S3F82NB [ZILOG]

S3 Family 8-Bit Microcontrollers; S3系列8位微控制器
S3F82NB
型号: S3F82NB
厂家: ZILOG, INC.    ZILOG, INC.
描述:

S3 Family 8-Bit Microcontrollers
S3系列8位微控制器

微控制器
文件: 总361页 (文件大小:1471K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
S3 Family 8-Bit Microcontrollers  
S3F82NB  
Product Specification  
PS031601-0813  
P R E L I M I N A R Y  
Copyright ©2013 Zilog®, Inc. All rights reserved.  
www.zilog.com  
S3F82NB  
Product Specification  
ii  
DO NOT USE THIS PRODUCT IN LIFE SUPPORT SYSTEMS.  
Warning:  
LIFE SUPPORT POLICY  
ZILOG’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE  
SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS PRIOR WRITTEN APPROVAL OF  
THE PRESIDENT AND GENERAL COUNSEL OF ZILOG CORPORATION.  
As used herein  
Life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b)  
support or sustain life and whose failure to perform when properly used in accordance with instructions for  
use provided in the labeling can be reasonably expected to result in a significant injury to the user. A criti-  
cal component is any component in a life support device or system whose failure to perform can be reason-  
ably expected to cause the failure of the life support device or system or to affect its safety or effectiveness.  
Document Disclaimer  
©2013 Zilog, Inc. All rights reserved. Information in this publication concerning the devices, applications,  
or technology described is intended to suggest possible uses and may be superseded. ZILOG, INC. DOES  
NOT ASSUME LIABILITY FOR OR PROVIDE A REPRESENTATION OF ACCURACY OF THE  
INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED IN THIS DOCUMENT. ZILOG ALSO  
DOES NOT ASSUME LIABILITY FOR INTELLECTUAL PROPERTY INFRINGEMENT RELATED  
IN ANY MANNER TO USE OF INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED  
HEREIN OR OTHERWISE. The information contained within this document has been verified according  
to the general principles of electrical and mechanical engineering.  
S3 and Z8 are trademarks or registered trademarks of Zilog, Inc. All other product or service names are the  
property of their respective owners.  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
iii  
Revision History  
Each instance in this document’s revision history reflects a change from its previous edi-  
tion. For more details, refer to the corresponding page(s) or appropriate links furnished in  
the table below.  
Revision  
Date Level  
Description  
Page  
Aug  
2013  
01  
Original Zilog issue. A table of contents and PDF bookmarks will appear in the All  
next edition, due to be published on or before Winter 2013.  
PS031601-0813  
P R E L I M I N A R Y  
Revision History  
S3F82NB  
Product Specification  
1
1
PRODUCT OVERVIEW  
S3C8-SERIES MICROCONTROLLERS  
Samsung's S3C8 series of 8-bit single-chip CMOS microcontrollers offers a fast and efficient CPU, a wide range  
of integrated peripherals, and various mask-programmable ROM sizes. Among the major CPU features are:  
— Efficient register-oriented architecture  
— Selectable CPU clock sources  
— Idle and Stop power-down mode release by interrupts  
— Built-in basic timer with watchdog function  
A sophisticated interrupt structure recognizes up to eight interrupt levels. Each level can have one or more  
interrupt sources and vectors. Fast interrupt processing (within a minimum of four CPU clocks) can be assigned to  
specific interrupt levels.  
S3F82NB MICROCONTROLLER  
The S3F82NB single-chip CMOS microcontrollers  
are fabricated using the highly advanced CMOS  
process, based on Samsung’s newest CPU  
architecture.  
— One 8-bit timer/counter and One 16-bit  
timer/counter with selectable operating modes  
— Watch timer for real time  
— LCD Controller/driver  
The S3F82NB is a microcontroller with a 64K-byte  
Flash ROM embedded.  
— A/D converter with 8 selectable input pins  
— Synchronous SIO modules  
— Comparator  
Using a proven modular design approach, Samsung  
engineers have successfully developed the  
S3F82NB by integrating the following peripheral  
modules with the powerful SAM8 core:  
They are currently available in 128-pin QFP package  
— Eleven programmable I/O ports, including ten 8-  
bit ports, and one 3-bit port, for a total of 83 pins  
— Twelve bit-programmable pins for external  
interrupts  
— One 8-bit basic timer for oscillation stabilization  
and watchdog functions (system reset)  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
2
FEATURES  
CPU  
Watch Timer  
Interval time: 3.91mS, 0.125S, 0.25S, and 0.5S  
at 32.768 kHz  
0.5/1/2/4 kHz Selectable buzzer output  
SAM88 RC CPU core  
Memory  
Program Memory (ROM)  
LCD Controller/Driver  
- 64K 8 bits program memory  
- Internal flash memory (program memory)  
80 segments and 16 common terminals  
1/8 and 1/16 duty selectable  
Internal resistor bias selectable  
˲
˲
˲
˲
˲
˲
˲
Sector size: 128 bytes  
10 years data retention  
Fast programming time:  
User program and sector erase available  
Endurance: 10,000 erase/program cycles  
External serial programming support  
Expandable OBPTM (on board program)  
sector  
16 level LCD contrast control by software  
Analog to Digital Converter  
8-channel analog input  
10-bit conversion resolution  
25uS conversion time  
Data Memory (RAM)  
- Including LCD display data memory  
- 4,112 8 bits data memory  
8-bit Serial I/O Interface  
8-bit transmit/receive mode  
8-bit receive mode  
LSB-first or MSB-first transmission selectable  
Internal or External clock source  
Instruction Set  
78 instructions  
Idle and stop instructions added for power-down  
modes  
Comparator  
3-Channel mode: Internal reference (4-bit  
resolution); 16-step variable reference voltage  
2-Channel mode: External reference  
83 I/O Pins  
I/O: 19 pins (Sharing with other signal pins)  
I/O: 64 pins (Sharing with LCD signal outputs)  
Low Voltage Reset (LVR)  
Interrupts  
Criteria voltage: 2.0V  
En/Disable by smart option (ROM address: 3FH)  
8 interrupt levels and 19 interrupt sources  
Fast interrupt processing feature  
Two Power-Down Modes  
8-Bit Basic Timer  
Idle: only CPU clock stops  
Stop: selected system clock and CPU clock stop  
Watchdog timer function  
4 kinds of clock source  
Oscillation Sources  
8-Bit Timer/Counter 0  
Crystal, ceramic, or RC for main clock  
Programmable 8-bit internal timer  
External event counter function  
PWM and capture function  
Main clock frequency: 0.4 MHz 12.0 MHz  
32.768 kHz crystal oscillation circuit for  
sub clock  
Timer/Counter 1  
Instruction Execution Times  
Programmable 16-bit internal timer  
Two 8-bit timer/counters A/B mode  
PWM and capture function  
333nS at 12.0 MHz fx (minimum)  
122.1uS at 32.768 kHz fxt (minimum)  
External event counter function  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
3
FEATURES (Continued)  
Operating Voltage Range  
Smart Option  
Low Voltage Reset (LVR) enable/disable and  
AVREF or P1.0/INT0 selection are at your  
hardwired option (ROM address 3FH)  
1.8 V to 5.5 V at 0.4 4.2 MHz  
2.2 V to 5.5 V at 0.4 12.0 MHz  
Operating Temperature Range  
ꢁꢂ40C to + 85C  
ISP related option selectable  
(ROM address 3EH)  
Package Type  
128-QFP-1420  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
4
BLOCK DIAGRAM  
XTIN  
XOUT  
XIN  
XTOUT  
Main OSC.  
Sub OSC.  
Watchdog  
Timer  
Basic Timer  
Port 10  
P10.0-P10.7/SEG24-SEG31  
P9.0-P9.7/SEG32-SEG39  
P8.0-P8.7/SEG40-SEG47  
P7.0-P7.7/SEG48-SEG55  
P6.0-P6.2/CIN1-CIN2  
Low Voltage  
Reset  
Port 9  
Port 8  
Port 7  
Port 6  
Port I/O and Interrupt Control  
T0CLK/AD1/P0.1  
T0OUT/T0PWM/T0CAP/AD3/P0.3  
8-Bit  
Timer/Counter0  
8-Bit TimerA  
8-Bit TimerB  
T1CLK/AD0/P0.0  
T1OUT/T1PWM/T1CAP/AD2/P0.2  
BUZ/INT4/P1.4  
Watch Timer  
10-bit ADC  
Comparator  
SAM88RC CPU  
AD0-AD7/P0.0-P0.7  
AVREF/INT0/P1.0  
P5.0/SEG80  
P5.1/SEG81  
P5.2/SEG82  
CIN0/P6.0  
CIN1/P6.1  
CIN2/P6.2  
P5.3/SEG83  
Port 5  
P5.4/SEG84/INT8  
P5.5/SEG85/INT9  
P5.6/SEG86/INT10  
P5.7/SEG87/INT11  
SCK/INT7/P1.7  
SO/INT6/P1.6  
SI/INT5/P1.5  
SIO  
P4.0-P4.7/SEG72-SEG79  
P3.0-P3.7/SEG64-SEG71  
P2.0-P2.7/SEG56-SEG63  
Port 4  
Port 3  
Port 2  
64 K-byte  
ROM  
4,112 byte  
Register File  
VLC0-VLC4  
COM0-COM7  
COM8-COM15/SEG0-SEG7  
SEG8-SEG55  
SEG56-SEG87/P3.0-P5.7  
LCD  
Controller/  
Driver  
P0.0/AD0/T1CLK  
P0.1/AD1/T0CLK  
P1.0/INT0/VREF  
P1.1/INT1  
P0.2/AD2/T1OUT/T1PWM/T1CAP  
P0.3/AD3/T0OUT/T0PWM/T0CAP  
P0.4/AD4  
P1.2/INT2  
P1.3/INT3  
Port 0  
Port 1  
P1.4/INT4/BUZ  
P1.5/INT5/SI  
P1.6/INT6/SO  
P1.7/INT7/SCK  
P0.5/AD5  
P0.6/AD6  
VDD  
VSS  
nRESET  
TEST  
P0.7/AD7  
Figure 1-1. Block Diagram  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
5
PIN ASSIGNMENT  
COM9/SEG1  
1
102  
101  
100  
99  
98  
97  
96  
95  
94  
93  
92  
91  
90  
89  
88  
87  
86  
85  
84  
83  
82  
81  
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
P10.4/SEG28  
P10.5/SEG29  
P10.6/SEG30  
P10.7/SEG31  
P9.0/SEG32  
P9.1/SEG33  
P9.2/SEG34  
P9.3/SEG35  
P9.4/SEG36  
P9.5/SEG37  
P9.6/SEG38  
P9.7/SEG39  
P8.0/SEG40  
P8.1/SEG41  
P8.2/SEG42  
P8.3/SEG43  
P8.4/SEG44  
P8.5/SEG45  
P8.6/SEG46  
P8.7/SEG47  
P7.0/SEG48  
P7.1/SEG49  
P7.2/SEG50  
P7.3/SEG51  
P7.4/SEG52  
P7.5/SEG53  
P7.6/SEG54  
P7.7/SEG55  
P2.0/SEG56  
P2.1/SEG57  
P2.2/SEG58  
P2.3/SEG59  
P2.4/SEG60  
P2.5/SEG61  
P2.6/SEG62  
P2.7/SEG63  
P3.0/SEG64  
P3.1/SEG65  
COM8/SEG0  
2
COM7  
3
COM6  
4
COM5  
5
COM4  
6
COM3  
7
COM2  
8
COM1  
9
COM0  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
VLC4  
VLC3  
VLC2  
VLC1  
VLC0  
P1.7/SCK/INT7  
P1.6/SO/INT6  
P1.5/SI/INT5  
P1.4/BUZ/INT4  
S3F82NB  
VDD  
128-QFP-1420  
VSS  
XOUT  
XIN  
TEST  
XTIN  
XTOUT  
nRESET  
P1.3/INT3  
P1.2/INT2  
P1.1/INT1  
P1.0/AVREF/INT0  
P0.7/AD7  
P0.6/AD6  
P0.5/AD5  
P0.4/AD4  
P0.3/T0OUT/T0PWM/T0CAP/AD3  
P0.2/T1OUT/T1PWM/T1CAP/AD2  
P0.1/T0CLK/AD1  
Figure 1-2. S3F82NB Pin Assignments (128-QFP-1420)  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
6
PIN DESCRIPTIONS  
Table 1-1. S3F82NB Pin Descriptions  
Pin  
Names  
Pin  
Type  
Pin  
Description  
Circuit  
Type  
Pin  
Numbers  
Share  
Pins  
P0.0  
I/O I/O port with 1-bit-programmable pins;  
Input (P0.0 and P0.1: Schmitt trigger  
input) or push-pull, open-drain output and  
software assignable pull-ups.  
F-4  
39  
38  
AD0/T1CLK  
AD1/T0CLK  
P0.1  
P0.2  
F-3  
37  
AD2/T1OUT/  
T1PWM/T1CAP  
AD3/T0OUT/  
T0PWM/T0CAP  
AD4–AD7  
P0.3  
36  
P0.4–P0.7  
P1.0  
35–32  
31  
INT0/ AV  
REF  
I/O I/O port with 1-bit-programmable pins;  
Schmitt trigger Input or push-pull, open-  
drain output and software assignable pull-  
ups.  
E-5  
E-4  
P1.1  
P1.2  
P1.3  
P1.4  
P1.5  
P1.6  
P1.7  
30  
29  
28  
19  
18  
17  
16  
INT1  
INT2  
INT3  
Alternately used for external interrupt  
input (noise filters, interrupt enable and  
pending control).  
INT4/BUZ  
INT5/SI  
INT6/SO  
INT7/SCK  
The P1.0 is configured as one of the  
P1.0/INT0 and AV  
by “Smart option”.  
REF  
P2.0–P2.7  
P3.0–P3.7  
P4.0–P4.7  
P5.0–P5.3  
P5.4–P5.7  
I/O I/O port with 1-bit-programmable pins;  
Input or push-pull, open-drain output and  
software assignable pull-ups.  
H-8  
H-8  
H-8  
H-8  
H-9  
74–67  
66–59  
58–51  
50–47  
46–43  
SEG56–SEG63  
SEG64–SEG71  
SEG72–SEG79  
SEG80–SEG83  
I/O I/O port with 1-bit-programmable pins;  
Input or push-pull, open-drain output and  
software assignable pull-ups.  
I/O I/O port with 1-bit-programmable pins;  
Input or push-pull, open-drain output and  
software assignable pull-ups.  
I/O I/O port with 1-bit-programmable pins;  
Input or push-pull, open-drain output and  
software assignable pull-ups.  
I/O I/O port with 1-bit-programmable pins;  
Schmitt trigger Input or push-pull, open-  
drain output and software assignable pull-  
ups.  
SEG84–SEG87  
INT8–INT11  
Alternately used for external interrupt  
input (noise filters, interrupt enable and  
pending control).  
P6.0–P6.1  
P6.2  
I/O I/O port with 1-bit-programmable pins;  
Schmitt trigger Input or push-pull output  
and software assignable pull-ups.  
H-26  
H-27  
42–41  
40  
CIN0–CIN1  
CIN2  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
7
Table 1-1. S3F82NB Pin Descriptions (Continued)  
Pin  
Names  
Pin  
Type  
Pin  
Description  
Circuit  
Type  
Pin  
Numbers  
Share  
Pins  
P7.0–P7.7  
P8.0–P8.7  
P9.0–P9.7  
P10.0–P10.7  
I/O I/O port with 4-bit-programmable pins;  
Input or push-pull output and software  
assignable pull-ups.  
H-10  
H-10  
H-10  
H-10  
82–75  
90–83  
98–91  
106–99  
SEG48–SEG55  
SEG40–SEG47  
SEG32–SEG39  
SEG24–SEG31  
I/O I/O port with 4-bit-programmable pins;  
Input or push-pull output and software  
assignable pull-ups.  
I/O I/O port with 4-bit-programmable pins;  
Input or push-pull output and software  
assignable pull-ups.  
I/O I/O port with 4-bit-programmable pins;  
Input or push-pull output and software  
assignable pull-ups.  
COM0–COM7  
COM8–COM15  
O
LCD common signal output.  
H-4  
H-4  
10–3  
2–123  
SEG0–SEG7  
SEG0–SEG7  
SEG8–SEG23  
O
LCD segment signal output.  
2–123  
122–107  
COM8–COM15  
SEG24–SEG31  
SEG32–SEG39  
SEG40–SEG47  
SEG48–SEG55  
I/O  
H-10  
106–99  
98–91  
90–83  
82–75  
P10.0–P10.7  
P9.0–P9.7  
P8.0–P8.7  
P7.0–P7.7  
SEG56–SEG63  
SEG64–SEG71  
SEG72–SEG79  
SEG80–SEG83  
H-8  
H-9  
74–67  
66–59  
58–51  
50–47  
P2.0–P2.7  
P3.0–P3.7  
P4.0–P4.7  
P5.0–P5.3  
SEG84–SEG87  
46–43  
P5.4–P5.7/  
INT8–INT11  
V
– V  
LCD power supply pins.  
15–11  
LC0 LC4  
AD0  
AD1  
I/O A/D converter analog input channels.  
F-4  
39  
38  
P0.0/T1CLK  
P0.1/T0CLK  
AD2  
F-3  
37  
P0.2/T1OUT/  
T1PWM/T1CAP  
P0.3/T0OUT/  
T0PWN/T0CAP  
P0.4–P0.7  
AD3  
36  
AD4–AD7  
35–32  
31  
AV  
A/D converter reference voltage.  
The AV is configured as one of the  
E-5  
P1.0/INT0  
REF  
REF  
P1.0/INT0 and AV  
option”.  
by “Smart  
REF  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
8
Table 1-1. S3F82NB Pin Descriptions (Continued)  
Pin  
Pin  
Pin  
Circuit  
Type  
Pin  
Share  
Pins  
Names  
Type  
Description  
Numbers  
42–41  
40  
3-channel comparator input  
CIN0, CIN1: comparator input only  
CIN2: comparator input or external  
reference input.  
CIN0–CIN1  
CIN2  
I/O  
H-26  
H-27  
P6.0–P6.1  
P6.2  
SCK  
I/O Serial interface clock.  
E-4  
E-4  
E-4  
E-4  
F-3  
16  
17  
18  
19  
36  
P1.7/INT7  
P1.6/INT6  
P1.5/INT5  
P1.4/INT4  
SO  
I/O Serial interface data output.  
I/O Serial interface data input.  
I/O Output pin for buzzer signal.  
I/O Timer 0 clock output and PWM output.  
SI  
BUZ  
T0OUT/T0PWM  
P0.3/AD3/  
T0CAP  
T0CAP  
I/O Timer 0 capture input.  
F-3  
36  
P0.3/AD3/  
T0OUT/T0PWM  
T0CLK  
I/O Timer 0 external clock input.  
F-4  
F-3  
38  
37  
P0.1/AD1  
T1OUT/T1PWM  
I/O Timer 1 clock output and PWM output.  
P0.2/AD2/  
T1CAP  
T1CAP  
I/O Timer 1 capture input.  
F-3  
37  
P0.2/AD2/  
T1OUT/T1PWM  
T1CLK  
INT0  
I/O Timer 1 external clock input.  
F-4  
E-5  
39  
31  
P0.0/AD0  
P1.0/AV  
REF  
I/O External interrupts input pins.  
The INT0 is configured as one of the  
INT1–INT3  
INT4  
E-4  
30–28  
19  
P1.1–P1.3  
P1.4/BUZ  
P1.5/SI  
P1.6/SO  
P1.7/SCK  
P1.0/INT0 and AV  
option”.  
by “Smart  
REF  
INT5  
18  
INT6  
17  
INT7  
16  
P5.4–P5.7/  
SEG84–SEG87  
INT8–INT11  
H-9  
46–43  
nRESET  
I
System reset pin  
B
27  
X
X
Main oscillator pins.  
23  
22  
IN  
OUT  
XT  
XT  
I
Crystal oscillator pins for sub clock.  
25  
26  
IN  
OUT  
TEST  
Test input: it must be connected to  
24  
V
SS  
V
Power supply input pins.  
Ground pins.  
20  
21  
DD  
V
SS  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
9
PIN CIRCUITS  
V
DD  
V
DD  
P-Channel  
N-Channel  
Pull-up  
Resistor  
In  
In  
Schmitt Trigger  
Figure 1-3. Pin Circuit Type A  
Figure 1-4. Pin Circuit Type B  
VDD  
P-Channel  
N-Channel  
Data  
Output  
DIsable  
Figure 1-5. Pin Circuit Type C  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
10  
VDD  
Pull-up  
Resistor  
VDD  
Open drain  
Enable  
Resistor  
Enable  
P-CH  
N-CH  
Data  
I/O  
Output  
Disable  
Alternative  
Function  
Data  
ADCEN  
ADC Select  
To ADC  
Figure 1-6. Pin Circuit Type F-3 (P0.2-P0.7)  
VDD  
Pull-up  
Resistor  
VDD  
Open drain  
Enable  
Resistor  
Enable  
P-CH  
N-CH  
Data  
I/O  
Output  
Disable  
Schmitt Trigger  
Figure 1-7. Pin Circuit Type E-4 (P1 except P1.0)  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
11  
VDD  
Pull-up  
Resistor  
VDD  
Open drain  
Enable  
Resistor  
Enable  
P-CH  
N-CH  
Data  
MUX  
I/O  
Output  
Disable  
Smart Option  
Schmitt Trigger  
AVREF  
Figure 1-8. Pin Circuit Type E-5 (P1.0)  
VDD  
Pull-up  
Resistor  
VDD  
Open drain  
Enable  
Resistor  
Enable  
P-CH  
N-CH  
Data  
I/O  
Output  
Disable  
Alternative  
Function  
Data  
ADCEN  
ADC Select  
To ADC  
Figure 1-9. Pin Circuit Type F-4 (P0.0 – P0.1)  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
12  
VLC0  
VLC1  
VLC2  
COM/SEG  
Out  
Output  
Disable  
VLC3  
VLC4  
VSS  
Figure 1-10. Pin Circuit Type H-4  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
13  
VDD  
Pull-up  
Resistor  
VDD  
Resistor  
Enable  
Open Drain  
Data  
P-CH  
I/O  
Output  
Disable1  
N-CH  
SEG  
Circuit  
Type H-4  
Output  
Disable2  
Figure 1-11. Pin Circuit Type H-8 (P2–P4, P5.0–P5.3)  
VDD  
Pull-up  
Resistor  
VDD  
Resistor  
Enable  
Open Drain  
Data  
P-CH  
I/O  
Output  
Disable1  
N-CH  
SEG  
Circuit  
Type H-4  
Output  
Disable2  
Figure 1-12. Pin Circuit Type H-9 (P5.4–P5.7)  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
14  
VDD  
Pull-up  
Resistor  
VDD  
Resistor  
Enable  
P-CH  
Data  
I/O  
Output  
Disable1  
N-CH  
SEG  
Circuit  
Type H-4  
Output  
Disable2  
Figure 1-13. Pin Circuit Type H-10 (P7–P10)  
VDD  
Pull-up  
Resistor  
Pull-up  
Enable  
Data  
Output  
Disable  
CIRCUIT  
TYPE C  
I/O  
Analog  
Input SEL  
Digital In  
Analog In  
Figure 1-14. Pin Circuit Type H-26 (P6.0–P6.1)  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
15  
VDD  
Pull-up  
Resistor  
Resistor  
Enable  
Data  
Output  
Disable  
CIRCUIT  
TYPE C  
I/O  
Analog  
Input SEL  
Digital In  
External  
REF SEL  
Analog In  
External  
VREF In  
Figure 1-15. Pin Circuit Type H-27 (P6.2)  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
16  
2
ADDRESS SPACES  
OVERVIEW  
The S3F82NB microcontroller has two types of address space:  
— Internal program memory (ROM)  
— Internal register file  
A 16-bit address bus supports program memory operations. A separate 8-bit register bus carries addresses and  
data between the CPU and the register file.  
The S3F82NB has an internal 64-Kbyte Flash ROM.  
The 256-byte physical register space is expanded into an addressable area of 320 bytes using addressing  
modes.  
A 176-byte LCD display register file is implemented.  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
17  
PROGRAM MEMORY (ROM)  
Program memory (ROM) stores program codes or table data. The S3F82NB has 64K bytes internal Flash  
program memory.  
The first 256 bytes of the ROM (0H–0FFH) are reserved for interrupt vector addresses. Unused locations in this  
address range can be used as normal program memory. If you use the vector address area to store a program  
code, be careful not to overwrite the vector addresses stored in these locations.  
The ROM address at which a program execution starts after a reset is 0100H in the S3F82NB.  
The reset address of ROM can be changed by a smart option only in the S3F82NB (Full-Flash Device). Refer to  
the chapter 18. Embedded Flash Memory Interface for more detail contents.  
(Decimal)  
65,535  
(Hex)  
FFFFH  
64K-bytes  
Internal  
Program  
Memory Area  
8FFH  
FFH  
Available  
ISP Sector Area  
255  
0
Interrupt Vector Area  
Smart Option  
3FH  
3CH  
00H  
Figure 2-1. Program Memory Address Space  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
18  
SMART OPTION  
ROM Address: 003EH  
.5 .4 .3 .2  
MSB  
.7  
.6  
.1  
.0  
LSB  
Not used  
ISP protection size selection bits:(4)(5)  
00 = 256 bytes  
ISP reset vector change selection  
bit:(1)  
0 = OBP reset vector address  
1 = Normal vector (address 0100H)  
01 = 512 bytes  
10 = 1024 bytes  
11 = 2048 bytes  
ISP reset vector address selection bits:(2)  
00 = 200H(ISP area size: 256 byte)  
01 = 300H(ISP area size: 512 byte)  
10 = 500H(ISP area size: 1024 byte)  
11 = 900H(ISP area size: 2048 byte)  
ISP protection enable/disable bit:(3)  
0 = Enable (not erasable by LDC)  
1 = Disable (Erasable by LDC)  
ROM Address: 003FH  
.5 .4 .3 .2  
MSB  
.7  
.6  
.1  
.0  
LSB  
AVREF or P1.0/INT0 selection bit:  
0 = AVREF  
1 = P1.0/INT0  
LVR enable/disable bit  
(Criteria Voltage: 2.0V)  
0 = Disable LVR  
These bits should be  
always logic "111111b".  
1 = Enable LVR  
ROM Address: 003CH  
MSB  
MSB  
.7  
.7  
.6  
.6  
.5  
.4  
.3  
.2  
.1  
.1  
.0  
LSB  
Not used  
ROM Address: 003DH  
.5  
.4  
.3  
.2  
.0  
LSB  
Not used  
NOTES:  
1. By setting ISP reset vector change selection bit (3E.7) to '0', user can have the available ISP area.  
If ISP reset vector change selection bit (3EH.7) is '1', 3EH.6 and 3EH.5 are meaningless.  
2. If ISP reset vector change selection bit (3EH.7) is '0', user must change ISP reset vector address from  
0100H to some address which user want to set reset address (0200H, 0300H, 0500H or 0900H).  
If the reset vector address is 0200H, the ISP area can be assigned from 0100H to 01FFH (256bytes).  
If 0300H, the ISP area can be assigned from 0100H to 02FFH (512bytes). If 0500H, the ISP area can  
be assigned from 0100H to 04FFH (1024bytes). If 0900H, the ISP area can be assigned from 0100H  
to 08FFH (2048bytes).  
3. If ISP protection enable/disable bit is '0', user can't erase or program the ISP area selected by 3EH.1  
and 3EH.0 in flash memory.  
4. User can select suitable ISP protection size by 3EH.1 and 3EH.0. If ISP protection enable/disable bit  
(3EH.2) is '1', 3EH.1 and 3EH.0 are meaningless.  
5. After selecting ISP reset vector address in selecting ISP protection size, don't select upper than ISP  
area size.  
PS031601-0813  
P R E L I M I N A R Y  
Figure 2-2. Smart Option  
S3F82NB  
Product Specification  
19  
Smart option is the ROM option for start condition of the chip. The ROM address used by smart option is from  
003CH to 003FH. The S3F82NB only use 003EH to 003FH.  
When any values are written in the Smart Option area (003CH-003FH) by LDC instruction, the data of the area  
may be changed but the Smart Option is not affected. The data for Smart Option should be written in the Smart  
Option area (003CH-003FH) by OTP/MTP programmer (Writer tools).  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
20  
REGISTER ARCHITECTURE  
In the S3F82NB implementation, the upper 64-byte area of register files is expanded two 64-byte areas, called set  
1 and set 2. The upper 32-byte area of set 1 is further expanded two 32-byte register banks (bank 0 and bank 1),  
and the lower 32-byte area is a single 32-byte common area.  
In case of S3F82NB the total number of addressable 8-bit registers is 4,193. Of these 4,193 registers, 13 bytes  
are for CPU and system control registers, 68 bytes are for peripheral control and data registers, 16 bytes are used  
as a shared working registers, and 4,096 registers are for general-purpose use, page 0-page15 (including 176  
bytes for LCD display registers and 1 byte for peripheral control register).  
You can always address set 1 register locations, regardless of which of the ten register pages is currently  
selected. Set 1 locations, however, can only be addressed using register addressing modes.  
The extension of register space into separately addressable areas (sets, banks, and pages) is supported by  
various addressing mode restrictions, the select bank instructions, SB0 and SB1, and the register page pointer  
(PP).  
Specific register types and the area (in bytes) that they occupy in the register file are summarized in Table 2-1.  
Table 2-1. S3F82NB Register Type Summary  
Register Type  
Number of Bytes  
General-purpose registers (including the 16-byte common working register  
area, sixteen 192-byte prime register area (including LCD data registers  
and peripheral control register), and sixteen 64-byte set 2 area)  
CPU and system control registers  
4,112  
13  
68  
Mapped clock, peripheral, I/O control, and data registers  
Total Addressable Bytes  
4,193  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
21  
Page 15  
Page 14  
FFH  
FFH  
FFH  
Set1  
Page 13  
Bank 1  
FFH  
Page 3  
Page 2  
Page 1  
Page 0  
FFH  
FFH  
FFH  
FFH  
Bank 0  
32  
Bytes  
System and  
Peripheral Control  
Registers  
Set 2  
(Register Addressing Mode)  
E0H  
DFH  
64  
Bytes  
General-Purpose  
Data Registers  
System Registers  
256  
Bytes  
(Register Addressing Mode)  
D0H  
CFH  
(Indirect Register,  
Indexed Mode, and  
Stack Operations)  
General Purpose Register  
(Register Addressing Mode)  
C0H  
C0H  
BFH  
Page 0  
B0H  
Page 15  
Peripheral Control Register  
(All addressing modes)  
~
~
~
1 Byte  
AFH  
~
~
Prime  
Data Registers  
~
192  
Bytes  
~
~
Prime  
Data Registers  
(All addressing modes)  
LCD Display Reigster  
176  
(All Addressing  
Modes)  
Bytes  
00H  
00H  
Figure 2-3. Internal Register File Organization (S3F82NB)  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
22  
REGISTER PAGE POINTER (PP)  
The S3C8-series architecture supports the logical expansion of the physical 256-byte internal register file (using  
an 8-bit data bus) into as many as 16 separately addressable register pages. Page addressing is controlled by the  
register page pointer (PP, DFH). In the S3F82NB microcontroller, a paged register file expansion is implemented  
for LCD data registers, and the register page pointer must be changed to address other pages.  
After a reset, the page pointer's source value (lower nibble) and the destination value (upper nibble) are always  
"0000", automatically selecting page 0 as the source and destination page for register addressing.  
Register Page Pointer (PP)  
DFH ,Set 1, R/W  
MSB  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
Destination register page selection bits: Source register page selection bits:  
0000 Destination: Page 0  
0001 Destination: Page 1  
0010 Destination: Page 2  
0011 Destination: Page 3  
0100 Destination: Page 4  
0101 Destination: Page 5  
0110 Destination: Page 6  
0111 Destination: Page 7  
1000 Destination: Page 8  
1001 Destination: Page 9  
1010 Destination: Page 10  
1011 Destination: Page 11  
1100 Destination: Page 12  
1101 Destination: Page 13  
1110 Destination: Page 14  
1111 Destination: Page 15  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
Source: page 0  
Source: page 1  
Source: page 2  
Source: page 3  
Source: page 4  
Source: page 5  
Source: page 6  
Source: page 7  
Source: page 8  
Source: page 9  
Source: page 10  
Source: page 11  
Source: page 12  
Source: page 13  
Source: page 14  
Source: page 15  
NOTES:  
1. In the S3F82NB microcontroller, the internal register file is configured as sixteen pages (Pages 0-15).  
2. The page 0-14 are used for general purpose register file and page 15 is used for the LCD data register  
(00H-AFH) and peripheral control regiser (B0H).  
Figure 2-4. Register Page Pointer (PP)  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
23  
PROGRAMMING TIP — Using the Page Pointer for RAM Clear (Page 0, Page 1)  
LD  
PP,#00H  
#0C0H  
; Destination  
0, Source  
0
0
SRP  
LD  
R0,#0FFH  
@R0  
; Page 0 RAM clear starts  
RAMCL0  
CLR  
DJNZ  
CLR  
R0,RAMCL0  
@R0  
; R0 = 00H  
LD  
LD  
CLR  
DJNZ  
CLR  
PP,#10H  
R0,#0FFH  
@R0  
R0,RAMCL1  
@R0  
; Destination  
; Page 1 RAM clear starts  
1, Source  
RAMCL1  
; R0 = 00H  
NOTE: You should refer to page 6-39 and use DJNZ instruction properly when DJNZ instruction is used in your program.  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
24  
REGISTER SET 1  
The term set 1 refers to the upper 64 bytes of the register file, locations C0H–FFH.  
The upper 32-byte area of this 64-byte space (E0H–FFH) is expanded two 32-byte register banks, bank 0 and  
bank 1. The set register bank instructions, SB0 or SB1, are used to address one bank or the other. A hardware  
reset operation always selects bank 0 addressing.  
The upper two 32-byte areas (bank 0 and bank 1) of set 1 (E0H–FFH) contains 68 mapped system and peripheral  
control registers. The lower 32-byte area contains 16 system registers (D0H–DFH) and a 16-byte common  
working register area (C0H–CFH). You can use the common working register area as a “scratch” area for data  
operations being performed in other areas of the register file.  
Registers in set 1 location are directly accessible at all times using Register addressing mode. The 16-byte  
working register area can only be accessed using working register addressing (For more information about  
working register addressing, please refer to Chapter 3, “Addressing Modes.”)  
REGISTER SET 2  
The same 64-byte physical space that is used for set 1 location C0H–FFH is logically duplicated to add another  
64 bytes of register space. This expanded area of the register file is called set 2. For the S3F82NB,  
the set 2 address range (C0H–FFH) is accessible on pages 0-15.  
The logical division of set 1 and set 2 is maintained by means of addressing mode restrictions. You can use only  
Register addressing mode to access set 1 location. In order to access registers in set 2, you must use Register  
Indirect addressing mode or Indexed addressing mode.  
The set 2 register area of page 0 is commonly used for stack operations.  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
25  
PRIME REGISTER SPACE  
The lower 192 bytes (00H–BFH) of the S3C82NB's sixteen 256-byte register pages is called prime register area.  
Prime registers can be accessed using any of the seven addressing modes  
(see Chapter 3, "Addressing Modes.")  
The prime register area on page 0 is immediately addressable following a reset. In order to address prime  
registers on pages 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 or 15 you must set the register page pointer (PP) to  
the appropriate source and destination values.  
FFH  
FFH  
FFH  
Page15  
Page 14  
Page 13  
FFH  
FFH  
FFH  
FFH  
Page 3  
Page 2  
Page 1  
Page 0  
Set 1  
Bank 0  
Bank 1  
FFH  
FCH  
E0H  
D0H  
C0H  
Set 2  
C0H  
BFH  
Page 0  
B0H  
AFH  
Page15  
Prime  
Space  
CPU and system control  
General-purpose  
LCD Data  
Register Area  
Peripheral and I/O  
LCD data register  
00H  
00H  
Figure 2-5. Set 1, Set 2, Prime Area Register, and LCD Data Register Map  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
26  
WORKING REGISTERS  
Instructions can access specific 8-bit registers or 16-bit register pairs using either 4-bit or 8-bit address fields.  
When 4-bit working register addressing is used, the 256-byte register file can be seen by the programmer as one  
that consists of 32 8-byte register groups or "slices." Each slice comprises of eight 8-bit registers.  
Using the two 8-bit register pointers, RP1 and RP0, two working register slices can be selected at any one time to  
form a 16-byte working register block. Using the register pointers, you can move this 16-byte register block  
anywhere in the addressable register file, except the set 2 area.  
The terms slice and block are used in this manual to help you visualize the size and relative locations of selected  
working register spaces:  
— One working register slice is 8 bytes (eight 8-bit working registers, R0–R7 or R8–R15)  
— One working register block is 16 bytes (sixteen 8-bit working registers, R0–R15)  
All the registers in an 8-byte working register slice have the same binary value for their five most significant  
address bits. This makes it possible for each register pointer to point to one of the 24 slices in the register file. The  
base addresses for the two selected 8-byte register slices are contained in register pointers RP0 and RP1.  
After a reset, RP0 and RP1 always point to the 16-byte common area in set 1 (C0H–CFH).  
FFH  
Slice 32  
F8H  
F7H  
F0H  
Slice 31  
1 1 1 1 1 X X X  
Set 1  
Only  
RP1 (Registers R8-R15)  
Each register pointer points to  
one 8-byte slice of the register  
space, selecting a total 16-byte  
working register block.  
CFH  
C0H  
~
~
0 0 0 0 0 X X X  
10H  
FH  
8H  
7H  
0H  
RP0 (Registers R0-R7)  
Slice 2  
Slice 1  
Figure 2-6. 8-Byte Working Register Areas (Slices)  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
27  
USING THE REGISTER POINTS  
Register pointers RP0 and RP1, mapped to addresses D6H and D7H in set 1, are used to select two movable  
8-byte working register slices in the register file. After a reset, they point to the working register common area:  
RP0 points to addresses C0H–C7H, and RP1 points to addresses C8H–CFH.  
To change a register pointer value, you load a new value to RP0 and/or RP1 using an SRP or LD instruction.  
(see Figures 2-7 and 2-8).  
With working register addressing, you can only access those two 8-bit slices of the register file that are currently  
pointed to by RP0 and RP1. You cannot, however, use the register pointers to select a working register space in  
set 2, C0H–FFH, because these locations can be accessed only using the Indirect Register or Indexed  
addressing modes.  
The selected 16-byte working register block usually consists of two contiguous 8-byte slices. As a general  
programming guideline, it is recommended that RP0 point to the "lower" slice and RP1 point to the "upper" slice  
(see Figure 2-7). In some cases, it may be necessary to define working register areas in different (non-  
contiguous) areas of the register file. In Figure 2-8, RP0 points to the "upper" slice and RP1 to the "lower" slice.  
Because a register pointer can point to either of the two 8-byte slices in the working register block, you can flexibly  
define the working register area to support program requirements.  
PROGRAMMING TIP — Setting the Register Pointers  
SRP  
SRP1  
SRP0  
CLR  
LD  
#70H  
; RP0  
; RP0  
; RP0  
; RP0  
; RP0  
70H, RP1  
78H  
#48H  
no change, RP1  
48H,  
#0A0H  
RP0  
RP1,#0F8H  
A0H, RP1  
00H, RP1  
no change, RP1  
no change  
no change  
0F8H  
Register File  
Contains 32  
8-Byte Slices  
0 0 0 0 1 X X X  
RP1  
FH (R15)  
16-Byte  
8-Byte Slice  
8-Byte Slice  
Contiguous  
Working  
8H  
7H  
0 0 0 0 0 X X X  
RP0  
Register block  
0H (R0)  
Figure 2-7. Contiguous 16-Byte Working Register Block  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
28  
F7H (R7)  
8-Byte Slice  
F0H (R0)  
16-Byte  
Register File  
Contains 32  
8-Byte Slices  
Contiguous  
working  
1 1 1 1 0 X X X  
Register block  
RP0  
0 0 0 0 0 X X X  
RP1  
7H (R15)  
0H (R0)  
8-Byte Slice  
Figure 2-8. Non-Contiguous 16-Byte Working Register Block  
PROGRAMMING TIP — Using the RPs to Calculate the Sum of a Series of Registers  
Calculate the sum of registers 80H–85H using the register pointer. The register addresses from 80H through 85H  
contain the values 10H, 11H, 12H, 13H, 14H, and 15H, respectively:  
SRP0  
ADD  
ADC  
ADC  
ADC  
ADC  
#80H  
; RP0  
; R0  
; R0  
; R0  
; R0  
; R0  
80H  
R0,R1  
R0,R2  
R0,R3  
R0,R4  
R0,R5  
R0  
+
+
+
+
+
R1  
R0  
R0  
R0  
R0  
R2 + C  
R3 + C  
R4 + C  
R5 + C  
The sum of these six registers, 6FH, is located in the register R0 (80H). The instruction string used in this  
example takes 12 bytes of instruction code and its execution time is 36 cycles. If the register pointer is not used to  
calculate the sum of these registers, the following instruction sequence would have to be used:  
ADD  
ADC  
ADC  
ADC  
ADC  
80H,81H  
80H,82H  
80H,83H  
80H,84H  
80H,85H  
; 80H  
; 80H  
; 80H  
; 80H  
; 80H  
(80H)  
(80H)  
(80H)  
(80H)  
(80H)  
+
+
+
+
+
(81H)  
(82H)  
(83H)  
(84H)  
(85H)  
+
+
+
+
C
C
C
C
Now, the sum of the six registers is also located in register 80H. However, this instruction string takes 15 bytes of  
instruction code rather than 12 bytes, and its execution time is 50 cycles rather than 36 cycles.  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
29  
REGISTER ADDRESSING  
The S3C8-series register architecture provides an efficient method of working register addressing that takes full  
advantage of shorter instruction formats to reduce execution time.  
