  
70  
170  
N/A  
[1,4]  
[1]  
0
5
6
7
8
ThRxD(RxCr)  
TsRxD(RxCf)  
ThRxD(RxCf)  
TsSY(RxC)  
RxD to /RxC Hold Time  
RxD to /RxC Setup Time  
RxD to /RxC Hold Time  
/SYNC to /RxC Setup Time  
45  
0
45  
–90  
[1]  
[1,5]  
[1,5]  
[1]  
9
ThSY(RXC)  
TsTxC(PC)  
TdTxCf(TXD)  
TdTxCr(TXD)  
/SYNC to/RxC Hold Time  
/TxC to /PCLK Setup Time  
/TxC to TxD Delay  
5TcPc  
N/A  
[1]  
[2,4]  
[2]  
10  
11  
12  
70  
70  
/TxC to TxD Delay  
[2,5]  
13  
14  
15  
16a  
TdTxD(TRX)  
TwRTxh  
TwRTxI  
TxD to TRxC Delay  
RTxC High Width  
TRxC Low Width  
RTxC Cycle Time  
70  
70  
70  
200  
[6]  
[6]  
[6,7]  
TcRTx  
16b  
17  
18  
TxRx(DPLL)  
TcRTxx  
TwTRxh  
TwTRxl  
DPLL Cycle Time Min  
Crystal Osc. Period  
TRxC High Width  
TRxC Low Width  
50  
61  
70  
70  
[7,8]  
[3]  
[6]  
1000  
19  
[6]  
20  
21  
22  
TcTRx  
TwExT  
TwSY  
TRxC Cycle Time  
DCD or CTS Pulse Width  
SYNC Pulse Width  
200  
60  
60  
[6,7]  
Notes:  
These AC parameter values are preliminary and subject to change without notice.  
[1] RxC is /RTxC or /TRxC, whichever is supplying the receive clock.  
[2] TxC is /TRxC or /RTxC, whichever is supplying the transmit clock.  
[3] Both /RTxC and /SYNC have 30 pF capacitors to ground connected to them.  
[4] Synchronization of RxC to PCLK is eliminated in divide by four operation.  
[5] Parameter applies only to FM encoding/decoding.  
[6] Parameter applies only for transmitter and receiver; DPLL and baud  
rate generator timing requirements are identical to case PCLK requirements.  
[7] The maximum receive or transmit data rate is 1/4 PCLK.  
[8] Applies to DPLL clock source only. Maximum data rate of 1/4 PCLK  
still applies. DPLL clock should have a 50% duty cycle.  
DS971820600  
3-95  
PS009801-0301  
Z80182/Z8L182  
ZILOG INTELLIGENT PERIPHERAL  
Zilog  
P R E L I M I N A R Y  
AC CHARACTERISTICS (Continued)  
Z85230 System Timing Diagram  
/RTxC, /TRxC  
Receive  
/W/REQ  
Request  
1
/W/REQ  
Wait  
2
/SYNC  
Output  
3
/INT  
4
/RTxC, /TRxC  
Transmit  
/W//REQ  
Request  
5
/W//REQ  
Wait  
6
/DTR//REQ  
Request  
7
/INT  
8
/CTS,  
/DCD  
/SYNC  
Input  
9
/INT  
10  
Figure 106. Z85230 System Timing  
DS971820600  
3-96  
PS009801-0301  
Z80182/Z8L182  
Zilog  
ZILOG INTELLIGENT PERIPHERAL  
P R E L I M I N A R Y  
Table D. Z85230 System Timing Table  
20 MHz  
Min  
No.  
Symbol  
Parameter  
Max  
Notes [4]  
1
2
3
4
5
TdRxC(REQ)  
TdRxC(W)  
TdRxC(SY)  
TdRxC(INT)  
TdTxC(REQ)  
/RxC to /W//REQ Valid  
/RxC to /Wait Inactive  
/RxC to /SYNC Valid  
/RxC to /INT Valid  
13  
13  
9
15  
8
18  
18  
13  
22  
12  
[2]  
[1,2]  
[2]  
[1,2]  
[3]  
/TxC to /W//REQ Valid  
6
7
8
9
TdTxC(W)  
/TxC to /Wait Inactive  
/TxC to /DTR//REQ Valid  
/TxC to /INT Valid  
/SYNC to /INT Valid  
/DCD or /CTS to /INT Valid  
8
7
9
2
3
15  
11  
14  
6
[1,3]  
[3]  
[1,3]  
[1]  
TdTxC(DRQ)  
TdTxC(INT)  
TdSY(INT)  
TdExT(INT)  
10  
9
[1]  
Notes:  
These AC parameters values are preliminary and subject to change without notice.  
[1] Open-drain output, measured with open-drain test load.  
[2] /RxC is /RTxC or /TRxC, whichever is supplying the receive clock.  
[3] /TxC is /TRxC or /RTxC, whichever is supplying the transmit clock.  
[4] Units equal to TcPc  
Table E. I/O Port Timing  
Z8L182  
20 MHz  
Min Max  
Z80182  
33 MHz  
No.  
Symbol  
Parameter  
Min  
Max  
1
2
3
4
TsPIA(RD)  
ThPIA(RD)  
TdWRF(PIA)  
TFWRF(PIA)  
Port Data Input Setup to /RD Fall  
Port Data Input Hold From /RD Rise  
Port Data Output Delay From /WR Fall  
Port Data Output Float From /WR Fall  
20  
0
20  
0
60  
60  
0
0