With Register (R) addressing mode, in which the operand value is the content of a specific register or register  
pair, you can access any location in the register file except for set 2. With working register addressing, you use a  
register pointer to specify an 8-byte working register space in the register file and an 8-bit register within that  
space.  
Registers are addressed either as a single 8-bit register or as a paired 16-bit register space. In a 16-bit register  
pair, the address of the first 8-bit register is always an even number and the address of the next register is always  
an odd number. The most significant byte of the 16-bit data is always stored in the even-numbered register, and  
the least significant byte is always stored in the next (+1) odd-numbered register.  
Working register addressing differs from Register addressing as it uses a register pointer to identify a specific  
8-byte working register space in the internal register file and a specific 8-bit register within that space.  
MSB  
Rn  
LSB  
n = Even address  
Rn+1  
Figure 2-9. 16-Bit Register Pair  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
30  
Special-Purpose Registers  
Bank 1 Bank 0  
General-Purpose Register  
FFH  
FFH  
Control  
Registers  
E0H  
D0H  
Set 2  
System  
Registers  
CFH  
C0H  
C0H  
BFH  
RP1  
RP0  
Register  
Pointers  
Peripheral  
Control  
Registers  
Each register pointer (RP) can independently point  
to one of the 24 8-byte "slices" of the register file  
(other than set 2). After a reset, RP0 points to  
locations C0H-C7H and RP1 to locations C8H-CFH  
(that is, to the common working register area).  
Prime  
Registers  
LCD Data  
Registers  
NOTE:  
In the S3F82NB microcontroller,  
pages 0-15 are implemented.  
Pages 0-15 contain all of the addressable  
registers in the internal register file.  
00H  
Page 0  
Page 0  
Register Addressing Only  
All  
Indirect Register,  
Indexed  
All  
Addressing  
Modes  
Addressing  
Modes  
Addressing  
Modes  
Can be Pointed to  
By register Pointer  
Can be Pointed by Register Pointer  
Figure 2-10. Register File Addressing  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
31  
COMMON WORKING REGISTER AREA (C0H–CFH)  
After a reset, register pointers RP0 and RP1 automatically select two 8-byte register slices in set 1, locations  
C0H–CFH, as the active 16-byte working register block:  
RP0  
RP1  
C0H–C7H  
C8H–CFH  
This 16-byte address range is called common area. That is, locations in this area can be used as working  
registers by operations that address any location on any page in the register file. Typically, these working  
registers serve as temporary buffers for data operations between different pages.  
FFH  
FFH  
FFH  
Page 15  
Page 14  
Page 13  
FFH  
FFH  
FFH  
FFH  
Page 3  
Page 2  
Page 1  
Set 1  
Page 0  
FFH  
FCH  
Set 2  
E0H  
D0H  
C0H  
C0H  
BFH  
~
~
Page 0  
B0H  
AFH  
Page 15  
Peripheral  
Control  
~
~
~
Register Area  
Following a hardware reset, register  
pointers RP0 and RP1 point to the  
common working register area,  
locations C0H-CFH.  
~
Prime  
Space  
~
LCD Data  
Register Area  
RP0 = 1 1 0 0  
RP1 = 1 1 0 0  
0 0 0 0  
1 0 0 0  
00H  
00H  
Figure 2-11. Common Working Register Area  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
32  
PROGRAMMING TIP — Addressing the Common Working Register Area  
As the following examples show, you should access working registers in the common area, locations C0H–CFH,  
using working register addressing mode only.  
Examples 1. LD  
0C2H,40H  
; Invalid addressing mode!  
Use working register addressing instead:  
SRP  
LD  
#0C0H  
R2,40H  
; R2 (C2H) the value in location 40H  
2. ADD  
0C3H,#45H  
; Invalid addressing mode!  
Use working register addressing instead:  
SRP  
ADD  
#0C0H  
R3,#45H  
; R3 (C3H) R3 + 45H  
4-BIT WORKING REGISTER ADDRESSING  
Each register pointer defines a movable 8-byte slice of working register space. The address information stored in  
a register pointer serves as an addressing "window" that makes it possible for instructions to access working  
registers very efficiently using short 4-bit addresses. When an instruction addresses a location in the selected  
working register area, the address bits are concatenated in the following way to form a complete 8-bit address:  
— The high-order bit of the 4-bit address selects one of the register pointers ("0" selects RP0, "1" selects RP1).  
— The five high-order bits in the register pointer select an 8-byte slice of the register space.  
— The three low-order bits of the 4-bit address select one of the eight registers in the slice.  
As shown in Figure 2-12, the result of this operation is that the five high-order bits from the register pointer are  
concatenated with the three low-order bits from the instruction address to form the complete address. As long as  
the address stored in the register pointer remains unchanged, the three bits from the address will always point to  
an address in the same 8-byte register slice.  
Figure 2-13 shows a typical example of 4-bit working register addressing. The high-order bit of the instruction  
"INC R6" is "0", which selects RP0. The five high-order bits stored in RP0 (01110B) are concatenated with the  
three low-order bits of the instruction's 4-bit address (110B) to produce the register address 76H (01110110B).  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
33  
RP0  
RP1  
Selects  
RP0 or RP1  
Address  
OPCODE  
4-bit address  
provides three  
low-order bits  
Register pointer  
provides five  
high-order bits  
Together they create an  
8-bit register address  
Figure 2-12. 4-Bit Working Register Addressing  
RP0  
0 1 1 1 0  
RP1  
0 1 1 1 1  
0 0 0  
0 0 0  
Selects RP0  
R6  
OPCODE  
1 1 1 0  
Register  
address  
(76H)  
Instruction  
'INC R6'  
0 1 1 1 0  
1 1 0  
0 1 1 0  
Figure 2-13. 4-Bit Working Register Addressing Example  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
34  
8-BIT WORKING REGISTER ADDRESSING  
You can also use 8-bit working register addressing to access registers in a selected working register area. To  
initiate 8-bit working register addressing, the upper four bits of the instruction address must contain the value  
"1100B." This 4-bit value (1100B) indicates that the remaining four bits have the same effect as 4-bit working  
register addressing.  
As shown in Figure 2-14, the lower nibble of the 8-bit address is concatenated in much the same way as for 4-bit  
addressing: Bit 3 selects either RP0 or RP1, which then supplies the five high-order bits of the final address; the  
three low-order bits of the complete address are provided by the original instruction.  
Figure 2-15 shows an example of 8-bit working register addressing. The four high-order bits of the instruction  
address (1100B) specify 8-bit working register addressing. Bit 4 ("1") selects RP1 and the five high-order bits in  
RP1 (10101B) become the five high-order bits of the register address. The three low-order bits of the register  
address (011) are provided by the three low-order bits of the 8-bit instruction address. The five address bits from  
RP1 and the three address bits from the instruction are concatenated to form the complete register address,  
0ABH (10101011B).  
RP0  
RP1  
Selects  
RP0 or RP1  
Address  
These address  
bits indicate 8-bit  
working register  
addressing  
8-bit logical  
address  
1
1
0
0
Register pointer  
provides five  
high-order bits  
Three low-order bits  
8-bit physical address  
Figure 2-14. 8-Bit Working Register Addressing  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
35  
RP0  
0 1 1 0 0  
RP1  
1 0 1 0 1  
0 0 0  
0 0 0  
Selects RP1  
R11  
8-bit address  
form instruction  
'LD R11, R2'  
Register  
address  
(0ABH)  
1 1 0 0  
1
0 1 1  
1 0 1 0 1  
0 1 1  
Specifies working  
register addressing  
Figure 2-15. 8-Bit Working Register Addressing Example  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
36  
SYSTEM AND USER STACK  
The S3C8-series microcontrollers use the system stack for data storage, subroutine calls and returns. The PUSH  
and POP instructions are used to control system stack operations. The S3F82NB architecture supports stack  
operations in the internal register file.  
Stack Operations  
Return addresses for procedure calls, interrupts, and data are stored on the stack. The contents of the PC are  
saved to stack by a CALL instruction and restored by the RET instruction. When an interrupt occurs, the contents  
of the PC and the FLAGS register are pushed to the stack. The IRET instruction then pops these values back to  
their original locations. The stack address value is always decreased by one before a push operation and  
increased by one after a pop operation. The stack pointer (SP) always points to the stack frame stored on the top  
of the stack, as shown in Figure 2-16.  
High Address  
PCL  
PCL  
PCH  
Top of  
PCH  
stack  
Top of  
stack  
Flags  
Stack contents  
after a call  
instruction  
Stack contents  
after an  
interrupt  
Low Address  
Figure 2-16. Stack Operations  
User-Defined Stacks  
You can freely define stacks in the internal register file as data storage locations. The instructions PUSHUI,  
PUSHUD, POPUI, and POPUD support user-defined stack operations.  
Stack Pointers (SPL, SPH)  
Register locations D8H and D9H contain the 16-bit stack pointer (SP) that is used for system stack operations.  
The most significant byte of the SP address, SP15–SP8, is stored in the SPH register (D8H), and the least  
significant byte, SP7–SP0, is stored in the SPL register (D9H). After a reset, the SP value is undetermined.  
Because only internal memory space is implemented in the S3F82NB, the SPL must be initialized to an 8-bit  
value in the range 00H–FFH. The SPH register is not needed and can be used as a general-purpose register, if  
necessary.  
When the SPL register contains the only stack pointer value (that is, when it points to a system stack in the  
register file), you can use the SPH register as a general-purpose data register. However, if an overflow or  
underflow condition occurs as a result of increasing or decreasing the stack address value in the SPL register  
during normal stack operations, the value in the SPL register will overflow (or underflow) to the SPH register,  
overwriting any other data that is currently stored there. To avoid overwriting data in the SPH register, you can  
initialize the SPL value to "FFH" instead of "00H".  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
37  
PROGRAMMING TIP — Standard Stack Operations Using PUSH and POP  
The following example shows you how to perform stack operations in the internal register file using PUSH and  
POP instructions:  
LD  
SPL,#0FFH  
; SPL  
FFH  
; (Normally, the SPL is set to 0FFH by the initialization  
; routine)  
PUSH  
PUSH  
PUSH  
PUSH  
PP  
; Stack address 0FEH  
; Stack address 0FDH  
; Stack address 0FCH  
; Stack address 0FBH  
PP  
RP0  
RP1  
R3  
RP0  
RP1  
R3  
POP  
POP  
POP  
POP  
R3  
; R3  
Stack address 0FBH  
RP1  
RP0  
PP  
; RP1 Stack address 0FCH  
; RP0 Stack address 0FDH  
; PP  
Stack address 0FEH  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
38  
3
ADDRESSING MODES  
OVERVIEW  
Instructions that are stored in program memory are fetched for execution using the program counter. Instructions  
indicate the operation to be performed and the data to be operated on. Addressing mode is the method used to  
determine the location of the data operand. The operands specified in SAM88RC instructions may be condition  
codes, immediate data, or a location in the register file, program memory, or data memory.  
The S3C8-series instruction set supports seven explicit addressing modes. Not all of these addressing modes are  
available for each instruction. The seven addressing modes and their symbols are:  
— Register (R)  
— Indirect Register (IR)  
— Indexed (X)  
— Direct Address (DA)  
— Indirect Address (IA)  
— Relative Address (RA)  
— Immediate (IM)  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
39  
REGISTER ADDRESSING MODE (R)  
In Register addressing mode (R), the operand value is the content of a specified register or register pair  
(see Figure 3-1).  
Working register addressing differs from Register addressing in that it uses a register pointer to specify an 8-byte  
working register space in the register file and an 8-bit register within that space (see Figure 3-2).  
Program Memory  
Register File  
OPERAND  
8-bit Register  
File Address  
dst  
OPCODE  
Point to One  
Register in Register  
File  
One-Operand  
Instruction  
(Example)  
Value used in  
Instruction Execution  
Sample Instruction:  
DEC  
CNTR  
;
Where CNTR is the label of an 8-bit register address  
Figure 3-1. Register Addressing  
Register File  
MSB Point to  
RP0 ot RP1  
RP0 or RP1  
OPERAND  
Selected  
RP points  
to start  
Program Memory  
of working  
register  
block  
4-bit  
Working Register  
3 LSBs  
dst  
OPCODE  
src  
Point to the  
Working Register  
(1 of 8)  
Two-Operand  
Instruction  
(Example)  
Sample Instruction:  
ADD  
R1, R2  
;
Where R1 and R2 are registers in the currently  
selected working register area.  
Figure 3-2. Working Register Addressing  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
40  
INDIRECT REGISTER ADDRESSING MODE (IR)  
In Indirect Register (IR) addressing mode, the content of the specified register or register pair is the address of the  
operand. Depending on the instruction used, the actual address may point to a register in the register file, to  
program memory (ROM), or to an external memory space (see Figures 3-3 through 3-6).  
You can use any 8-bit register to indirectly address another register. Any 16-bit register pair can be used to  
indirectly address another memory location. Please note, however, that you cannot access locations C0H–FFH in  
set 1 using the Indirect Register addressing mode.  
Program Memory  
Register File  
ADDRESS  
8-bit Register  
File Address  
dst  
OPCODE  
Point to One  
Register in Register  
File  
One-Operand  
Instruction  
Address of Operand  
used by Instruction  
(Example)  
OPERAND  
Value used in  
Instruction Execution  
Sample Instruction:  
RL  
@SHIFT  
;
Where SHIFT is the label of an 8-bit register address  
Figure 3-3. Indirect Register Addressing to Register File  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
41  
INDIRECT REGISTER ADDRESSING MODE (Continued)  
Register File  
Program Memory  
Example  
REGISTER  
PAIR  
dst  
Instruction  
References  
Program  
Points to  
Register Pair  
OPCODE  
16-Bit  
Memory  
Address  
Points to  
Program  
Memory  
Program Memory  
OPERAND  
Sample Instructions:  
Value used in  
Instruction  
CALL  
JP  
@RR2  
@RR2  
Figure 3-4. Indirect Register Addressing to Program Memory  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
42  
INDIRECT REGISTER ADDRESSING MODE (Continued)  
Register File  
MSB Points to  
RP0 or RP1  
RP0 or RP1  
Selected  
RP points  
to start fo  
working register  
block  
Program Memory  
~
~
~
4-bit  
Working  
Register  
Address  
3 LSBs  
dst  
src  
Point to the  
Working Register  
(1 of 8)  
ADDRESS  
OPERAND  
OPCODE  
~
Sample Instruction:  
Value used in  
Instruction  
OR  
R3, @R6  
Figure 3-5. Indirect Working Register Addressing to Register File  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
43  
INDIRECT REGISTER ADDRESSING MODE (Concluded)  
Register File  
MSB Points to  
RP0 or RP1  
RP0 or RP1  
Selected  
RP points  
to start of  
working  
register  
block  
Program Memory  
4-bit Working  
Register Address  
dst  
src  
Register  
Pair  
Next 2-bit Point  
to Working  
Register Pair  
(1 of 4)  
OPCODE  
Example Instruction  
References either  
Program Memory or  
Data Memory  
16-Bit  
address  
points to  
program  
memory  
or data  
Program Memory  
or  
Data Memory  
LSB Selects  
memory  
Value used in  
Instruction  
OPERAND  
Sample Instructions:  
LCD  
LDE  
LDE  
R5,@RR6  
R3,@RR14  
@RR4, R8  
; Program memory access  
; External data memory access  
; External data memory access  
Figure 3-6. Indirect Working Register Addressing to Program or Data Memory  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
44  
INDEXED ADDRESSING MODE (X)  
Indexed (X) addressing mode adds an offset value to a base address during instruction execution in order to  
calculate the effective operand address (see Figure 3-7). You can use Indexed addressing mode to access  
locations in the internal register file or in external memory. Please note, however, that you cannot access  
locations C0H–FFH in set 1 using Indexed addressing mode.  
In short offset Indexed addressing mode, the 8-bit displacement is treated as a signed integer in the range –128  
to +127. This applies to external memory accesses only (see Figure 3-8.)  
For register file addressing, an 8-bit base address provided by the instruction is added to an 8-bit offset contained  
in a working register. For external memory accesses, the base address is stored in the working register pair  
designated in the instruction. The 8-bit or 16-bit offset given in the instruction is then added to that base address  
(see Figure 3-9).  
The only instruction that supports Indexed addressing mode for the internal register file is the Load instruction  
(LD). The LDC and LDE instructions support Indexed addressing mode for internal program memory and for  
external data memory, when implemented.  
Register File  
RP0 or RP1  
~
~
~
~
Selected RP  
points to  
start of  
working  
register  
block  
Value used in  
Instruction  
OPERAND  
INDEX  
+
Program Memory  
Base Address  
3 LSBs  
Two-Operand  
Instruction  
Example  
dst/src  
x
Point to One of the  
Woking Register  
(1 of 8)  
OPCODE  
Sample Instruction:  
LD R0, #BASE[R1]  
;
Where BASE is an 8-bit immediate value  
Figure 3-7. Indexed Addressing to Register File  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
45  
INDEXED ADDRESSING MODE (Continued)  
Register File  
RP0 or RP1  
MSB Points to  
RP0 or RP1  
Selected  
RP points  
to start of  
working  
register  
block  
~
~
Program Memory  
OFFSET  
NEXT 2 Bits  
4-bit Working  
Register Address  
dst/src  
x
Register  
Pair  
Point to Working  
Register Pair  
(1 of 4)  
OPCODE  
16-Bit  
address  
added to  
offset  
Program Memory  
or  
Data Memory  
LSB Selects  
+
16-Bits  
8-Bits  
Value used in  
Instruction  
OPERAND  
16-Bits  
Sample Instructions:  
LDC  
LDE  
R4, #04H[RR2]  
R4,#04H[RR2]  
; The values in the program address (RR2 + 04H)  
are loaded into register R4.  
; Identical operation to LDC example, except that  
external program memory is accessed.  
Figure 3-8. Indexed Addressing to Program or Data Memory with Short Offset  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
46  
INDEXED ADDRESSING MODE (Concluded)  
Register File  
MSB Points to  
RP0 or RP1  
RP0 or RP1  
Selected  
RP points  
to start of  
working  
register  
block  
Program Memory  
~
~
OFFSET  
OFFSET  
NEXT 2 Bits  
4-bit Working  
Register Address  
dst/src  
src  
Register  
Pair  
Point to Working  
Register Pair  
OPCODE  
16-Bit  
address  
added to  
offset  
Program Memory  
or  
Data Memory  
LSB Selects  
+
16-Bits  
8-Bits  
Value used in  
Instruction  
OPERAND  
16-Bits  
Sample Instructions:  
LDC  
LDE  
R4, #1000H[RR2]  
R4,#1000H[RR2]  
; The values in the program address (RR2 + 1000H)  
are loaded into register R4.  
; Identical operation to LDC example, except that  
external program memory is accessed.  
Figure 3-9. Indexed Addressing to Program or Data Memory  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
47  
DIRECT ADDRESS MODE (DA)  
In Direct Address (DA) mode, the instruction provides the operand's 16-bit memory address. Jump (JP) and Call  
(CALL) instructions use this addressing mode to specify the 16-bit destination address that is loaded into the PC  
whenever a JP or CALL instruction is executed.  
The LDC and LDE instructions can use Direct Address mode to specify the source or destination address for  
Load operations to program memory (LDC) or to external data memory (LDE), if implemented.  
Program or  
Data Memory  
Memory  
Address  
Used  
Program Memory  
Upper Address Byte  
Lower Address Byte  
dst/src "0" or "1"  
OPCODE  
LSB Selects Program  
Memory or Data Memory:  
"0" = Program Memory  
"1" = Data Memory  
Sample Instructions:  
LDC  
LDE  
R5,1234H  
R5,1234H  
;
;
The values in the program address (1234H)  
are loaded into register R5.  
Identical operation to LDC example, except that  
external program memory is accessed.  
Figure 3-10. Direct Addressing for Load Instructions  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
48  
DIRECT ADDRESS MODE (Continued)  
Program Memory  
Next OPCODE  
Memory  
Address  
Used  
Upper Address Byte  
Lower Address Byte  
OPCODE  
Sample Instructions:  
JP  
C,JOB1  
;
;
Where JOB1 is a 16-bit immediate address  
Where DISPLAY is a 16-bit immediate address  
CALL DISPLAY  
Figure 3-11. Direct Addressing for Call and Jump Instructions  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
49  
INDIRECT ADDRESS MODE (IA)  
In Indirect Address (IA) mode, the instruction specifies an address located in the lowest 256 bytes of the program  
memory. The selected pair of memory locations contains the actual address of the next instruction to be executed.  
Only the CALL instruction can use the Indirect Address mode.  
Because the Indirect Address mode assumes that the operand is located in the lowest 256 bytes of program  
memory, only an 8-bit address is supplied in the instruction; the upper bytes of the destination address are  
assumed to be all zeros.  
Program Memory  
Next Instruction  
LSB Must be Zero  
dst  
OPCODE  
Current  
Instruction  
Lower Address Byte  
Upper Address Byte  
Program Memory  
Locations 0-255  
Sample Instruction:  
CALL #40H  
; The 16-bit value in program memory addresses 40H  
and 41H is the subroutine start address.  
Figure 3-12. Indirect Addressing  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
50  
RELATIVE ADDRESS MODE (RA)  
In Relative Address (RA) mode, a twos-complement signed displacement between – 128 and + 127 is specified in  
the instruction. The displacement value is then added to the current PC value. The result is the address of the  
next instruction to be executed. Before this addition occurs, the PC contains the address of the instruction  
immediately following the current instruction.  
Several program control instructions use the Relative Address mode to perform conditional jumps. The  
instructions that support RA addressing are BTJRF, BTJRT, DJNZ, CPIJE, CPIJNE, and JR.  
Program Memory  
Next OPCODE  
Program Memory  
Address Used  
Current  
PC Value  
+
Displacement  
OPCODE  
Current Instruction  
Signed  
Displacement Value  
Sample Instructions:  
JR  
ULT,$+OFFSET  
;
Where OFFSET is a value in the range +127 to -128  
Figure 3-13. Relative Addressing  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
51  
IMMEDIATE MODE (IM)  
In Immediate (IM) addressing mode, the operand value used in the instruction is the value supplied in the operand  
field itself. The operand may be one byte or one word in length, depending on the instruction used. Immediate  
addressing mode is useful for loading constant values into registers.  
Program Memory  
OPERAND  
OPCODE  
(The Operand value is in the instruction)  
Sample Instruction:  
LD  
R0,#0AAH  
Figure 3-14. Immediate Addressing  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
52  
4
CONTROL REGISTERS  
OVERVIEW  
In this chapter, detailed descriptions of the S3F82NB control registers are presented in an easy-to-read format.  
You can use this chapter as a quick-reference source when writing application programs. Figure 4-1 illustrates  
the important features of the standard register description format.  
Control register descriptions are arranged in alphabetical order according to register mnemonic. More detailed  
information about control registers is presented in the context of the specific peripheral hardware descriptions in  
Part II of this manual.  
Data and counter registers are not described in detail in this reference chapter. More information about all of the  
registers used by a specific peripheral is presented in the corresponding peripheral descriptions in Part II of this  
manual.  
The locations and read/write characteristics of all mapped registers in the S3F82NB register file are listed in  
Table 4-1. The hardware reset value for each mapped register is described in Chapter 8, "RESET and Power-  
Down."  
Table 4-1. Set 1 Registers  
Register Name  
Mnemonic  
Decimal  
Hex  
R/W  
Location D0H–D2H is not mapped.  
Basic Timer Control Register  
System Clock Control Register  
System Flags Register  
Register Pointer 0  
BTCON  
CLKCON  
FLAGS  
RP0  
211  
212  
213  
214  
215  
216  
217  
218  
219  
220  
221  
222  
223  
D3H  
D4H  
D5H  
D6H  
D7H  
D8H  
D9H  
DAH  
DBH  
DCH  
DDH  
DEH  
DFH  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R
Register Pointer 1  
RP1  
Stack Pointer (High Byte)  
Stack Pointer (Low Byte)  
Instruction Pointer (High Byte)  
Instruction Pointer (Low Byte)  
Interrupt Request Register  
Interrupt Mask Register  
System Mode Register  
Register Page Pointer  
SPH  
SPL  
IPH  
IPL  
IRQ  
IMR  
R/W  
R/W  
R/W  
SYM  
PP  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
53  
Table 4-2. Set 1, Bank 0 Registers  
Register Name  
Port Group 0 Control Register  
Port Group 1 Control Register  
Port 6 Control Register  
Mnemonic  
PG0CON  
PG1CON  
P6CON  
Decimal  
Hex  
D0H  
D1H  
D2H  
E0H  
E1H  
E2H  
E3H  
E4H  
E5H  
E6H  
E7H  
E8H  
E9H  
EAH  
EBH  
ECH  
EDH  
EEH  
EFH  
F0H  
F1H  
F2H  
F3H  
F4H  
F5H  
F6H  
F7H  
F8H  
F9H  
FAH  
FBH  
R/W  
R/W  
R/W  
R/W  
R
208  
209  
210  
224  
225  
226  
227  
228  
229  
230  
231  
232  
233  
234  
235  
236  
237  
238  
239  
240  
241  
242  
243  
244  
245  
246  
247  
248  
249  
250  
251  
A/D Converter Data Register (High Byte)  
A/D Converter Data Register (Low Byte)  
A/D Converter Control Register  
Timer 0 Counter Register  
ADDATAH  
ADDATAL  
ADCON  
T0CNT  
R
R/W  
R
Timer 0 Data Register  
T0DATA  
T0CON  
R/W  
R/W  
R
Timer 0 Control Register  
Timer B Counter Register  
TBCNT  
Timer A Counter Register  
TACNT  
R
Timer B Data Register  
TBDATA  
TADATA  
TBCON  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R
Timer A Data Register  
Timer B Control Register  
Timer 1/A Control Register  
Timer Interrupt Pending Register  
Timer Interrupt Control Register  
Watch Timer Control Register  
LCD Control Register  
TACON  
TINTPND  
TINTCON  
WTCON  
LCON  
LCD Mode Register  
LMOD  
Comparator Control Register  
Comparator Result Register  
SIO Control Register  
CMPCON  
CMPREG  
SIOCON  
SIODATA  
SIOPS  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
SIO Data Register  
SIO Pre-Scaler Register  
FMSECH  
FMSECL  
FMUSR  
FMCON  
OSCCON  
STPCON  
Flash Memory Sector Address Register (High Byte)  
Flash Memory Sector Address Register (Low Byte)  
Flash Memory User Programming Enable Register  
Flash Memory Control Register  
Oscillator Control Register  
STOP Control Register  
Location FCH is not mapped.  
Basic Timer Counter  
BTCNT  
Location FEH is not mapped.  
253  
FDH  
FFH  
R
Interrupt Priority Register  
IPR  
255  
R/W  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
54  
Table 4-3. Set 1, Bank 1 Registers  
Register Name  
Port 4 Control Register (High Byte)  
Port 4 Control Register (Low Byte)  
Port 4 Pull-up Resistor Enable Register  
Port 0 Control Register (High Byte)  
Port 0 Control Register (Low Byte)  
Port 0 Pull-up Resistor Enable Register  
Alternative Function Selection Register  
Port 1 Control Register (High Byte)  
Port 1 Control Register (Low Byte)  
Port 1 Pull-up Resistor Enable Register  
Port 1 Interrupt Pending Register  
Mnemonic  
P4CONH  
P4CONL  
P4PUR  
Decimal  
Hex  
D0H  
D1H  
D2H  
E0H  
E1H  
E2H  
E3H  
E4H  
E5H  
E6H  
E7H  
E8H  
E9H  
EAH  
EBH  
ECH  
EDH  
EEH  
EFH  
F0H  
F1H  
F2H  
F3H  
F4H  
F5H  
F6H  
F7H  
F8H  
F9H  
FAH  
FBH  
FCH  
FDH  
FEH  
FFH  
R/W  
208  
209  
210  
224  
225  
226  
227  
228  
229  
230  
231  
232  
233  
234  
235  
236  
237  
238  
239  
240  
241  
242  
243  
244  
245  
246  
247  
248  
249  
250  
251  
252  
253  
254  
255  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
P0CONH  
P0CONL  
P0PUR  
AFSEL  
P1CONH  
P1CONL  
P1PUR  
P1PND  
Port 1 Interrupt Control Register (High Byte)  
Port 1 Interrupt Control Register (Low Byte)  
Port 2 Control Register (High Byte)  
Port 2 Control Register (Low Byte)  
Port 2 Pull-up Resistor Enable Register  
Port 3 Pull-up Resistor Enable Register  
Port 3 Control Register (High Byte)  
Port 3 Control Register (Low Byte)  
Port 0 Data Register  
P1INTH  
P1INTL  
P2CONH  
P2CONL  
P2PUR  
P3PUR  
P3CONH  
P3CONL  
P0  
Port 1 Data Register  
P1  
Port 2 Data Register  
P2  
Port 3 Data Register  
P3  
Port 4 Data Register  
P4  
Port 5 Data Register  
P5  
Port 6 Data Register  
P6  
Port 7 Data Register  
P7  
Port 8 Data Register  
P8  
P9  
Port 9 Data Register  
Port 10 Data Register  
P10  
Port 5 Interrupt Control Register  
Port 5 Interrupt Pending Register  
Port 5 Pull-up Resistor Enable Register  
Port 5 Control Register (High Byte)  
Port 5 Control Register (Low Byte)  
PS031601-0813  
P5INT  
P5PND  
P5PUR  
P5CONH  
P5CONL  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
55  
Table 4-4. Page 15 Registers  
Register Name  
Reset Source Indicating Register  
Mnemonic  
Decimal  
176  
Hex  
R/W  
RESETID  
B0H  
R/W  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
56  
Bit number(s) that is/are appended to  
the register name for bit addressing  
Name of individual  
bit or related bits  
Register location  
in the internal  
register file  
Register address  
(hexadecimal)  
Register ID  
Full Register name  
FLAGS - System Flags Register  
D5H  
Set 1  
Bit Identifier  
RESET Value  
Read/Write  
Bit Addressing  
Mode  
.7  
x
.6  
x
.5  
x
.4  
x
.3  
x
.2  
.1  
.0  
0
x
x
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Register addressing mode only  
.7  
Carry Flag (C)  
0
0
Operation does not generate a carry or borrow condition  
Operation generates carry-out or borrow into high-order bit 7  
.6  
.5  
Zero Flag (Z)  
Operation result is a non-zero value  
Operation result is zero  
0
0
Sign Flag (S)  
Operation generates positive number (MSB = "0")  
0
0
Operation generates negative number (MSB = "1")  
R = Read-only  
W = Write-only  
R/W = Read/write  
'-' = Not used  
Description of the  
effect of specific  
bit settings  
Bit number:  
MSB = Bit 7  
LSB = Bit 0  
Type of addressing  
RESET value notation:  
'-' = Not used  
that must be used to  
address the bit  
'x' = Undetermined value  
'0' = Logic zero  
(1-bit, 4-bit, or 8-bit)  
'1' = Logic one  
Figure 4-1. Register Description Format  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
57  
ADCON — A/D Converter Control Register  
E2H  
Set 1, Bank 0  
Bit Identifier  
.7  
ꢁꢂ  
ꢁꢂ  
.6  
0
.5  
0
.4  
0
.3  
0
.2  
0
.1  
0
.0  
0
RESET Value  
Read/Write  
R/W  
R/W  
R/W  
R
R/W  
R/W  
R/W  
Addressing Mode  
Register addressing mode only  
Not used for the S3F82NB  
A/D Input Pin Selection Bits  
.7  
.6–.4  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
AD0  
AD1  
AD2  
AD3  
AD4  
AD5  
AD6  
AD7  
.3  
End-of-Conversion Bit (Read-only)  
0
1
Conversion not complete  
Conversion complete  
.2–.1  
Clock Source Selection Bits  
0
0
1
1
0
1
0
1
fxx/16  
fxx/8  
fxx/4  
fxx/1  
.0  
Start or Enable Bit  
0
1
Disable operation  
Start operation  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
58  
AFSEL — Alternative Function Selection Register  
E3H  
Set 1, Bank 1  
Bit Identifier  
.7  
ꢁꢂ  
ꢁꢂ  
.6  
ꢁꢂ  
ꢁꢂ  
.5  
ꢁꢂ  
ꢁꢂ  
.4  
ꢁꢂ  
ꢁꢂ  
.3  
ꢁꢂ  
ꢁꢂ  
.2  
ꢁꢂ  
ꢁꢂ  
.1  
.0  
0
RESET Value  
Read/Write  
0
R/W  
R/W  
Addressing Mode  
Register addressing mode only  
.7–.2  
.1  
Not used for the S3F82NB  
P0.3 Alternative Mode Selection Bit  
0
1
Alternative function (AD3)  
Alternative function (T0OUT/T0PWM)  
.0  
P0.2 Alternative Mode Selection Bit  
0
1
Alternative function (AD2)  
Alternative function (T1OUT/T1PWM)  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
59  
BTCON — Basic Timer Control Register  
D3H  
Set 1  
Bit Identifier  
.7  
0
.6  
0
.5  
0
.4  
0
.3  
0
.2  
0
.1  
0
.0  
0
RESET Value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Addressing Mode  
Register addressing mode only  
.7–.4  
Watchdog Timer Function Disable Code (for System Reset)  
1
0
1
0
Disable watchdog timer function  
Enable watchdog timer function  
Others  
Basic Timer Input Clock Selection Bits (3)  
.3–.2  
0
0
1
1
0
1
0
1
fxx/4096  
fxx/1024  
fxx/128  
fxx/16  
Basic Timer Counter Clear Bit (1)  
.1  
0
1
No effect  
Clear the basic timer counter value  
Clock Frequency Divider Clear Bit for Basic Timer and Timer/Counters (2)  
.0  
0
1
No effect  
Clear both clock frequency dividers  
NOTES:  
1. When you write a “1” to BTCON.1, the basic timer counter value is cleared to "00H". Immediately following the write  
operation, the BTCON.1 value is automatically cleared to “0”.  
2. When you write a "1" to BTCON.0, the corresponding frequency divider is cleared to "00H". Immediately following the  
write operation, the BTCON.0 value is automatically cleared to "0".  
3. The fxx is selected clock for system (main OSC. or sub OSC.).  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
60  
CLKCON — System Clock Control Register  
D4H  
Set 1  
Bit Identifier  
.7  
0
.6  
.5  
.4  
0
.3  
0
.2  
.1  
.0  
RESET Value  
Read/Write  
R/W  
R/W  
R/W  
Addressing Mode  
Register addressing mode only  
.7  
Oscillator IRQ Wake-up Function Bit  
0
1
Enable IRQ for main wake-up in power down mode  
Disable IRQ for main wake-up in power down mode  
.6–.5  
.4–.3  
Not used for the S3F82NB  
CPU Clock (System Clock) Selection Bits (note)  
0
0
1
1
0
1
0
1
fxx/16  
fxx/8  
fxx/2  
fxx/1  
.2–.0  
Not used for the S3F82NB  
NOTE: After a reset, the slowest clock (divided by 16) is selected as the system clock. To select faster clock speeds, load  
the appropriate values to CLKCON.3 and CLKCON.4.  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
61  
CMPCON — Comparator Control Register  
F1H  
Set 1, Bank 0  
Bit Identifier  
.7  
0
.6  
0
.5  
0
.4  
.3  
0
.2  
0
.1  
0
.0  
0
RESET Value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Addressing Mode  
Register addressing mode only  
.7  
.6  
.5  
Comparator Enable Bit  
0
1
Disable Comparator  
Enable Comparator  
Conversion Time Selection Bit  
8 X 25/fx  
8 X 24 /fx  
0
1
External/Internal Reference Selection Bit  
0
1
Internal reference, CIN0–CIN2; analog input  
CIN2; External reference, CIN0–CIN1; analog input  
.4  
Not used, But you must keep “0”  
.3–.0  
Reference Voltage Selection Bits  
Selected VREF= VDD X (N+0.5)/16, N = 0 to 15  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
62  
FLAGS — System Flags Register  
D5H  
Set 1  
Bit Identifier  
.7  
x
.6  
x
.5  
x
.4  
x
.3  
x
.2  
x
.1  
0
.0  
0
RESET Value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R
R/W  
Addressing Mode  
Register addressing mode only  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
Carry Flag (C)  
0
1
Operation does not generate a carry or borrow condition  
Operation generates a carry-out or borrow into high-order bit 7  
Zero Flag (Z)  
0
1
Operation result is a non-zero value  
Operation result is zero  
Sign Flag (S)  
0
1
Operation generates a positive number (MSB = "0")  
Operation generates a negative number (MSB = "1")  
Overflow Flag (V)  
0
1
Operation result is +127 or –128  
Operation result is > +127 or < –128  
Decimal Adjust Flag (D)  
0
1
Add operation completed  
Subtraction operation completed  
Half-Carry Flag (H)  
0
1
No carry-out of bit 3 or no borrow into bit 3 by addition or subtraction  
Addition generated carry-out of bit 3 or subtraction generated borrow into bit 3  
Fast Interrupt Status Flag (FIS)  
0
1
Interrupt return (IRET) in progress (when read)  
Fast interrupt service routine in progress (when read)  
Bank Address Selection Flag (BA)  
0
1
Bank 0 is selected  
Bank 1 is selected  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
63  
FMCON — Flash Memory Control Register  
F9H  
Set 1, Bank 0  
Bit Identifier  
.7  
0
.6  
0
.5  
0
.4  
0
.3  
0
.2  
.1  
.0  
0
RESET Value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R
R/W  
Addressing Mode  
Register addressing mode only  
.7–.4  
Flash Memory Mode Selection Bits  
0
1
0
1
0
1
0
1
1
1
0
0
Programming mode  
Sector erase mode  
Hard lock mode  
Not available  
Others  
.3  
Sector Erase Status Bit (Read-only)  
0
1
Success sector erase  
Fail sector erase  
.2–.1  
.0  
Not used for the S3F82NB  
Flash Operation Start Bit  
0
1
Operation stop bit  
Operation start bit  
NOTE: The FMCON.0 will be cleared automatically just after the corresponding operation completed.  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
64  
FMSECH — Flash Memory Sector Address Register (High Byte) F6H Set 1, Bank 0  
Bit Identifier  
.7  
0
.6  
0
.5  
0
.4  
0
.3  
0
.2  
0
.1  
0
.0  
0
RESET Value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Addressing Mode  
Register addressing mode only  
.7–.0  
Flash Memory Sector Address Bits (High Byte)  
The 15th-8th to select a sector of Flash ROM  
NOTE: The high-byte flash memory sector address pointer value is higher eight bits of the 16-bit pointer address.  
FMSECL — Flash Memory Sector Address Register (Low Byte) F7H  
Set 1, Bank 0  
Bit Identifier  
.7  
0
.6  
0
.5  
0
.4  
0
.3  
0
.2  
0
.1  
.0  
0
RESET Value  
Read/Write  
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Addressing Mode  
Register addressing mode only  
.7  
Flash Memory Sector Address Bit (Low Byte)  
The 7th bit to select a sector of Flash ROM  
.6–.0  
Don’t care  
NOTE: The low-byte flash memory sector address pointer value is lower eight bits of the 16-bit pointer address.  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
65  
FMUSR — Flash Memory User Programming Enable Register F8H  
Set 1, Bank 0  
Bit Identifier  
.7  
0
.6  
0
.5  
0
.4  
0
.3  
0
.2  
0
.1  
.0  
RESET Value  
Read/Write  
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Addressing Mode  
Register addressing mode only  
.7–.0  
Flash Memory User Programming Enable Bits  
1
0
1
0
0
1
0
1
Enable user programming mode  
Disable user programming mode  
Others  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
66  
IMR — Interrupt Mask Register  
DDH  
Set 1  
Bit Identifier  
.7  
x
.6  
x
.5  
x
.4  
x
.3  
x
.2  
x
.1  
x
.0  
x
RESET Value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Addressing Mode  
Register addressing mode only  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
Interrupt Level 7 (IRQ7) Enable Bit; External Interrupts P5.4–P5.7  
0
1
Disable (mask)  
Enable (unmask)  
Interrupt Level 6 (IRQ6) Enable Bit; External Interrupts P1.4–P1.7  
0
1
Disable (mask)  
Enable (unmask)  
Interrupt Level 5 (IRQ5) Enable Bit; External Interrupts P1.0–P1.3  
0
1
Disable (mask)  
Enable (unmask)  
Interrupt Level 4 (IRQ4) Enable Bit; Watch Timer  
0
1
Disable (mask)  
Enable (unmask)  
Interrupt Level 3 (IRQ3) Enable Bit; SIO  
0
1
Disable (mask)  
Enable (unmask)  
Interrupt Level 2 (IRQ2) Enable Bit; Timer B Match  
0
1
Disable (mask)  
Enable (unmask)  
Interrupt Level 1 (IRQ1) Enable Bit; Timer 1/A Match/Capture or Overflow  
0
1
Disable (mask)  
Enable (unmask)  
Interrupt Level 0 (IRQ0) Enable Bit; Timer 0 Match/Capture or Overflow  
0
1
Disable (mask)  
Enable (unmask)  
NOTE: When an interrupt level is masked, any interrupt requests that may be issued are not recognized by the CPU.  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
67  
IPH — Instruction Pointer (High Byte)  
DAH  
Set 1  
Bit Identifier  
.7  
x
.6  
x
.5  
x
.4  
x
.3  
x
.2  
x
.1  
x
.0  
x
RESET Value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Addressing Mode  
Register addressing mode only  
.7–.0  
Instruction Pointer Address (High Byte)  
The high-byte instruction pointer value is the upper eight bits of the 16-bit instruction  
pointer address (IP15–IP8). The lower byte of the IP address is located in the IPL  
register (DBH).  
IPL — Instruction Pointer (Low Byte)  
DBH  
Set 1  
Bit Identifier  
.7  
x
.6  
x
.5  
x
.4  
x
.3  
x
.2  
x
.1  
x
.0  
x
RESET Value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Addressing Mode  
Register addressing mode only  
.7–.0  
Instruction Pointer Address (Low Byte)  
The low-byte instruction pointer value is the lower eight bits of the 16-bit instruction  
pointer address (IP7–IP0). The upper byte of the IP address is located in the IPH  
register (DAH).  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
68  
IPR — Interrupt Priority Register  
FFH  
Set 1, Bank 0  
Bit Identifier  
RESET Value  
Read/Write  
.7  
x
R/W  
.6  
x
R/W  
.5  
x
R/W  
.4  
x
R/W  
.3  
x
R/W  
.2  
x
R/W  
.1  
x
R/W  
.0  
x
R/W  
Addressing Mode  
Register addressing mode only  
.7, .4, and .1  
Priority Control Bits for Interrupt Groups A, B, and C  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Group priority undefined  
B
A
B
C
C
A
>
>
>
>
>
>
C
B
A
A
B
C
>
>
>
>
>
>
A
C
C
B
A
B
Group priority undefined  
.6  
.5  
.3  
.2  
.0  
Interrupt Subgroup C Priority Control Bit  
0
1
IRQ6  
IRQ7  
>
>
IRQ7  
IRQ6  
Interrupt Group C Priority Control Bit  
0
1
IRQ5  
(IRQ6, IRQ7)  
>
(IRQ6, IRQ7)  
IRQ5  
>
Interrupt Subgroup B Priority Control Bit  
0
1
IRQ3 > IRQ4  
IRQ4 > IRQ3  
Interrupt Group B Priority Control Bit  
0
1
IRQ2  
(IRQ3, IRQ4)  
>
(IRQ3, IRQ4)  
IRQ2  
>
Interrupt Group A Priority Control Bit  
0
1
IRQ0  
IRQ1  
>
>
IRQ1  
IRQ0  
NOTE: Interrupt group A -IRQ0, IRQ1  
Interrupt group B -IRQ2, IRQ3, IRQ4  
Interrupt group C -IRQ5, IRQ6, IRQ7  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
69  
IRQ — Interrupt Request Register  
DCH  
Set 1  
Bit Identifier  
.7  
0
.6  
0
.5  
0
.4  
0
.3  
0
.2  
0
.1  
0
.0  
0
RESET Value  
Read/Write  
R
R
R
R
R
R
R
R
Addressing Mode  
Register addressing mode only  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
Level 7 (IRQ7) Request Pending Bit; External Interrupts P5.4–P5.7  
0
1
Not pending  
Pending  
Level 6 (IRQ6) Request Pending Bit; External Interrupts P1.4–P1.7  
0
1
Not pending  
Pending  
Level 5 (IRQ5) Request Pending Bit; External Interrupts P1.0–P1.3  
0
1
Not pending  
Pending  
Level 4 (IRQ4) Request Pending Bit; Watch Timer  
0
1
Not pending  
Pending  
Level 3 (IRQ3) Request Pending Bit; SIO  
0
1
Not pending  
Pending  
Level 2 (IRQ2) Request Pending Bit; Timer B Match  
0
1
Not pending  
Pending  
Level 1 (IRQ1) Request Pending Bit; Timer 1/A Match/Capture or Overflow  
0
1
Not pending  
Pending  
.0  
Level 0 (IRQ0) Request Pending Bit; Timer 0 Match/Capture or Overflow  
0
1
Not pending  
Pending  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
70  
LCON — LCD Control Register  
EFH  
Set 1, Bank 0  
Bit Identifier  
.7  
0
.6  
0
.5  
0
.4  
0
.3  
0
.2  
.1  
.0  
0
RESET Value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Addressing Mode  
Register addressing mode only  
.7–.5  
LCD Clock Selection Bits  
fw/27 (256 Hz)  
fw/26 (512 Hz)  
fw/25 (1024 Hz)  
fw/24 (2048 Hz)  
fw/23 (4096 Hz)  
Not available  
0
0
0
0
1
0
0
1
0
1
0
0
1
1
0
Others  
.4  
.3  
LCD Bias Selection Bit  
0
1
1/4 bias  
1/5 bias  
LCD Duty Selection Bit  
0
1
1/8 duty  
1/16 duty  
.2–.1  
.0  
Not used for the S3F82NB  
LCD Display Control Bits  
0
1
Display off  
Display on  
NOTES: The clock and duty for LCD controller/driver is automatically initialized by hardware, whenever LCON register data  
value is re-write. So, the LCON register don’t re-write frequently.  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
71  
LMOD — LCD Mode Control Register  
F1H  
Set 1, Bank 0  
Bit Identifier  
.7  
0
.6  
0
.5  
0
.4  
0
.3  
0
.2  
.1  
.0  
RESET Value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
Addressing Mode  
Register addressing mode only  
.7–.4  
LCD Contrast Level Control Bits  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
1/16 step (The dimmest level)  
2/16 step  
3/16 step  
4/16 step  
5/16 step  
6/16 step  
7/16 step  
8/16 step  
9/16 step  
10/16 step  
11/16 step  
12/16 step  
13/16 step  
14/16 step  
15/16 step  
16/16 step (The brightest level)  
.3  
Enable/Disable LCD Contrast Control Bit  
0
1
Disable LCD contrast control  
Enable LCD contrast control  
.2–.0  
Not used for the S3F82NB  
NOTES: VLCD = VDD x (n+17)/32, where n = 0 - 15.  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
72  
OSCCON — Oscillator Control Register  
FAH  
Set 1, Bank 0  
Bit Identifier  
.7  
.6  
.5  
.4  
.3  
0
.2  
0
.1  
.0  
0
RESET Value  
Read/Write  
R/W  
R/W  
R/W  
Addressing Mode  
Register addressing mode only  
Not used for the S3F82NB  
Main Oscillator Control Bit  
.7–.4  
.3  
0
1
Main oscillator RUN  
Main oscillator STOP  
.2  
Sub Oscillator Control Bit  
0
1
Sub oscillator RUN  
Sub oscillator STOP  
.1  
.0  
Not used for the S3F82NB  
System Clock Selection Bit  
0
1
Select main oscillator for system clock  
Select sub oscillator for system clock  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
73  
P0CONH — Port 0 Control Register (High Byte)  
E0H  
Set 1, Bank 1  
Bit Identifier  
.7  
0
.6  
0
.5  
0
.4  
0
.3  
0
.2  
0
.1  
0
.0  
0
RESET Value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Addressing Mode  
Register addressing mode only  
.7–.6  
.5–.4  
.3–.2  
.1–.0  
P0.7/AD7 Configuration Bits  
0
0
1
1
0
1
0
1
Input mode  
Output mode, open-drain  
Output mode, push-pull  
Alternative function (AD7)  
P0.6/AD6 Configuration Bits  
0
0
1
1
0
1
0
1
Input mode  
Output mode, open-drain  
Output mode, push-pull  
Alternative function (AD6)  
P0.5/AD5 Configuration Bits  
0
0
1
1
0
1
0
1
Input mode  
Output mode, open-drain  
Output mode, push-pull  
Alternative function (AD5)  
P0.4/AD4 Configuration Bits  
0
0
1
1
0
1
0
1
Input mode  
Output mode, open-drain  
Output mode, push-pull  
Alternative function (AD4)  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
74  
P0CONL — Port 0 Control Register (Low Byte)  
E1H  
Set 1, Bank 1  
Bit Identifier  
.7  
0
.6  
0
.5  
0
.4  
0
.3  
0
.2  
0
.1  
.0  
0
RESET Value  
Read/Write  
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Addressing Mode  
Register addressing mode only  
.7–.6  
.5–.4  
.3–.2  
.1–.0  
P0.3/AD3/T0OUT/T0PWM/T0CAP Configuration Bits  
0
0
1
1
0
1
0
1
Input mode (T0CAP)  
Output mode, open-drain  
Output mode, push-pull  
Alternative function (AD3 or T0OUT/T0PWM)  
P0.2/AD2/T1OUT/T1PWM/T1CAP Configuration Bits  
0
0
1
1
0
1
0
1
Input mode (T1CAP)  
Output mode, open-drain  
Output mode, push-pull  
Alternative function (AD2 or T1OUT/T1PWM)  
P0.1/AD1/T0CLK Configuration Bits  
0
0
1
1
0
1
0
1
Schmitt trigger input mode (T0CLK)  
Output mode, open-drain  
Output mode, push-pull  
Alternative function (AD1)  
P0.0/AD0/T1CLK Configuration Bits  
0
0
1
1
0
1
0
1
Schmitt trigger input mode (T1CLK)  
Output mode, open-drain  
Output mode, push-pull  
Alternative function (AD0)  
NOTES: The P0.2 and P0.3 Alternative functions depend on AFSEL.0 and AFSEL.1, respectively.  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
75  
P0PUR — Port 0 Pull-up Resistor Enable Register  
E2H  
Set 1, Bank 1  
Bit Identifier  
RESET Value  
Read/Write  
.7  
0
R/W  
.6  
0
R/W  
.5  
0
R/W  
.4  
0
R/W  
.3  
0
R/W  
.2  
0
R/W  
.1  
0
R/W  
.0  
0
R/W  
Addressing Mode  
Register addressing mode only  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
P0.7 Pull-up Resistor Enable Bit  
0
1
Pull-up disable  
Pull-up enable  
P0.6 Pull-up Resistor Enable Bit  
0
1
Pull-up disable  
Pull-up enable  
P0.5 Pull-up Resistor Enable Bit  
0
1
Pull-up disable  
Pull-up enable  
P0.4 Pull-up Resistor Enable Bit  
0
1
Pull-up disable  
Pull-up enable  
P0.3 Pull-up Resistor Enable Bit  
0
1
Pull-up disable  
Pull-up enable  
P0.2 Pull-up Resistor Enable Bit  
0
1
Pull-up disable  
Pull-up enable  
P0.1 Pull-up Resistor Enable Bit  
0
1
Pull-up disable  
Pull-up enable  
P0.0 Pull-up Resistor Enable Bit  
0
1
Pull-up disable  
Pull-up enable  
NOTE: A pull-up resistor of port 0 is automatically disabled only when the corresponding pin is selected as push-pull  
output or alternative function.  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
76  
P1CONH — Port 1 Control Register (High Byte)  
E4H  
Set 1, Bank 1  
Bit Identifier  
.7  
0
.6  
0
.5  
0
.4  
0
.3  
0
.2  
0
.1  
.0  
0
RESET Value  
Read/Write  
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Addressing Mode  
Register addressing mode only  
.7–.6  
.5–.4  
.3–.2  
.1–.0  
P1.7/INT7/SCK Configuration Bits  
0
0
1
1
0
1
0
1
Schmitt trigger input mode (SCK)  
Output mode, open-drain  
Output mode, push-pull  
Alternative function (SCK out)  
P1.6/INT6/SO Configuration Bits  
0
0
1
1
0
1
0
1
Schmitt trigger input mode  
Output mode, open-drain  
Output mode, push-pull  
Alternative function (SO)  
P1.5/INT5/SI Configuration Bits  
0
0
1
1
0
1
0
1
Schmitt trigger input mode (SI)  
Output mode, open-drain  
Output mode, push-pull  
Not available  
P1.4/INT4/BUZ Configuration Bits  
0
0
1
1
0
1
0
1
Schmitt trigger input mode  
Output mode, open-drain  
Output mode, push-pull  
Alternative function (BUZ)  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
77  
P1CONL — Port 1 Control Register (Low Byte)  
E5H  
Set 1, Bank 1  
Bit Identifier  
.7  
0
.6  
0
.5  
0
.4  
0
.3  
0
.2  
0
.1  
0
.0  
0
RESET Value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Addressing Mode  
Register addressing mode only  
.7–.6  
.5–.4  
.3–.2  
.1–.0  
P1.3/INT3 Configuration Bits  
0
0
1
1
0
1
0
1
Schmitt trigger input mode  
Output mode, open-drain  
Output mode, push-pull  
Not available  
P1.2/INT2 Configuration Bits  
0
0
1
1
0
1
0
1
Schmitt trigger input mode  
Output mode, open-drain  
Output mode, push-pull  
Not available  
P1.1/INT1 Configuration Bits  
0
0
1
1
0
1
0
1
Schmitt trigger input mode  
Output mode, open-drain  
Output mode, push-pull  
Not available  
P1.0/INT0/ AV  
REF  
T Configuration Bits  
0
0
1
1
0
1
0
1
Schmitt trigger input mode  
Output mode, open-drain  
Output mode, push-pull  
Not available  
NOTE: Refer to the SMART OPTION for configuring as one of the P1.0/INT0 and AVREF  
.
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
78  
P1PUR — Port 1 Pull-up Resistor Enable Register  
E6H  
Set 1, Bank 1  
Bit Identifier  
RESET Value  
Read/Write  
.7  
0
R/W  
.6  
0
R/W  
.5  
0
R/W  
.4  
0
R/W  
.3  
0
R/W  
.2  
0
R/W  
.1  
0
R/W  
.0  
0
R/W  
Addressing Mode  
Register addressing mode only  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
P1.7 Pull-up Resistor Enable Bit  
0
1
Pull-up disable  
Pull-up enable  
P1.6 Pull-up Resistor Enable Bit  
0
1
Pull-up disable  
Pull-up enable  
P1.5 Pull-up Resistor Enable Bit  
0
1
Pull-up disable  
Pull-up enable  
P1.4 Pull-up Resistor Enable Bit  
0
1
Pull-up disable  
Pull-up enable  
P1.3 Pull-up Resistor Enable Bit  
0
1
Pull-up disable  
Pull-up enable  
P1.2 Pull-up Resistor Enable Bit  
0
1
Pull-up disable  
Pull-up enable  
P1.1 Pull-up Resistor Enable Bit  
0
1
Pull-up disable  
Pull-up enable  
P1.0 Pull-up Resistor Enable Bit  
0
1
Pull-up disable  
Pull-up enable  
NOTE: A pull-up resistor of port 1 is automatically disabled only when the corresponding pin is selected as push-pull  
output or alternative function.  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
79  
P1INTH — Port 1 Interrupt Control Register (High Byte)  
E8H  
Set 1, Bank 1  
Bit Identifier  
.7  
0
.6  
0
.5  
0
.4  
0
.3  
0
.2  
0
.1  
0
.0  
0
RESET Value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Addressing Mode  
Register addressing mode only  
.7–.6  
.5–.4  
.3–.2  
.1–.0  
P1.7/External interrupt (INT7) Enable Bits  
0
0
1
1
0
1
0
1
Disable interrupt  
Enable interrupt by falling edge  
Enable interrupt by rising edge  
Enable interrupt by both falling and rising edge  
P1.6/External interrupt (INT6) Enable Bits  
0
0
1
1
0
1
0
1
Disable interrupt  
Enable interrupt by falling edge  
Enable interrupt by rising edge  
Enable interrupt by both falling and rising edge  
P1.5/External interrupt (INT5) Enable Bits  
0
0
1
1
0
1
0
1
Disable interrupt  
Enable interrupt by falling edge  
Enable interrupt by rising edge  
Enable interrupt by both falling and rising edge  
P1.4/External interrupt (INT4) Enable Bits  
0
0
1
1
0
1
0
1
Disable interrupt  
Enable interrupt by falling edge  
Enable interrupt by rising edge  
Enable interrupt by both falling and rising edge  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
80  
P1INTL — Port 1 Interrupt Control Register (Low Byte)  
E9H  
Set 1, Bank 1  
Bit Identifier  
.7  
0
.6  
0
.5  
0
.4  
0
.3  
0
.2  
0
.1  
.0  
0
RESET Value  
Read/Write  
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Addressing Mode  
Register addressing mode only  
.7–.6  
.5–.4  
.3–.2  
.1–.0  
P1.3/External interrupt (INT3) Enable Bits  
0
0
1
1
0
1
0
1
Disable interrupt  
Enable interrupt by falling edge  
Enable interrupt by rising edge  
Enable interrupt by both falling and rising edge  
P1.2/External interrupt (INT2) Enable Bits  
0
0
1
1
0
1
0
1
Disable interrupt  
Enable interrupt by falling edge  
Enable interrupt by rising edge  
Enable interrupt by both falling and rising edge  
P1.1/External interrupt (INT1) Enable Bits  
0
0
1
1
0
1
0
1
Disable interrupt  
Enable interrupt by falling edge  
Enable interrupt by rising edge  
Enable interrupt by both falling and rising edge  
P1.0/External interrupt (INT0) Enable Bits  
0
0
1
1
0
1
0
1
Disable interrupt  
Enable interrupt by falling edge  
Enable interrupt by rising edge  
Enable interrupt by both falling and rising edge  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
81  
P1PND — Port 1 Interrupt Pending Register  
E7H  
Set 1, Bank 1  
Bit Identifier  
.7  
0
.6  
0
.5  
0
.4  
0
.3  
0
.2  
0
.1  
0
.0  
0
RESET Value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Addressing Mode  
Register addressing mode only  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
P1.7/External Interrupt (INT7) Pending Bit  
0
1
Clear pending bit (when write)  
P1.7/INT7 interrupt request is pending (when read)  
P1.6/External Interrupt (INT6) Pending Bit  
0
1
Clear pending bit (when write)  
P1.6/INT6 interrupt request is pending (when read)  
P1.5/External Interrupt (INT5) Pending Bit  
0
1
Clear pending bit (when write)  
P1.5/INT5 interrupt request is pending (when read)  
P1.4/External Interrupt (INT4) Pending Bit  
0
1
Clear pending bit (when write)  
P1.4/INT4 interrupt request is pending (when read)  
P1.3/External Interrupt (INT3) Pending Bit  
0
1
Clear pending bit (when write)  
P1.3/INT3 interrupt request is pending (when read)  
P1.2/External Interrupt (INT2) Pending Bit  
0
1
Clear pending bit (when write)  
P1.2/INT2 interrupt request is pending (when read)  
P1.1/External Interrupt (INT1) Pending Bit  
0
1
Clear pending bit (when write)  
P1.1/INT1 interrupt request is pending (when read)  
.0  
P1.0/External Interrupt (INT0) Pending Bit  
0
1
Clear pending bit (when write)  
P1.0/INT0 interrupt request is pending (when read)  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
82  
P2CONH — Port 2 Control Register (High Byte)  
EAH  
Set 1, Bank 1  
Bit Identifier  
.7  
0
.6  
0
.5  
0
.4  
0
.3  
0
.2  
0
.1  
.0  
0
RESET Value  
Read/Write  
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Addressing Mode  
Register addressing mode only  
.7–.6  
.5-.4  
.3–.2  
.1–.0  
P2.7/SEG63 Configuration Bits  
0
0
1
1
0
1
0
1
Input mode  
Output mode, open-drain  
Output mode, push-pull  
Alternative function (SEG63)  
P2.6/SEG62 Configuration Bits  
0
0
1
1
0
1
0
1
Input mode  
Output mode, open-drain  
Output mode, push-pull  
Alternative function (SEG62)  
P2.5/SEG61 Configuration Bits  
0
0
1
1
0
1
0
1
Input mode  
Output mode, open-drain  
Output mode, push-pull  
Alternative function (SEG61)  
P2.4/SEG60 Configuration Bits  
0
0
1
1
0
1
0
1
Input mode  
Output mode, open-drain  
Output mode, push-pull  
Alternative function (SEG60)  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
83  
P2CONL — Port 2 Control Register (Low Byte)  
EBH  
Set 1, Bank 1  
Bit Identifier  
.7  
0
.6  
0
.5  
0
.4  
0
.3  
0
.2  
0
.1  
0
.0  
0
RESET Value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Addressing Mode  
Register addressing mode only  
.7–.6  
.5-.4  
.3–.2  
.1–.0  
P2.3/SEG59 Configuration Bits  
0
0
1
1
0
1
0
1
Input mode  
Output mode, open-drain  
Output mode, push-pull  
Alternative function (SEG59)  
P2.2/SEG58 Configuration Bits  
0
0
1
1
0
1
0
1
Input mode  
Output mode, open-drain  
Output mode, push-pull  
Alternative function (SEG58)  
P2.1/SEG57 Configuration Bits  
0
0
1
1
0
1
0
1
Input mode  
Output mode, open-drain  
Output mode, push-pull  
Alternative function (SEG57)  
P2.0/SEG56 Configuration Bits  
0
0
1
1
0
1
0
1
Input mode  
Output mode, open-drain  
Output mode, push-pull  
Alternative function (SEG56)  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
84  
P2PUR — Port 2 Pull-up Resistor Enable Register  
ECH  
Set 1, Bank 1  
Bit Identifier  
RESET Value  
Read/Write  
.7  
0
R/W  
.6  
0
R/W  
.5  
0
R/W  
.4  
0
R/W  
.3  
0
R/W  
.2  
0
R/W  
.1  
0
R/W  
.0  
0
R/W  
Addressing Mode  
Register addressing mode only  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
P2.7 Pull-up Resistor Enable Bit  
0
1
Pull-up disable  
Pull-up enable  
P2.6 Pull-up Resistor Enable Bit  
0
1
Pull-up disable  
Pull-up enable  
P2.5 Pull-up Resistor Enable Bit  
0
1
Pull-up disable  
Pull-up enable  
P2.4 Pull-up Resistor Enable Bit  
0
1
Pull-up disable  
Pull-up enable  
P2.3 Pull-up Resistor Enable Bit  
0
1
Pull-up disable  
Pull-up enable  
P2.2 Pull-up Resistor Enable Bit  
0
1
Pull-up disable  
Pull-up enable  
P2.1 Pull-up Resistor Enable Bit  
0
1
Pull-up disable  
Pull-up enable  
P2.0 Pull-up Resistor Enable Bit  
0
1
Pull-up disable  
Pull-up enable  
NOTE: A pull-up resistor of port 2 is automatically disabled only when the corresponding pin is selected as push-pull  
output or alternative function.  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
85  
P3CONH — Port 3 Control Register (High Byte)  
EEH  
Set 1, Bank 1  
Bit Identifier  
.7  
0
.6  
0
.5  
0
.4  
0
.3  
0
.2  
0
.1  
0
.0  
0
RESET Value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Addressing Mode  
Register addressing mode only  
.7–.6  
.5–.4  
.3–.2  
.1–.0  
P3.7/SEG71 Configuration Bits  
0
0
1
1
0
1
0
1
Input mode  
Output mode, open-drain  
Output mode, push-pull  
Alternative function (SEG71)  
P3.6/SEG70 Configuration Bits  
0
0
1
1
0
1
0
1
Input mode  
Output mode, open-drain  
Output mode, push-pull  
Alternative function (SEG70)  
P3.5/SEG69 Configuration Bits  
0
0
1
1
0
1
0
1
Input mode  
Output mode, open-drain  
Output mode, push-pull  
Alternative function (SEG69)  
P3.4/SEG68 Configuration Bits  
0
0
1
1
0
1
0
1
Input mode  
Output mode, open-drain  
Output mode, push-pull  
Alternative function (SEG68)  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
86  
P3CONL — Port 3 Control Register (Low Byte)  
EFH  
Set 1, Bank 1  
Bit Identifier  
.7  
0
.6  
0
.5  
0
.4  
0
.3  
0
.2  
0
.1  
.0  
0
RESET Value  
Read/Write  
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Addressing Mode  
Register addressing mode only  
.7–.6  
.5–.4  
.3–.2  
.1–.0  
P3.3/SEG67 Configuration Bits  
0
0
1
1
0
1
0
1
Input mode  
Output mode, open-drain  
Output mode, push-pull  
Alternative function (SEG67)  
P3.2/SEG66 Configuration Bits  
0
0
1
1
0
1
0
1
Input mode  
Output mode, open-drain  
Output mode, push-pull  
Alternative function (SEG66)  
P3.1/SEG65 Configuration Bits  
0
0
1
1
0
1
0
1
Input mode  
Output mode, open-drain  
Output mode, push-pull  
Alternative function (SEG65)  
P3.0/SEG64 Configuration Bits  
0
0
1
1
0
1
0
1
Input mode  
Output mode, open-drain  
Output mode, push-pull  
Alternative function (SEG64)  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
87  
P3PUR — Port 3 Pull-up Resistor Enable Register  
EDH  
Set 1, Bank 1  
Bit Identifier  
RESET Value  
Read/Write  
.7  
0
R/W  
.6  
0
R/W  
.5  
0
R/W  
.4  
0
R/W  
.3  
0
R/W  
.2  
0
R/W  
.1  
0
R/W  
.0  
0
R/W  
Addressing Mode  
Register addressing mode only  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
P3.7 Pull-up Resistor Enable Bit  
0
1
Pull-up disable  
Pull-up enable  
P3.6 Pull-up Resistor Enable Bit  
0
1
Pull-up disable  
Pull-up enable  
P3.5 Pull-up Resistor Enable Bit  
0
1
Pull-up disable  
Pull-up enable  
P3.4 Pull-up Resistor Enable Bit  
0
1
Pull-up disable  
Pull-up enable  
P3.3 Pull-up Resistor Enable Bit  
0
1
Pull-up disable  
Pull-up enable  
P3.2 Pull-up Resistor Enable Bit  
0
1
Pull-up disable  
Pull-up enable  
P3.1 Pull-up Resistor Enable Bit  
0
1
Pull-up disable  
Pull-up enable  
P3.0 Pull-up Resistor Enable Bit  
0
1
Pull-up disable  
Pull-up enable  
NOTE: A pull-up resistor of port 3 is automatically disabled only when the corresponding pin is selected as push-pull  
output or alternative function.  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
88  
P4CONH — Port 4 Control Register (High Byte)  
D0H  
Set 1, Bank 1  
Bit Identifier  
.7  
0
.6  
0
.5  
0
.4  
0
.3  
0
.2  
0
.1  
.0  
0
RESET Value  
Read/Write  
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Addressing Mode  
Register addressing mode only  
.7–.6  
.5–.4  
.3–.2  
.1–.0  
P4.7/SEG79 Configuration Bits  
0
0
1
1
0
1
0
1
Input mode  
Output mode, open-drain  
Output mode, push-pull  
Alternative function (SEG79)  
P4.6/SEG78 Configuration Bits  
0
0
1
1
0
1
0
1
Input mode  
Output mode, open-drain  
Output mode, push-pull  
Alternative function (SEG78)  
P4.5/SEG77 Configuration Bits  
0
0
1
1
0
1
0
1
Input mode  
Output mode, open-drain  
Output mode, push-pull  
Alternative function (SEG77)  
P4.4/SEG76 Configuration Bits  
0
0
1
1
0
1
0
1
Input mode  
Output mode, open-drain  
Output mode, push-pull  
Alternative function (SEG76)  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
89  
P4CONL — Port 4 Control Register (Low Byte)  
D1H  
Set 1, Bank 1  
Bit Identifier  
.7  
0
.6  
0
.5  
0
.4  
0
.3  
0
.2  
0
.1  
0
.0  
0
RESET Value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Addressing Mode  
Register addressing mode only  
.7–.6  
.5–.4  
.3–.2  
.1–.0  
P4.3/SEG75 Configuration Bits  
0
0
1
1
0
1
0
1
Input mode  
Output mode, open-drain  
Output mode, push-pull  
Alternative function (SEG75)  
P4.2/SEG74 Configuration Bits  
0
0
1
1
0
1
0
1
Input mode  
Output mode, open-drain  
Output mode, push-pull  
Alternative function (SEG74)  
P4.1/SEG73 Configuration Bits  
0
0
1
1
0
1
0
1
Input mode  
Output mode, open-drain  
Output mode, push-pull  
Alternative function (SEG73)  
P4.0/SEG72 Configuration Bits  
0
0
1
1
0
1
0
1
Input mode  
Output mode, open-drain  
Output mode, push-pull  
Alternative function (SEG72)  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
90  
P4PUR — Port 4 Pull-up Resistor Enable Register  
D2H  
Set 1, Bank 1  
Bit Identifier  
RESET Value  
Read/Write  
.7  
0
R/W  
.6  
0
R/W  
.5  
0
R/W  
.4  
0
R/W  
.3  
0
R/W  
.2  
0
R/W  
.1  
0
R/W  
.0  
0
R/W  
Addressing Mode  
Register addressing mode only  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
P4.7 Pull-up Resistor Enable Bit  
0
1
Pull-up disable  
Pull-up enable  
P4.6 Pull-up Resistor Enable Bit  
0
1
Pull-up disable  
Pull-up enable  
P4.5 Pull-up Resistor Enable Bit  
0
1
Pull-up disable  
Pull-up enable  
P4.4 Pull-up Resistor Enable Bit  
0
1
Pull-up disable  
Pull-up enable  
P4.3 Pull-up Resistor Enable Bit  
0
1
Pull-up disable  
Pull-up enable  
P4.2 Pull-up Resistor Enable Bit  
0
1
Pull-up disable  
Pull-up enable  
P4.1 Pull-up Resistor Enable Bit  
0
1
Pull-up disable  
Pull-up enable  
P4.0 Pull-up Resistor Enable Bit  
0
1
Pull-up disable  
Pull-up enable  
NOTE: A pull-up resistor of port 4 is automatically disabled only when the corresponding pin is selected as push-pull  
output or alternative function.  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
91  
P5CONH — Port 5 Control Register (High Byte)  
FEH  
Set 1, Bank 1  
Bit Identifier  
.7  
0
.6  
0
.5  
0
.4  
0
.3  
0
.2  
0
.1  
0
.0  
0
RESET Value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Addressing Mode  
Register addressing mode only  
.7–.6  
.5–.4  
.3–.2  
.1–.0  
P5.7/SEG87/INT11 Configuration Bits  
0
0
1
1
0
1
0
1
Schmitt trigger input mode  
Output mode, open-drain  
Output mode, push-pull  
Alternative function (SEG87)  
P5.6/SEG86/INT10 Configuration Bits  
0
0
1
1
0
1
0
1
Schmitt trigger input mode  
Output mode, open-drain  
Output mode, push-pull  
Alternative function (SEG86)  
P5.5/SEG85/INT9 Configuration Bits  
0
0
1
1
0
1
0
1
Schmitt trigger input mode  
Output mode, open-drain  
Output mode, push-pull  
Alternative function (SEG85)  
P5.4/SEG84/INT8 Configuration Bits  
0
0
1
1
0
1
0
1
Schmitt trigger input mode  
Output mode, open-drain  
Output mode, push-pull  
Alternative function (SEG84)  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
92  
P5CONL — Port 5 Control Register (Low Byte)  
FFH  
Set 1, Bank 1  
Bit Identifier  
.7  
0
.6  
0
.5  
0
.4  
0
.3  
0
.2  
0
.1  
.0  
0
RESET Value  
Read/Write  
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Addressing Mode  
Register addressing mode only  
.7–.6  
.5–.4  
.3–.2  
.1–.0  
P5.3/SEG83 Configuration Bits  
0
0
1
1
0
1
0
1
Input mode  
Output mode, open-drain  
Output mode, push-pull  
Alternative function (SEG83)  
P5.2/SEG82 Configuration Bits  
0
0
1
1
0
1
0
1
Input mode  
Output mode, open-drain  
Output mode, push-pull  
Alternative function (SEG82)  
P5.1/SEG81 Configuration Bits  
0
0
1
1
0
1
0
1
Input mode  
Output mode, open-drain  
Output mode, push-pull  
Alternative function (SEG81)  
P5.0/ SEG80 Configuration Bits  
0
0
1
1
0
1
0
1
Input mode  
Output mode, open-drain  
Output mode, push-pull  
Alternative function (SEG80)  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
93  
P5PUR — Port 5 Pull-up Resistor Enable Register  
FDH  
Set 1, Bank 1  
Bit Identifier  
RESET Value  
Read/Write  
.7  
0
R/W  
.6  
0
R/W  
.5  
0
R/W  
.4  
0
R/W  
.3  
0
R/W  
.2  
0
R/W  
.1  
0
R/W  
.0  
0
R/W  
Addressing Mode  
Register addressing mode only  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
P5.7 Pull-up Resistor Enable Bit  
0
1
Pull-up disable  
Pull-up enable  
P5.6 Pull-up Resistor Enable Bit  
0
1
Pull-up disable  
Pull-up enable  
P5.5 Pull-up Resistor Enable Bit  
0
1
Pull-up disable  
Pull-up enable  
P5.4 Pull-up Resistor Enable Bit  
0
1
Pull-up disable  
Pull-up enable  
P5.3 Pull-up Resistor Enable Bit  
0
1
Pull-up disable  
Pull-up enable  
P5.2 Pull-up Resistor Enable Bit  
0
1
Pull-up disable  
Pull-up enable  
P5.1 Pull-up Resistor Enable Bit  
0
1
Pull-up disable  
Pull-up enable  
P5.0 Pull-up Resistor Enable Bit  
0
1
Pull-up disable  
Pull-up enable  
NOTE: A pull-up resistor of port 5 is automatically disabled only when the corresponding pin is selected as push-pull  
output or alternative function.  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
94  
P5INT — Port 5 Interrupt Control Register  
FBH  
Set 1, Bank 1  
Bit Identifier  
.7  
0
.6  
0
.5  
0
.4  
0
.3  
0
.2  
0
.1  
.0  
0
RESET Value  
Read/Write  
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Addressing Mode  
Register addressing mode only  
.7–.6  
.5–.4  
.3–.2  
.1–.0  
P5.7/External Interrupt (INT11) Enable Bits  
0
0
1
1
0
1
0
1
Disable interrupt  
Enable interrupt by falling edge  
Enable interrupt by rising edge  
Enable interrupt by both falling and rising edge  
P5.6/External Interrupt (INT10) Enable Bits  
0
0
1
1
0
1
0
1
Disable interrupt  
Enable interrupt by falling edge  
Enable interrupt by rising edge  
Enable interrupt by both falling and rising edge  
P5.5/External Interrupt (INT9) Enable Bits  
0
0
1
1
0
1
0
1
Disable interrupt  
Enable interrupt by falling edge  
Enable interrupt by rising edge  
Enable interrupt by both falling and rising edge  
P5.4/External Interrupt (INT8) Enable Bits  
0
0
1
1
0
1
0
1
Disable interrupt  
Enable interrupt by falling edge  
Enable interrupt by rising edge  
Enable interrupt by both falling and rising edge  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
95  
P5PND — Port 5 Interrupt Pending Register  
FCH  
Set 1, Bank 1  
Bit Identifier  
.7  
0
.6  
0
.5  
0
.4  
0
.3  
.2  
.1  
.0  
RESET Value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
Addressing Mode  
Register addressing mode only  
.7  
P5.7/External Interrupt (INT11) Pending Bit  
0
1
Clear pending bit (when write)  
P5.7/INT11 interrupt request is pending (when read)  
.6  
P5.6/External Interrupt (INT10) Pending Bit  
0
1
Clear pending bit (when write)  
P5.6/INT10 interrupt request is pending (when read)  
.5  
P5.5/External Interrupt (INT9) Pending Bit  
0
1
Clear pending bit (when write)  
P5.5/INT9 interrupt request is pending (when read)  
.4  
P5.4/External Interrupt (INT8) Pending Bit  
0
1
Clear pending bit (when write)  
P5.4/INT8 interrupt request is pending (when read)  
.3–.0  
Not used for the S3F82NB  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
96  
P6CON — Port 6 Control Register  
D2H  
Set 1, Bank 0  
Bit Identifier  
.7  
.6  
.5  
0
.4  
0
.3  
0
.2  
0
.1  
.0  
0
RESET Value  
Read/Write  
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Addressing Mode  
Register addressing mode only  
.7–.6  
.5–.4  
Not used for the S3F82NB  
P6.2/CIN2 Configuration Bits  
0
0
1
1
0
1
0
1
Schmitt trigger input mode  
Schmitt trigger input mode, pull-up  
Output mode, push-pull  
Alternative function (CIN2)  
.3–.2  
.1–.0  
P6.1/CIN1 Configuration Bits  
0
0
1
1
0
1
0
1
Schmitt trigger input mode  
Schmitt trigger input mode, pull-up  
Output mode, push-pull  
Alternative function (CIN1)  
P6.0/CIN0 Configuration Bits  
0
0
1
1
0
1
0
1
Schmitt trigger input mode  
Schmitt trigger input mode, pull-up  
Output mode, push-pull  
Alternative function (CIN0)  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
97  
PG0CON — Port Group 0 Control Register  
D0H  
Set 1, Bank 0  
Bit Identifier  
.7  
0
.6  
0
.5  
0
.4  
0
.3  
0
.2  
0
.1  
0
.0  
0
RESET Value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Addressing Mode  
Register addressing mode only  
.7–.6  
.5–.4  
.3–.2  
.1–.0  
P10.4–P10.7/SEG28–SEG31 Configuration Bits  
0
0
1
1
0
1
0
1
Input mode  
Input mode, pull-up  
Output mode, push-pull  
Alternative function (SEG28SEG31)  
P10.0–P10.3/SEG24–SEG27 Configuration Bits  
0
0
1
1
0
1
0
1
Input mode  
Input mode, pull-up  
Output mode, push-pull  
Alternative function (SEG24SEG27)  
P9.4–P9.7/SEG36–SEG39 Configuration Bits  
0
0
1
1
0
1
0
1
Input mode  
Input mode, pull-up  
Output mode, push-pull  
Alternative function (SEG36SEG39)  
P9.0–P9.3/SEG32–SEG35 Configuration Bits  
0
0
1
1
0
1
0
1
Input mode  
Input mode, pull-up  
Output mode, push-pull  
Alternative function (SEG32SEG35)  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
98  
PG1CON — Port Group 1 Control Register  
D1H  
Set 1, Bank 0  
Bit Identifier  
.7  
0
.6  
0
.5  
0
.4  
0
.3  
0
.2  
0
.1  
.0  
0
RESET Value  
Read/Write  
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Addressing Mode  
Register addressing mode only  
.7–.6  
.5–.4  
.3–.2  
.1–.0  
P8.4–P8.7/SEG44–SEG47 Configuration Bits  
0
0
1
1
0
1
0
1
Input mode  
Input mode, pull-up  
Output mode, push-pull  
Alternative function (SEG44SEG47)  
P8.0–P8.3/SEG40–SEG43 Configuration Bits  
0
0
1
1
0
1
0
1
Input mode  
Input mode, pull-up  
Output mode, push-pull  
Alternative function (SEG40SEG43)  
P7.4–P7.7/SEG52–SEG55 Configuration Bits  
0
0
1
1
0
1
0
1
Input mode  
Input mode, pull-up  
Output mode, push-pull  
Alternative function (SEG52SEG55)  
P7.0–P7.3/SEG48–SEG51 Configuration Bits  
0
0
1
1
0
1
0
1
Input mode  
Input mode, pull-up  
Output mode, push-pull  
Alternative function (SEG48SEG51)  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
99  
PP — Register Page Pointer  
DFH  
Set 1  
Bit Identifier  
.7  
0
.6  
0
.5  
0
.4  
0
.3  
0
.2  
0
.1  
0
.0  
0
RESET Value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Addressing Mode  
Register addressing mode only  
.7–.4  
Destination Register Page Selection Bits  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
Destination: page 0  
Destination: page 1  
Destination: page 2  
Destination: page 3  
Destination: page 4  
Destination: page 5  
Destination: page 6  
Destination: page 7  
Destination: page 8  
Destination: page 9  
Destination: page 10  
Destination: page 11  
Destination: page 12  
Destination: page 13  
Destination: page 14  
Destination: page 15  
.3 – .0  
Source Register Page Selection Bits  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
Source: page 0  
Source: page 1  
Source: page 2  
Source: page 3  
Source: page 4  
Source: page 5  
Source: page 6  
Source: page 7  
Source: page 8  
Source: page 9  
Source: page 10  
Source: page 11  
Source: page 12  
Source: page 13  
Source: page 14  
Source: page 15  
P R E L I M I N A R Y  
PS031601-0813  
S3F82NB  
Product Specification  
100  
RP0 — Register Pointer 0  
D6H  
Set 1  
Bit Identifier  
.7  
1
.6  
1
.5  
0
.4  
0
.3  
0
.2  
.1  
.0  
RESET Value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
Addressing Mode  
Register addressing only  
.7–.3  
.2–.0  
Register Pointer 0 Address Value  
Register pointer 0 can independently point to one of the 256-byte working register  
areas in the register file. Using the register pointers RP0 and RP1, you can select  
two 8-byte register slices at one time as active working register space. After a reset,  
RP0 points to address C0H in register set 1, selecting the 8-byte working register  
slice C0H–C7H.  