Table F. External Bus Master Timing  
Z8L182  
20 MHz  
Z80182  
33 MHz  
No.  
Symbol  
Parameter  
Min  
Max  
Min  
Max  
1
2
3
4
TsA(IORQf)  
TsIOf(WRf)  
TsIOf(RDf)  
ThIOR(WRR)  
Address to /IORQ Fall Setup  
/IORQ Fall to /WR Fall Setup  
/IORQ Fall to /RD Fall Setup  
/IORQ Rise From /WR Rise Hold  
10  
0
0
5
0
0
0
0
5
6
7
8
9
ThIOR(RDR)  
TdRDf(DO)  
THRDR(DO)  
TSD(WRR)  
/IORQ Rise From /RD Rise Hold  
/RD Fall to Data Out Valid Delay  
/RD Rise to Data Out Valid Hold  
Data In to /WR Fall Setup  
0
0
50  
0
45  
0
50  
10  
50  
10  
THD(WRR)  
Data In From /WR Rise Hold  
8
DS971820600  
3-97  
PS009801-0301  
Z80182/Z8L182  
ZILOG INTELLIGENT PERIPHERAL  
Zilog  
P R E L I M I N A R Y  
General-Purpose I/O Port Timing  
This figure shows the timing for the Ports A, B and C.  
Parameters referred to in this figure appear in Tables D  
and E.  
I/O Port Timing (Output)  
T1  
T2  
TW  
T3  
T1  
T2  
TW  
T3  
T1  
T2  
TW  
T3  
0
Port Data Dir. Reg. Addr. (Input)  
Port Data Reg. Addr. (Input)  
Port Data Reg. Addr. (Input)  
A0-A7  
/IORQ  
F1  
F1  
F1  
F4  
F4  
F4  
Port Output Data 1 (In)  
Port Output Data 2 (In)  
F8  
(In) 'OO'H (Change Port To Output)  
F8  
D0-D7  
F9  
F9  
F8  
F2  
F2  
F2  
/WR  
Port  
E3  
E3  
E3  
Port Output Data 1 (Out)  
Port Output Data 2 (Out)  
Port (Output)  
I/O Port Timing (Input)  
Port Data Reg. Addr. (Input)  
Port Data Reg.  
Port Data Dir. Reg. Addr. (Input)  
A0-A7  
/IORQ  
F4  
F5  
F5  
(In) 'FF'H (Change Port To Input)  
Port Data 1 (Out)  
Port Data 2 Out  
D0-D7  
/WR  
F3  
F3  
F6  
F6  
E2  
/RD  
Port  
E1  
E4  
E1  
E2  
Previous Output  
Port Input Data 2 (In)  
Port Input Data 1 (In)  
Figure 107. PORT Timing  
DS971820600  
3-98  
PS009801-0301  
Z80182/Z8L182  
Zilog  
Read Write External Bus Master Timing  
ZILOG INTELLIGENT PERIPHERAL  
P R E L I M I N A R Y  
Address  
/IORQ  
A7-A0  
F1  
/RD  
F5  
F4  
F3  
F2  
F6  
F7  
Data  
/WR  
Data Out  
F8  
F9  
Data  
Data In  
Figure 108. Read/Write External Bus Master Timing  
DS971820600  
3-99  
PS009801-0301  
Z80182/Z8L182  
ZILOG INTELLIGENT PERIPHERAL  
Zilog  
P R E L I M I N A R Y  
ESCC External Bus Master Timing  
Valid ESCC  
Addr * IORQ  
1
/RD or  
/WR  
2
DTR/REQ  
Request  
Figure 109. ESCC External Bus Master Timing  
Table G. External Bus Master Interface Timing (SCC Related Timing)  
Z8L182  
20 MHz  
Z80182  
33 MHz  
No. Symbol  
Parameter  
Min  
Max  
Min  
Max  
Units  
Notes  
1
2
TrC  
TdRDr(REQ)  
Valid Access Recovery Time  
/RD Rise to /DTR//REQ Not Valid Delay  
4TcC  
4TcC  
4TcC  
4TcC  
ns  
ns  
[1]  
Notes:  
These AC parameter values are preliminary and are subject to change without notice.  
[1] Applies only between transactions involving the ESCC.  
TCC = ESCC clock period time  
DS971820600  
3-100  
PS009801-0301  
Z80182/Z8L182  
Zilog  
ZILOG INTELLIGENT PERIPHERAL  
P R E L I M I N A R Y  
16550 MIMIC TIMING  
Refer to Figures 106 thru 112 for MIMIC AC Timing.  
HA2, HA1, HA0  
/HCS  
Valid  
/HRD  
/HWR  
1
2
3
4
5
6
Figure 110. PC Host /RD /WR Timing  
Table H. PC Host /RD /WR Timing  
Z8L182  
20 MHz  
Z80182  
33 MHz  
Min Max  
No  
Symbol  
Parameter  
Min  
Max  
Units  
1
2
3
4
5
6
tAR  
/HRD Delay from Address  
/HRD Delay from /HCS  
/HWR Delay from Address  
/HWR Delay from /HCS  
Address Hold Time  
30  
30  
30  
30  
20  
20  
30  
30  
30  
30  
20  
20  
ns  
ns  
ns  
ns  
ns  
ns  
tCSR  
tAW  
tCSW  
tAh  
tCSh  
/HCS Hold Time  
Note:  
These AC parameter values are preliminary and are subject to change without notice.  
DS971820600  
3-101  
PS009801-0301  
Z80182/Z8L182  