Not used for the S3F82NB  
RP1 — Register Pointer 1  
D7H  
Set 1  
Bit Identifier  
.7  
1
.6  
1
.5  
0
.4  
0
.3  
1
.2  
.1  
.0  
RESET Value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
Addressing Mode  
Register addressing only  
.7 – .3  
Register Pointer 1 Address Value  
Register pointer 1 can independently point to one of the 256-byte working register  
areas in the register file. Using the register pointers RP0 and RP1, you can select  
two 8-byte register slices at one time as active working register space. After a reset,  
RP1 points to address C8H in register set 1, selecting the 8-byte working register  
slice C8H–CFH.  
.2 – .0  
Not used for the S3F82NB  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
101  
RESETID — Reset Source Indicating Register  
B0H  
Page 15  
Bit Identifier  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
Read/Write  
R/W  
R/W  
R/W  
Addressing Mode  
Register addressing mode only  
Not used for the S3F82NB  
nRESET Pin Indicating Bit  
.7– .5  
.4  
0
1
Reset is not generated by nReset Pin (when read), cleared to ‘0’(when write)  
Reset is generated by nReset Pin (when read), no effect (when write)  
Not used for the S3F82NB  
.3  
.2  
WDT Reset Indicating Bit  
0
1
Reset is not generated by WDT (when read), cleared to ‘0’(when write)  
Reset is generated by WDT (when read), no effect (when write)  
LVR Reset Indicating Bit  
.1  
.0  
0
1
Reset is not generated by LVR (when read), cleared to ‘0’(when write)  
Reset is generated by LVR (when read), no effect (when write)  
Not used for the S3F82NB  
State of RESETID Depends on Reset Source  
.7  
.6  
.5  
.4  
0
.3  
.2  
0
.1  
1
.0  
LVR  
Note3  
Note3  
Note2  
WDT, nRESET  
NOTES:  
1. To clear an indicating register, write “0” to indicating flag bit. Writing a “1” to a reset indicating flag (RESETID.1–.2 and .4)  
has no effect.  
2. Not effected by any other reset.  
3. Bits corresponding to sources that are active at the time of reset will be set.  
4. The RESETID.2–.1 are unknown values when a power-on reset occurs.  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
102  
SIOCON — SIO Control Register  
F3H  
Set 1, Bank 0  
Bit Identifier  
.7  
0
.6  
0
.5  
0
.4  
0
.3  
0
.2  
0
.1  
.0  
0
RESET Value  
Read/Write  
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Addressing Mode  
Register addressing mode only  
SIO Shift Clock Selection Bit  
.7  
.6  
.5  
.4  
0
1
Internal clock (P.S clock)  
External clock (SCK)  
Data Direction Control Bit  
0
1
MSB-first mode  
LSB-first mode  
SIO Mode Selection Bit  
0
1
Receive-only mode  
Transmit/Receive mode  
Shift Clock Edge Selection Bit  
0
1
Tx at falling edges, Rx at rising edges  
Tx at rising edges, Rx at falling edges  
SIO Counter Clear and Shift Start Bit  
.3  
.2  
.1  
.0  
0
1
No action  
Clear 3-bit counter and start shifting  
SIO Shift Operation Enable Bit  
0
1
Disable shifter and clock counter  
Enable shifter and clock counter  
SIO Interrupt Enable Bit  
0
1
Disable SIO Interrupt  
Enable SIO Interrupt  
SIO Interrupt Pending Bit  
0
1
No interrupt pending (when read), Clear pending condition (when write)  
Interrupt is pending  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
103  
SPH — Stack Pointer (High Byte)  
D8H  
Set 1  
Bit Identifier  
.7  
x
.6  
x
.5  
x
.4  
x
.3  
x
.2  
x
.1  
x
.0  
RESET Value  
Read/Write  
x
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Addressing Mode  
Register addressing mode only  
.7–.0  
Stack Pointer Address (High Byte)  
The high-byte stack pointer value is the upper eight bits of the 16-bit stack pointer  
address (SP15–SP8). The lower byte of the stack pointer value is located in register  
SPL (D9H). The SP value is undefined following a reset.  
SPL— Stack Pointer (Low Byte)  
D9H  
Set 1  
Bit Identifier  
.7  
x
.6  
x
.5  
x
.4  
x
.3  
x
.2  
x
.1  
x
.0  
x
RESET Value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Addressing Mode  
Register addressing mode only  
.7–.0  
Stack Pointer Address (Low Byte)  
The low-byte stack pointer value is the lower eight bits of the 16-bit stack pointer  
address (SP7–SP0). The upper byte of the stack pointer value is located in register  
SPH (D8H). The SP value is undefined following a reset.  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
104  
STPCON — Stop Control Register  
FBH  
Set 1, Bank 0  
Bit Identifier  
.7  
0
.6  
0
.5  
0
.4  
0
.3  
0
.2  
0
.1  
.0  
0
RESET Value  
Read/Write  
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Addressing Mode  
Register addressing mode only  
.7–.0  
STOP Control Bits  
1 0 1 0 0 1 0 1 Enable stop instruction  
Other values Disable stop instruction  
NOTE: Before execute the STOP instruction. You must set this STPCON register as “10100101b”. Otherwise the STOP  
instruction will not execute as well as reset will be generated.  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
105  
SYM — System Mode Register  
DEH  
Set 1  
Bit Identifier  
.7  
0
.6  
.5  
.4  
x
.3  
x
.2  
x
.1  
0
.0  
0
RESET Value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Addressing Mode  
Register addressing mode only  
Not used, But you must keep “0”  
Not used for the S3F82NB  
.7  
.6–.5  
.4–.2  
Fast Interrupt Level Selection Bits (1)  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
IRQ0  
IRQ1  
IRQ2  
IRQ3  
IRQ4  
IRQ5  
IRQ6  
IRQ7  
Fast Interrupt Enable Bit (2)  
.1  
0
1
Disable fast interrupt processing  
Enable fast interrupt processing  
Global Interrupt Enable Bit (3)  
.0  
0
1
Disable all interrupt processing  
Enable all interrupt processing  
NOTES:  
1. You can select only one interrupt level at a time for fast interrupt processing.  
2. Setting SYM.1 to "1" enables fast interrupt processing for the interrupt level currently selected by SYM.2–SYM.4.  
3. Following a reset, you must enable global interrupt processing by executing an EI instruction  
(not by writing a "1" to SYM.0).  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
106  
T0CON — Timer 0 Control Register  
E5H  
Set 1, Bank 0  
Bit Identifier  
.7  
0
.6  
0
.5  
0
.4  
0
.3  
0
.2  
0
.1  
.0  
RESET Value  
Read/Write  
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Addressing Mode  
Register addressing mode only  
.7–.5  
Timer 0 Input Clock Selection Bits  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
fxx/1024  
fxx/256  
fxx/64  
fxx/8  
fxx/1  
External clock (T0CLK) falling edge  
External clock (T0CLK) rising edge  
Not available  
.4–.3  
Timer 0 Operating Mode Selection Bits  
0
0
1
1
0
1
0
1
Interval mode (T0OUT)  
Capture mode (Capture on rising edge, counter running, OVF can occur)  
Capture mode (Capture on falling edge, counter running, OVF can occur)  
PWM mode (OVF and match interrupt can occur)  
.2  
.1  
.0  
Timer 0 Counter Clear Bit  
0
1
No effect  
Clear the timer 0 counter (when write)  
Timer 0 Counter Operating Enable Bit  
0
1
Disable counting operation  
Enable counting operation  
Not used for the S3F82NB  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
107  
TACON — Timer 1/A Control Register  
EBH  
Set 1, Bank 0  
Bit Identifier  
.7  
0
.6  
0
.5  
0
.4  
0
.3  
0
.2  
0
.1  
0
.0  
0
RESET Value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Addressing Mode  
Register addressing mode only  
.7–.5  
Timer 1/A Input Clock Selection Bits  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
fxx/1024  
fxx/256  
fxx/64  
fxx/8  
fxx/1  
External clock (T1CLK) falling edge  
External clock (T1CLK) rising edge  
Not available  
.4–.3  
Timer 1/A Operating Mode Selection Bits  
0
0
1
1
0
1
0
1
Interval mode (T1OUT)  
Capture mode (Capture on rising edge, counter running, OVF can occur)  
Capture mode (Capture on falling edge, counter running, OVF can occur)  
PWM mode (OVF and match interrupt can occur)  
.2  
.1  
.0  
Timer 1/A Counter Clear Bit  
0
1
No effect  
Clear the timer 1/A counter (when write)  
Timer 1/A Match/Capture Interrupt Enable Bit  
0
1
Disable counting operation  
Enable counting operation  
Timer 1/A Operating Mode Selection Bit  
0
1
Two 8-bit timers mode (Timer A/B)  
One 16-bit timer mode (Timer 1)  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
108  
TBCON — Timer B Control Register  
EAH  
Set 1, Bank 0  
Bit Identifier  
.7  
0
.6  
0
.5  
0
.4  
.3  
.2  
0
.1  
.0  
RESET Value  
Read/Write  
0
R/W  
R/W  
R/W  
R/W  
R/W  
Addressing Mode  
Register addressing mode only  
.7–.5  
Timer B Input Clock Selection Bits  
0
0
0
0
1
0
0
1
0
1
0
fxx/1024  
fxx/256  
fxx/64  
0
1
1
0
fxx/8  
fxx/1  
Others  
Not available  
.4–.3  
.2  
Not used for the S3F82NB  
Timer B Counter Clear Bit  
0
1
No effect  
Clear the timer B counter (when write)  
.1  
.0  
Timer B Counter Operating Enable Bit  
0
1
Disable counting operation  
Enable counting operation  
Not used for the S3F82NB  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
109  
TINTCON — Timer Interrupt Control Register  
EDH  
Set 1, Bank 0  
Bit Identifier  
.7  
.6  
.5  
.4  
0
.3  
0
.2  
0
.1  
0
.0  
0
RESET Value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
Addressing Mode  
Register addressing mode only  
.7–.5  
.4  
Not used for the S3F82NB  
Timer B Interrupt Enable Bit  
0
1
Disable interrupt  
Enable interrupt  
.3  
.2  
.1  
.0  
Timer 1/A Match/Capture Interrupt Enable Bit  
0
1
Disable interrupt  
Enable interrupt  
Timer 1/A Overflow Interrupt Enable Bit  
0
1
Disable interrupt  
Enable interrupt  
Timer 0 Match/Capture Interrupt Enable Bit  
0
1
Disable interrupt  
Enable interrupt  
Timer 0 Overflow Interrupt Enable Bit  
0
1
Disable interrupt  
Enable interrupt  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
110  
TINTPND — Timer Interrupt Pending Register  
ECH  
Set 1, Bank 0  
Bit Identifier  
.7  
.6  
.5  
.4  
0
.3  
0
.2  
0
.1  
.0  
0
RESET Value  
Read/Write  
0
R/W  
R/W  
R/W  
R/W  
R/W  
Addressing Mode  
Register addressing mode only  
.7–.5  
.4  
Not used for the S3F82NB  
Timer B Interrupt Pending Bit  
No interrupt pending (when read), clear pending bit (when write)  
Interrupt is pending (when read)  
0
1
.3  
.2  
.1  
.0  
Timer 1/A Match/Capture Interrupt Pending Bit  
0
1
No interrupt pending (when read), clear pending bit (when write)  
Interrupt is pending (when read)  
Timer 1/A Overflow Interrupt Pending Bit  
0
1
No interrupt pending (when read), clear pending bit (when write)  
Interrupt is pending (when read)  
Timer 0 Match/Capture Interrupt Pending Bit  
0
1
No interrupt pending (when read), clear pending bit (when write)  
Interrupt is pending (when read)  
Timer 0 Overflow Interrupt Pending Bit  
0
1
No interrupt pending (when read), clear pending bit (when write)  
Interrupt is pending (when read)  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
111  
WTCON — Watch Timer Control Register  
EEH  
Set 1, Bank 0  
Bit Identifier  
.7  
0
.6  
0
.5  
0
.4  
0
.3  
0
.2  
0
.1  
0
.0  
0
RESET Value  
Read/Write  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Addressing Mode  
Register addressing mode only  
.7  
Watch Timer Clock Selection Bit  
Main system clock divided by 27 (fxx/128)  
0
1
Sub system clock (fxt)  
.6  
Watch Timer Interrupt Enable Bit  
0
1
Disable watch timer interrupt  
Enable watch timer interrupt  
.5–.4  
Buzzer Signal Selection Bits  
0
0
1
1
0
1
0
1
0.5 kHz  
1 kHz  
2 kHz  
4 kHz  
.3–.2  
Watch Timer Speed Selection Bits  
0
0
1
1
0
1
0
1
Set watch timer interrupt to 0.5s  
Set watch timer interrupt to 0.25s  
Set watch timer interrupt to 0.125s  
Set watch timer interrupt to 3.91ms  
.1  
.0  
Watch Timer Enable Bit  
0
1
Disable watch timer; Clear frequency dividing circuits  
Enable watch timer  
Watch Timer Interrupt Pending Bit  
0
1
No interrupt pending (when read), clear pending bit (when write)  
Interrupt is pending (when read)  
NOTE: Watch timer clock frequency (fw) is assumed to be 32.768 kHz.  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
112  
5
INTERRUPT STRUCTURE  
OVERVIEW  
The S3C8-series interrupt structure has three basic components: levels, vectors, and sources. The SAM8 CPU  
recognizes up to eight interrupt levels and supports up to 128 interrupt vectors. When a specific interrupt level has  
more than one vector address, the vector priorities are established in hardware. A vector address can be  
assigned to one or more sources.  
Levels  
Interrupt levels are the main unit for interrupt priority assignment and recognition. All peripherals and I/O blocks  
can issue interrupt requests. In other words, peripheral and I/O operations are interrupt-driven. There are eight  
possible interrupt levels: IRQ0–IRQ7, also called level 0–level 7. Each interrupt level directly corresponds to an  
interrupt request number (IRQn). The total number of interrupt levels used in the interrupt structure varies from  
device to device. The S3F82NB interrupt structure recognizes eight interrupt levels.  
The interrupt level numbers 0 through 7 do not necessarily indicate the relative priority of the levels. They are just  
identifiers for the interrupt levels that are recognized by the CPU. The relative priority of different interrupt levels is  
determined by settings in the interrupt priority register, IPR. Interrupt group and subgroup logic controlled by IPR  
settings lets you define more complex priority relationships between different levels.  
Vectors  
Each interrupt level can have one or more interrupt vectors, or it may have no vector address assigned at all. The  
maximum number of vectors that can be supported for a given level is 128 (The actual number of vectors used for  
S3C8-series devices is always much smaller). If an interrupt level has more than one vector address, the vector  
priorities are set in hardware. S3F82NB uses nineteen vectors.  
Sources  
A source is any peripheral that generates an interrupt. A source can be an external pin or a counter overflow.  
Each vector can have several interrupt sources. In the S3F82NB interrupt structure, there are nineteen possible  
interrupt sources.  
When a service routine starts, the respective pending bit should be either cleared automatically by hardware or  
cleared "manually" by program software. The characteristics of the source's pending mechanism determine which  
method would be used to clear its respective pending bit.  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
113  
INTERRUPT TYPES  
The three components of the S3C8 interrupt structure described before — levels, vectors, and sources — are  
combined to determine the interrupt structure of an individual device and to make full use of its available interrupt  
logic. There are three possible combinations of interrupt structure components, called interrupt types 1, 2, and 3.  
The types differ in the number of vectors and interrupt sources assigned to each level (see Figure 5-1):  
Type 1:  
Type 2:  
Type 3:  
One level (IRQn) + one vector (V1) + one source (S1)  
One level (IRQn) + one vector (V1) + multiple sources (S1 – Sn)  
One level (IRQn) + multiple vectors (V1 – Vn) + multiple sources (S1 – Sn, Sn+1 – Sn+m  
)
In the S3F82NB microcontroller, two interrupt types are implemented.  
Levels  
Vectors  
Sources  
Type 1:  
Type 2:  
IRQn  
V1  
S1  
S1  
IRQn  
IRQn  
V1  
S2  
S3  
Sn  
V1  
V2  
V3  
Vn  
S1  
Type 3:  
NOTES:  
S2  
S3  
Sn  
Sn + 1  
Sn + 2  
Sn + m  
1. The number of Sn and Vn value is expandable.  
2. In the S3F82NB implementation, interrupt types  
1 and 3 are used.  
Figure 5-1. S3C8-Series Interrupt Types  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
114  
S3F82NB INTERRUPT STRUCTURE  
The S3F82NB microcontroller supports nineteen interrupt sources. All nineteen of the interrupt sources have a  
corresponding interrupt vector address. Eight interrupt levels are recognized by the CPU in this device-specific  
interrupt structure, as shown in Figure 5-2.  
When multiple interrupt levels are active, the interrupt priority register (IPR) determines the order in which  
contending interrupts are to be serviced. If multiple interrupts occur within the same interrupt level, the interrupt  
with the lowest vector address is usually processed first (The relative priorities of multiple interrupts within a single  
level are fixed in hardware).  
When the CPU grants an interrupt request, interrupt processing starts. All other interrupts are disabled and the  
program counter value and status flags are pushed to stack. The starting address of the service routine is fetched  
from the appropriate vector address (plus the next 8-bit value to concatenate the full 16-bit address) and the  
service routine is executed.  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
115  
Levels  
Vectors  
Sources  
Reset/Clear  
nRESET  
IRQ0  
100H  
DAH  
DCH  
DEH  
E0H  
E2H  
E4H  
E6H  
E8H  
EAH  
ECH  
EEH  
F0H  
F2H  
F4H  
F6H  
F8H  
FAH  
FCH  
FEH  
Basic Timer Overflow  
Timer 0 Match/Capture  
Timer 0 Overflow  
Timer 1/A Match/Capture  
Timer 1/A Overflow  
H/W  
S/W  
H/W, S/W  
S/W  
H/W, S/W  
S/W  
S/W  
S/W  
S/W  
S/W  
S/W  
S/W  
S/W  
S/W  
S/W  
S/W  
S/W  
S/W  
S/W  
IRQ1  
IRQ2  
IRQ3  
IRQ4  
Timer B Match  
SIO Interrupt  
Watch Timer Overflow  
P1.0 External Interrupt  
P1.1 External Interrupt  
P1.2 External Interrupt  
P1.3 External Interrupt  
P1.4 External Interrupt  
P1.5 External Interrupt  
P1.6 External Interrupt  
P1.7 External Interrupt  
P5.4 External Interrupt  
P5.5 External Interrupt  
P5.6 External Interrupt  
P5.7 External Interrupt  
IRQ5  
IRQ6  
IRQ7  
S/W  
NOTES:  
1. Within a given interrupt level, the low vector address has high priority.  
For example, DAH has higher priority than DCH within the level IRQ0 the priorities  
within each level are set at the factory.  
2. External interrupts are triggered by a rising or falling edge, depending on the  
corresponding control register setting.  
Figure 5-2. S3F82NB Interrupt Structure  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
116  
INTERRUPT VECTOR ADDRESSES  
All interrupt vector addresses for the S3F82NB interrupt structure are stored in the vector address area of the  
internal 64-Kbyte ROM, 0H–FFFFH. (see Figure 5-3).  
You can allocate unused locations in the vector address area as normal program memory. If you do so, please be  
careful not to overwrite any of the stored vector addresses (Table 5-1 lists all vector addresses).  
The program reset address in the ROM is 0100H.  
The reset address of ROM can be changed by Smart Option in the S3F82NB (full-flash device). Refer to the  
Chapter 18. Embedded Flash Memory Interface for more detailed contents.  
(Decimal)  
65,535  
(Hex)  
FFFFH  
64K-bytes  
Internal  
Program  
Memory Area  
8FFH  
FFH  
Available  
ISP Sector Area  
255  
0
Interrupt Vector Area  
Smart Option  
3FH  
3CH  
00H  
Figure 5-3. ROM Vector Address Area  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
117  
Table 5-1. Interrupt Vectors  
Interrupt Source  
Vector Address  
Request  
Interrupt  
Level  
Reset  
IRQ0  
Reset/Clear  
Decimal  
Hex  
Value  
Priority in H/W  
S/W  
Value  
256  
218  
220  
222  
224  
226  
228  
230  
232  
234  
236  
238  
240  
242  
244  
246  
248  
250  
252  
254  
Level  
100H  
DAH  
DCH  
DEH  
E0H  
E2H  
E4H  
E6H  
E8H  
EAH  
ECH  
EEH  
F0H  
F2H  
F4H  
F6H  
F8H  
FAH  
FCH  
FEH  
Basic timer overflow  
0
1
0
1
0
1
2
3
0
1
2
3
0
1
2
3
3
3
3
Timer 0 match/capture  
Timer 0 overflow  
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
Timer 1/A match/capture  
Timer 1/A overflow  
IRQ1  
Timer B match  
IRQ2  
IRQ3  
IRQ4  
IRQ5  
SIO interrupt  
Watch timer overflow  
P1.0 external interrupt  
P1.1 external interrupt  
P1.2 external interrupt  
P1.3 external interrupt  
P1.4 external interrupt  
P1.5 external interrupt  
P1.6 external interrupt  
P1.7 external interrupt  
P5.4 external interrupt  
P5.5 external interrupt  
P5.6 external interrupt  
P5.7 external interrupt  
IRQ6  
IRQ7  
NOTES:  
1. Interrupt priorities are identified in inverse order: "0" is the highest priority, "1" is the next highest, and so on.  
2. If two or more interrupts within the same level contend, the interrupt with the lowest vector address usually has priority over  
one with a higher vector address. The priorities within a given level are fixed in hardware.  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
118  
ENABLE/DISABLE INTERRUPT INSTRUCTIONS (EI, DI)  
Executing the Enable Interrupts (EI) instruction globally enables the interrupt structure. All interrupts are then  
serviced as they occur according to the established priorities.  
NOTE  
The system initialization routine executed after a reset must always contain an EI instruction to globally  
enable the interrupt structure.  
During the normal operation, you can execute the DI (Disable Interrupt) instruction at any time to globally disable  
interrupt processing. The EI and DI instructions change the value of bit 0 in the SYM register.  
SYSTEM-LEVEL INTERRUPT CONTROL REGISTERS  
In addition to the control registers for specific interrupt sources, four system-level registers control interrupt  
processing:  
— The interrupt mask register, IMR, enables (un-masks) or disables (masks) interrupt levels.  
— The interrupt priority register, IPR, controls the relative priorities of interrupt levels.  
— The interrupt request register, IRQ, contains interrupt pending flags for each interrupt level (as opposed to  
each interrupt source).  
— The system mode register, SYM, enables or disables global interrupt processing (SYM settings also enable  
fast interrupts and control the activity of external interface, if implemented).  
Table 5-2. Interrupt Control Register Overview  
Control Register  
ID  
R/W  
Function Description  
Interrupt mask register  
IMR  
R/W  
Bit settings in the IMR register enable or disable interrupt  
processing for each of the eight interrupt levels: IRQ0–IRQ7.  
Interrupt priority register  
IPR  
R/W  
Controls the relative processing priorities of the interrupt levels.  
The seven levels of S3F82NB are organized into three groups:  
A, B, and C. Group A is IRQ0 and IRQ1, group B is IRQ2,  
IRQ3 and IRQ4, and group C is IRQ5, IRQ6, and IRQ7.  
Interrupt request register  
System mode register  
IRQ  
R
This register contains a request pending bit for each interrupt  
level.  
SYM  
R/W  
This register enables/disables fast interrupt processing,  
dynamic global interrupt processing, and external interface  
control (An external memory interface is implemented in the  
S3F82NB microcontroller).  
NOTE: Before IMR register is changed to any value, all interrupts must be disable. Using DI instruction is recommended.  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
119  
INTERRUPT PROCESSING CONTROL POINTS  
Interrupt processing can therefore be controlled in two ways: globally or by specific interrupt level and source. The  
system-level control points in the interrupt structure are:  
— Global interrupt enable and disable (by EI and DI instructions or by direct manipulation of SYM.0)  
— Interrupt level enable/disable settings (IMR register)  
— Interrupt level priority settings (IPR register)  
— Interrupt source enable/disable settings in the corresponding peripheral control registers  
NOTE  
When writing an application program that handles interrupt processing, be sure to include the necessary  
register file address (register pointer) information.  
EI  
S
R
Q
Interrupt Request Register  
(Read-only)  
Polling  
Cycle  
RESET  
IRQ0-IRQ7,  
Interrupts  
Interrupt Priority  
Register  
Vector  
Interrupt  
Cycle  
Interrupt Mask  
Register  
Global Interrupt Control (EI,  
DI or SYM.0 manipulation)  
Figure 5-4. Interrupt Function Diagram  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
120  
PERIPHERAL INTERRUPT CONTROL REGISTERS  
For each interrupt source there is one or more corresponding peripheral control registers that let you control the  
interrupt generated by the related peripheral (see Table 5-3).  
Table 5-3. Interrupt Source Control and Data Registers  
Interrupt Source  
Interrupt Level  
Register(s)  
Location(s) in Set 1  
Timer 0 match/capture  
Timer 0 overflow  
IRQ0  
T0CON  
T0CNT  
T0DATA  
E5H, bank 0  
E3H, bank 0  
E4H, bank 0  
Timer 1/A match/capture  
Timer 1/A overflow  
IRQ1  
IRQ2  
IRQ3  
TACON  
TACNT  
TADATA  
EBH, bank 0  
E7H, bank 0  
E9H, bank 0  
Timer B match  
TBCON  
TBCNT  
TBDATA  
EAH, bank 0  
E6H, bank 0  
E8H, bank 0  
SIO interrupt  
SIOCON  
SIODATA  
SIOPS  
F3H, bank 0  
F4H, bank 0  
F5H, bank 0  
Watch timer overflow  
IRQ4  
IRQ5  
WTCON  
EEH, bank 0  
P1.0 external interrupt  
P1.1 external interrupt  
P1.2 external interrupt  
P1.3 external interrupt  
P1CONlL  
P1INTL  
P1PND  
E5H, bank 1  
E9H, bank 1  
E7H, bank 1  
P1.4 external interrupt  
P1.5 external interrupt  
P1.6 external interrupt  
P1.7 external interrupt  
IRQ6  
IRQ7  
P1CONH  
P1INTH  
P1PND  
E4H, bank 1  
E8H, bank 1  
E7H, bank 1  
P5.4 external interrupt  
P5.5 external interrupt  
P5.6 external interrupt  
P5.7 external interrupt  
P5CONH  
P5INT  
P5PND  
FEH, bank 1  
FBH, bank 1  
FCH, bank 1  
NOTE: If a interrupt is un-mask (Enable interrupt level) in the IMR register, the pending bit and enable bit of the interrupt  
should be written after a DI instruction is executed.  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
121  
SYSTEM MODE REGISTER (SYM)  
The system mode register, SYM (set 1, DEH), is used to globally enable and disable interrupt processing and to  
control fast interrupt processing (see Figure 5-5).  
A reset clears SYM.1 and SYM.0 to "0". The 3-bit value for fast interrupt level selection, SYM.4–SYM.2, is  
undetermined.  
The instructions EI and DI enable and disable global interrupt processing, respectively, by modifying the bit 0  
value of the SYM register. In order to enable interrupt processing an Enable Interrupt (EI) instruction must be  
included in the initialization routine, which follows a reset operation. Although you can manipulate SYM.0 directly  
to enable and disable interrupts during the normal operation, it is recommended to use the EI and DI instructions  
for this purpose.  
System Mode Register (SYM)  
DEH, Set 1, R/W  
MSB  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
Always logic "0"  
Global interrupt enable bit: (3)  
0 = Disable all interrupts processing  
1 = Enable all interrupts processing  
Fast interrupt level  
selection bits: (1)  
Fast interrupt enable bit: (2)  
0 = Disable fast interrupts processing  
1 = Enable fast interrupts processing  
0 0 0 = IRQ0  
0 0 1 = IRQ1  
0 1 0 = IRQ2  
0 1 1 = IRQ3  
1 0 0 = IRQ4  
1 0 1 = IRQ5  
1 1 0 = IRQ6  
1 1 1 = IRQ7  
Not used for the S3F82NB  
NOTES:  
1. You can select only one interrupt level at a time for fast interrupt processing.  
2. Setting SYM.1 to "1" enables fast interrupt processing for the interrupt processing for the  
interrupt level currently selected by SYM.2-SYM.4.  
3. Following a reset, you must enable global interrupt processing by executing EI instruction  
(not by writing a "1" to SYM.0)  
Figure 5-5. System Mode Register (SYM)  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
122  
INTERRUPT MASK REGISTER (IMR)  
The interrupt mask register, IMR (set 1, DDH) is used to enable or disable interrupt processing for individual  
interrupt levels. After a reset, all IMR bit values are undetermined and must therefore be written to their required  
settings by the initialization routine.  
Each IMR bit corresponds to a specific interrupt level: bit 1 to IRQ1, bit 2 to IRQ2, and so on. When the IMR bit of  
an interrupt level is cleared to "0", interrupt processing for that level is disabled (masked). When you set a level's  
IMR bit to "1", interrupt processing for the level is enabled (not masked).  
The IMR register is mapped to register location DDH in set 1. Bit values can be read and written by instructions  
using the Register addressing mode.  
Interrupt Mask Register (IMR)  
DDH, Set 1, R/W  
MSB  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
IRQ0  
IRQ1  
IRQ2  
IRQ3  
IRQ4  
IRQ5  
IRQ6  
IRQ7  
Interrupt level enable :  
0 = Disable (mask) interrupt level  
1 = Enable (un-mask) interrupt level  
NOTE:  
Before IMR register is changed to any value, all interrupts must be disable.  
Using DI instruction is recommended.  
Figure 5-6. Interrupt Mask Register (IMR)  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
123  
INTERRUPT PRIORITY REGISTER (IPR)  
The interrupt priority register, IPR (set 1, bank 0, FFH), is used to set the relative priorities of the interrupt levels in  
the microcontroller’s interrupt structure. After a reset, all IPR bit values are undetermined and must therefore be  
written to their required settings by the initialization routine.  
When more than one interrupt sources are active, the source with the highest priority level is serviced first. If two  
sources belong to the same interrupt level, the source with the lower vector address usually has the priority (This  
priority is fixed in hardware).  
To support programming of the relative interrupt level priorities, they are organized into groups and subgroups by  
the interrupt logic. Please note that these groups (and subgroups) are used only by IPR logic for the IPR register  
priority definitions (see Figure 5-7):  
Group A  
Group B  
Group C  
IRQ0, IRQ1  
IRQ2, IRQ3, IRQ4  
IRQ5, IRQ6, IRQ7  
IPR  
Group A  
IPR  
Group B  
IPR  
Group C  
A1  
A2  
B1  
B2  
C1  
C2  
B21  
IRQ2 IRQ3  
B22  
IRQ4  
C21  
IRQ5 IRQ6  
C22  
IRQ7  
IRQ0  
IRQ1  
Figure 5-7. Interrupt Request Priority Groups  
As you can see in Figure 5-8, IPR.7, IPR.4, and IPR.1 control the relative priority of interrupt groups A, B, and C.  
For example, the setting "001B" for these bits would select the group relationship B > C > A. The setting "101B"  
would select the relationship C > B > A.  
The functions of the other IPR bit settings are as follows:  
— IPR.5 controls the relative priorities of group C interrupts.  
— Interrupt group C includes a subgroup that has an additional priority relationship among the interrupt levels 5,  
6, and 7. IPR.6 defines the subgroup C relationship. IPR.5 controls the interrupt group C.  
— IPR.0 controls the relative priority setting of IRQ0 and IRQ1 interrupts.  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
124  
Interrupt Priority Register (IPR)  
FFH, Set 1, Bank 0, R/W  
MSB  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
Group priority:  
D7 D4 D1  
Group A:  
0 = IRQ0 > IRQ1  
1 = IRQ1 > IRQ0  
Group B:  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0 = Undefined  
1 = B > C > A  
0 = A > B > C  
1 = B > A > C  
0 = C > A > B  
1 = C > B > A  
0 = A > C > B  
1 = Undefined  
0 = IRQ2 > (IRQ3, IRQ4)  
1 = (IRQ3, IRQ4) > IRQ2  
Subgroup B:  
0 = IRQ3 > IRQ4  
1 = IRQ4 > IRQ3  
Group C:  
0 = IRQ5 > (IRQ6, IRQ7)  
1 = (IRQ6, IRQ7) > IRQ5  
Subgroup C:  
0 = IRQ6 > IRQ7  
1 = IRQ7 > IRQ6  
Figure 5-8. Interrupt Priority Register (IPR)  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
125  
INTERRUPT REQUEST REGISTER (IRQ)  
You can poll bit values in the interrupt request register, IRQ (set 1, DCH), to monitor interrupt request status for all  
levels in the microcontroller’s interrupt structure. Each bit corresponds to the interrupt level of the same number:  
bit 0 to IRQ0, bit 1 to IRQ1, and so on. A "0" indicates that no interrupt request is currently being issued for that  
level. A "1" indicates that an interrupt request has been generated for that level.  
IRQ bit values are read-only addressable using Register addressing mode. You can read (test) the contents of the  
IRQ register at any time using bit or byte addressing to determine the current interrupt request status of specific  
interrupt levels. After a reset, all IRQ status bits are cleared to “0”.  
You can poll IRQ register values even if a DI instruction has been executed (that is, if global interrupt processing  
is disabled). If an interrupt occurs while the interrupt structure is disabled, the CPU will not service it. You can,  
however, still detect the interrupt request by polling the IRQ register. In this way, you can determine which events  
occurred while the interrupt structure was globally disabled.  
Interrupt Request Register (IRQ)  
DCH, Set 1, Read-only  
MSB  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
IRQ0  
IRQ1  
IRQ2  
IRQ3  
IRQ4  
IRQ5  
IRQ6  
IRQ7  
Interrupt level request pending bits:  
0 = Interrupt level is not pending  
1 = Interrupt level is pending  
Figure 5-9. Interrupt Request Register (IRQ)  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
126  
INTERRUPT PENDING FUNCTION TYPES  
Overview  
There are two types of interrupt pending bits: one type that is automatically cleared by hardware after the interrupt  
service routine is acknowledged and executed; the other that must be cleared in the interrupt service routine.  
Pending Bits Cleared Automatically by Hardware  
For interrupt pending bits that are cleared automatically by hardware, interrupt logic sets the corresponding  
pending bit to "1" when a request occurs. It then issues an IRQ pulse to inform the CPU that an interrupt is waiting  
to be serviced. The CPU acknowledges the interrupt source by sending an IACK, executes the service routine,  
and clears the pending bit to "0". This type of pending bit is not mapped and cannot, therefore, be read or written  
by application software.  
In the S3F82NB interrupt structure, the timer 0 match/capture and overflow interrupt (IRQ0), the timer 1/A  
match/capture and overflow interrupt (IRQ1), the timer B match interrupt (IRQ2), the SIO interrupt (IRQ3) belongs  
to this category of interrupts in which pending condition is cleared automatically by hardware.  
Pending Bits Cleared by the Service Routine  
The second type of pending bit is the one that should be cleared by program software. The service routine must  
clear the appropriate pending bit before a return-from-interrupt subroutine (IRET) occurs. To do this, a "0" must be  
written to the corresponding pending bit location in the source’s mode or control register.  
Programming Tip — How to clear an interrupt pending bit  
As the following examples are shown, a load instruction should be used to clear an interrupt pending bit.  
Examples:  
1.  
2.  
SB1  
LD  
P1PND, #11111011B  
; Clear P1.2's interrupt pending bit  
IRET  
SB0  
LD  
TINTPND, #11111101B  
; Clear timer 0 match/capture interrupt pending bit  
IRET  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
127  
INTERRUPT SOURCE POLLING SEQUENCE  
The interrupt request polling and servicing sequence is as follows:  
1. A source generates an interrupt request by setting the interrupt request bit to "1".  
2. The CPU polling procedure identifies a pending condition for that source.  
3. The CPU checks the sources interrupt level.  
4. The CPU generates an interrupt acknowledge signal.  
5. Interrupt logic determines the interrupt's vector address.  
6. The service routine starts and the source's pending bit is cleared to "0" (by hardware or by software).  
7. The CPU continues polling for interrupt requests.  
INTERRUPT SERVICE ROUTINES  
Before an interrupt request is serviced, the following conditions must be met:  
— Interrupt processing must be globally enabled (EI, SYM.0 = "1")  
— The interrupt level must be enabled (IMR register)  
— The interrupt level must have the highest priority if more than one levels are currently requesting service  
— The interrupt must be enabled at the interrupt's source (peripheral control register)  
When all the above conditions are met, the interrupt request is acknowledged at the end of the instruction cycle.  
The CPU then initiates an interrupt machine cycle that completes the following processing sequence:  
1. Reset (clear to "0") the interrupt enable bit in the SYM register (SYM.0) to disable all subsequent interrupts.  
2. Save the program counter (PC) and status flags to the system stack.  
3. Branch to the interrupt vector to fetch the address of the service routine.  
4. Pass control to the interrupt service routine.  
When the interrupt service routine is completed, the CPU issues an Interrupt Return (IRET). The IRET restores  
the PC and status flags, setting SYM.0 to "1". It allows the CPU to process the next interrupt request.  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
128  
GENERATING INTERRUPT VECTOR ADDRESSES  
The interrupt vector area in the ROM (00H–FFH) contains the addresses of interrupt service routines that  
correspond to each level in the interrupt structure. Vectored interrupt processing follows this sequence:  
1. Push the program counter's low-byte value to the stack.  
2. Push the program counter's high-byte value to the stack.  
3. Push the FLAG register values to the stack.  
4. Fetch the service routine's high-byte address from the vector location.  
5. Fetch the service routine's low-byte address from the vector location.  
6. Branch to the service routine specified by the concatenated 16-bit vector address.  
NOTE  
A 16-bit vector address always begins at an even-numbered ROM address within the range of 00H–FFH.  
NESTING OF VECTORED INTERRUPTS  
It is possible to nest a higher-priority interrupt request while a lower-priority request is being serviced. To do this,  
you must follow these steps:  
1. Push the current 8-bit interrupt mask register (IMR) value to the stack (PUSH IMR).  
2. Load the IMR register with a new mask value that enables only the higher priority interrupt.  
3. Execute an EI instruction to enable interrupt processing (a higher priority interrupt will be processed if it  
occurs).  
4. When the lower-priority interrupt service routine ends, restore the IMR to its original value by returning the  
previous mask value from the stack (POP IMR).  
5. Execute an IRET.  
Depending on the application, you may be able to simplify the procedure above to some extent.  
INSTRUCTION POINTER (IP)  
The instruction pointer (IP) is adopted by all the S3C8-series microcontrollers to control the optional high-speed  
interrupt processing feature called fast interrupts. The IP consists of register pair DAH and DBH. The names of IP  
registers are IPH (high byte, IP15–IP8) and IPL (low byte, IP7–IP0).  
FAST INTERRUPT PROCESSING  
The feature called fast interrupt processing allows an interrupt within a given level to be completed in  
approximately 6 clock cycles rather than the usual 16 clock cycles. To select a specific interrupt level for fast  
interrupt processing, you write the appropriate 3-bit value to SYM.4–SYM.2. Then, to enable fast interrupt  
processing for the selected level, you set SYM.1 to “1”.  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
129  
FAST INTERRUPT PROCESSING (Continued)  
Two other system registers support fast interrupt processing:  
— The instruction pointer (IP) contains the starting address of the service routine (and is later used to swap the  
program counter values), and  
— When a fast interrupt occurs, the contents of the FLAGS register is stored in an unmapped, dedicated register  
called FLAGS' (“FLAGS prime”).  
NOTE  
For the S3F82NB microcontroller, the service routine for any one of the eight interrupts levels: IRQ0–  
IRQ7 can be selected for fast interrupt processing.  
Procedure for Initiating Fast Interrupts  
To initiate fast interrupt processing, follow these steps:  
1. Load the start address of the service routine into the instruction pointer (IP).  
2. Load the interrupt level number (IRQn) into the fast interrupt selection field (SYM.4–SYM.2)  
3. Write a "1" to the fast interrupt enable bit in the SYM register.  
Fast Interrupt Service Routine  
When an interrupt occurs in the level selected for fast interrupt processing, the following events occur:  
1. The contents of the instruction pointer and the PC are swapped.  
2. The FLAG register values are written to the FLAGS' (“FLAGS prime”) register.  
3. The fast interrupt status bit in the FLAGS register is set.  
4. The interrupt is serviced.  
5. Assuming that the fast interrupt status bit is set, when the fast interrupt service routine ends, the instruction  
pointer and PC values are swapped back.  
6. The content of FLAGS' (“FLAGS prime”) is copied automatically back to the FLAGS register.  
7. The fast interrupt status bit in FLAGS is cleared automatically.  
Relationship to Interrupt Pending Bit Types  
As described previously, there are two types of interrupt pending bits: One type that is automatically cleared by  
hardware after the interrupt service routine is acknowledged and executed; the other that must be cleared by the  
application program's interrupt service routine. You can select fast interrupt processing for interrupts with either  
type of pending condition clear function — by hardware or by software.  
Programming Guidelines  
Remember that the only way to enable/disable a fast interrupt is to set/clear the fast interrupt enable bit in the  
SYM register, SYM.1. Executing an EI or DI instruction globally enables or disables all interrupt processing,  
including fast interrupts. If you use fast interrupts, remember to load the IP with a new start address when the fast  
interrupt service routine ends.  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
130  
6
INSTRUCTION SET  
OVERVIEW  
The SAM8 instruction set is specifically designed to support the large register files that are typical of most SAM8  
microcontrollers. There are 78 instructions. The powerful data manipulation capabilities and features of the  
instruction set include:  
— A full complement of 8-bit arithmetic and logic operations, including multiply and divide  
— No special I/O instructions (I/O control/data registers are mapped directly into the register file)  
— Decimal adjustment included in binary-coded decimal (BCD) operations  
— 16-bit (word) data can be incremented and decremented  
— Flexible instructions for bit addressing, rotate, and shift operations  
DATA TYPES  
The SAM8 CPU performs operations on bits, bytes, BCD digits, and two-byte words. Bits in the register file can  
be set, cleared, complemented, and tested. Bits within a byte are numbered from 7 to 0, where bit 0 is the least  
significant (right-most) bit.  
REGISTER ADDRESSING  
To access an individual register, an 8-bit address in the range 0-255 or the 4-bit address of a working register is  
specified. Paired registers can be used to construct 16-bit data or 16-bit program memory or data memory  
addresses. For detailed information about register addressing, please refer to Section 2, "Address Spaces."  
ADDRESSING MODES  
There are seven explicit addressing modes: Register (R), Indirect Register (IR), Indexed (X), Direct (DA), Relative  
(RA), Immediate (IM), and Indirect (IA). For detailed descriptions of these addressing modes, please refer to  
Section 3, "Addressing Modes."  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
131  
Table 6-1. Instruction Group Summary  
Operands Instruction  
Mnemonic  
Load Instructions  
CLR  
dst  
Clear  
LD  
dst,src  
dst,src  
dst,src  
dst,src  
dst,src  
dst,src  
dst,src  
dst,src  
dst,src  
dst,src  
dst,src  
dst,src  
dst,src  
dst  
Load  
LDB  
Load bit  
LDE  
Load external data memory  
Load program memory  
LDC  
LDED  
LDCD  
LDEI  
Load external data memory and decrement  
Load program memory and decrement  
Load external data memory and increment  
Load program memory and increment  
Load external data memory with pre-decrement  
Load program memory with pre-decrement  
Load external data memory with pre-increment  
Load program memory with pre-increment  
Load word  
LDCI  
LDEPD  
LDCPD  
LDEPI  
LDCPI  
LDW  
POP  
Pop from stack  
POPUD  
POPUI  
PUSH  
PUSHUD  
PUSHUI  
dst,src  
dst,src  
src  
Pop user stack (decrementing)  
Pop user stack (incrementing)  
Push to stack  
dst,src  
dst,src  
Push user stack (decrementing)  
Push user stack (incrementing)  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
132  
Table 6-1. Instruction Group Summary (Continued)  
Operands Instruction  
Mnemonic  
Arithmetic Instructions  
ADC  
ADD  
CP  
dst,src  
dst,src  
Add with carry  
Add  
dst,src  
dst  
Compare  
DA  
Decimal adjust  
Decrement  
Decrement word  
Divide  
DEC  
DECW  
DIV  
dst  
dst  
dst,src  
dst  
INC  
Increment  
INCW  
MULT  
SBC  
SUB  
dst  
Increment word  
Multiply  
dst,src  
dst,src  
dst,src  
Subtract with carry  
Subtract  
Logic Instructions  
AND  
COM  
OR  
dst,src  
dst  
Logical AND  
Complement  
dst,src  
dst,src  
Logical OR  
XOR  
Logical exclusive OR  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
133  
Table 6-1. Instruction Group Summary (Continued)  
Operands Instruction  
Mnemonic  
Program Control Instructions  
BTJRF  
BTJRT  
CALL  
CPIJE  
CPIJNE  
DJNZ  
ENTER  
EXIT  
IRET  
JP  
dst,src  
dst,src  
dst  
Bit test and jump relative on false  
Bit test and jump relative on true  
Call procedure  
dst,src  
dst,src  
r,dst  
Compare, increment and jump on equal  
Compare, increment and jump on non-equal  
Decrement register and jump on non-zero  
Enter  
Exit  
Interrupt return  
Jump on condition code  
Jump unconditional  
Jump relative on condition code  
Next  
cc,dst  
dst  
JP  
JR  
cc,dst  
NEXT  
RET  
Return  
WFI  
Wait for interrupt  
Bit Manipulation Instructions  
BAND  
BCP  
BITC  
BITR  
BITS  
BOR  
BXOR  
TCM  
TM  
dst,src  
dst,src  
dst  
Bit AND  
Bit compare  
Bit complement  
Bit reset  
dst  
dst  
Bit set  
dst,src  
dst,src  
dst,src  
dst,src  
Bit OR  
Bit XOR  
Test complement under mask  
Test under mask  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
134  
Table 6-1. Instruction Group Summary (Concluded)  
Operands Instruction  
Mnemonic  
Rotate and Shift Instructions  
RL  
dst  
dst  
dst  
dst  
dst  
dst  
Rotate left  
RLC  
RR  
Rotate left through carry  
Rotate right  
RRC  
SRA  
SWAP  
Rotate right through carry  
Shift right arithmetic  
Swap nibbles  
CPU Control Instructions  
CCF  
DI  
Complement carry flag  
Disable interrupts  
Enable interrupts  
Enter Idle mode  
No operation  
EI  
IDLE  
NOP  
RCF  
SB0  
SB1  
SCF  
Reset carry flag  
Set bank 0  
Set bank 1  
Set carry flag  
SRP  
src  
src  
src  
Set register pointers  
Set register pointer 0  
Set register pointer 1  
Enter Stop mode  
SRP0  
SRP1  
STOP  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
135  
FLAGS REGISTER (FLAGS)  
The flags register FLAGS contains eight bits that describe the current status of CPU operations. Four of these  
bits, FLAGS.7–FLAGS.4, can be tested and used with conditional jump instructions; two others FLAGS.3 and  
FLAGS.2 are used for BCD arithmetic.  
The FLAGS register also contains a bit to indicate the status of fast interrupt processing (FLAGS.1) and a bank  
address status bit (FLAGS.0) to indicate whether bank 0 or bank 1 is currently being addressed. FLAGS register  
can be set or reset by instructions as long as its outcome does not affect the flags, such as, Load instruction.  
Logical and Arithmetic instructions such as, AND, OR, XOR, ADD, and SUB can affect the Flags register. For  
example, the AND instruction updates the Zero, Sign and Overflow flags based on the outcome of the AND  
instruction. If the AND instruction uses the Flags register as the destination, then simultaneously, two write will  
occur to the Flags register producing an unpredictable result.  
System Flags Register (FLAGS)  
D5H, Set 1, R/W  
MSB  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
Bank address  
status flag (BA)  
Carry flag (C)  
First interrupt  
status flag (FIS)  
Zero flag (Z)  
Sign flag (S)  
Overflow (V)  
Half-carry flag (H)  
Decimal adjust flag (D)  
Figure 6-1. System Flags Register (FLAGS)  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
136  
FLAG DESCRIPTIONS  
C
Carry Flag (FLAGS.7)  
The C flag is set to "1" if the result from an arithmetic operation generates a carry-out from or a borrow to  
the bit 7 position (MSB). After rotate and shift operations, it contains the last value shifted out of the  
specified register. Program instructions can set, clear, or complement the carry flag.  
Z
Zero Flag (FLAGS.6)  
For arithmetic and logic operations, the Z flag is set to "1" if the result of the operation is zero. For  
operations that test register bits, and for shift and rotate operations, the Z flag is set to "1" if the result is  
logic zero.  
S
V
D
Sign Flag (FLAGS.5)  
Following arithmetic, logic, rotate, or shift operations, the sign bit identifies the state of the MSB of the  
result. A logic zero indicates a positive number and a logic one indicates a negative number.  
Overflow Flag (FLAGS.4)  
The V flag is set to "1" when the result of a two's-complement operation is greater than + 127 or less than  
– 128. It is also cleared to "0" following logic operations.  
Decimal Adjust Flag (FLAGS.3)  
The DA bit is used to specify what type of instruction was executed last during BCD operations, so that a  
subsequent decimal adjust operation can execute correctly. The DA bit is not usually accessed by  
programmers, and cannot be used as a test condition.  
H
Half-Carry Flag (FLAGS.2)  
The H bit is set to "1" whenever an addition generates a carry-out of bit 3, or when a subtraction borrows  
out of bit 4. It is used by the Decimal Adjust (DA) instruction to convert the binary result of a previous  
addition or subtraction into the correct decimal (BCD) result. The H flag is seldom accessed directly by a  
program.  
FIS Fast Interrupt Status Flag (FLAGS.1)  
The FIS bit is set during a fast interrupt cycle and reset during the IRET following interrupt servicing.  
When set, it inhibits all interrupts and causes the fast interrupt return to be executed when the IRET  
instruction is executed.  
BA Bank Address Flag (FLAGS.0)  
The BA flag indicates which register bank in the set 1 area of the internal register file is currently selected,  
bank 0 or bank 1. The BA flag is cleared to "0" (select bank 0) when you execute the SB0 instruction and  
is set to "1" (select bank 1) when you execute the SB1 instruction.  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
137  
INSTRUCTION SET NOTATION  
Flag  
Table 6-2. Flag Notation Conventions  
Description  
C
Z
S
V
D
H
0
1
*
Carry flag  
Zero flag  
Sign flag  
Overflow flag  
Decimal-adjust flag  
Half-carry flag  
Cleared to logic zero  
Set to logic one  
Set or cleared according to operation  
Value is unaffected  
Value is undefined  
x
Table 6-3. Instruction Set Symbols  
Symbol  
dst  
src  
@
Description  
Destination operand  
Source operand  
Indirect register address prefix  
Program counter  
PC  
IP  
Instruction pointer  
FLAGS  
RP  
#
Flags register (D5H)  
Register pointer  
Immediate operand or register address prefix  
Hexadecimal number suffix  
Decimal number suffix  
Binary number suffix  
H
D
B
opc  
Opcode  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
138  
Table 6-4. Instruction Notation Conventions  
Description Actual Operand Range  
Notation  
cc  
r
Condition code  
See list of condition codes in Table 6-6.  
Rn (n = 0–15)  
Working register only  
rb  
r0  
rr  
Bit (b) of working register  
Rn.b (n = 0–15, b = 0–7)  
Rn (n = 0–15)  
Bit 0 (LSB) of working register  
Working register pair  
RRp (p = 0, 2, 4, ..., 14)  
reg or Rn (reg = 0–255, n = 0–15)  
reg.b (reg = 0–255, b = 0–7)  
R
Register or working register  
Bit 'b' of register or working register  
Register pair or working register pair  
Rb  
RR  
reg or RRp (reg = 0–254, even number only, where  
p = 0, 2, ..., 14)  
IA  
Ir  
Indirect addressing mode  
addr (addr = 0–254, even number only)  
@Rn (n = 0–15)  
Indirect working register only  
IR  
Indirect register or indirect working register @Rn or @reg (reg = 0–255, n = 0–15)  
Irr  
Indirect working register pair only  
@RRp (p = 0, 2, ..., 14)  
IRR  
Indirect register pair or indirect working  
register pair  
@RRp or @reg (reg = 0–254, even only, where  
p = 0, 2, ..., 14)  
X
Indexed addressing mode  
#reg [Rn] (reg = 0–255, n = 0–15)  
XS  
Indexed (short offset) addressing mode  
#addr [RRp] (addr = range –128 to +127, where  
p = 0, 2, ..., 14)  
xl  
Indexed (long offset) addressing mode  
#addr [RRp] (addr = range 0–65535, where  
p = 0, 2, ..., 14)  
da  
ra  
Direct addressing mode  
Relative addressing mode  
addr (addr = range 0–65535)  
addr (addr = number in the range +127 to –128 that is  
an offset relative to the address of the next instruction)  
im  
Immediate addressing mode  
#data (data = 0–255)  
iml  
Immediate (long) addressing mode  
#data (data = range 0–65535)  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
139  
Table 6-5. Opcode Quick Reference  
OPCODE MAP  
LOWER NIBBLE (HEX)  
0
0
1
2
3
4
5
6
7
DEC  
R1  
DEC  
IR1  
ADD  
r1,r2  
ADD  
r1,Ir2  
ADD  
R2,R1  
ADD  
IR2,R1  
ADD  
R1,IM  
BOR  
r0–Rb  
U
P
P
E
R
RLC  
R1  
RLC  
IR1  
ADC  
r1,r2  
ADC  
r1,Ir2  
ADC  
R2,R1  
ADC  
IR2,R1  
ADC  
R1,IM  
BCP  
r1.b, R2  
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
INC  
R1  
INC  
IR1  
SUB  
r1,r2  
SUB  
r1,Ir2  
SUB  
R2,R1  
SUB  
IR2,R1  
SUB  
R1,IM  
BXOR  
r0–Rb  
JP  
IRR1  
SRP/0/1  
IM  
SBC  
r1,r2  
SBC  
r1,Ir2  
SBC  
R2,R1  
SBC  
IR2,R1  
SBC  
R1,IM  
BTJR  
r2.b, RA  
DA  
R1  
DA  
IR1  
OR  
r1,r2  
OR  
r1,Ir2  
OR  
R2,R1  
OR  
IR2,R1  
OR  
R1,IM  
LDB  
r0–Rb  
POP  
R1  
POP  
IR1  
AND  
r1,r2  
AND  
r1,Ir2  
AND  
R2,R1  
AND  
IR2,R1  
AND  
R1,IM  
BITC  
r1.b  
COM  
R1  
COM  
IR1  
TCM  
r1,r2  
TCM  
r1,Ir2  
TCM  
R2,R1  
TCM  
IR2,R1  
TCM  
R1,IM  
BAND  
r0–Rb  
N
I
PUSH  
R2  
PUSH  
IR2  
TM  
r1,r2  
TM  
r1,Ir2  
TM  
R2,R1  
TM  
IR2,R1  
TM  
R1,IM  
BIT  
r1.b  
DECW  
RR1  
DECW  
IR1  
PUSHUD PUSHUI  
IR1,R2  
MULT  
R2,RR1  
MULT  
IR2,RR1  
MULT  
IM,RR1  
LD  
r1, x, r2  
B
B
L
E
IR1,R2  
RL  
R1  
RL  
IR1  
POPUD  
IR2,R1  
POPUI  
IR2,R1  
DIV  
R2,RR1  
DIV  
IR2,RR1  
DIV  
IM,RR1  
LD  
r2, x, r1  
INCW  
RR1  
INCW  
IR1  
CP  
r1,r2  
CP  
r1,Ir2  
CP  
R2,R1  
CP  
IR2,R1  
CP  
R1,IM  
LDC  
r1, Irr2, xL  
CLR  
R1  
CLR  
IR1  
XOR  
r1,r2  
XOR  
r1,Ir2  
XOR  
R2,R1  
XOR  
IR2,R1  
XOR  
R1,IM  
LDC  
r2, Irr2, xL  
RRC  
R1  
RRC  
IR1  
CPIJE  
Ir,r2,RA  
LDC  
r1,Irr2  
LDW  
LDW  
LDW  
LD  
r1, Ir2  
RR2,RR1 IR2,RR1 RR1,IML  
SRA  
R1  
SRA  
IR1  
CPIJNE  
Irr,r2,RA  
LDC  
r2,Irr1  
CALL  
IA1  
LD  
IR1,IM  
LD  
Ir1, r2  
H
E
X
RR  
R1  
RR  
IR1  
LDCD  
r1,Irr2  
LDCI  
r1,Irr2  
LD  
R2,R1  
LD  
R2,IR1  
LD  
R1,IM  
LDC  
r1, Irr2, xs  
SWAP  
R1  
SWAP  
IR1  
LDCPD  
r2,Irr1  
LDCPI  
r2,Irr1  
CALL  
IRR1  
LD  
IR2,R1  
CALL  
DA1  
LDC  
r2, Irr1, xs  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
140  
Table 6-5. Opcode Quick Reference (Continued)  
OPCODE MAP  
LOWER NIBBLE (HEX)  
0
8
9
A
B
C
D
E
F
U
P
P
E
R
LD  
r1,R2  
LD  
r2,R1  
DJNZ  
r1,RA  
JR  
cc,RA  
LD  
r1,IM  
JP  
cc,DA  
INC  
r1  
NEXT  
ENTER  
EXIT  
WFI  
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
SB0  
SB1  
N
I
IDLE  
STOP  
DI  
B
B
L
E
EI  
RET  
IRET  
RCF  
SCF  
CCF  
NOP  
H
E
X
LD  
r1,R2  
LD  
r2,R1  
DJNZ  
r1,RA  
JR  
cc,RA  
LD  
r1,IM  
JP  
cc,DA  
INC  
r1  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
141  
CONDITION CODES  
The opcode of a conditional jump always contains a 4-bit field called the condition code (cc). This specifies under  
which conditions it is to execute the jump. For example, a conditional jump with the condition code for "equal"  
after a compare operation only jumps if the two operands are equal. Condition codes are listed in Table 6-6.  
The carry (C), zero (Z), sign (S), and overflow (V) flags are used to control the operation of conditional jump  
instructions.  
Table 6-6. Condition Codes  
Binary  
Mnemonic  
Description  
Always false  
Flags Set  
0000  
1000  
F
T
Always true  
0111 (note)  
1111 (note)  
0110 (note)  
1110 (note)  
1101  
C
Carry  
C = 1  
C = 0  
Z = 1  
Z = 0  
S = 0  
S = 1  
V = 1  
V = 0  
Z = 1  
Z = 0  
NC  
Z
No carry  
Zero  
NZ  
PL  
MI  
OV  
Not zero  
Plus  
0101  
Minus  
0100  
Overflow  
1100  
NOV  
EQ  
No overflow  
Equal  
0110 (note)  
1110 (note)  
1001  
NE  
Not equal  
GE  
Greater than or equal  
Less than  
(S XOR V) = 0  
(S XOR V) = 1  
(Z OR (S XOR V)) = 0  
(Z OR (S XOR V)) = 1  
C = 0  
0001  
LT  
1010  
GT  
Greater than  
Less than or equal  
Unsigned greater than or equal  
Unsigned less than  
Unsigned greater than  
Unsigned less than or equal  
0010  
LE  
1111 (note)  
0111 (note)  
1011  
UGE  
ULT  
UGT  
ULE  
C = 1  
(C = 0 AND Z = 0) = 1  
(C OR Z) = 1  
0011  
NOTES:  
1. It indicates condition codes that are related to two different mnemonics but which test the same flag. For  
example, Z and EQ are both true if the zero flag (Z) is set, but after an ADD instruction, Z would probably be used;  
after a CP instruction, however, EQ would probably be used.  
2. For operations involving unsigned numbers, the special condition codes UGE, ULT, UGT, and ULE must be used.  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
142  
INSTRUCTION DESCRIPTIONS  
This section contains detailed information and programming examples for each instruction in the SAM8  
instruction set. Information is arranged in a consistent format for improved readability and for fast referencing. The  
following information is included in each instruction description:  
— Instruction name (mnemonic)  
— Full instruction name  
— Source/destination format of the instruction operand  
— Shorthand notation of the instruction's operation  
— Textual description of the instruction's effect  
— Specific flag settings affected by the instruction  
— Detailed description of the instruction's format, execution time, and addressing mode(s)  
— Programming example(s) explaining how to use the instruction  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
143  
ADC — Add with Carry  
ADC  
dst,src  
Operation:  
dst  
dst  
+
src  
+
c
The source operand, along with the setting of the carry flag, is added to the destination operand  
and the sum is stored in the destination. The contents of the source are unaffected. Two's-  
complement addition is performed. In multiple precision arithmetic, this instruction permits the  
carry from the addition of low-order operands to be carried into the addition of high-order  
operands.  
Flags:  
C: Set if there is a carry from the most significant bit of the result; cleared otherwise.  
Z: Set if the result is "0"; cleared otherwise.  
S: Set if the result is negative; cleared otherwise.  
V: Set if arithmetic overflow occurs, that is, if both operands are of the same sign and the result  
is of the opposite sign; cleared otherwise.  
D: Always cleared to "0".  
H: Set if there is a carry from the most significant bit of the low-order four bits of the result;  
cleared otherwise.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
src  
opc  
opc  
opc  
dst | src  
src  
2
4
6
12  
13  
r
r
r
lr  
dst  
src  
3
3
6
6
14  
15  
R
R
R
IR  
dst  
6
16  
R
IM  
Examples:  
Given: R1 = 10H, R2 = 03H, C flag = "1", register 01H = 20H, register 02H = 03H, and register  
03H = 0AH:  
ADC R1,R2  
R1  
R1  
=
=
14H, R2  
1BH, R2  
=
=
03H  
03H  
ADC R1,@R2  
ADC 01H,02H  
ADC 01H,@02H  
ADC 01H,#11H  
Register 01H  
Register 01H  
Register 01H  
=
=
=
24H, register 02H  
2BH, register 02H  
32H  
=
=
03H  
03H  
In the first example, destination register R1 contains the value 10H, the carry flag is set to "1",  
and the source working register R2 contains the value 03H. The statement "ADC R1,R2" adds  
03H and the carry flag value ("1") to the destination value 10H, leaving 14H in register R1.  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
144  
ADD — Add  
ADD  
dst,src  
Operation:  
dst  
dst  
+
src  
The source operand is added to the destination operand and the sum is stored in the destination.  
The contents of the source are unaffected. Two's-complement addition is performed.  
Flags:  
C: Set if there is a carry from the most significant bit of the result; cleared otherwise.  
Z: Set if the result is "0"; cleared otherwise.  
S: Set if the result is negative; cleared otherwise.  
V: Set if arithmetic overflow occurred, that is, if both operands are of the same sign and the  
result is of the opposite sign; cleared otherwise.  
D: Always cleared to "0".  
H: Set if a carry from the low-order nibble occurred.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
src  
opc  
opc  
opc  
dst | src  
src  
2
4
6
02  
03  
r
r
r
lr  
dst  
src  
3
3
6
6
04  
05  
R
R
R
IR  
dst  
6
06  
R
IM  
Examples:  
Given: R1 = 12H, R2 = 03H, register 01H = 21H, register 02H = 03H, register 03H = 0AH:  
ADD R1,R2  
R1  
R1  
=
=
15H, R2  
1CH, R2  
=
03H  
03H  
ADD R1,@R2  
ADD 01H,02H  
ADD 01H,@02H  
ADD 01H,#25H  
=
Register 01H  
Register 01H  
Register 01H  
=
=
=
24H, register 02H  
2BH, register 02H  
46H  
=
=
03H  
03H  
In the first example, destination working register R1 contains 12H and the source working register  
R2 contains 03H. The statement "ADD R1,R2" adds 03H to 12H, leaving the value 15H in  
register R1.  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
145  
AND — Logical AND  
AND  
dst,src  
dst  
The source operand is logically ANDed with the destination operand. The result is stored in the  
Operation:  
dst AND src  
destination. The AND operation results in a "1" bit being stored whenever the corresponding bits  
in the two operands are both logic ones; otherwise a "0" bit value is stored. The contents of the  
source are unaffected.  
Flags:  
C: Unaffected.  
Z: Set if the result is "0"; cleared otherwise.  
S: Set if the result bit 7 is set; cleared otherwise.  
V: Always cleared to "0".  
D: Unaffected.  
H: Unaffected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
src  
opc  
opc  
opc  
dst | src  
src  
2
4
6
52  
53  
r
r
r
lr  
dst  
src  
3
3
6
6
54  
55  
R
R
R
IR  
dst  
6
56  
R
IM  
Examples:  
Given: R1 = 12H, R2 = 03H, register 01H = 21H, register 02H = 03H, register 03H = 0AH:  
AND R1,R2  
R1  
R1  
=
=
02H, R2  
=
03H  
AND R1,@R2  
AND 01H,02H  
AND 01H,@02H  
AND 01H,#25H  
02H, R2 = 03H  
Register 01H  
Register 01H  
Register 01H  
=
=
=
01H, register 02H  
00H, register 02H  
21H  
=
=
03H  
03H  
In the first example, destination working register R1 contains the value 12H and the source  
working register R2 contains 03H. The statement "AND R1,R2" logically ANDs the source  
operand 03H with the destination operand value 12H, leaving the value 02H in register R1.  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
146  
BAND — Bit AND  
BAND  
dst,src.b  
BAND  
dst.b,src  
Operation:  
dst(0)  
dst(b)  
dst(0) AND src(b)  
dst(b) AND src(0)  
or  
The specified bit of the source (or the destination) is logically ANDed with the zero bit (LSB) of  
the destination (or source). The resultant bit is stored in the specified bit of the destination. No  
other bits of the destination are affected. The source is unaffected.  
Flags:  
C: Unaffected.  
Z: Set if the result is "0"; cleared otherwise.  
S: Cleared to "0".  
V: Undefined.  
D: Unaffected.  
H: Unaffected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
src  
opc  
opc  
src  
dst  
3
6
67  
r0 Rb  
dst | b | 0  
src | b | 1  
3
6
67  
Rb  
r0  
NOTE: In the second byte of the 3-byte instruction formats, the destination (or source) address is four bits,  
the bit address 'b' is three bits, and the LSB address value is one bit in length.  
Examples:  
Given: R1 = 07H and register 01H = 05H:  
BAND R1,01H.1  
BAND 01H.1,R1  
R1  
=
06H, register 01H = 05H  
05H, R1 07H  
Register 01H  
=
=
In the first example, source register 01H contains the value 05H (00000101B) and destination  
working register R1 contains 07H (00000111B). The statement "BAND R1,01H.1" ANDs the bit  
1 value of the source register ("0") with the bit 0 value of register R1 (destination), leaving the  
value 06H (00000110B) in register R1.  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
147  
BCP — Bit Compare  
BCP  
dst,src.b  
Operation:  
dst(0) – src(b)  
The specified bit of the source is compared to (subtracted from) bit zero (LSB) of the destination.  
The zero flag is set if the bits are the same; otherwise it is cleared. The contents of both  
operands are unaffected by the comparison.  
Flags:  
C: Unaffected.  
Z: Set if the two bits are the same; cleared otherwise.  
S: Cleared to "0".  
V: Undefined.  
D: Unaffected.  
H: Unaffected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
src  
opc  
src  
3
6
17  
r0 Rb  
dst | b | 0  
NOTE: In the second byte of the instruction format, the destination address is four bits, the bit address 'b' is  
three bits, and the LSB address value is one bit in length.  
Example:  
Given: R1  
=
07H and register 01H  
R1  
=
01H:  
BCP R1,01H.1  
=
07H, register 01H  
=
01H  
If destination working register R1 contains the value 07H (00000111B) and the source register  
01H contains the value 01H (00000001B), the statement "BCP R1,01H.1" compares bit one of  
the source register (01H) and bit zero of the destination register (R1). Because the bit values are  
not identical, the zero flag bit (Z) is cleared in the FLAGS register (0D5H).  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
148  
BITC — Bit Complement  
BITC  
dst.b  
Operation:  
dst(b) NOT dst(b)  
This instruction complements the specified bit within the destination without affecting any other  
bits in the destination.  
Flags:  
C: Unaffected.  
Z: Set if the result is "0"; cleared otherwise.  
S: Cleared to "0".  
V: Undefined.  
D: Unaffected.  
H: Unaffected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
opc  
2
4
57  
rb  
dst | b | 0  
NOTE: In the second byte of the instruction format, the destination address is four bits, the bit address 'b'  
is three bits, and the LSB address value is one bit in length.  
Example:  
Given: R1  
=
07H  
BITC R1.1  
R1  
=
05H  
If working register R1 contains the value 07H (00000111B), the statement "BITC R1.1"  
complements bit one of the destination and leaves the value 05H (00000101B) in register R1.  
Because the result of the complement is not "0", the zero flag (Z) in the FLAGS register (0D5H) is  
cleared.  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
149  
BITR— Bit Reset  
BITR  
dst.b  
Operation:  
dst(b)  
0
The BITR instruction clears the specified bit within the destination without affecting any other bits  
in the destination.  
Flags:  
No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
opc  
2
4
77  
rb  
dst | b | 0  
NOTE: In the second byte of the instruction format, the destination address is four bits, the bit address 'b'  
is three bits, and the LSB address value is one bit in length.  
Example:  
Given: R1  
=
07H:  
BITR R1.1  
R1  
=
05H  
If the value of working register R1 is 07H (00000111B), the statement "BITR R1.1" clears bit  
one of the destination register R1, leaving the value 05H (00000101B).  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
150  
BITS— Bit Set  
BITS  
dst.b  
Operation:  
dst(b)  
1
The BITS instruction sets the specified bit within the destination without affecting any other bits in  
the destination.  
Flags:  
No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
opc  
2
4
77  
rb  
dst | b | 1  
NOTE: In the second byte of the instruction format, the destination address is four bits, the bit address 'b'  
is three bits, and the LSB address value is one bit in length.  
Example:  
Given: R1  
=
07H:  
BITS R1.3  
R1  
=
0FH  
If working register R1 contains the value 07H (00000111B), the statement "BITS R1.3" sets bit  
three of the destination register R1 to "1", leaving the value 0FH (00001111B).  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
151  
BOR— Bit OR  
BOR  
dst,src.b  
BOR  
dst.b,src  
Operation:  
dst(0)  
dst(b)  
dst(0) OR src(b)  
dst(b) OR src(0)  
or  
The specified bit of the source (or the destination) is logically ORed with bit zero (LSB) of the  
destination (or the source). The resulting bit value is stored in the specified bit of the destination.  
No other bits of the destination are affected. The source is unaffected.  
Flags:  
C: Unaffected.  
Z: Set if the result is "0"; cleared otherwise.  
S: Cleared to "0".  
V: Undefined.  
D: Unaffected.  
H: Unaffected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
src  
opc  
opc  
src  
dst  
3
6
07  
r0 Rb  
dst | b | 0  
src | b | 1  
3
6
07  
Rb  
r0  
NOTE: In the second byte of the 3-byte instruction formats, the destination (or source) address is four bits,  
the bit address 'b' is three bits, and the LSB address value is one bit.  
Examples:  
Given: R1  
=
07H and register 01H  
=
03H:  
BOR R1, 01H.1  
BOR 01H.2, R1  
R1 = 07H, register 01H = 03H  
Register 01H = 07H, R1 = 07H  
In the first example, destination working register R1 contains the value 07H (00000111B) and  
source register 01H the value 03H (00000011B). The statement "BOR R1,01H.1" logically ORs  
bit one of register 01H (source) with bit zero of R1 (destination). This leaves the same value  
(07H) in working register R1.  
In the second example, destination register 01H contains the value 03H (00000011B) and the  
source working register R1 the value 07H (00000111B). The statement "BOR 01H.2,R1" logically  
ORs bit two of register 01H (destination) with bit zero of R1 (source). This leaves the value 07H  
in register 01H.  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
152  
BTJRF — Bit Test, Jump Relative on False  
BTJRF  
dst,src.b  
Operation:  
If src(b) is a "0", then PC  
PC  
+
dst  
The specified bit within the source operand is tested. If it is a "0", the relative address is added to  
the program counter and control passes to the statement whose address is now in the PC;  
otherwise, the instruction following the BTJRF instruction is executed.  
Flags:  
No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst src  
(Note 1)  
opc  
dst  
3
10  
37  
RA rb  
src | b | 0  
NOTE: In the second byte of the instruction format, the source address is four bits, the bit address 'b' is  
three bits, and the LSB address value is one bit in length.  
Example:  
Given: R1  
=
07H:  
BTJRF SKIP,R1.3  
PC jumps to SKIP location  
If working register R1 contains the value 07H (00000111B), the statement "BTJRF SKIP,R1.3"  
tests bit 3. Because it is "0", the relative address is added to the PC and the PC jumps to the  
memory location pointed to by the SKIP. (Remember that the memory location must be within the  
allowed range of + 127 to – 128.)  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
153  
BTJRT— Bit Test, Jump Relative on True  
BTJRT  
dst,src.b  
Operation:  
If src(b) is a "1", then PC  
PC  
+
dst  
The specified bit within the source operand is tested. If it is a "1", the relative address is added to  
the program counter and control passes to the statement whose address is now in the PC;  
otherwise, the instruction following the BTJRT instruction is executed.  
Flags:  
No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst src  
(Note 1)  
opc  
dst  
3
10  
37  
RA rb  
src | b | 1  
NOTE: In the second byte of the instruction format, the source address is four bits, the bit address 'b' is  
three bits, and the LSB address value is one bit in length.  
Example:  
Given: R1  
=
07H:  
BTJRT  
SKIP,R1.1  
If working register R1 contains the value 07H (00000111B), the statement "BTJRT SKIP,R1.1"  
tests bit one in the source register (R1). Because it is a "1", the relative address is added to the  
PC and the PC jumps to the memory location pointed to by the SKIP. (Remember that the  
memory location must be within the allowed range of + 127 to – 128.)  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
154  
BXOR— Bit XOR  
BXOR  
dst,src.b  
BXOR  
dst.b,src  
Operation:  
dst(0)  
dst(b)  
dst(0) XOR src(b)  
dst(b) XOR src(0)  
or  
The specified bit of the source (or the destination) is logically exclusive-ORed with bit zero (LSB)  
of the destination (or source). The result bit is stored in the specified bit of the destination. No  
other bits of the destination are affected. The source is unaffected.  
Flags:  
C: Unaffected.  
Z: Set if the result is "0"; cleared otherwise.  
S: Cleared to "0".  
V: Undefined.  
D: Unaffected.  
H: Unaffected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
src  
opc  
opc  
src  
dst  
3
6
27  
r0 Rb  
dst | b | 0  
src | b | 1  
3
6
27  
Rb  
r0  
NOTE: In the second byte of the 3-byte instruction formats, the destination (or source) address is four bits,  
the bit address 'b' is three bits, and the LSB address value is one bit in length.  
Examples:  
Given: R1  
=
07H (00000111B) and register 01H  
=
03H (00000011B):  
BXOR R1,01H.1  
BXOR 01H.2,R1  
R1  
=
06H, register 01H  
07H, R1  
=
03H  
07H  
Register 01H  
=
=
In the first example, destination working register R1 has the value 07H (00000111B) and source  
register 01H has the value 03H (00000011B). The statement "BXOR R1,01H.1" exclusive-ORs  
bit one of register 01H (source) with bit zero of R1 (destination). The result bit value is stored in  
bit zero of R1, changing its value from 07H to 06H. The value of source register 01H is  
unaffected.  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
155  
CALL— Call Procedure  
CALL  
dst  
Operation:  
SP  
@SP  
SP  
@SP  
PC  
SP – 1  
PCL  
SP –1  
PCH  
dst  
The current contents of the program counter are pushed onto the top of the stack. The program  
counter value used is the address of the first instruction following the CALL instruction. The  
specified destination address is then loaded into the program counter and points to the first  
instruction of a procedure. At the end of the procedure the return instruction (RET) can be used  
to return to the original program flow. RET pops the top of the stack back into the program  
counter.  
Flags:  
No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
opc  
opc  
opc  
dst  
3
14  
F6  
F4  
D4  
DA  
IRR  
IA  
dst  
dst  
2
2
12  
14  
Examples:  
Given: R0  
=
35H, R1 = 21H, PC  
SP 0000H  
(Memory locations 0000H  
=
1A47H, and SP  
=
0002H:  
CALL 3521H ꢅ  
=
=
1AH, 0001H  
=
4AH, where  
4AH is the address that follows the instruction.)  
SP = 0000H (0000H 1AH, 0001H 49H)  
SP 0000H (0000H 1AH, 0001H 49H)  
CALL @RR0 ꢅ  
=
=
CALL #40H  
=
=
=
In the first example, if the program counter value is 1A47H and the stack pointer contains the  
value 0002H, the statement "CALL 3521H" pushes the current PC value onto the top of the  
stack. The stack pointer now points to memory location 0000H. The PC is then loaded with the  
value 3521H, the address of the first instruction in the program sequence to be executed.  
If the contents of the program counter and stack pointer are the same as in the first example, the  
statement "CALL @RR0" produces the same result except that the 49H is stored in stack  
location 0001H (because the two-byte instruction format was used). The PC is then loaded with  
the value 3521H, the address of the first instruction in the program sequence to be executed.  
Assuming that the contents of the program counter and stack pointer are the same as in the first  
example, if program address 0040H contains 35H and program address 0041H contains 21H, the  
PS031601-0813  
P R E L I M I N A R Y  
statement "CALL #40H" produces the same result as in the second example  
S3F82NB  
Product Specification  
156  
CCF— Complement Carry Flag  
CCF  
Operation:  
C
NOT  
The carry flag (C) is complemented. If C  
zero; if C "0", the value of the carry flag is changed to logic one.  
C
=
"1", the value of the carry flag is changed to logic  
=
Flags:  
C: Complemented.  
No other flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
opc  
1
4
EF  
Example:  
Given: The carry flag  
CCF  
=
"0":  
If the carry flag  
=
"0", the CCF instruction complements it in the FLAGS register (0D5H),  
changing its value from logic zero to logic one.  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
157  
CLR— Clear  
CLR  
dst  
Operation:  
dst  
"0"  
The destination location is cleared to "0".  
Flags:  
No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
opc  
dst  
2
4
4
B0  
B1  
R
IR  
Examples:  
Given: Register 00H  
=
4FH, register 01H  
=
02H, and register 02H  
=
5EH:  
CLR  
CLR  
00H  
Register 00H  
Register 01H  
=
=
00H  
02H, register 02H  
@01H ꢅ  
=
00H  
In Register (R) addressing mode, the statement "CLR 00H" clears the destination register 00H  
value to 00H. In the second example, the statement "CLR @01H" uses Indirect Register (IR)  
addressing mode to clear the 02H register value to 00H.  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
158  
COM— Complement  
COM  
dst  
Operation:  
dst  
NOT dst  
The contents of the destination location are complemented (one's complement); all "1s" are  
changed to "0s", and vice-versa.  
Flags:  
C: Unaffected.  
Z: Set if the result is "0"; cleared otherwise.  
S: Set if the result bit 7 is set; cleared otherwise.  
V: Always reset to "0".  
D: Unaffected.  
H: Unaffected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
R
opc  
dst  
2
4
4
60  
61  
IR  
Examples:  
Given: R1  
=
07H and register 07H  
=
0F1H:  
COM R1  
R1  
R1  
=
=
0F8H  
07H, register 07H  
COM @R1  
=
0EH  
In the first example, destination working register R1 contains the value 07H (00000111B). The  
statement "COM R1" complements all the bits in R1: all logic ones are changed to logic zeros,  
and vice-versa, leaving the value 0F8H (11111000B).  