ZILOG INTELLIGENT PERIPHERAL  
Zilog  
P R E L I M I N A R Y  
16550 MIMIC TIMING (Continued)  
HD7-HD0  
/HWR  
Valid  
7
8
9
Figure 111. Data Setup and Hold, Output Delay, Write Cycle  
HD7-HD0  
/HRD  
Valid  
11  
10  
12  
Figure 112. Data Setup and Hold, Output Delay, Read Cycle  
Table I. Data Setup and Hold, Output Delay, Read Cycle  
Z8L182  
20 MHz  
Z80182  
33 MHz  
No.  
Sym  
Parameter  
Min  
Max  
Min  
Max  
Units  
7
8
9
tDs  
tDh  
tWc  
Data Setup Time  
Data Hold Time  
Write Cycle Delay  
30  
30  
2.5 MPU  
30  
30  
2.5 MPU  
ns  
ns  
ns  
Clock Cycles  
Clock Cycles  
10  
11  
12  
tRvD  
tHz  
tRc  
Delay from /HRD to Data  
/HRD to Floating Delay  
Read Cycle Delay  
125  
100  
125  
100  
ns  
ns  
ns  
125  
125  
Note:  
These AC parameter values are preliminary and are subject to change without notice.  
DS971820600  
3-102  
PS009801-0301  
Z80182/Z8L182  
Zilog  
ZILOG INTELLIGENT PERIPHERAL  
P R E L I M I N A R Y  
/HRD  
/HDDIS  
13  
Figure 113. Driver Enable Timing  
Table J. Driver Enable Timing  
Z8L182  
20 MHz  
Z80182  
33 MHz  
No.  
13  
Sym  
Parameter  
Min  
Max  
Min  
Max  
Units  
tRDD  
/HRD to Driver  
Enable/Disable  
60  
60  
ns  
Note:  
These AC parameter values are preliminary and are subject to change without notice.  
/WR (MPU)  
RBR  
14  
HINTR  
(Trigger  
Level)  
14  
HINTR  
(Line  
Status  
RDR  
/HRD LSR  
15  
/HRD RBR  
15  
Figure 114. Interrupt Timing RCVR FIFO  
DS971820600  
3-103  
PS009801-0301  
Z80182/Z8L182  
ZILOG INTELLIGENT PERIPHERAL  
Zilog  
P R E L I M I N A R Y  
16550 MIMIC TIMING (Continued)  
Table K. Interrupt Timing RCVR FIFO  
Z8L182  
20 MHz  
Z80182  
33 MHz  
No.  
Sym  
Parameter  
Min  
Max  
Min  
Max  
14  
tSINT  
Delay from Stop to Set  
Interrupt  
2 MPU  
Clock Cycles  
2 MPU  
Clock Cycles  
15  
tRINT  
Delay from /HRD  
(RD RBR or RD LSR)  
to Reset Interrupt  
2 MPU  
2 MPU  
Clock Cycles  
Clock Cycles  
Note:  
These AC parameter values are preliminary and are subject to change without notice.  
/RD (MPU)  
TxFIFO  
17  
HINTR  
THRE  
16  
/WR (Host)  
THR  
18  
/RD (Host)  
11R  
Figure 115. Interrupt Timing Transmitter FIFO  
DS971820600  
3-104  
PS009801-0301  
Z80182/Z8L182  
Zilog  
ZILOG INTELLIGENT PERIPHERAL  
P R E L I M I N A R Y  
Table L. Interrupt Timing Transmitter FIFO  
Z8L182  
20 MHz  
Z80182  
33 MHz  
No.  
Sym  
Parameter  
Min  
Max  
Min  
Max  
16  
tHR  
Delay from /WR  
(WR THR) to Reset  
Interrupt  
2.5 MPU  
Clock Cycles  
2.5 MPU  
Clock Cycles  
17  
18  
TSTI  
TIR  
Delay from Stop to  
Interrupt (THRE)  
2 MPU  
Clock Cycles  
2 MPU  
Clock Cycles  
Delay from /RD  
(RD IIR) to Reset  
Interrupt (THRIE)  
75  
75  
/HRD  
RD_RBR  
/WR (MPU) RCVR  
FIFO (First Byte  
that reaches  
Trigger Level)  
19  
/HRXRDY  
14  
/HWR  
(Host)  
THR  
RD (MPU)  
THR (Last  
Byte Model)  
20  
21  
/HTxRDY  
Note: If FCR0-1  
TSINT=3 CPU  
Clock Cycles  
Figure 116 RCVR FIFO Bytes Other Than First  
DS971820600  
3-105  
PS009801-0301  
Z80182/Z8L182  
ZILOG INTELLIGENT PERIPHERAL  
Zilog  
P R E L I M I N A R Y  
16550 MIMIC TIMING (Continued)  
Table M. RCVR FIFO Bytes Other Than First  
Z8L182  
20 MHz  
Z80182  
33 MHz  
No  
Sym  
Parameter  
Min  
Max  
Min  
Max  
Units  
19  
tRXi  
Delay from /HRD  
290  
290  
ns  
RBR to /HRxRDY Inactive  
Delay from Write to  
/HTxRDY Inactive  
Delay From Start to  
/HTxRDY Active  
20  
21  
TWxi  
tSXa  
125  
125  
3 MPU  
Clock Cycles  
3 MPU  
Clock Cycles  
Note:  
These AC parameter values are preliminary and are subject to change without notice.  
Clock Generator  
The Z80182/Z8L182 ZIPuses the Z182 MPUs on-chip  
clock generator to supply system clock. The required  
clock is easily generated by connection a crystal to the  
external terminals (XTAL,EXTAL). The clock output runs at  
half the crystal frequency for X2 mode.  
RS, equivalent-series resistance:  
60 Ohms  
CIN=COUT=15~22 pF.  
For PHI > 15 MHz (X2 Mode), it is recommended that an  
oscillator be used as input to EXTAL.  
Recommendedcharacteristicsofthecrystalandthevalues  
for the capacitor are as follows (the values will change with  
crystal frequency).  
C1  
XTAL  
Type of crystal:  
Crystal  
Inputs  
Fundamental, parallel type crystal  
(AT cut is recommended).  
C2  
EXTAL  
Frequency tolerance:  
Application dependent.  
CL, Load capacitance:  
Approximately 22 pF  
Figure 117. Circuit Configuration For Crystal  
(acceptable range is 20-30 pF).  
DS971820600  
3-106  
PS009801-0301  
Z80182/Z8L182  
Zilog  
ZILOG INTELLIGENT PERIPHERAL  
P R E L I M I N A R Y  
PACKAGE INFORMATION  
100-Pin VQFP Package Diagram  
DS971820600  
3-107  
PS009801-0301  
Z80182/Z8L182  
ZILOG INTELLIGENT PERIPHERAL  
Zilog  
P R E L I M I N A R Y  
PACKAGE INFORMATION (Continued)  
100-Pin QFP Package Diagram  
DS971820600  
3-108  
PS009801-0301  
Z80182/Z8L182  
Zilog  
ZILOG INTELLIGENT PERIPHERAL  
P R E L I M I N A R Y  
ORDERING INFORMATION  
Z8L182  
Z80182  
20 MHz  
33 MHz  
Z8L18220ASC  
Z8L18220FSC  
Z8018233ASC  
Z8018233FSC  
For fast results, contact your local Zilog sales office for assistance in ordering the part(s) desired.  
Preferred Package  
A = VQFP (Very Small QFP)  
F = Plastic Quad Flatpack  
Preferred Temperature  
S = 0°C to +70°C  
Speeds  
20 = 20 MHz  
33 = 33 MHZ  
Environmental  
C = Plastic Standard  
D = Plastic Stressed  
E = Hermetric Standard  
Example:  
Z 80182 20 F S C  
is a Z80182, 20 MHz, QFP, 0°C to +70°C, Plastic Standard Flow  
Environmental Flow  
Temperature  
Package  
Speed  
Product Number  
Zilog Prefix  
©1997byZilog, Inc. Allrightsreserved. Nopartofthisdocument  
may be copied or reproduced in any form or by any means  
without the prior written consent of Zilog, Inc. The information in  
this document is subject to change without notice. Devices sold  
byZilog,Inc.arecoveredbywarrantyandpatentindemnification  
provisions appearing in Zilog, Inc. Terms and Conditions of Sale  
only. Zilog, Inc. makesnowarranty, express, statutory, impliedor  
by description, regarding the information set forth herein or  
regarding the freedom of the described devices from intellectual  
property infringement. Zilog, Inc. makes no warranty of mer-  
chantability or fitness for any purpose. Zilog, Inc. shall not be  
responsible for any errors that may appear in this document.  
Zilog, Inc. makes no commitment to update or keep current the  
information contained in this document.  
Zilog’s products are not authorized for use as critical compo-  
nents in life support devices or systems unless a specific written  
agreement pertaining to such intended use is executed between  
the customer and Zilog prior to use. Life support devices or  
systems are those which are intended for surgical implantation  
into the body, or which sustains life whose failure to perform,  
when properly used in accordance with instructions for use  
provided in the labeling, can be reasonably expected to result in  
significant injury to the user.  
Zilog, Inc. 210 East Hacienda Ave.  
Campbell, CA 95008-6600  
Telephone (408) 370-8000  
Telex 910-338-7621  
FAX 408 370-8056  
Internet: http://www.zilog.com  
DS971820600  
3-109  
PS009801-0301  