In the second example, Indirect Register (IR) addressing mode is used to complement the value  
of destination register 07H (11110001B), leaving the new value 0EH (00001110B).  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
159  
CP— Compare  
CP  
dst,src  
Operation:  
dst – src  
The source operand is compared to (subtracted from) the destination operand, and the  
appropriate flags are set accordingly. The contents of both operands are unaffected by the  
comparison.  
Flags:  
C: Set if a "borrow" occurred (src > dst); cleared otherwise.  
Z: Set if the result is "0"; cleared otherwise.  
S: Set if the result is negative; cleared otherwise.  
V: Set if arithmetic overflow occurred; cleared otherwise.  
D: Unaffected.  
H: Unaffected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
src  
opc  
opc  
opc  
dst | src  
src  
2
4
6
A2  
A3  
r
r
r
lr  
dst  
3
3
6
6
A4  
A5  
R
R
R
IR  
dst  
src  
6
A6  
R
IM  
Examples:  
1. Given: R1  
CP  
=
02H and R2  
=
03H:  
R1,R2 ꢅ  
Set the C and S flags  
Destination working register R1 contains the value 02H and source register R2 contains the value  
03H. The statement "CP R1,R2" subtracts the R2 value (source/subtrahend) from the R1 value  
(destination/minuend). Because a "borrow" occurs and the difference is negative, C and S are  
"1".  
2. Given: R1 = 05H and R2 = 0AH:  
CP  
JP  
R1,R2  
UGE,SKIP  
R1  
INC  
SKIP LD  
R3,R1  
In this example, destination working register R1 contains the value 05H which is less than the  
contents of the source working register R2 (0AH). The statement "CP R1,R2" generates C = "1"  
and the JP instruction does not jump to the SKIP location. After the statement "LD R3,R1"  
executes, the value 06H remains in working register R3.  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
160  
CPIJE— Compare, Increment, and Jump on Equal  
CPIJE  
dst,src,RA  
Operation:  
If dst – src  
=
"0", PC  
PC  
+
RA  
Ir  
Ir  
+
1
The source operand is compared to (subtracted from) the destination operand. If the result is "0",  
the relative address is added to the program counter and control passes to the statement whose  
address is now in the program counter. Otherwise, the instruction immediately following the  
CPIJE instruction is executed. In either case, the source pointer is incremented by one before the  
next instruction is executed.  
Flags:  
No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst src  
opc  
src dst  
RA  
3
12  
C2  
r
Ir  
NOTE: Execution time is 18 cycles if the jump is taken or 16 cycles if it is not taken.  
Example:  
Given: R1  
=
02H, R2  
=
03H, and register 03H  
=
02H:  
CPIJE R1,@R2,SKIP ꢅ  
R2 04H, PC jumps to SKIP location  
=
In this example, working register R1 contains the value 02H, working register R2 the value 03H,  
and register 03 contains 02H. The statement "CPIJE R1,@R2,SKIP" compares the @R2 value  
02H (00000010B) to 02H (00000010B). Because the result of the comparison is equal, the  
relative address is added to the PC and the PC then jumps to the memory location pointed to by  
SKIP. The source register (R2) is incremented by one, leaving a value of 04H. (Remember that  
the memory location must be within the allowed range of + 127 to – 128.)  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
161  
CPIJNE— Compare, Increment, and Jump on Non-Equal  
CPIJNE  
dst,src,RA  
Operation:  
If dst – src  
"0", PC  
+ 1  
PC  
+
RA  
Ir  
Ir  
The source operand is compared to (subtracted from) the destination operand. If the result is not  
"0", the relative address is added to the program counter and control passes to the statement  
whose address is now in the program counter; otherwise the instruction following the CPIJNE  
instruction is executed. In either case the source pointer is incremented by one before the next  
instruction.  
Flags:  
No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst src  
opc  
src dst  
RA  
3
12  
D2  
r
Ir  
NOTE: Execution time is 18 cycles if the jump is taken or 16 cycles if it is not taken.  
Example:  
Given: R1  
=
02H, R2  
=
03H, and register 03H  
=
04H:  
CPIJNER1,@R2,SKIP ꢅ  
R2 04H, PC jumps to SKIP location  
=
Working register R1 contains the value 02H, working register R2 (the source pointer) the value  
03H, and general register 03 the value 04H. The statement "CPIJNE R1,@R2,SKIP" subtracts  
04H (00000100B) from 02H (00000010B). Because the result of the comparison is non-equal, the  
relative address is added to the PC and the PC then jumps to the memory location pointed to by  
SKIP. The source pointer register (R2) is also incremented by one, leaving a value of 04H.  
(Remember that the memory location must be within the allowed range of + 127 to – 128.)  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
162  
DA— Decimal Adjust  
DA  
dst  
Operation:  
dst  
DA dst  
The destination operand is adjusted to form two 4-bit BCD digits following an addition or  
subtraction operation. For addition (ADD, ADC) or subtraction (SUB, SBC), the following table  
indicates the operation performed. (The operation is undefined if the destination operand was not  
the result of a valid addition or subtraction of BCD digits):  
Instruction  
Carry  
Before DA  
Bits 4–7  
Value (Hex)  
H Flag  
Before DA  
Bits 0–3  
Value (Hex)  
Number Added  
to Byte  
Carry  
After DA  
0
0
0
0
0
0
1
1
1
0
0
1
1
0–9  
0–8  
0–9  
A–F  
9–F  
A–F  
0–2  
0–2  
0–3  
0–9  
0–8  
7–F  
6–F  
0
0
1
0
0
1
0
0
1
0
1
0
1
0–9  
A–F  
0–3  
0–9  
A–F  
0–3  
0–9  
A–F  
0–3  
0–9  
6–F  
0–9  
6–F  
00  
06  
06  
60  
66  
66  
60  
66  
66  
0
0
0
1
1
1
1
1
1
0
0
1
1
ADD  
ADC  
00  
FA  
A0  
9A  
=
=
=
=
– 00  
– 06  
– 60  
– 66  
SUB  
SBC  
Flags:  
C: Set if there was a carry from the most significant bit; cleared otherwise (see table).  
Z: Set if result is "0"; cleared otherwise.  
S: Set if result bit 7 is set; cleared otherwise.  
V: Undefined.  
D: Unaffected.  
H: Unaffected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
opc  
dst  
2
4
4
40  
41  
R
IR  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
163  
DA— Decimal Adjust  
DA  
(Continued)  
Example:  
Given: Working register R0 contains the value 15 (BCD), working register R1 contains  
27 (BCD), and address 27H contains 46 (BCD):  
ADD  
DA  
R1,R0  
R1  
;
;
C "0", H "0", Bits 4–7 = 3, bits 0–3 = C, R1 3CH  
R1 3CH + 06  
If addition is performed using the BCD values 15 and 27, the result should be 42. The sum is  
incorrect, however, when the binary representations are added in the destination location using  
standard binary arithmetic:  
0 0 0 1  
+ 0 0 1 0  
0 1 0 1  
0 1 1 1  
15  
27  
0 0 1 1  
1 1 0 0 =  
3CH  
The DA instruction adjusts this result so that the correct BCD representation is obtained:  
0 0 1 1  
+ 0 0 0 0  
1 1 0 0  
0 1 1 0  
0 1 0 0  
0 0 1 0 =  
42  
Assuming the same values given above, the statements  
SUB  
DA  
27H,R0 ;  
@R1  
C "0", H "0", Bits 4–7 = 3, bits 0–3 = 1  
@R1 31–0  
;
leave the value 31 (BCD) in address 27H (@R1).  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
164  
DEC— Decrement  
DEC  
dst  
Operation:  
dst  
dst – 1  
The contents of the destination operand are decremented by one.  
Flags:  
C: Unaffected.  
Z: Set if the result is "0"; cleared otherwise.  
S: Set if result is negative; cleared otherwise.  
V: Set if arithmetic overflow occurred; cleared otherwise.  
D: Unaffected.  
H: Unaffected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
R
opc  
dst  
2
4
4
00  
01  
IR  
Examples:  
Given: R1  
=
03H and register 03H  
=
10H:  
0FH  
DEC R1  
R1  
=
02H  
DEC @R1  
Register 03H  
=
In the first example, if working register R1 contains the value 03H, the statement "DEC R1"  
decrements the hexadecimal value by one, leaving the value 02H. In the second example, the  
statement "DEC @R1" decrements the value 10H contained in the destination register 03H by  
one, leaving the value 0FH.  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
165  
DECW— Decrement Word  
DECW  
dst  
Operation:  
dst  
dst – 1  
The contents of the destination location (which must be an even address) and the operand  
following that location are treated as a single 16-bit value that is decremented by one.  
Flags:  
C: Unaffected.  
Z: Set if the result is "0"; cleared otherwise.  
S: Set if the result is negative; cleared otherwise.  
V: Set if arithmetic overflow occurred; cleared otherwise.  
D: Unaffected.  
H: Unaffected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
opc  
dst  
2
8
8
80  
81  
RR  
IR  
Examples:  
Given: R0 = 12H, R1 = 34H, R2 = 30H, register 30H = 0FH, and register 31H = 21H:  
DECW RR0  
DECW @R2  
R0  
=
12H, R1  
=
33H  
Register 30H  
=
0FH, register 31H  
=
20H  
In the first example, destination register R0 contains the value 12H and register R1 the value  
34H. The statement "DECW RR0" addresses R0 and the following operand R1 as a 16-bit word  
and decrements the value of R1 by one, leaving the value 33H.  
NOTE:  
A system malfunction may occur if you use a Zero flag (FLAGS.6) result together with a DECW  
instruction. To avoid this problem, we recommend that you use DECW as shown in the following  
example:  
LOOP: DECW RR0  
LD  
OR  
JR  
R2,R1  
R2,R0  
NZ,LOOP  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
166  
DI— Disable Interrupts  
DI  
Operation:  
SYM (0)  
0
Bit zero of the system mode control register, SYM.0, is cleared to "0", globally disabling all  
interrupt processing. Interrupt requests will continue to set their respective interrupt pending bits,  
but the CPU will not service them while interrupt processing is disabled.  
Flags:  
No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
opc  
1
4
8F  
Example:  
Given: SYM  
DI  
=
01H:  
If the value of the SYM register is 01H, the statement "DI" leaves the new value 00H in the  
register and clears SYM.0 to "0", disabling interrupt processing.  
Before changing IMR, interrupt pending and interrupt source control register, be sure DI state.  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
167  
DIV— Divide (Unsigned)  
DIV  
dst,src  
Operation:  
dst  
÷
src  
dst (UPPER)  
dst (LOWER)  
REMAINDER  
QUOTIENT  
The destination operand (16 bits) is divided by the source operand (8 bits). The quotient (8 bits)  
is stored in the lower half of the destination. The remainder (8 bits) is stored in the upper half of  
8
the destination. When the quotient is 2 , the numbers stored in the upper and lower halves of  
the destination for quotient and remainder are incorrect. Both operands are treated as unsigned  
integers.  
Flags:  
C: Set if the V flag is set and quotient is between 28 and 29 –1; cleared otherwise.  
Z: Set if divisor or quotient  
S: Set if MSB of quotient  
=
"0"; cleared otherwise.  
"1"; cleared otherwise.  
=
V: Set if quotient is  
D: Unaffected.  
H: Unaffected.  
28 or if divisor  
=
"0"; cleared otherwise.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst src  
opc  
src  
dst  
3
26/10  
26/10  
26/10  
94  
95  
96  
RR  
R
RR  
RR  
IR  
IM  
NOTE: Execution takes 10 cycles if the divide-by-zero is attempted; otherwise it takes 26 cycles.  
Examples:  
Given: R0  
=
10H, R1  
=
03H, R2  
=
40H, register 40H  
=
80H:  
DIV  
DIV  
DIV  
RR0,R2  
R0  
R0  
R0  
=
=
=
03H, R1  
03H, R1  
03H, R1  
=
=
=
40H  
20H  
80H  
RR0,@R2  
RR0,#20H  
In the first example, destination working register pair RR0 contains the values 10H (R0) and 03H  
(R1), and register R2 contains the value 40H. The statement "DIV RR0,R2" divides the 16-bit  
RR0 value by the 8-bit value of the R2 (source) register. After the DIV instruction, R0 contains the  
value 03H and R1 contains 40H. The 8-bit remainder is stored in the upper half of the destination  
register RR0 (R0) and the quotient in the lower half (R1).  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
168  
DJNZ— Decrement and Jump if Non-Zero  
DJNZ  
r,dst  
Operation:  
r
r
1
If  
r
0, PC  
PC  
+
dst  
The working register being used as a counter is decremented. If the contents of the register are  
not logic zero after decrementing, the relative address is added to the program counter and  
control passes to the statement whose address is now in the PC. The range of the relative  
address is +127 to –128, and the original value of the PC is taken to be the address of the  
instruction byte following the DJNZ statement.  
NOTE: In case of using DJNZ instruction, the working register being used as a counter should be set at  
the one of location 0C0H to 0CFH with SRP, SRP0, or SRP1 instruction.  
Flags:  
No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
r
|
opc  
dst  
2
8 (jump taken)  
8 (no jump)  
rA  
RA  
r = 0 to F  
Example:  
Given: R1  
=
02H and LOOP is the label of a relative address:  
#0C0H  
SRP  
DJNZ R1,LOOP  
DJNZ is typically used to control a "loop" of instructions. In many cases, a label is used as the  
destination operand instead of a numeric relative address value. In the example, working register  
R1 contains the value 02H, and LOOP is the label for a relative address.  
The statement "DJNZ R1, LOOP" decrements register R1 by one, leaving the value 01H.  
Because the contents of R1 after the decrement are non-zero, the jump is taken to the relative  
address specified by the LOOP label.  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
169  
EI— Enable Interrupts  
EI  
Operation:  
SYM (0)  
1
An EI instruction sets bit zero of the system mode register, SYM.0 to "1". This allows interrupts to  
be serviced as they occur (assuming they have highest priority). If an interrupt's pending bit was  
set while interrupt processing was disabled (by executing a DI instruction), it will be serviced  
when you execute the EI instruction.  
Flags:  
No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
opc  
1
4
9F  
Example:  
Given: SYM  
EI  
=
00H:  
If the SYM register contains the value 00H, that is, if interrupts are currently disabled, the  
statement "EI" sets the SYM register to 01H, enabling all interrupts. (SYM.0 is the enable bit for  
global interrupt processing.)  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
170  
ENTER— Enter  
ENTER  
Operation:  
SP  
@SP  
IP  
PC  
IP  
SP – 2  
IP  
PC  
@IP  
IP + 2  
This instruction is useful when implementing threaded-code languages. The contents of the  
instruction pointer are pushed to the stack. The program counter (PC) value is then written to the  
instruction pointer. The program memory word that is pointed to by the instruction pointer is  
loaded into the PC, and the instruction pointer is incremented by two.  
Flags:  
No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
opc  
1
14  
1F  
Example:  
The diagram below shows one example of how to use an ENTER statement.  
Before  
After  
Data  
Address  
IP  
Data  
Address  
IP  
0050  
0040  
0022  
0043  
0110  
0020  
Address  
Data  
1F  
Address  
40 Enter  
Data  
1F  
PC  
SP  
40 Enter  
PC  
SP  
41 Address H 01  
42 Address L 10  
43 Address H  
41 Address H 01  
42 Address L 10  
43 Address H  
20  
21  
22  
00  
50  
IPH  
IPL  
Data  
110 Routine  
Memory  
Memory  
22  
Data  
Stack  
Stack  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
171  
EXIT— Exit  
EXIT  
Operation:  
IP  
@SP  
SP  
@IP  
SP  
PC  
IP  
+
2
IP  
+
2
This instruction is useful when implementing threaded-code languages. The stack value is  
popped and loaded into the instruction pointer. The program memory word that is pointed to by  
the instruction pointer is then loaded into the program counter, and the instruction pointer is  
incremented by two.  
Flags:  
No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode (Hex)  
opc  
1
14 (internal stack)  
16 (internal stack)  
2F  
Example:  
The diagram below shows one example of how to use an EXIT statement.  
Before  
After  
Data  
Address  
IP  
Data  
Address  
IP  
0050  
0040  
0022  
0052  
0060  
0022  
Address  
Data  
Address  
60  
Data  
PC  
SP  
PC  
SP  
50 PCL old  
51 PCH  
60  
00  
Main  
140 Exit  
2F  
20  
21  
22  
00  
50  
IPH  
IPL  
Data  
Memory  
Memory  
Data  
22  
Stack  
Stack  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
172  
IDLE— Idle Operation  
IDLE  
Operation:  
The IDLE instruction stops the CPU clock while allowing system clock oscillation to continue. Idle  
mode can be released by an interrupt request (IRQ) or an external reset operation.  
Flags:  
No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst src  
opc  
1
4
6F  
Example:  
The instruction  
IDLE  
stops the CPU clock but not the system clock.  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
173  
INC— Increment  
INC  
dst  
Operation:  
dst  
dst  
+
1
The contents of the destination operand are incremented by one.  
Flags:  
C: Unaffected.  
Z: Set if the result is "0"; cleared otherwise.  
S: Set if the result is negative; cleared otherwise.  
V: Set if arithmetic overflow occurred; cleared otherwise.  
D: Unaffected.  
H: Unaffected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
dst  
|
opc  
1
4
rE  
r
r = 0 to F  
opc  
dst  
2
4
4
20  
21  
R
IR  
Examples:  
Given: R0  
=
1BH, register 00H  
=
0CH, and register 1BH  
=
0FH:  
INC  
INC  
INC  
R0  
R0  
Register 00H  
R0 1BH, register 01H  
=
1CH  
00H  
@R0  
=
0DH  
=
=
10H  
In the first example, if destination working register R0 contains the value 1BH, the statement "INC  
R0" leaves the value 1CH in that same register.  
The next example shows the effect an INC instruction has on register 00H, assuming that it  
contains the value 0CH.  
In the third example, INC is used in Indirect Register (IR) addressing mode to increment the  
value of register 1BH from 0FH to 10H.  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
174  
INCW— Increment Word  
INCW  
dst  
Operation:  
dst  
dst  
+
1
The contents of the destination (which must be an even address) and the byte following that  
location are treated as a single 16-bit value that is incremented by one.  
Flags:  
C: Unaffected.  
Z: Set if the result is "0"; cleared otherwise.  
S: Set if the result is negative; cleared otherwise.  
V: Set if arithmetic overflow occurred; cleared otherwise.  
D: Unaffected.  
H: Unaffected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
RR  
IR  
opc  
dst  
2
8
8
A0  
A1  
Examples:  
Given: R0  
=
1AH, R1  
=
02H, register 02H  
1AH, R1 = 03H  
Register 02H 10H, register 03H  
=
0FH, and register 03H  
=
0FFH:  
INCW RR0  
INCW @R1  
R0  
=
=
=
00H  
In the first example, the working register pair RR0 contains the value 1AH in register R0 and 02H  
in register R1. The statement "INCW RR0" increments the 16-bit destination by one, leaving the  
value 03H in register R1. In the second example, the statement "INCW @R1" uses Indirect  
Register (IR) addressing mode to increment the contents of general register 03H from 0FFH to  
00H and register 02H from 0FH to 10H.  
NOTE:  
A system malfunction may occur if you use a Zero (Z) flag (FLAGS.6) result together with an  
INCW instruction. To avoid this problem, we recommend that you use INCW as shown in the  
following example:  
LOOP:  
INCW  
LD  
RR0  
R2,R1  
R2,R0  
NZ,LOOP  
OR  
JR  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
175  
IRET— Interrupt Return  
IRET  
IRET (Normal)  
IRET (Fast)  
Operation:  
FLAGS  
SP  
@SP  
SP  
@SP  
PC  
FLAGS  
FIS  
IP  
0
SP  
PC  
SP  
+
1
FLAGS'  
+
2
SYM(0)  
1
This instruction is used at the end of an interrupt service routine. It restores the flag register and  
the program counter. It also re-enables global interrupts. A "normal IRET" is executed only if the  
fast interrupt status bit (FIS, bit one of the FLAGS register, 0D5H) is cleared (= "0"). If a fast  
interrupt occurred, IRET clears the FIS bit that was set at the beginning of the service routine.  
Flags:  
All flags are restored to their original settings (that is, the settings before the interrupt occurred).  
Format:  
IRET  
(Normal)  
Bytes  
Cycles  
Opcode (Hex)  
opc  
1
10 (internal stack)  
12 (internal stack)  
BF  
IRET  
(Fast)  
Bytes  
Cycles  
Opcode (Hex)  
opc  
1
6
BF  
Example:  
In the figure below, the instruction pointer is initially loaded with 100H in the main program before  
interrupts are enabled. When an interrupt occurs, the program counter and instruction pointer are  
swapped. This causes the PC to jump to address 100H and the IP to keep the return address.  
The last instruction in the service routine normally is a jump to IRET at address FFH. This causes  
the instruction pointer to be loaded with 100H "again" and the program counter to jump back to  
the main program. Now, the next interrupt can occur and the IP is still correct at 100H.  
0H  
FFH  
IRET  
100H  
Interrupt  
Service  
Routine  
JP to FFH  
FFFFH  
NOTE:  
In the fast interrupt example above, if the last instruction is not a jump to IRET, you must pay  
attention to the order of the last two instructions. The IRET cannot be immediately proceeded by  
a clearing of the interrupt status (as with a reset of the IPR register).  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
176  
JP— Jump  
JP  
cc,dst  
(Conditional)  
JP  
dst  
(Unconditional)  
Operation:  
If cc is true, PC  
dst  
The conditional JUMP instruction transfers program control to the destination address if the  
condition specified by the condition code (cc) is true; otherwise, the instruction following the JP  
instruction is executed. The unconditional JP simply replaces the contents of the PC with the  
contents of the specified register pair. Control then passes to the statement addressed by the  
PC.  
Flags:  
No flags are affected.  
Format: (1)  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
(2)  
cc  
|
opc  
dst  
3
8
ccD  
DA  
cc = 0 to F  
opc  
dst  
2
8
30  
IRR  
NOTES:  
1. The 3-byte format is used for a conditional jump and the 2-byte format for an unconditional jump.  
2. In the first byte of the three-byte instruction format (conditional jump), the condition code and the  
opcode are both four bits.  
Examples:  
Given: The carry flag (C)  
=
"1", register 00  
LABEL_W  
PC 0120H  
=
01H, and register 01  
=
20H:  
JP  
JP  
C,LABEL_W  
@00H  
=
1000H, PC  
=
1000H  
=
The first example shows a conditional JP. Assuming that the carry flag is set to "1", the statement  
"JP C,LABEL_W" replaces the contents of the PC with the value 1000H and transfers control to  
that location. Had the carry flag not been set, control would then have passed to the statement  
immediately following the JP instruction.  
The second example shows an unconditional JP. The statement "JP @00" replaces the  
contents of the PC with the contents of the register pair 00H and 01H, leaving the value 0120H.  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
177  
JR— Jump Relative  
JR  
cc,dst  
Operation:  
If cc is true, PC  
PC  
+
dst  
If the condition specified by the condition code (cc) is true, the relative address is added to the  
program counter and control passes to the statement whose address is now in the program  
counter; otherwise, the instruction following the JR instruction is executed. (See list of condition  
codes).  
The range of the relative address is +127, –128, and the original value of the program counter  
is taken to be the address of the first instruction byte following the JR statement.  
Flags:  
No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
(1)  
dst  
cc  
|
opc  
dst  
2
6
ccB  
RA  
cc = 0 to F  
NOTE: In the first byte of the two-byte instruction format, the condition code and the opcode are each  
four bits.  
Example:  
Given: The carry flag = "1" and LABEL_X  
=
1FF7H:  
JR C,LABEL_X PC 1FF7H  
=
If the carry flag is set (that is, if the condition code is true), the statement "JR C,LABEL_X" will  
pass control to the statement whose address is now in the PC. Otherwise, the program  
instruction following the JR would be executed.  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
178  
LD— Load  
LD  
dst,src  
dst  
Operation:  
src  
The contents of the source are loaded into the destination. The source's contents are unaffected.  
Flags:  
No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst src  
dst  
src  
|
opc  
opc  
src  
dst  
|
2
4
4
rC  
r8  
r
IM  
r
R
|
2
2
3
3
4
r9  
R
r
r = 0 to F  
opc  
opc  
opc  
dst  
src  
4
4
C7  
D7  
r
lr  
r
Ir  
src  
dst  
dst  
src  
6
6
E4  
E5  
R
R
R
IR  
6
6
E6  
D6  
R
IM  
IM  
IR  
opc  
opc  
opc  
src  
dst  
x
3
3
3
6
6
6
F5  
87  
97  
IR  
r
R
x [r]  
r
dst  
src  
|
|
src  
dst  
x
x [r]  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
179  
LD— Load  
LD  
(Continued)  
Examples:  
Given: R0  
register 02H  
=
=
01H, R1  
=
0AH, register 00H  
=
01H, register 01H  
0FFH:  
=
20H,  
02H, LOOP  
=
30H, and register 3AH  
=
LD  
LD  
LD  
LD  
LD  
LD  
LD  
LD  
LD  
LD  
LD  
LD  
R0,#10H  
R0,01H  
01H,R0  
R1,@R0  
@R0,R1  
00H,01H  
R0 = 10H  
R0 = 20H, register 01H = 20H  
Register 01H = 01H, R0 = 01H  
R1 = 20H, R0 = 01H  
R0 = 01H, R1 = 0AH, register 01H = 0AH  
Register 00H = 20H, register 01H = 20H  
Register 02H = 20H, register 00H = 01H  
Register 00H = 0AH  
02H,@00H  
00H,#0AH  
@00H,#10H  
@00H,02H  
Register 00H = 01H, register 01H = 10H  
Register 00H = 01H, register 01H = 02, register 02H = 02H  
R0 = 0FFH, R1 = 0AH  
R0,#LOOP[R1] ꢅ  
#LOOP[R0],R1 ꢅ  
Register 31H = 0AH, R0 = 01H, R1 = 0AH  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
180  
LDB— Load Bit  
LDB  
dst,src.b  
LDB  
dst.b,src  
Operation:  
dst(0)  
dst(b)  
src(b)  
src(0)  
or  
The specified bit of the source is loaded into bit zero (LSB) of the destination, or bit zero of the  
source is loaded into the specified bit of the destination. No other bits of the destination are  
affected. The source is unaffected.  
Flags:  
No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
src  
opc  
opc  
src  
dst  
3
6
47  
r0 Rb  
dst | b | 0  
src | b | 1  
3
6
47  
Rb  
r0  
NOTE: In the second byte of the instruction formats, the destination (or source) address is four bits, the bit  
address 'b' is three bits, and the LSB address value is one bit in length.  
Examples:  
Given: R0  
=
06H and general register 00H  
=
05H:  
LDB  
LDB  
R0,00H.2  
00H.0,R0  
R0  
R0  
=
=
07H, register 00H  
06H, register 00H  
=
=
05H  
04H  
In the first example, destination working register R0 contains the value 06H and the source  
general register 00H the value 05H. The statement "LD R0,00H.2" loads the bit two value of the  
00H register into bit zero of the R0 register, leaving the value 07H in register R0.  
In the second example, 00H is the destination register. The statement "LD 00H.0,R0" loads bit  
zero of register R0 to the specified bit (bit zero) of the destination register, leaving 04H in general  
register 00H.  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
181  
LDC/LDE— Load Memory  
LDC/LDE  
dst,src  
dst  
This instruction loads a byte from program or data memory into a working register or vice-versa.  
Operation:  
src  
The source values are unaffected. LDC refers to program memory and LDE to data memory. The  
assembler makes 'Irr' or 'rr' values an even number for program memory and odd an odd number  
for data memory.  
Flags:  
No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
src  
1.  
2.  
3.  
4.  
5.  
opc  
opc  
opc  
opc  
opc  
dst | src  
src | dst  
dst | src  
src | dst  
dst | src  
2
10  
C3  
D3  
E7  
F7  
A7  
r
Irr  
2
3
3
4
10  
12  
12  
14  
Irr  
r
XS  
XS  
r
XS [rr]  
r
XS [rr]  
r
XLL  
XLH  
XLH  
DAH  
DAH  
DAH  
DAH  
XL [rr]  
XLL  
DAL  
DAL  
DAL  
DAL  
6.  
7.  
opc  
opc  
opc  
opc  
src | dst  
dst | 0000  
src | 0000  
dst | 0001  
src | 0001  
4
4
4
4
4
14  
14  
14  
14  
14  
B7  
A7  
B7  
A7  
B7  
XL [rr]  
r
DA  
r
r
8.  
DA  
r
9.  
DA  
r
10.  
opc  
DA  
NOTES:  
1. The source (src) or working register pair [rr] for formats 5 and 6 cannot use register pair 0–1.  
2. For formats 3 and 4, the destination address 'XS [rr]' and the source address 'XS [rr]' are each one  
byte.  
3. For formats 5 and 6, the destination address 'XL [rr] and the source address 'XL [rr]' are each two  
bytes.  
4. The DA and r source values for formats 7 and 8 are used to address program memory; the second  
set of values, used in formats 9 and 10, are used to address data memory.  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
182  
LDC/LDE— Load Memory  
LDC/LDE  
(Continued)  
Examples:  
Given: R0  
=
11H, R1  
=
34H, R2  
=
01H, R3  
=
04H; Program memory locations  
0103H  
=
4FH, 0104H  
=
1A, 0105H  
=
6DH, and 1104H  
=
88H. External data memory  
locations 0103H  
=
5FH, 0104H  
=
2AH, 0105H  
=
7DH, and 1104H  
=
98H:  
LDC  
R0,@RR2  
; R0  
; R0  
=
contents of program memory location 0104H  
1AH, R2 01H, R3 04H  
=
=
LDE  
R0,@RR2  
; R0  
; R0  
=
contents of external data memory location 0104H  
2AH, R2 01H, R3 04H  
=
=
LDC (note) @RR2,R0  
; 11H (contents of R0) is loaded into program memory  
; location 0104H (RR2),  
; working registers R0, R2, R3  
no change  
LDE  
LDC  
LDE  
@RR2,R0  
; 11H (contents of R0) is loaded into external data memory  
; location 0104H (RR2),  
; working registers R0, R2, R3  
no change  
R0,#01H[RR2]  
R0,#01H[RR2]  
; R0 contents of program memory location 0105H  
; (01H + RR2),  
; R0  
=
6DH, R2  
=
01H, R3  
=
04H  
; R0  
contents of external data memory location 0105H  
; (01H + RR2), R0  
=
7DH, R2 01H, R3 04H  
=
=
LDC (note) #01H[RR2],R0  
; 11H (contents of R0) is loaded into program memory location  
; 0105H (01H + 0104H)  
LDE  
LDC  
LDE  
#01H[RR2],R0  
; 11H (contents of R0) is loaded into external data memory  
; location 0105H (01H + 0104H)  
R0,#1000H[RR2] ; R0  
contents of program memory location 1104H  
88H, R2 01H, R3 04H  
; (1000H + 0104H), R0  
=
=
=
R0,#1000H[RR2] ; R0  
contents of external data memory location 1104H  
; (1000H + 0104H), R0 98H, R2 01H, R3 04H  
=
=
=
LDC  
88H  
R0,1104H  
R0,1104H  
; R0  
contents of program memory location 1104H, R0  
=
LDE  
; R0  
; R0  
=
contents of external data memory location 1104H,  
98H  
LDC (note) 1105H,R0  
; 11H (contents of R0) is loaded into program memory location  
; 1105H, (1105H) 11H  
LDE  
1105H,R0  
; 11H (contents of R0) is loaded into external data memory  
; location 1105H, (1105H) 11H  
NOTE: These instructions are not supported by masked ROM type devices.  
PS031601-0813 P R E L I M I N A R Y  
S3F82NB  
Product Specification  
183  
LDCD/LDED— Load Memory and Decrement  
LDCD/LDED dst,src  
Operation:  
dst  
rr  
src  
rr – 1  
These instructions are used for user stacks or block transfers of data from program or data  
memory to the register file. The address of the memory location is specified by a working register  
pair. The contents of the source location are loaded into the destination location. The memory  
address is then decremented. The contents of the source are unaffected.  
LDCD references program memory and LDED references external data memory. The assembler  
makes 'Irr' an even number for program memory and an odd number for data memory.  
Flags:  
No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
src  
opc  
dst | src  
2
10  
E2  
r
Irr  
Examples:  
Given: R6  
=
10H, R7  
=
33H, R8  
=
12H, program memory location 1033H  
= 0DDH:  
=
0CDH,  
and external data memory location 1033H  
LDCD  
R8,@RR6  
; 0CDH (contents of program memory location 1033H) is loaded  
; into R8 and RR6 is decremented by one  
; R8  
=
0CDH, R6  
=
10H, R7  
=
32H (RR6  
RR6 – 1)  
LDED  
R8,@RR6  
; 0DDH (contents of data memory location 1033H) is loaded  
; into R8 and RR6 is decremented by one (RR6 RR6 – 1)  
; R8 0DDH, R6 10H, R7 32H  
=
=
=
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
184  
LDCI/LDEI— Load Memory and Increment  
LDCI/LDEI  
dst,src  
Operation:  
dst  
rr  
src  
rr  
+
1
These instructions are used for user stacks or block transfers of data from program or data  
memory to the register file. The address of the memory location is specified by a working register  
pair. The contents of the source location are loaded into the destination location. The memory  
address is then incremented automatically. The contents of the source are unaffected.  
LDCI refers to program memory and LDEI refers to external data memory. The assembler makes  
'Irr' even for program memory and odd for data memory.  
Flags:  
No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
src  
opc  
dst | src  
2
10  
E3  
r
Irr  
Examples:  
Given: R6 = 10H, R7 = 33H, R8 = 12H, program memory locations 1033H = 0CDH and 1034H  
= 0C5H; external data memory locations 1033H = 0DDH and 1034H = 0D5H:  
LDCI  
R8,@RR6  
; 0CDH (contents of program memory location 1033H) is loaded  
; into R8 and RR6 is incremented by one (RR6 RR6 + 1)  
; R8 0CDH, R6 10H, R7 34H  
=
=
=
LDEI  
R8,@RR6  
; 0DDH (contents of data memory location 1033H) is loaded  
; into R8 and RR6 is incremented by one (RR6 RR6 + 1)  
; R8 0DDH, R6 10H, R7 34H  
=
=
=
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
185  
LDCPD/LDEPD— Load Memory with Pre-Decrement  
LDCPD/  
LDEPD  
dst,src  
Operation:  
rr  
rr  
1
dst  
src  
These instructions are used for block transfers of data from program or data memory from the  
register file. The address of the memory location is specified by a working register pair and is first  
decremented. The contents of the source location are then loaded into the destination location.  
The contents of the source are unaffected.  
LDCPD refers to program memory and LDEPD refers to external data memory. The assembler  
makes 'Irr' an even number for program memory and an odd number for external data memory.  
Flags:  
No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
src  
opc  
src | dst  
2
14  
F2  
Irr  
r
Examples:  
Given: R0  
=
77H, R6  
=
30H, and R7  
=
00H:  
LDCPD @RR6,R0  
; (RR6 RR6 – 1)  
; 77H (contents of R0) is loaded into program memory location  
; 2FFFH (3000H – 1H)  
; R0  
=
77H, R6  
=
2FH, R7  
=
0FFH  
LDEPD @RR6,R0  
; (RR6  
RR6 – 1)  
; 77H (contents of R0) is loaded into external data memory  
; location 2FFFH (3000H – 1H)  
; R0  
=
77H, R6  
=
2FH, R7  
=
0FFH  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
186  
LDCPI/LDEPI— Load Memory with Pre-Increment  
LDCPI/  
LDEPI  
dst,src  
Operation:  
rr  
rr  
+
1
dst  
src  
These instructions are used for block transfers of data from program or data memory from the  
register file. The address of the memory location is specified by a working register pair and is first  
incremented. The contents of the source location are loaded into the destination location. The  
contents of the source are unaffected.  
LDCPI refers to program memory and LDEPI refers to external data memory. The assembler  
makes 'Irr' an even number for program memory and an odd number for data memory.  
Flags:  
No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
src  
opc  
src | dst  
2
14  
F3  
Irr  
r
Examples:  
Given: R0  
LDCPI  
=
7FH, R6  
=
21H, and R7  
=
0FFH:  
@RR6,R0  
; (RR6 RR6 + 1)  
; 7FH (contents of R0) is loaded into program memory  
; location 2200H (21FFH + 1H)  
; R0  
=
7FH, R6  
=
22H, R7  
=
00H  
LDEPI  
@RR6,R0  
; (RR6  
RR6 + 1)  
; 7FH (contents of R0) is loaded into external data memory  
; location 2200H (21FFH + 1H)  
; R0  
=
7FH, R6  
=
22H, R7  
=
00H  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
187  
LDW— Load Word  
LDW  
dst,src  
Operation:  
dst  
src  
The contents of the source (a word) are loaded into the destination. The contents of the source  
are unaffected.  
Flags:  
No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst src  
opc  
opc  
src  
dst  
dst  
3
8
8
C4  
C5  
RR RR  
RR  
IR  
src  
4
8
C6  
RR  
IML  
Examples:  
Given: R4  
register 01H  
=
=
06H, R5  
=
1CH, R6  
=
05H, R7  
=
02H, register 00H  
=
1AH,  
02H, register 02H  
=
03H, and register 03H  
=
0FH:  
LDW  
LDW  
RR6,RR4  
00H,02H  
R6  
=
06H, R7  
=
1CH, R4  
=
06H, R5  
0FH,  
=
1CH  
Register 00H  
register 02H  
=
=
03H, register 01H  
03H, register 03H  
=
=
0FH  
LDW  
LDW  
LDW  
LDW  
RR2,@R7  
R2  
Register 04H  
R6 12H, R7  
Register 02H  
=
03H, R3  
=
0FH,  
03H, register 05H  
34H  
0FH, register 03H  
04H,@01H  
RR6,#1234H  
02H,#0FEDH  
=
=
=
0FH  
=
=
=
0EDH  
In the second example, please note that the statement "LDW 00H,02H" loads the contents of  
the source word 02H, 03H into the destination word 00H, 01H. This leaves the value 03H in  
general register 00H and the value 0FH in register 01H.  
The other examples show how to use the LDW instruction with various addressing modes and  
formats.  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
188  
MULT— Multiply (Unsigned)  
MULT  
dst,src  
Operation:  
dst  
dst src  
The 8-bit destination operand (even register of the register pair) is multiplied by the source  
operand (8 bits) and the product (16 bits) is stored in the register pair specified by the destination  
address. Both operands are treated as unsigned integers.  
Flags:  
C: Set if result is 255; cleared otherwise.  
Z: Set if the result is "0"; cleared otherwise.  
S: Set if MSB of the result is a "1"; cleared otherwise.  
V: Cleared.  
D: Unaffected.  
H: Unaffected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
src  
opc  
src  
dst  
3
22  
22  
22  
84  
85  
86  
RR  
R
RR  
RR  
IR  
IM  
Examples:  
Given: Register 00H = 20H, register 01H = 03H, register 02H = 09H, register 03H = 06H:  
MULT  
MULT  
MULT  
00H, 02H  
Register 00H = 01H, register 01H = 20H, register 02H = 09H  
00H, @01H  
00H, #30H  
Register 00H = 00H, register 01H = 0C0H  
Register 00H = 06H, register 01H = 00H  
In the first example, the statement "MULT 00H,02H" multiplies the 8-bit destination operand (in  
the register 00H of the register pair 00H, 01H) by the source register 02H operand (09H). The  
16-bit product, 0120H, is stored in the register pair 00H, 01H.  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
189  
NEXT— Next  
NEXT  
Operation:  
PC  
IP  
@ IP  
IP  
+
2
The NEXT instruction is useful when implementing threaded-code languages. The program  
memory word that is pointed to by the instruction pointer is loaded into the program counter. The  
instruction pointer is then incremented by two.  
Flags:  
No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
opc  
1
10  
0F  
Example:  
The following diagram shows one example of how to use the NEXT instruction.  
Before  
After  
Data  
Address  
IP  
Data  
Address  
IP  
0043  
0120  
0045  
0130  
Address  
Data  
Address  
Data  
PC  
43 Address H 01  
44 Address L 10  
45 Address H  
PC  
43 Address H  
44 Address L  
45 Address H  
120 Next  
Memory  
130 Routine  
Memory  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
190  
NOP— No Operation  
NOP  
Operation:  
No action is performed when the CPU executes this instruction. Typically, one or more NOPs are  
executed in sequence in order to effect a timing delay of variable duration.  