相关型号:

Z8018220AEC00TR

IC MPU ZIP 20MHZ 100VQFP
ZILOG

Z8018220AEG

IC MPU ZIP 20MHZ 100VQFP
ZILOG

Z8018220FSC

Microcontroller, 8-Bit, Z80 CPU, 20MHz, CMOS, PQFP100
ZILOG

Z8018233ASC

ZILOG INTELLIGENT PERIPHERAL CONTROLLER (ZIP⑩)
ZILOG

Z8018233ASC00TR

IC MPU ZIP 33MHZ 100VQFP
ZILOG

Z8018233ASC1838

IC MPU ZIP 33MHZ 100VQFP
ZILOG

Z8018233ASC1838TR

IC MPU ZIP 33MHZ 100LQFP
ZILOG

Z8018233ASCXXXX

Microcontroller, 8-Bit, 33MHz, CMOS, PQFP100, PLASTIC, VQFP-100
ZILOG

Z8018233ASG

暂无描述
ZILOG

Z8018233ASG1838

IC MPU ZIP 33MHZ 100LQFP
ZILOG

Z8018233FSC

ZILOG INTELLIGENT PERIPHERAL CONTROLLER (ZIP⑩)
ZILOG

Z8018233FSC00TR

IC MPU ZIP 33MHZ 100QFP
ZILOG