Flags:  
No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
opc  
1
4
FF  
Example:  
When the instruction  
NOP  
is encountered in a program, no operation occurs. Instead, there is a delay in instruction  
execution time.  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
191  
OR— Logical OR  
OR  
dst,src  
Operation:  
dst  
dst OR src  
The source operand is logically ORed with the destination operand and the result is stored in the  
destination. The contents of the source are unaffected. The OR operation results in a "1" being  
stored whenever either of the corresponding bits in the two operands is a "1"; otherwise a "0" is  
stored.  
Flags:  
C: Unaffected.  
Z: Set if the result is "0"; cleared otherwise.  
S: Set if the result bit 7 is set; cleared otherwise.  
V: Always cleared to "0".  
D: Unaffected.  
H: Unaffected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
src  
r
opc  
opc  
opc  
dst | src  
src  
2
4
6
42  
43  
r
r
lr  
dst  
src  
3
3
6
6
44  
45  
R
R
R
IR  
dst  
6
46  
R
IM  
Examples:  
Given: R0 = 15H, R1 = 2AH, R2 = 01H, register 00H = 08H, register 01H = 37H, and register  
08H = 8AH:  
OR  
OR  
OR  
OR  
OR  
R0,R1  
R0  
R0  
=
=
3FH, R1  
37H, R2  
=
=
2AH  
R0,@R2  
00H,01H  
01H,@00H  
00H,#02H  
01H, register 01H  
=
37H  
Register 00H  
Register 00H  
Register 00H  
=
=
=
3FH, register 01H  
08H, register 01H  
0AH  
=
=
37H  
0BFH  
In the first example, if working register R0 contains the value 15H and register R1 the value 2AH,  
the statement "OR R0,R1" logical-ORs the R0 and R1 register contents and stores the result  
(3FH) in destination register R0.  
The other examples show the use of the logical OR instruction with the various addressing  
modes and formats.  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
192  
POP— Pop From Stack  
POP  
dst  
Operation:  
dst  
SP  
@SP  
SP  
+
1
The contents of the location addressed by the stack pointer are loaded into the destination. The  
stack pointer is then incremented by one.  
Flags:  
No flags affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
opc  
dst  
2
8
8
50  
51  
R
IR  
Examples:  
Given: Register 00H  
=
01H, register 01H  
55H:  
=
1BH, SPH (0D8H)  
=
00H, SPL (0D9H)  
=
0FBH, and stack register 0FBH  
=
POP  
POP  
00H  
Register 00H  
Register 00H  
=
55H, SP  
=
00FCH  
@00H  
=
01H, register 01H  
=
55H, SP  
=
00FCH  
In the first example, general register 00H contains the value 01H. The statement "POP 00H"  
loads the contents of location 00FBH (55H) into destination register 00H and then increments the  
stack pointer by one. Register 00H then contains the value 55H and the SP points to location  
00FCH.  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
193  
POPUD— Pop User Stack (Decrementing)  
POPUD  
dst,src  
Operation:  
dst  
IR  
src  
IR – 1  
This instruction is used for user-defined stacks in the register file. The contents of the register file  
location addressed by the user stack pointer are loaded into the destination. The user stack  
pointer is then decremented.  
Flags:  
No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst src  
opc  
src  
dst  
3
8
92  
R
IR  
Example:  
Given: Register 00H  
register 02H 70H:  
=
42H (user stack pointer register), register 42H  
=
6FH, and  
=
POPUD 02H,@00H  
6FH  
Register 00H  
=
41H, register 02H  
=
6FH, register 42H  
=
If general register 00H contains the value 42H and register 42H the value 6FH, the statement  
"POPUD 02H,@00H" loads the contents of register 42H into the destination register 02H. The  
user stack pointer is then decremented by one, leaving the value 41H.  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
194  
POPUI— Pop User Stack (Incrementing)  
POPUI  
dst,src  
Operation:  
dst  
IR  
src  
IR + 1  
The POPUI instruction is used for user-defined stacks in the register file. The contents of the  
register file location addressed by the user stack pointer are loaded into the destination. The user  
stack pointer is then incremented.  
Flags:  
No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst src  
opc  
src  
dst  
3
8
93  
R
IR  
Example:  
Given: Register 00H  
POPUI 02H,@00H  
=
01H and register 01H  
=
70H:  
Register 00H = 02H, register 01H = 70H, register 02H = 70H  
If general register 00H contains the value 01H and register 01H the value 70H, the statement  
"POPUI 02H,@00H" loads the value 70H into the destination general register 02H. The user  
stack pointer (register 00H) is then incremented by one, changing its value from 01H to 02H.  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
195  
PUSH— Push To Stack  
PUSH  
src  
Operation:  
SP  
SP  
1
@SP  
src  
A PUSH instruction decrements the stack pointer value and loads the contents of the source (src)  
into the location addressed by the decremented stack pointer. The operation then adds the new  
value to the top of the stack.  
Flags:  
No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
opc  
src  
2
8 (internal clock)  
8 (external clock)  
70  
R
8 (internal clock)  
8 (external clock)  
71  
IR  
Examples:  
Given: Register 40H  
=
4FH, register 4FH  
Register 40H  
=
0AAH, SPH  
=
00H, and SPL  
=
00H:  
PUSH  
40H  
=
4FH, stack register 0FFH  
0FFH  
=
4FH,  
SPH  
=
0FFH, SPL  
=
PUSH  
@40H  
Register 40H  
=
4FH, register 4FH  
=
0AAH, stack register  
= 0FFH  
0FFH 0AAH, SPH  
=
=
0FFH, SPL  
In the first example, if the stack pointer contains the value 0000H, and general register 40H the  
value 4FH, the statement "PUSH 40H" decrements the stack pointer from 0000 to 0FFFFH. It  
then loads the contents of register 40H into location 0FFFFH and adds this new value to the top  
of the stack.  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
196  
PUSHUD— Push User Stack (Decrementing)  
PUSHUD  
dst,src  
Operation:  
IR  
IR – 1  
dst  
src  
This instruction is used to address user-defined stacks in the register file. PUSHUD decrements  
the user stack pointer and loads the contents of the source into the register addressed by the  
decremented stack pointer.  
Flags:  
No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst src  
opc  
dst  
src  
3
8
82  
IR  
R
Example:  
Given: Register 00H  
PUSHUD @00H,01H  
=
03H, register 01H  
=
05H, and register 02H  
=
1AH:  
Register 00H = 02H, register 01H = 05H, register 02H = 05H  
If the user stack pointer (register 00H, for example) contains the value 03H, the statement  
"PUSHUD @00H,01H" decrements the user stack pointer by one, leaving the value 02H. The  
01H register value, 05H, is then loaded into the register addressed by the decremented user  
stack pointer.  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
197  
PUSHUI— Push User Stack (Incrementing)  
PUSHUI  
dst,src  
Operation:  
IR  
IR  
src  
+
1
dst  
This instruction is used for user-defined stacks in the register file. PUSHUI increments the user  
stack pointer and then loads the contents of the source into the register location addressed by  
the incremented user stack pointer.  
Flags:  
No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst src  
opc  
dst  
src  
3
8
83  
IR  
R
Example:  
Given: Register 00H  
PUSHUI @00H,01H  
=
03H, register 01H  
=
05H, and register 04H  
=
2AH:  
Register 00H = 04H, register 01H = 05H, register 04H = 05H  
If the user stack pointer (register 00H, for example) contains the value 03H, the statement  
"PUSHUI @00H,01H" increments the user stack pointer by one, leaving the value 04H. The 01H  
register value, 05H, is then loaded into the location addressed by the incremented user stack  
pointer.  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
198  
RCF— Reset Carry Flag  
RCF  
RCF  
Operation:  
C
0
The carry flag is cleared to logic zero, regardless of its previous value.  
Flags:  
C: Cleared to "0".  
No other flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
opc  
1
4
CF  
Example:  
Given: C = "1" or "0":  
The instruction RCF clears the carry flag (C) to logic zero.  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
199  
RET— Return  
RET  
Operation:  
PC  
SP  
@SP  
SP  
+
2
The RET instruction is normally used to return to the previously executing procedure at the end of  
a procedure entered by a CALL instruction. The contents of the location addressed by the stack  
pointer are popped into the program counter. The next statement that is executed is the one that  
is addressed by the new program counter value.  
Flags:  
No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode (Hex)  
opc  
1
8 (internal stack)  
10 (internal stack)  
AF  
Example:  
Given: SP  
=
00FCH, (SP)  
PC  
=
101AH, and PC  
=
1234:  
RET  
=
101AH, SP  
=
00FEH  
The statement "RET" pops the contents of stack pointer location 00FCH (10H) into the high byte  
of the program counter. The stack pointer then pops the value in location 00FEH (1AH) into the  
PC's low byte and the instruction at location 101AH is executed. The stack pointer now points to  
memory location 00FEH.  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
200  
RL— Rotate Left  
RL  
dst  
Operation:  
C
dst (7)  
dst (0) dst (7)  
dst (n 1)  
+
dst (n),  
n
=
0–6  
The contents of the destination operand are rotated left one bit position. The initial value of bit 7 is  
moved to the bit zero (LSB) position and also replaces the carry flag.  
7
0
C
Flags:  
C: Set if the bit rotated from the most significant bit position (bit 7) was "1".  
Z: Set if the result is "0"; cleared otherwise.  
S: Set if the result bit 7 is set; cleared otherwise.  
V: Set if arithmetic overflow occurred; cleared otherwise.  
D: Unaffected.  
H: Unaffected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
opc  
dst  
2
4
4
90  
91  
R
IR  
Examples:  
Given: Register 00H  
=
0AAH, register 01H  
=
02H and register 02H  
55H, C "1"  
02H, register 02H  
=
17H:  
RL  
RL  
00H  
Register 00H  
Register 01H  
=
=
@01H  
=
=
2EH, C  
=
"0"  
In the first example, if general register 00H contains the value 0AAH (10101010B), the statement  
"RL 00H" rotates the 0AAH value left one bit position, leaving the new value 55H (01010101B)  
and setting the carry and overflow flags.  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
201  
RLC— Rotate Left Through Carry  
RLC  
dst  
Operation:  
dst (0) ꢂꢄ  
C
C
dst (7)  
1) ꢄꢂ dst (n), n  
dst (n  
+
=
0–6  
The contents of the destination operand with the carry flag are rotated left one bit position. The  
initial value of bit 7 replaces the carry flag (C); the initial value of the carry flag replaces bit zero.  
7
0
C
Flags:  
C: Set if the bit rotated from the most significant bit position (bit 7) was "1".  
Z: Set if the result is "0"; cleared otherwise.  
S: Set if the result bit 7 is set; cleared otherwise.  
V: Set if arithmetic overflow occurred, that is, if the sign of the destination changed during  
rotation; cleared otherwise.  
D: Unaffected.  
H: Unaffected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
opc  
dst  
2
4
4
10  
11  
R
IR  
Examples:  
Given: Register 00H = 0AAH, register 01H = 02H, and register 02H = 17H, C = "0":  
RLC  
RLC  
00H  
Register 00H  
Register 01H  
=
=
54H, C  
=
"1"  
@01H  
02H, register 02H  
=
2EH, C = "0"  
In the first example, if general register 00H has the value 0AAH (10101010B), the statement  
"RLC 00H" rotates 0AAH one bit position to the left. The initial value of bit 7 sets the carry flag  
and the initial value of the C flag replaces bit zero of register 00H, leaving the value 55H  
(01010101B). The MSB of register 00H resets the carry flag to "1" and sets the overflow flag.  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
202  
RR— Rotate Right  
RR  
dst  
Operation:  
C
dst (0)  
dst (0)  
dst (nꢍꢂꢂꢄ dst (n  
dst (7)  
+
1), n  
=
0–6  
The contents of the destination operand are rotated right one bit position. The initial value of bit  
zero (LSB) is moved to bit 7 (MSB) and also replaces the carry flag (C).  
7
0
C
Flags:  
C: Set if the bit rotated from the least significant bit position (bit zero) was "1".  
Z: Set if the result is "0"; cleared otherwise.  
S: Set if the result bit 7 is set; cleared otherwise.  
V: Set if arithmetic overflow occurred, that is, if the sign of the destination changed during  
rotation; cleared otherwise.  
D: Unaffected.  
H: Unaffected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
opc  
dst  
2
4
4
E0  
E1  
R
IR  
Examples:  
Given: Register 00H  
=
31H, register 01H  
Register 00H = 98H, C  
Register 01H 02H, register 02H  
=
02H, and register 02H  
=
17H:  
RR  
RR  
00H  
=
"1"  
@01H  
=
=
8BH, C  
=
"1"  
In the first example, if general register 00H contains the value 31H (00110001B), the statement  
"RR 00H" rotates this value one bit position to the right. The initial value of bit zero is moved to  
bit 7, leaving the new value 98H (10011000B) in the destination register. The initial bit zero also  
resets the C flag to "1" and the sign flag and overflow flag are also set to "1".  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
203  
RRC— Rotate Right Through Carry  
RRC  
dst  
Operation:  
dst (7)  
C
C
dst (0)  
dst (n  
dst (n)  
+
1), n  
=
0–6  
The contents of the destination operand and the carry flag are rotated right one bit position. The  
initial value of bit zero (LSB) replaces the carry flag; the initial value of the carry flag replaces bit 7  
(MSB).  
7
0
C
Flags:  
C: Set if the bit rotated from the least significant bit position (bit zero) was "1".  
Z: Set if the result is "0" cleared otherwise.  
S: Set if the result bit 7 is set; cleared otherwise.  
V: Set if arithmetic overflow occurred, that is, if the sign of the destination changed during  
rotation; cleared otherwise.  
D: Unaffected.  
H: Unaffected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
opc  
dst  
2
4
4
C0  
C1  
R
IR  
Examples:  
Given: Register 00H  
=
55H, register 01H  
=
02H, register 02H  
2AH, C "1"  
02H, register 02H  
=
17H, and C  
=
"0":  
RRC  
RRC  
00H  
ꢅꢂ  
Register 00H  
Register 01H  
=
=
@01H  
=
=
0BH, C  
=
"1"  
In the first example, if general register 00H contains the value 55H (01010101B), the statement  
"RRC 00H" rotates this value one bit position to the right. The initial value of bit zero ("1")  
replaces the carry flag and the initial value of the C flag ("1") replaces bit 7. This leaves the new  
value 2AH (00101010B) in destination register 00H. The sign flag and overflow flag are both  
cleared to "0".  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
204  
SB0— Select Bank 0  
SB0  
Operation:  
BANK ꢂꢄ  
0
The SB0 instruction clears the bank address flag in the FLAGS register (FLAGS.0) to logic zero,  
selecting bank 0 register addressing in the set 1 area of the register file.  
Flags:  
No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
opc  
1
4
4F  
Example:  
The statement  
SB0  
clears FLAGS.0 to "0", selecting bank 0 register addressing.  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
205  
SB1— Select Bank 1  
SB1  
Operation:  
BANK ꢄꢂ 1  
The SB1 instruction sets the bank address flag in the FLAGS register (FLAGS.0) to logic one,  
selecting bank 1 register addressing in the set 1 area of the register file. (Bank 1 is not  
implemented in some S3C8-series microcontrollers.)  
Flags:  
No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
opc  
1
4
5F  
Example:  
The statement  
SB1  
sets FLAGS.0 to "1", selecting bank 1 register addressing, if implemented.  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
206  
SBC— Subtract with Carry  
SBC  
dst,src  
Operation:  
dst  
dst  
src  
c
The source operand, along with the current value of the carry flag, is subtracted from the  
destination operand and the result is stored in the destination. The contents of the source are  
unaffected. Subtraction is performed by adding the two's-complement of the source operand to  
the destination operand. In multiple precision arithmetic, this instruction permits the carry  
("borrow") from the subtraction of the low-order operands to be subtracted from the subtraction of  
high-order operands.  
Flags:  
C: Set if a borrow occurred (src  
dst); cleared otherwise.  
Z: Set if the result is "0"; cleared otherwise.  
S: Set if the result is negative; cleared otherwise.  
V: Set if arithmetic overflow occurred, that is, if the operands were of opposite sign and the sign  
of the result is the same as the sign of the source; cleared otherwise.  
D: Always set to "1".  
H: Cleared if there is a carry from the most significant bit of the low-order four bits of the result;  
set otherwise, indicating a "borrow".  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
src  
opc  
opc  
dst | src  
src  
2
4
6
32  
33  
r
r
r
lr  
dst  
3
3
6
6
34  
35  
R
R
R
IR  
opc  
dst  
src  
=
6
36  
R
IM  
Examples:  
Given: R1  
and register 03H  
=
10H, R2  
=
03H, C  
=
"1", register 01H  
=
20H, register 02H  
=
03H,  
0AH:  
SBC  
SBC  
SBC  
SBC  
SBC  
R1,R2  
R1 = 0CH, R2 = 03H  
R1,@R2  
R1 = 05H, R2 = 03H, register 03H = 0AH  
Register 01H = 1CH, register 02H = 03H  
01H,02H  
01H,@02H  
01H,#8AH  
Register 01H = 15H,register 02H = 03H, register 03H = 0AH  
Register 01H = 5H; C, S, and V = "1"  
In the first example, if working register R1 contains the value 10H and register R2 the value 03H,  
the statement "SBC R1,R2" subtracts the source value (03H) and the C flag value ("1") from the  
destination (10H) and then stores the result (0CH) in register R1.  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
207  
SCF— Set Carry Flag  
SCF  
Operation:  
Flags:  
C ꢂꢄ  
1
The carry flag (C) is set to logic one, regardless of its previous value.  
C: Set to "1".  
No other flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
opc  
1
4
DF  
Example:  
The statement  
SCF  
sets the carry flag to logic one.  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
208  
SRA— Shift Right Arithmetic  
SRA  
dst  
Operation:  
dst (7)  
dst (7)  
dst (0)  
dst (n  
C
dst (n)  
+
1), n  
=
0–6  
An arithmetic shift-right of one bit position is performed on the destination operand. Bit zero (the  
LSB) replaces the carry flag. The value of bit 7 (the sign bit) is unchanged and is shifted into bit  
position 6.  
7
6
0
C
Flags:  
C: Set if the bit shifted from the LSB position (bit zero) was "1".  
Z: Set if the result is "0"; cleared otherwise.  
S: Set if the result is negative; cleared otherwise.  
V: Always cleared to "0".  
D: Unaffected.  
H: Unaffected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
opc  
dst  
2
4
4
D0  
D1  
R
IR  
Examples:  
Given: Register 00H = 9AH, register 02H = 03H, register 03H = 0BCH, and C = "1":  
SRA  
SRA  
00H  
Register 00H  
Register 02H  
=
=
0CD, C  
=
"0"  
@02H  
03H, register 03H  
=
0DEH, C  
=
"0"  
In the first example, if general register 00H contains the value 9AH (10011010B), the statement  
"SRA 00H" shifts the bit values in register 00H right one bit position. Bit zero ("0") clears the C  
flag and bit 7 ("1") is then shifted into the bit 6 position (bit 7 remains unchanged). This leaves the  
value 0CDH (11001101B) in destination register 00H.  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
209  
SRP/SRP0/SRP1— Set Register Pointer  
SRP  
src  
src  
src  
SRP0  
SRP1  
Operation:  
If src (1)  
If src (1)  
If src (1)  
=
=
=
1 and src (0)  
0 and src (0)  
0 and src (0)  
=
=
=
0 then:  
1 then:  
0 then:  
RP0 (3–7)  
RP1 (3–7)  
RP0 (4–7)  
src (3–7)  
src (3–7)  
src (4–7),  
RP0 (3)  
0
RP1 (4–7)  
RP1 (3)  
src (4–7),  
1
The source data bits one and zero (LSB) determine whether to write one or both of the register  
pointers, RP0 and RP1. Bits 3–7 of the selected register pointer are written unless both register  
pointers are selected. RP0.3 is then cleared to logic zero and RP1.3 is set to logic one.  
Flags:  
No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
src  
opc  
src  
2
4
31  
IM  
Examples:  
The statement  
SRP #40H  
sets register pointer 0 (RP0) at location 0D6H to 40H and register pointer 1 (RP1) at location  
0D7H to 48H.  
The statement "SRP0 #50H" sets RP0 to 50H, and the statement "SRP1 #68H" sets RP1 to  
68H.  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
210  
STOP— Stop Operation  
STOP  
Operation:  
The STOP instruction stops the both the CPU clock and system clock and causes the  
microcontroller to enter Stop mode. During Stop mode, the contents of on-chip CPU registers,  
peripheral registers, and I/O port control and data registers are retained. Stop mode can be  
released by an external reset operation or by external interrupts. For the reset operation, the  
RESET pin must be held to Low level until the required oscillation stabilization interval has  
elapsed.  
Flags:  
No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
src  
opc  
1
4
7F  
Example:  
The statement  
STOP  
halts all microcontroller operations.  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
211  
SUB— Subtract  
SUB  
dst,src  
Operation:  
dst  
dst – src  
The source operand is subtracted from the destination operand and the result is stored in the  
destination. The contents of the source are unaffected. Subtraction is performed by adding the  
two's complement of the source operand to the destination operand.  
Flags:  
C: Set if a "borrow" occurred; cleared otherwise.  
Z: Set if the result is "0"; cleared otherwise.  
S: Set if the result is negative; cleared otherwise.  
V: Set if arithmetic overflow occurred, that is, if the operands were of opposite signs and the  
sign of the result is of the same as the sign of the source operand; cleared otherwise.  
D: Always set to "1".  
H: Cleared if there is a carry from the most significant bit of the low-order four bits of the result;  
set otherwise indicating a "borrow".  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
src  
opc  
dst  
src  
|
2
4
6
22  
r
r
23  
r
lr  
opc  
opc  
src  
dst  
dst  
src  
3
3
6
6
24  
25  
R
R
R
IR  
6
26  
R
IM  
Examples:  
Given: R1 = 12H, R2 = 03H, register 01H = 21H, register 02H = 03H, register 03H = 0AH:  
SUB  
SUB  
SUB  
SUB  
SUB  
SUB  
R1,R2  
R1  
R1  
=
=
0FH, R2  
08H, R2  
=
=
03H  
03H  
R1,@R2  
01H,02H  
01H,@02H  
01H,#90H  
01H,#65H  
Register 01H  
Register 01H  
Register 01H  
Register 01H  
=
=
=
=
1EH, register 02H  
17H, register 02H  
91H; C, S, and V  
=
=
03H  
03H  
=
"1"  
"1", V  
0BCH; C and S  
=
=
"0"  
In the first example, if working register R1 contains the value 12H and if register R2 contains the  
value 03H, the statement "SUB R1,R2" subtracts the source value (03H) from the destination  
value (12H) and stores the result (0FH) in destination register R1.  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
212  
SWAP— Swap Nibbles  
SWAP  
dst  
Operation:  
dst (0  
3)  
dst (4 – 7)  
The contents of the lower four bits and upper four bits of the destination operand are swapped.  
7
4 3  
0
Flags:  
C: Undefined.  
Z: Set if the result is "0"; cleared otherwise.  
S: Set if the result bit 7 is set; cleared otherwise.  
V: Undefined.  
D: Unaffected.  
H: Unaffected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
opc  
dst  
2
4
4
F0  
F1  
R
IR  
Examples:  
Given: Register 00H  
=
3EH, register 02H  
=
03H, and register 03H  
=
0A4H:  
SWAP  
SWAP  
00H  
Register 00H  
Register 02H  
= 0E3H  
@02H  
=
03H, register 03H  
=
4AH  
In the first example, if general register 00H contains the value 3EH (00111110B), the statement  
"SWAP 00H" swaps the lower and upper four bits (nibbles) in the 00H register, leaving the  
value 0E3H (11100011B).  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
213  
TCM— Test Complement Under Mask  
TCM  
dst,src  
Operation:  
(NOT dst) AND src  
This instruction tests selected bits in the destination operand for a logic one value. The bits to be  
tested are specified by setting a "1" bit in the corresponding position of the source operand  
(mask). The TCM statement complements the destination operand, which is then ANDed with the  
source mask. The zero (Z) flag can then be checked to determine the result. The destination and  
source operands are unaffected.  
Flags:  
C: Unaffected.  
Z: Set if the result is "0"; cleared otherwise.  
S: Set if the result bit 7 is set; cleared otherwise.  
V: Always cleared to "0".  
D: Unaffected.  
H: Unaffected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
src  
opc  
opc  
dst | src  
src  
2
4
6
62  
63  
r
r
r
lr  
dst  
src  
3
3
6
6
64  
65  
R
R
R
IR  
opc  
dst  
6
66  
R
IM  
Examples:  
Given: R0  
=
0C7H, R1  
= 02H, R2  
23H:  
=
12H, register 00H  
=
2BH, register 01H  
=
02H, and register 02H  
=
TCM  
TCM  
TCM  
TCM  
R0,R1  
R0  
R0  
=
=
0C7H, R1  
0C7H, R1  
=
=
02H, Z  
=
"1"  
R0,@R1  
00H,01H  
00H,@01H  
02H, register 02H  
=
23H, Z  
=
"0"  
Register 00H  
=
2BH, register 01H  
=
=
02H, Z  
02H,  
=
"1"  
Register 00H  
register 02H  
=
2BH, register 01H  
=
23H, Z  
2BH, Z  
=
"1"  
"0"  
TCM  
00H,#34  
Register 00H  
=
=
In the first example, if working register R0 contains the value 0C7H (11000111B) and register R1  
the value 02H (00000010B), the statement "TCM R0,R1" tests bit one in the destination register  
for a "1" value. Because the mask value corresponds to the test bit, the Z flag is set to logic one  
and can be tested to determine the result of the TCM operation.  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
214  
TM— Test Under Mask  
TM  
dst,src  
Operation:  
dst AND src  
This instruction tests selected bits in the destination operand for a logic zero value. The bits to be  
tested are specified by setting a "1" bit in the corresponding position of the source operand  
(mask), which is ANDed with the destination operand. The zero (Z) flag can then be checked to  
determine the result. The destination and source operands are unaffected.  
Flags:  
C: Unaffected.  
Z: Set if the result is "0"; cleared otherwise.  
S: Set if the result bit 7 is set; cleared otherwise.  
V: Always reset to "0".  
D: Unaffected.  
H: Unaffected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
src  
opc  
opc  
dst | src  
src  
2
4
6
72  
73  
r
r
r
lr  
dst  
src  
3
3
6
6
74  
75  
R
R
R
IR  
opc  
dst  
6
76  
R
IM  
Examples:  
Given: R0  
=
0C7H, R1  
= 02H, R2  
23H:  
=
18H, register 00H  
=
2BH, register 01H  
=
02H, and register 02H  
=
TM  
TM  
TM  
TM  
R0,R1  
R0  
R0  
=
=
0C7H, R1  
0C7H, R1  
=
=
02H, Z  
=
"0"  
R0,@R1  
00H,01H  
00H,@01H  
02H, register 02H  
=
23H, Z  
=
"0"  
Register 00H  
=
2BH, register 01H  
=
02H, Z "0"  
=
Register 00H  
register 02H  
=
=
2BH, register 01H = 02H,  
23H, Z  
=
"0"  
TM  
00H,#54H  
Register 00H  
=
2BH, Z  
=
"1"  
In the first example, if working register R0 contains the value 0C7H (11000111B) and register R1  
the value 02H (00000010B), the statement "TM R0,R1" tests bit one in the destination register  
for a "0" value. Because the mask value does not match the test bit, the Z flag is cleared to logic  
zero and can be tested to determine the result of the TM operation.  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
215  
WFI— Wait for Interrupt  
WFI  
Operation:  
The CPU is effectively halted until an interrupt occurs, except that DMA transfers can still take  
place during this wait state. The WFI status can be released by an internal interrupt, including a  
fast interrupt .  
Flags:  
No flags are affected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
opc  
1
4n  
3F  
( n  
=
1, 2, 3, … )  
Example:  
The following sample program structure shows the sequence of operations that follow a "WFI"  
statement:  
Main program  
.
.
.
EI  
(Enable global interrupt)  
(Wait for interrupt)  
WFI  
(Next instruction)  
.
.
.
Interrupt occurs  
Interrupt service routine  
.
.
.
Clear interrupt flag  
IRET  
Service routine completed  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
216  
XOR— Logical Exclusive OR  
XOR  
dst,src  
Operation:  
dst  
dst XOR src  
The source operand is logically exclusive-ORed with the destination operand and the result is  
stored in the destination. The exclusive-OR operation results in a "1" bit being stored whenever  
the corresponding bits in the operands are different; otherwise, a "0" bit is stored.  
Flags:  
C: Unaffected.  
Z: Set if the result is "0"; cleared otherwise.  
S: Set if the result bit 7 is set; cleared otherwise.  
V: Always reset to "0".  
D: Unaffected.  
H: Unaffected.  
Format:  
Bytes  
Cycles  
Opcode  
(Hex)  
Addr Mode  
dst  
src  
opc  
opc  
dst | src  
src  
2
4
6
B2  
B3  
r
r
r
lr  
dst  
src  
3
3
6
6
B4  
B5  
R
R
R
IR  
opc  
dst  
6
B6  
R
IM  
Examples:  
Given: R0  
=
0C7H, R1  
= 02H, R2  
23H:  
=
18H, register 00H  
=
2BH, register 01H  
=
02H, and register 02H  
=
XOR  
XOR  
XOR  
R0,R1  
R0  
R0  
=
=
0C5H, R1  
0E4H, R1  
=
=
02H  
02H, register 02H  
R0,@R1  
00H,01H  
00H,@01H  
=
23H  
Register 00H  
Register 00H  
=
=
29H, register 01H  
08H, register 01H  
=
=
02H  
XOR  
23H  
02H, register 02H  
=
XOR  
00H,#54H  
Register 00H  
=
7FH  
In the first example, if working register R0 contains the value 0C7H and if register R1 contains  
the value 02H, the statement "XOR R0,R1" logically exclusive-ORs the R1 value with the R0  
value and stores the result (0C5H) in the destination register R0.  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
217  
7
CLOCK CIRCUIT  
OVERVIEW  
The S3F82NB microcontroller has two oscillator circuits: a main clock and a sub clock circuit. The CPU and  
peripheral hardware operate on the system clock frequency supplied through these circuits. The maximum CPU  
clock frequency of S3F82NB is determined by CLKCON register settings.  
SYSTEM CLOCK CIRCUIT  
The system clock circuit has the following components:  
— External crystal, ceramic resonator, RC oscillation source, or an external clock source  
— Oscillator stop and wake-up functions  
— Programmable frequency divider for the CPU clock (fxx divided by 1, 2, 8, or 16)  
— System clock control register, CLKCON  
— Oscillator control register, OSCCON and STOP control register, STPCON  
CPU CLOCK NOTATION  
In this document, the following notation is used for descriptions of the CPU clock;  
fx: main clock  
fxt: sub clock  
fxx: selected system clock  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
218  
MAIN OSCILLATOR CIRCUITS  
SUB OSCILLATOR CIRCUITS  
32.768 kHz  
XTIN  
XIN  
XOUT  
XTOUT  
Figure 7-1. Crystal/Ceramic Oscillator (fX)  
Figure 7-4. Crystal Oscillator (fxt)  
XIN  
XTIN  
XOUT  
XTOUT  
Figure 7-2. External Oscillator (fX)  
Figure 7-5. External Oscillator (fxt)  
XIN  
R
XOUT  
Figure 7-3. RC Oscillator (fX)  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
219  
CLOCK STATUS DURING POWER-DOWN MODES  
The two power-down modes, Stop mode and Idle mode, affect the system clock as follows:  
— In Stop mode, the main oscillator is halted. Stop mode is released, and the oscillator is started, by a reset  
operation or an external interrupt (with RC delay noise filter), and can be released by internal interrupt too  
when the sub-system oscillator is running and watch timer is operating with sub-system clock.  
— In Idle mode, the internal clock signal is gated to the CPU, but not to interrupt structure, timers and timer/  
counters. Idle mode is released by a reset or by an external or internal interrupt.  
Stop Release  
INT  
Main-System  
Oscillator  
Circuit  
Sub-system  
Oscillator  
Circuit  
fX  
fXt  
Watch Timer  
LCD Controller  
Selector 1  
fXX  
Stop  
OSCCON.3  
OSCCON.0  
Stop  
OSCCON.2  
1/1-1/4096  
STOP OSC  
inst.  
Basic Timer  
Frequency  
Dividing  
Circuit  
Timer/Counters 0, 1/A  
Watch Timer  
LCD Controller  
SIO  
STPCON  
A/D Converter  
Comparator  
LVR  
1/1 1/2 1/8 1/16  
Selector 2  
CLKCON.4-.3  
CPU Clock  
IDLE Instruction  
Figure 7-6. System Clock Circuit Diagram  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
220  
SYSTEM CLOCK CONTROL REGISTER (CLKCON)  
The system clock control register, CLKCON, is located in the set 1, address D4H. It is read/write addressable and  
has the following functions:  
— Oscillator frequency divide-by value  
After the main oscillator is activated, and the fxx/16 (the slowest clock speed) is selected as the CPU clock. If  
necessary, you can then increase the CPU clock speed fxx/8, fxx/2, or fxx/1.  
System Clock Control Register (CLKCON)  
D4H, Set 1, R/W  
MSB  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
Not used  
(must keep always 0)  
Not used  
(must keep always 0)  
Oscillator IRQ wake-up function bit:  
0 = Enable IRQ for main wake-up in power down mode  
1 = Disable IRQ for main wake-up in power down mode  
Divide-by selection bits for CPU clock frequency:  
00 = fXX/16  
01 = fXX/8  
10 = fXX/2  
11 = fXX/1  
NOTE: After a reset, the slowest clock (divided by 16) is selected as the system clock.  
To select faster speed, load the appropriate values to CLKCON.3-.4.  
Figure 7-7. System Clock Control Register (CLKCON)  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
221  
OSCILLATOR CONTROL REGISTER (OSCCON)  
The oscillator control register, OSCCON, is located in set 1, bank 0, at address FAH. It is read/write addressable  
and has the following functions:  
— System clock selection  
— Main oscillator control  
— Sub oscillator control  
OSCCON.0 register settings select Main clock or Sub clock as system clock.  
After a reset, Main clock is selected for system clock because the reset value of OSCCON.0 is "0".  
The main oscillator can be stopped or run by setting OSCCON.3.  
The sub oscillator can be stopped or run by setting OSCCON.2.  
Oscillator Control Register (OSCCON)  
FAH, Set 1, Bank 0, R/W  
MSB  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
System clock selection bit:  
0 = Main oscillator select  
1 = Sub oscillator select  
Not used for S3F82NB  
Not used for S3F82NB  
Sub system oscillator control bit:  
0 = Sub oscillator RUN  
1 = Sub oscillator STOP  
Main system oscillator control bit:  
0 = Main oscillator RUN  
1 = Main oscillator STOP  
Figure 7-8. Oscillator Control Register (OSCCON)  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
222  
STOP CONTROL REGISTER (STPCON)  
The STOP control register, STPCON, is located in the bank 0 of set1, address F5H. It is read/write addressable  
and has the following functions:  
— Enable/Disable STOP instruction  
After a reset, the STOP instruction is disabled, because the value of STPCON is "other values".  
If necessary, you can use the STOP instruction by setting the value of STPCON to "10100101B".  
STOP Control Register (STPCON)  
F5H, Set 1, bank 0, R/W  
MSB  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
STOP Control bits:  
Other values = Disable STOP instruction  
10100101 = Enable STOP instruction  
NOTE:  
Before executing the STOP instruction, set the STPCON  
register as "10100101b". Otherwise the STOP instruction  
will not be executed and reset will be generated.  
Figure 7-9. STOP Control Register (STPCON)  
PROGRAMMING TIP — How to Use Stop Instruction  
This example shows how to go STOP mode when a main clock is selected as the system clock.  
LD  
STOPCON,#1010010B  
; Enable STOP instruction  
; Enter STOP mode  
STOP  
NOP  
NOP  
NOP  
LD  
; Release STOP mode  
STOPCON,#00000000B ; Disable STOP instruction  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
223  
SWITCHING THE CPU CLOCK  
Data loading in the oscillator control register, OSCCON, determine whether a main or a sub clock is selected as  
the CPU clock, and also how this frequency is to be divided by setting CLKCON. This makes it possible to switch  
dynamically between main and sub clocks and to modify operating frequencies.  
OSCCON.0 selects the main clock (fx) or the sub clock (fxt) for the CPU clock. OSCCON .3 start or stop main  
clock oscillation and OSCCON.2 start or stop sub clock oscillation. CLKCON.4–.3 controls the frequency divider  
circuit, and divides the selected fxx clock by 1, 2, 8 and 16. If the sub clock (fxt) is selected for system clock, the  
CLKCON.4–.3 must be set to “11”.  
For example, you are using the default CPU clock (normal operating mode and a main clock of fx/16) and you  
want to switch from the fx clock to a sub clock and to stop the main clock. To do this, you need to set CLKCON.4-  
.3 to "11", OSCCON.0 to “1”, and OSCCON.3 to “1” by turns. This switches the clock from fx to fxt and stops main  
clock oscillation.  
The following steps must be taken to switch from a sub clock to the main clock: first, set OSCCON.3 to “0” to  
enable main clock oscillation. Then, after a certain number of machine cycles have elapsed, select the main clock  
by setting OSCCON.0 to “0”.  
PROGRAMMING TIP — Switching the CPU Clock  
1. This example shows how to change from the main clock to the sub clock:  
MA2SUB OR  
LD  
CLKCON,#18H  
OSCCON,#01H  
DLY16  
; Non-divided clock for system clock  
; Switches to the sub clock  
; Delay 16 ms  
CALL  
OR  
RET  
OSCCON,#08H  
; Stop the main clock oscillation  
2. This example shows how to change from sub clock to main clock:  
SUB2MA AND  
OSCCON,#07H  
DLY16  
; Start the main clock oscillation  
; Delay 16 ms  
; Switch to the main clock  
CALL  
AND  
RET  
OSCCON,#06H  
DLY16  
DEL  
SRP  
LD  
#0C0H  
R0,#20H  
NOP  
DJNZ  
RET  
R0,DEL  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
224  
8
RESET and POWER-DOWN  
SYSTEM RESET  
OVERVIEW  
During a power-on reset, the voltage at VDD goes to High level and the nRESET pin is forced to Low level. The  
nRESET signal is input through a schmitt trigger circuit where it is then synchronized with the CPU clock. This  
procedure brings the S3F82NB into a known operating status.  
To allow time for internal CPU clock oscillation to stabilize, the nRESET pin must be held to Low level for a  
minimum time interval after the power supply comes within tolerance. The minimum required time of a reset  
operation for oscillation stabilization is 1 millisecond.  
Whenever a reset occurs during normal operation (that is, when both VDD and nRESET are High level), the  
nRESET pin is forced Low level and the reset operation starts. All system and peripheral control registers are  
then reset to their default hardware values  
In summary, the following sequence of events occurs during a reset operation:  
— All interrupt is disabled.  
— The watchdog function (basic timer) is enabled.  
— Ports 0-10 and set to input mode, and all pull-up resistors are disabled for the I/O port.  
— Peripheral control and data register settings are disabled and reset to their default hardware values.  
— The program counter (PC) is loaded with the program reset address in the ROM, 0100H.  
— When the programmed oscillation stabilization time interval has elapsed, the instruction stored in ROM  
location 0100H (and 0101H) is fetched and executed at normal mode by smart option.  
— The reset address at ROM can be changed by Smart Option in the S3F82NB (full-flash device). Refer to "The  
Chapter 18. Embedded Flash Memory Interface" for more detailed contents.  
NORMAL MODE RESET OPERATION  
In normal mode, the Test pin is tied to VSS. A reset enables access to the 64-Kbyte on-chip ROM. (The external  
interface is not automatically configured).  
NOTE  
To program the duration of the oscillation stabilization interval, you make the appropriate settings to the  
basic timer control register, BTCON, before entering Stop mode. Also, if you do not want to use the basic  
timer watchdog function (which causes a system reset if a basic timer counter overflow occurs), you can  
disable it by writing "1010B" to the upper nibble of BTCON.  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
225  
HARDWARE RESET VALUES  
Table 8-1, 8-2, 8-3, 8-4 list the reset values for CPU and system registers, peripheral control registers, and  
peripheral data registers following a reset operation. The following notation is used to represent reset values:  
— A "1" or a "0" shows the reset bit value as logic one or logic zero, respectively.  
— An "x" means that the bit value is undefined after a reset.  
— A dash ("–") means that the bit is either not used or not mapped, but read 0 is the bit value.  
Table 8-1. S3F82NB Set 1 Register and Values after RESET  
Register Name  
Mnemonic  
Address  
Dec Hex  
Locations D0H–D2H are not mapped.  
Bit Values after RESET  
7
6
5
4
3
2
1
0
Basic timer control register  
System clock control register  
System flags register  
Register pointer 0  
Register pointer 1  
Stack pointer (high byte)  
Stack pointer (low byte)  
Instruction pointer (high byte)  
Instruction pointer (low byte)  
Interrupt request register  
Interrupt mask register  
System mode register  
Register page pointer  
BTCON  
CLKCON  
FLAGS  
RP0  
211  
212  
213  
214  
215  
216  
217  
218  
219  
220  
221  
222  
223  
D3H  
D4H  
D5H  
D6H  
D7H  
D8H  
D9H  
DAH  
DBH  
DCH  
DDH  
DEH  
DFH  
0
0
x
1
1
x
x
x
x
0
x
0
0
0
x
1
1
x
x
x
x
0
x
0
0
x
0
0
x
x
x
x
0
x
0
0
0
x
0
0
x
x
x
x
0
x
x
0
0
0
x
0
1
x
x
x
x
0
x
x
0
0
x
x
x
x
x
0
x
x
0
0
0
x
x
x
x
0
x
0
0
0
0
x
x
x
x
0
x
0
0
RP1  
SPH  
SPL  
IPH  
IPL  
IRQ  
IMR  
SYM  
PP  
NOTES:  
1. An 'x' means that the bit value is undefined following reset.  
2. A dash ('-') means that the bit is neither used nor mapped, but the bit is read as “0”.  
Table 8-2. S3F82NB Page15 Register and Values after RESET  
Register Name  
Mnemonic  
Address  
Bit Values after RESET  
Dec  
176  
Hex  
B0H  
7
6
5
4
3
2
1
0
Reset Source Indicating Register  
RESETID  
Refer to the Page 4-51.  
NOTES:  
1. An 'x' means that the bit value is undefined following reset.  
2. A dash ('–') means that the bit is neither used nor mapped, but the bit is read as “0”.  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
226  
Table 8-3. S3F82NB Set 1, Bank 0 Register and Values after RESET  
Register Name  
Mnemonic Address  
Bit Values after RESET  
Dec Hex  
PG0CON 208 D0H  
PG1CON 209 D1H  
7
0
0
x
6
0
0
x
5
0
0
0
x
4
0
0
0
x
3
0
0
0
x
2
0
0
0
x
1
0
0
0
x
0
0
0
0
x
Port Group 0 Control Register  
Port Group 1 Control Register  
Port 6 Control Register  
A/D Converter Data Register (High Byte)  
A/D Converter Data Register (Low Byte)  
A/D Converter Control Register  
Timer 0 Counter Register  
Timer 0 Data Register  
Timer 0 Control Register  
Timer B Counter Register  
Timer A Counter Register  
Timer B Data Register  
Timer A Data Register  
Timer B Control Register  
Timer 1/A Control Register  
Timer Interrupt Pending Register  
Timer Interrupt Control Register  
Watch Timer Control Register  
LCD Control Register  
P6CON  
210 D2H  
ADDATAH 224 E0H  
ADDATAL 225 E1H  
0
1
0
0
0
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
x
x
ADCON  
T0CNT  
226 E2H  
227 E3H  
228 E4H  
229 E5H  
230 E6H  
231 E7H  
232 E8H  
233 E9H  
234 EAH  
235 EBH  
0
0
1
0
0
0
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
T0DATA  
T0CON  
TBCNT  
TACNT  
TBDATA  
TADATA  
TBCON  
TACON  
TINTPND 236 ECH  
TINTCON 237 EDH  
WTCON  
LCON  
LMOD  
238 EEH  
239 EFH  
240 F0H  
LCD Mode Register  
Comparator Control Register  
Comparator Result Register  
SIO Control Register  
SIO Data Register  
SIO Pre-scaler Register  
Flash Memory Sector Address Register (High Byte)  
Flash Memory Sector Address Register (Low Byte)  
Flash Memory User Programming Enable Register  
Flash Memory Control Register  
Oscillator Control Register  
STOP Control register  
CMPCON 241 F1H  
CMPREG 242 F2H  
SIOCON  
SIODATA 244 F4H  
SIOPS 245 F5H  
243 F3H  
FMSECH 246 F6H  
FMSECL 247 F7H  
FMUSR  
FMCON  
248 F8H  
249 F9H  
OSCCON 250 FAH  
STPCON 251 FBH  
Location FCH is not mapped.  
BTCNT 253 FDH  
Location FEH is not mapped.  
Basic Timer Counter  
0
x
0
x
0
x
0
x
0
x
0
x
0
x
0
x
Interrupt Priority Register  
IPR  
255 FFH  
NOTES:  
1. An 'x' means that the bit value is undefined following reset.  
2. A dash ('–') means that the bit is neither used nor mapped, but the bit is read as “0”.  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
227  
Table 8-4. S3F82NB Set 1, Bank 1 Register and Values after RESET  
Register Name  
Mnemonic  
Address  
Dec Hex  
208 D0H  
209 D1H  
210 D2H  
224 E0H  
225 E1H  
226 E2H  
227 E3H  
228 E4H  
229 E5H  
230 E6H  
231 E7H  
232 E8H  
233 E9H  
234 EAH  
235 EBH  
236 ECH  
237 EDH  
238 EEH  
239 EFH  
240 F0H  
241 F1H  
242 F2H  
243 F3H  
244 F4H  
245 F5H  
246 F6H  
247 F7H  
248 F8H  
249 F9H  
250 FAH  
251 FBH  
252 FCH  
253 FDH  
254 FEH  
255 FFH  
Bit Values after RESET  
7
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
6
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
5
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
4
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
3
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
2
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Port 4 Control Register (High Byte)  
Port 4 Control Register (Low Byte)  
Port 4 Pull-up Resistor Enable Register  
Port 0 Control Register (High Byte)  
Port 0 Control Register (Low Byte)  
Port 0 Pull-up Resistor Enable Register  
Alternative Function Selection Register  
Port 1 Control Register (High Byte)  
Port 1 Control Register (Low Byte)  
Port 1 Pull-up Resistor Enable Register  
Port 1 Interrupt Pending Register  
Port 1 Interrupt Control Register (High Byte)  
Port 1 Interrupt Control Register (Low Byte)  
Port 2 Control Register (High Byte)  
Port 2 Control Register (Low Byte)  
Port 2 Pull-up Resistor Enable Register  
Port 3 Pull-up Resistor Enable Register  
Port 3 Control Register (High Byte)  
Port 3 Control Register (Low Byte)  
Port 0 Data Register  
P4CONH  
P4CONL  
P4PUR  
P0CONH  
P0CONL  
P0PUR  
AFSEL  
P1CONH  
P1CONL  
P1PUR  
P1PND  
P1INTH  
P1INTL  
P2CONH  
P2CONL  
P2PUR  
P3PUR  
P3CONH  
P3CONL  
P0  
Port 1 Data Register  
Port 2 Data Register  
Port 3 Data Register  
Port 4 Data Register  
Port 5 Data Register  
Port 6 Data Register  
Port 7 Data Register  
Port 8 Data Register  
P1  
P2  
P3  
P4  
P5  
P6  
P7  
P8  
Port 9 Data Register  
Port 10 Data Register  
P9  
P10  
Port 5 Interrupt Control Register  
Port 5 Interrupt Pending Register  
Port 5 Pull-up Resistor Enable Register  
Port 5 Control Register (High Byte)  
Port 5 Control Register (Low Byte)  
P5INT  
P5PND  
P5PUR  
P5CONH  
P5CONL  
NOTES:  
1. An 'x' means that the bit value is undefined following reset.  
2. A dash ('–') means that the bit is neither used nor mapped, but the bit is read as “0”.  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
228  
POWER-DOWN MODES  
STOP MODE  
Stop mode is invoked by the instruction STOP (opcode 7FH). In Stop mode, the operation of the CPU and all  
peripherals is halted. That is, the on-chip main oscillator stops and the supply current is reduced to less than  
3A. All system functions stop when the clock “freezes”, but data stored in the internal register file is retained.  
Stop mode can be released in one of two ways: by a reset or by interrupts, for more details see Figure 7-6.  
NOTE  
Do not use stop mode if you are using an external clock source because XIN or XTIN input must be  
restricted internally to VSS to reduce current leakage.  
Using nRESET to Release Stop Mode  
Stop mode is released when the nRESET signal is released and returns to high level: all system and peripheral  
control registers are reset to their default hardware values and the contents of all data registers are retained. A  
reset operation automatically selects a slow clock fxx/16 because CLKCON.3 and CLKCON.4 are cleared to  
‘00B’. After the programmed oscillation stabilization interval has elapsed, the CPU starts the system initialization  
routine by fetching the program instruction stored in ROM location 0100H (and 0101H)  
Using an External Interrupt to Release Stop Mode  
External interrupts with an RC-delay noise filter circuit can be used to release Stop mode. Which interrupt you can  
use to release Stop mode in a given situation depends on the microcontroller’s current internal operating mode.  
The external interrupts in the S3F82NB interrupt structure that can be used to release Stop mode are:  
— External interrupts P1.0–P1.7, P5.4–P5.7 (INT0–INT11)  
Please note the following conditions for Stop mode release:  
— If you release Stop mode using an external interrupt, the current values in system and peripheral control  
registers are unchanged except STPCON register.  
— If you use an internal or external interrupt for Stop mode release, you can also program the duration of the  
oscillation stabilization interval. To do this, you must make the appropriate control and clock settings before  
entering Stop mode.  
— When the Stop mode is released by external interrupt, the CLKCON.4 and CLKCON.3 bit-pair setting remains  
unchanged and the currently selected clock value is used.  
— The external interrupt is serviced when the Stop mode release occurs. Following the IRET from the service  
routine, the instruction immediately following the one that initiated Stop mode is executed.  
Using an Internal Interrupt to Release Stop Mode  
Activate any enabled interrupt, causing Stop mode to be released. Other things are same as using external  
interrupt.  
How to Enter into Stop Mode  
Handling STPCON register then writing STOP instruction (keep the order).  
LD  
STPCON,#10100101B  
STOP  
NOP  
NOP  
PS031601-0813  
P R E L I M I N A R Y  
NOP  
S3F82NB  
Product Specification  
229  
IDLE MODE  
Idle mode is invoked by the instruction IDLE (opcode 6FH). In idle mode, CPU operations are halted while some  
peripherals remain active. During idle mode, the internal clock signal is gated away from the CPU, but all  
peripherals timers remain active. Port pins retain the mode (input or output) they had at the time idle mode was  
entered.  
There are two ways to release idle mode:  
1. Execute a reset. All system and peripheral control registers are reset to their default values and the contents  
of all data registers are retained. The reset automatically selects the slow clock fxx/16 because CLKCON.4  
and CLKCON.3 are cleared to ‘00B’. If interrupts are masked, a reset is the only way to release idle mode.  
2. Activate any enabled interrupt, causing idle mode to be released. When you use an interrupt to release idle  
mode, the CLKCON.4 and CLKCON.3 register values remain unchanged, and the currently selected clock  
value is used. The interrupt is then serviced. When the return-from-interrupt (IRET) occurs, the instruction  
immediately following the one that initiated idle mode is executed.  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
230  
9
I/O PORTS  
OVERVIEW  
The S3F82NB microcontroller has eleven bit-programmable I/O ports, P0–P10. The port 6 is a 3-bit port and the  
others are 8-bit ports. This gives a total of 83 I/O pins. Each port can be flexibly configured to meet application  
design requirements. The CPU accesses ports by directly writing or reading port registers. No special I/O  
instructions are required.  
Table 9-1 gives you a general overview of the S3F82NB I/O port functions.  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
231  
Table 9-1. S3F82NB Port Configuration Overview  
Configuration Options  
Port  
0
1-bit programmable I/O port.  
Input (P0.0 and P0.1 are Schmitt trigger input) or push-pull, open-drain output mode selected by  
software; software assignable pull-ups.  
Alternately P0.0–P0.7 can be used as T1CLK/AD0, T0CLK/AD1, T1OUT/T1PWM/T1CAP/AD2,  
T0OUT/T0PWM/T0CAP/AD3, AD4–AD7.  
1
1-bit programmable I/O port.  
Schmitt trigger input or push-pull, open-drain output mode selected by software; software assignable  
pull-ups.  
P1.0–P1.7 can be used as inputs for external interrupts INT0–INT7 (with noise filter, interrupt enable  
and pending control).  
The P1.0 is configured as one of the P1.0/INT0 and AVREF by “Smart option”.  
Alternately P1.0–P1.7 can be used as BUZ, SI, SO, SCK.  
2
3
4
5
1-bit programmable I/O port.  
Input or push-pull, open-drain output mode selected by software; software assignable pull-ups.  
Alternatively P2.0-P2.7 can be used as outputs for LCD SEG.  
1-bit programmable I/O port.  
Input or push-pull, open-drain output mode selected by software; software assignable pull-ups.  
Alternatively P3.0-P3.7 can be used as outputs for LCD SEG.  
1-bit programmable I/O port.  
Input or push-pull, open-drain output mode selected by software; software assignable pull-ups.  
Alternatively P4.0-P4.7 can be used as outputs for LCD SEG.  
1-bit programmable I/O port.  
Input (P5.4–P5.7 are Schmitt trigger input) or push-pull, open-drain output mode selected by  
software; software assignable pull-ups.  
P5.4–P5.7 can be used as inputs for external interrupts INT8–INT11 (with noise filter, interrupt  
enable and pending control).  
Alternatively P5.0-P5.7 can be used as outputs for LCD SEG.  
6
7
1-bit programmable I/O port.  
Schmitt trigger input or push-pull output mode selected by software; software assignable pull-ups.  
Alternatively P6.0–P6.2 can be used as CIN0–CIN2.  
4-bit programmable I/O port.  
Input or push-pull output mode selected by software; software assignable pull-ups.  
Alternatively P7.0–P7.7 can be used as outputs for LCD SEG.  
8
4-bit programmable I/O port.  
Input or push-pull output mode selected by software; software assignable pull-ups.  
Alternatively P8.0–P8.7 can be used as outputs for LCD SEG.  
9
4-bit programmable I/O port.  
Input or push-pull output mode selected by software; software assignable pull-ups.  
Alternatively P9.0–P9.7 can be used as outputs for LCD SEG.  
10  
4-bit programmable I/O port.  
Input or push-pull output mode selected by software; software assignable pull-ups.  
Alternatively P10.0–P10.7 can be used as outputs for LCD SEG.  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
232  
PORT DATA REGISTERS  
Table 9-2 gives you an overview of the register locations of all twelve S3F82NB I/O port data registers. Data  
registers for ports 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 and 10 have the general format shown in Figure 9-1.  
Table 9-2. Port Data Register Summary  
Register Name  
Port 0 data register  
Port 1 data register  
Port 2 data register  
Port 3 data register  
Port 4 data register  
Port 5 data register  
Port 6 data register  
Port 7 data register  
Port 8 data register  
Port 9 data register  
Port 10 data register  
Mnemonic  
P0  
Decimal  
Hex  
F0H  
F1H  
F2H  
F3H  
F4H  
F5H  
F6H  
F7H  
F8H  
F9H  
FAH  
Location  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0
1
Set 1, Bank 1  
Set 1, Bank 1  
Set 1, Bank 1  
Set 1, Bank 1  
Set 1, Bank 1  
Set 1, Bank 1  
Set 1, Bank 1  
Set 1, Bank 1  
Set 1, Bank 1  
Set 1, Bank 1  
Set 1, Bank 1  
P1  
P2  
2
P3  
3
P4  
4
P5  
5
P6  
6
P7  
7
P8  
8
P9  
9
P10  
10  
S3F82NB I/O Port Data Register Format (n = 0-10)  
.7 .6 .5 .4 .3 .2 .1 .0  
MSB  
LSB  
Pn.7 Pn.6 Pn.5 Pn.4 Pn.3 Pn.2 Pn.1 Pn.0  
Figure 9-1. S3F82NB I/O Port Data Register Format  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
233  
PORT 0  
Port 0 is an 8-bit I/O port that can be used for general purpose I/O as A/D converter inputs, AD0-AD7. Port 0 pins  
are accessed directly by writing or reading the port 0 data register, P0 at location F0H in Set 1, Bank 1. P0.0–P0.7  
can serve as inputs (with or without pull-ups), as outputs (push-pull or open-drain). And you can configure the  
following alternative functions:  
— Low-byte pins (P0.0–P0.3): AD0/T1CLK, AD1/T0CLK, AD2/T1OUT/T1PWM/T1CAP,  
AD3/T0OUT/T0PWM/T0CAP  
— High-byte pins (P0.4–P0.7): AD4-AD7  
Port 0 Control Register (P0CONH, P0CONL)  
Port 0 has two 8-bit control registers: P0CONH for P0.4-P0.7 and P0CONL for P0.0-P0.3. A reset clears the  
P0CONH and P0CONL registers to "00H", configuring all pins to input mode. You use control registers settings to  
select input or output mode, enable pull-up resistors, select push-pull or open-drain output mode and enable the  
alternative functions.  
When programming the port, please remember that any alternative peripheral I/O function you configure using the  
port 0 control registers must also be enabled in the associated peripheral module.  
Port 0 Pull-up Resistor Enable Register (P0PUR)  
Using the port 0 pull-up resistor enable register, P0PUR (E2H, set1, bank1), you can configure pull-up resistors to  
individual port 0 pins.  
Alternative Function Selection Register (AFSEL)  
Using the port 0 alternative function selection register, AFSEL (E3H, set1, bank1), you can configure alternative  
mode to P0.2 and P0.3. The AD3 or T0OUT/T0PWM outputs depend on AFSEL.1 and the AD2 or  
T1OUT/T1PWM outputs depend on AFSEL.0.  
Port 0 Control Register, High Byte (P0CONH)  
E0H, Set 1, Bank 1, R/W  
MSB  
LSB  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
P0.7/AD7  
P0.6/AD6  
P0.5/AD5  
P0.4/AD4  
P0CONH bit-pair pin configuration settings:  
00  
01  
10  
11  
Input mode  
Output mode, open-drain  
Output mode, push-pull  
Alternative function (AD4-AD7)  
Figure 9-2. Port 0 High-Byte Control Register (P0CONH)  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
234  
Port 0 Control Register, Low Byte (P0CONL)  
E1H, Set 1, Bank 1, R/W  
MSB  
LSB  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
P0.2/AD2  
/T1OUT/T1PWM  
/T1CAP  
P0.3/AD3  
/T0OUT/T0PWM  
/T0CAP  
P0.1/AD1  
/T0CLK  
P0.0/AD0  
/T1CLK  
P0CONL bit-pair pin configuration settings:  
00  
01  
10  
11  
Input mode (T0CAP, T1CAP), Schmitt trigger input mode (T0CLK, T1CLK)  
Output mode, open-drain  
Output mode, push-pull  
Alternative function (AD0, AD1, AD2/T1OUT/T1PWM, AD3/T0OUT/T0PWM)  
NOTE: The P0.2 and P0.3 alternative functions depend on  
AFSEL.0 and AFSEL.1, respectively.  
Figure 9-3. Port 0 Low-Byte Control Register (P0CONL)  
Port 0 Pull-up Resistor Enable Register (P0PUR)  
E2H, Set 1, Bank 1, R/W  
MSB  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
P0.7 P0.6 P0.5 P0.4 P0.3 P0.2 P0.1 P0.0  
P0PUR bit configuration settings:  
0
1
Disable Pull-up Resistor  
Enable Pull-up Resistor  
NOTE: A pull-up resistor of port 0 is automatically disabled  
only when the corresponding pin is selected as  
push-pull output or alternative function.  
Figure 9-4. Port 0 Pull-up Resistor Enable Register (P0PUR)  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
235  
Alternative Function Selection Register (AFSEL)  
E3H, Set 1, Bank 1, R/W  
MSB  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
Not used for the S3F82NB  
P0.3 Alternative mode selection bit:  
0
1
Alternative Function (AD3)  
Alternative Function (T0OUT/T0PWM)  
P0.2 Alternative mode selection bit:  
0
1
Alternative Function (AD2)  
Alternative Function (T1OUT/T1PWM)  
Figure 9-5. Alternative Function Selection Register (AFSEL)  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
236  
PORT 1  
Port 1 is an 8-bit I/O port with individually configurable pins. Port 1 pins are accessed directly by writing or reading  
the port 1 data register, P1 at location F1H in set 1, bank 1. P1.0–P1.7 can serve as inputs (with or without pull-  
ups), as outputs (push-pull or open-drain). P1.0 is configured as one of the P1.0/INT0 and AV  
option”. And you can configure the following alternative functions:  
by “Smart  
REF  
— Low-byte pins (P1.0-P1.3): AV  
REF  
— High-byte pins (P1.4-P1.7): BUZ, SI, SO, SCK  
Port 1 Control Register (P1CONH, P1CONL)  
Port 1 has two 8-bit control registers: P1CONH for P1.4-P1.7 and P1CONL for P1.0-P1.3. A reset clears the  
P1CONH and P1CONL registers to "00H", configuring all pins to input mode. In input mode, three different  
selections are available:  
— Schmitt trigger input with interrupt generation on falling signal edges.  
— Schmitt trigger input with interrupt generation on rising signal edges.  
— Schmitt trigger input with interrupt generation on falling/rising signal edges.  
When programming the port, please remember that any alternative peripheral I/O function you configure using the  
port 1 control registers must also be enabled in the associated peripheral module.  
Port 1 Pull-up Resistor Enable Register (P1PUR)  
Using the port 1 pull-up resistor enable register, P1PUR (E6H, set1, bank1), you can configure pull-up resistors to  
individual port 1 pins.  
Port 1 Interrupt Enable and Pending Registers (P1INTH, P1INTL, P1PND)  
To process external interrupts at the port 1 pins, the additional control registers are provided: the port 1 interrupt  
enable register P1INTH (high byte, E8H, set 1, bank 1), P1INTL (Low byte, E9H, set1, bank1) and the port 1  
interrupt pending register P1PND (E7H, set 1, bank 1).  
The port 1 interrupt pending register P1PND lets you check for interrupt pending conditions and clear the pending  
condition when the interrupt service routine has been initiated. The application program detects interrupt requests  
by polling the P1PND register at regular intervals.  
When the interrupt enable bit of any port 1 pin is “1”, a rising or falling signal edge at that pin will generate an  
interrupt request. The corresponding P1PND bit is then automatically set to “1” and the IRQ level goes low to  
signal the CPU that an interrupt request is waiting. When the CPU acknowledges the interrupt request, application  
software must the clear the pending condition by writing a “0” to the corresponding P1PND bit.  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
237  
Port 1 Control Register, High Byte (P1CONH)  
E4H, Set 1, Bank 1, R/W  
MSB  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
P1.7/INT7  
/SCK  
P1.6/INT6  
/SO  
P1.5/INT5  
/SI  
P1.4/INT4  
/BUZ  
P1CONH bit-pair pin configuration settings:  
00 Schmitt trigger input mode (SCK, SI)  
10  
01  
Output mode, open-drain  
Output mode, push-pull  
11 Alternative function (BUZ, SO, SCK, not used for P1.5)  
Figure 9-6. Port 1 High-Byte Control Register (P1CONH)  
Port 1 Control Register, Low Byte (P1CONL)  
E5H, Set 1, Bank 1, R/W  
MSB  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
P1.3/INT3  
P1.2/INT2  
P1.1/INT1  
P1.0/INT0  
/AVREF  
P1CONL bit-pair pin configuration settings:  
00 Schmitt trigger input mode  
Output mode, open-drain  
Output mode, push-pull  
10  
01  
11 Not available  
NOTE: Refer to the SMART OPTION for configuring as  
one of the P1.0/INT0 and AVREF.  
Figure 9-7. Port 1 Low-Byte Control Register (P1CONL)  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
238  
Port 1 Pull-up Resistor Enable Register (P1PUR)  
E6H, Set 1, Bank 1, R/W  
MSB  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
P1.7 P1.6 P1.5 P1.4 P1.3 P1.2 P1.1 P1.0  
P1PUR bit configuration settings:  
0
1
Disable Pull-up Resistor  
Enable Pull-up Resistor  
NOTE: A pull-up resistor of port 1 is automatically disabled  
only when the corresponding pin is selected as  
push-pull output or alternative function.  
Figure 9-8. Port 1 Pull-up Resistor Enable Register (P1PUR)  
Port 1 Interrupt Control Register, High Byte (P1INTH)  
E8H, Set 1, Bank 1, R/W  
MSB  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
INT7  
INT6  
INT5  
INT4  
P1INTH bit-pair pin configuration settings:  
00  
01  
10  
11  
Disable interrupt  
Enable interrupt by falling edge  
Enable interrupt by rising edge  
Enable interrupt by both falling and rising edge  
Figure 9-9. Port 1 High-Byte Interrupt Control Register (P1INTH)  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
239  
Port 1 Interrupt Control Register, Low Byte (P1INTL)  
E9H, Set 1, Bank 1, R/W  
MSB  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
INT3  
INT2  
INT1  
INT0  
P1INTL bit-pair pin configuration settings:  
00  
01  
10  
11  
Disable interrupt  
Enable interrupt by falling edge  
Enable interrupt by rising edge  
Enable interrupt by both falling and rising edge  
Figure 9-10. Port 1 Low-Byte Interrupt Control Register (P1INTL)  
Port 1 Interrupt Pending Register (P1PND)  
E7H, Set 1, Bank 1, R/W  
MSB  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
PND7 PND6 PND5 PND4 PND3 PND2 PND1 PND0  
P1PND bit configuration settings:  
0
Interrupt request is not pending,  
pending bit clear when write 0  
1
Interrupt request is pending  
Figure 9-11. Port 1 Interrupt Pending Register (P1PND)  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
240  
PORT 2  
Port 2 is an 8-bit I/O port with individually configurable pins. Port 2 pins are accessed directly by writing or reading  
the port 2 data register, P2 at location F2H in set 1, bank 1. P2.0–P2.7 can serve as inputs (with or without pull-  
ups), as outputs (push-pull or open-drain). And they can serve as segment pins for LCD also.  
Port 2 Control Register (P2CONH, P2CONL)  
Port 2 has two 8-bit control registers: P2CONH for P2.4–P2.7 and P2CONL for P2.0–P2.3. A reset clears the  
P2CONH and P2CONL registers to “00H”, configuring all pins to input mode. You use control registers settings to  
select input or output mode, enable pull-up resistors, select push-pull or open drain output mode and enable the  
alternative functions.  
Port 2 Pull-up Resistor Enable Register (P2PUR)  
Using the port 2 pull-up resistor enable register, P2PUR (ECH, set1, bank1), you can configure pull-up resistors to  
individual port 2 pins.  
Port 2 Control Register, High Byte (P2CONH)  
EAH, Set 1, Bank 1, R/W  
MSB  
LSB  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
P2.7/SEG63 P2.6/SEG62 P2.5/SEG61 P2.4/SEG60  
P2CONH bit-pair pin configuration settings:  
00  
01  
10  
11  
Input mode  
Output mode, Open-drain  
Output mode, Push-pull  
Alternative function (SEG60-SEG63)  
Figure 9-12. Port 2 High-Byte Control Register (P2CONH)  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
241  
Port 2 Control Register, Low Byte (P2CONL)  
EBH, Set 1, Bank 1, R/W  
MSB  
LSB  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
P2.3/SEG59 P2.2/SEG58 P2.1/SEG57 P2.0/SEG56  
P2CONL bit-pair pin configuration settings:  
00  
01  
10  
11  
Input mode  
Output mode, Open-drain  
Output mode, Push-pull  
Alternative function (SEG56-SEG59)  
Figure 9-13. Port 2 Low-Byte Control Register (P2CONL)  
Port 2 Pull-up Resistor Enable Register (P2PUR)  
ECH, Set 1, Bank 1, R/W  
MSB  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
P2.7 P2.6 P2.5 P2.4 P2.3 P2.2 P2.1 P2.0  
P2PUR bit configuration settings:  
0
1
Disable Pull-up Resistor  
Enable Pull-up Resistor  
NOTE: A pull-up resistor of port 2 is automatically disabled  
only when the corresponding pin is selected as  
push-pull output or alternative function.  
Figure 9-14. Port 2 Pull-up Resistor Enable Register (P2PUR)  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
242  
PORT 3  
Port 3 is an 8-bit I/O port with individually configurable pins. Port 3 pins are accessed directly by writing or reading  
the port 3 data register, P3 at location F3H in set 1, bank 1. P3.0–P3.7 can serve as inputs (with or without pull-  
ups), as outputs (push-pull or open-drain). And they can serve as segment pins for LCD also.  
Port 3 Control Register (P3CONH, P3CONL)  
Port 3 has two 8-bit control registers: P3CONH for P3.4–P3.7 and P3CONL for P3.0–P3.3. A reset clears the  
P3CONH and P3CONL registers to “00H”, configuring all pins to input mode. You use control registers settings to  
select input or output mode, enable pull-up resistors, select push-pull or open drain output mode and enable the  
alternative functions.  
Port 3 Pull-up Resistor Enable Register (P3PUR)  
Using the port 3 pull-up resistor enable register, P3PUR (EDH, set1, bank1), you can configure pull-up resistors to  
individual port 3 pins.  
Port 3 Control Register, High Byte (P3CONH)  
EEH, Set 1, Bank 1, R/W  
MSB  
LSB  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
P3.7/SEG71 P3.6/SEG70 P3.5/SEG69 P3.4/SEG68  
P3CONH bit-pair pin configuration settings:  
00  
01  
10  
11  
Input mode  
Output mode, Open-drain  
Output mode, Push-pull  
Alternative function (SEG68-SEG71)  
Figure 9-15. Port 3 High-Byte Control Register (P3CONH)  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
243  
Port 3 Control Register, Low Byte (P3CONL)  
EFH, Set 1, Bank 1, R/W  
MSB  
LSB  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
P3.3/SEG67 P3.2/SEG66 P3.1/SEG65 P3.0/SEG64  
P3CONL bit-pair pin configuration settings:  
00  
01  
10  
11  
Input mode  
Output mode, Open-drain  
Output mode, Push-pull  
Alternative function (SEG64-SEG67)  
Figure 9-16. Port 3 Low-Byte Control Register (P3CONL)  
Port 3 Pull-up Resistor Enable Register (P3PUR)  
EDH, Set 1, Bank 1, R/W  
MSB  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
P3.7 P3.6 P3.5 P3.4 P3.3 P3.2 P3.1 P3.0  
P3PUR bit configuration settings:  
0
1
Disable Pull-up Resistor  
Enable Pull-up Resistor  
NOTE: A pull-up resistor of port 3 is automatically disabled  
only when the corresponding pin is selected as  
push-pull output or alternative function.  
Figure 9-17. Port 3 Pull-up Resistor Enable Register (P3PUR)  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
244  
PORT 4  
Port 4 is an 8-bit I/O port with individually configurable pins. Port 4 pins are accessed directly by writing or reading  
the port 4 data register, P4 at location F4H in set 1, bank 1. P4.0–P4.7 can serve as inputs (with or without pull-  
ups), as outputs (push-pull or open-drain). And they can serve as segment pins for LCD also.  
Port 4 Control Register (P4CONH, P4CONL)  
Port 4 has two 8-bit control registers: P4CONH for P4.4–P4.7 and P4CONL for P4.0–P4.3. A reset clears the  
P4CONH and P4CONL registers to “00H”, configuring all pins to input mode. You use control registers settings to  
select input or output mode, enable pull-up resistors, select push-pull or open drain output mode and enable the  
alternative functions.  
Port 4 Pull-up Resistor Enable Register (P4PUR)  
Using the port 4 pull-up resistor enable register, P4PUR (D2H, set1, bank1), you can configure pull-up resistors to  
individual port 4 pins.  
Port 4 Control Register, High Byte (P4CONH)  
D0H, Set 1, Bank 1, R/W  
MSB  
LSB  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
P4.7/SEG79 P4.6/SEG78 P4.5/SEG77 P4.4/SEG76  
P4CONH bit-pair pin configuration settings:  
00  
01  
10  
11  
Input mode  
Output mode, Open-drain  
Output mode, Push-pull  
Alternative function (SEG76-SEG79)  
Figure 9-18. Port 4 High-Byte Control Register (P4CONH)  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
245  
Port 4 Control Register, Low Byte (P4CONL)  
D1H, Set 1, Bank 1, R/W  
MSB  
LSB  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
P4.3/SEG75 P4.2/SEG74 P4.1/SEG73 P4.0/SEG72  
P4CONL bit-pair pin configuration settings:  
00  
01  
10  
11  
Input mode  
Output mode, Open-drain  
Output mode, Push-pull  
Alternative function (SEG72-SEG75)  
Figure 9-19. Port 4 Low-Byte Control Register (P4CONL)  
Port 4 Pull-up Resistor Enable Register (P4PUR)  
D2H, Set 1, Bank 1, R/W  
MSB  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
P4.7 P4.6 P4.5 P4.4 P4.3 P4.2 P4.1 P4.0  
P4PUR bit configuration settings:  
0
1
Disable Pull-up Resistor  
Enable Pull-up Resistor  
NOTE: A pull-up resistor of port 4 is automatically disabled  
only when the corresponding pin is selected as  
push-pull output or alternative function.  
Figure 9-20. Port 4 Pull-up Resistor Enable Register (P4PUR)  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
246  
PORT 5  
Port 5 is an 8-bit I/O port with individually configurable pins. Port 5 pins are accessed directly by writing or reading  
the port 5 data register, P5 at location F5H in set 1, bank 1. P5.0–P5.7 can serve as inputs (with or without pull-  
ups), as outputs (push-pull or open-drain). And they can serve as segment pins for LCD also. And you can  
configure the following alternative functions:  
— High-byte pins (P5.4–P5.7): INT8-INT11  
Port 5 Control Register (P5CONH, P5CONL)  
Port 5 has two 8-bit control registers: P5CONH for P5.4-P5.7 and P5CONL for P5.0-P5.3. A reset clears the  
P5CONH and P5CONL registers to "00H", configuring all pins to input mode. In input mode, three different  
selections are available:  
— Schmitt trigger input with interrupt generation on falling signal edges.  
— Schmitt trigger input with interrupt generation on rising signal edges.  
— Schmitt trigger input with interrupt generation on falling/rising signal edges.  
Port 5 Interrupt Enable and Pending Registers (P5INT, P5PND)  
To process external interrupts at the port 5 pins, the additional control registers are provided: the port 5 interrupt  
enable register P5INT (FBH, set 1, bank 1) and the port 5 interrupt pending register P5PND (FCH, set 1, bank 1).  
The port 5 interrupt pending register P5PND lets you check for interrupt pending conditions and clear the pending  
condition when the interrupt service routine has been initiated. The application program detects interrupt requests  
by polling the P5PND register at regular intervals.  
When the interrupt enable bit of any port 5 pin is “1”, a rising or falling signal edge at that pin will generate an  
interrupt request. The corresponding P5PND bit is then automatically set to “1” and the IRQ level goes low to  
signal the CPU that an interrupt request is waiting. When the CPU acknowledges the interrupt request, application  
software must the clear the pending condition by writing a “0” to the corresponding P5PND bit.  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
247  
Port 5 Control Register, High Byte (P5CONH)  
FEH, Set 1, Bank 1, R/W  
MSB  
LSB  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
P5.7/INT11 P5.6/INT10  
/SEG87 /SEG86  
P5.5/INT9  
/SEG85  
P5.4/INT8  
/SEG84  
P5CONH bit-pair pin configuration settings:  
00  
01  
10  
11  
Schmitt trigger input mode  
Output mode, Open-drain  
Output mode, Push-pull  
Alternative function (SEG84-SEG87)  
Figure 9-21. Port 5 High-Byte Control Register (P5CONH)  
Port 5 Control Register, Low Byte (P5CONL)  
FFH, Set 1, Bank 1, R/W  
MSB  
LSB  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
P5.3/SEG83 P5.2/SEG82 P5.1/SEG81 P5.0/SEG80  
P5CONL bit-pair pin configuration settings:  
00  
01  
10  
11  
Input mode  
Output mode, Open-drain  
Output mode, Push-pull  
Alternative function (SEG80-SEG83)  
Figure 9-22. Port 5 Low-Byte Control Register (P5CONL)  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
248  
Port 5 Pull-up Resistor Enable Register (P5PUR)  
FDH, Set 1, Bank 1, R/W  
MSB  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
P5.7 P5.6 P5.5 P5.4 P5.3 P5.2 P5.1 P5.0  
P5PUR bit configuration settings:  
0
1
Disable Pull-up Resistor  
Enable Pull-up Resistor  
NOTE: A pull-up resistor of port 5 is automatically disabled  
only when the corresponding pin is selected as  
push-pull output or alternative function.  
Figure 9-23. Port 5 Pull-up Resistor Enable Register (P5PUR)  
Port 5 Interrupt Control Register (P5INT)  
EBH, Set 1, Bank 1, R/W  
MSB  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
INT11  
INT10  
INT9  
INT8  
P5INT bit-pair pin configuration settings:  
00  
01  
10  
11  
Disable interrupt  
Enable interrupt by falling edge  
Enable interrupt by rising edge  
Enable interrupt by both falling and rising edge  
Figure 9-24. Port 5 High-Byte Interrupt Control Register (P5INT)  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
249  
Port 5 Interrupt Pending Register (P5PND)  
FCH, Set 1, Bank 1, R/W  
MSB  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
PND11 PND10 PND9 PND8 Not used for the S3F82NB  
P5PND bit configuration settings:  
0
Interrupt request is not pending,  
pending bit clear when write 0  
1
Interrupt request is pending  
Figure 9-25. Port 5 Interrupt Pending Register (P5PND)  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
250  
PORT 6  
Port 6 is a 3-bit I/O port with individually configurable pins. Port 6 pins are accessed directly by writing or reading  
the port 6 data register, P6 at location F6H in set 1, bank 0. P6.0–P6.2 can serve as inputs (with or without pull-  
ups), as push-pull outputs. And you can configure the following alternative functions:  
— Pins (P6.0-P6.2): CIN0, CIN1, CIN2  
Port 6 Control Register (P6CON)  
Port 6 has one 8-bit control register: P6CON for P6.0–P6.2. A reset clears the P6CON register to “00H”,  
configuring all pins to input mode. You use control registers settings to select input (with or without pull-ups) or  
push-pull output mode and enable the alternative functions.  
When programming the port, please remember that any alternative peripheral I/O function you configure using the  
port 6 control register must also be enabled in the associated peripheral module.  
Port 6 Control Register (P6CON)  
D2H, Set 1, Bank 0, R/W  
MSB  
LSB  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
Not used for the S3F82NB P6.2/CIN2 P6.1/CIN1  
P6.0/CIN0  
P6CON bit-pair pin configuration settings:  
00  
01  
10  
11  
Schmitt trigger input mode  
Schmitt trigger input mode, pull-up  
Output mode, Push-pull  
Alternative function (CIN0-CIN2)  
Figure 9-26. Port 6 Control Register (P6CON)  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
251  
PORT 7, 8  
Port 7 and Port 8 are 8-bit I/O port with nibble configurable pins, respectively. Port 7 and 8 pins are accessed  
directly by writing or reading the port 7 and 8 data registers, P7 at location F7H and P8 at location F8H in set 1,  
bank 1. P7.0–P7.7 and P8.0–P8.7 can serve as inputs (with or without pull-ups), as push-pull outputs. And they  
can serve as segment pins for LCD also.  
Port Group 1 Control Register (PG1CON)  
Port 6 and 7 have an 8-bit control register: PG1CON.0–.3 for P7.0–P7.7 and PG1CON.4–.7 for P8.0–P8.7. A  
reset clears the PG1CON register to “00H”, configuring all pins to input mode.  
Port Group 1 Control Register (PG1CON)  
D1H, Set 1, Bank 0, R/W  
MSB  
LSB  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
P7.0-P7.3  
/SEG48-SEG51  
/SEG52-SEG55  
P7.4-P7.7  
P8.0-P8.3  
/SEG40-SEG43  
P8.4-P8.7  
/SEG44-SEG47  
PG1CON bit-pair pin configuration settings:  
00  
01  
10  
11  
Input mode  
Input mode, pull-up  
Output mode, Push-pull  
Alternative function (SEG40-SEG55)  
Figure 9-27. Port Group 1 Control Register (PG1CON)  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
252  
PORT 9, 10  
Port 9 and Port 10 are 8-bit I/O port with nibble configurable pins, respectively. Port 9 and 10 pins are accessed  
directly by writing or reading the port 9 and 10 data registers, P9 at location F9H and P10 at location FAH in set 1,  
bank 1. P9.0–P9.7 and P10.0–P10.7 can serve as inputs (with or without pull-ups), as push-pull outputs. And they  
can serve as segment pins for LCD also.  
Port Group 0 Control Register (PG0CON)  
Port 9 and 10 have an 8-bit control register: PG0CON.0–.3 for P9.0–P9.7 and PG0CON.4–.7 for P10.0–P10.7. A  
reset clears the PG0CON register to “00H”, configuring all pins to input mode.  
Port Group 0 Control Register (PG0CON)  
D0H, Set 1, Bank 0, R/W  
MSB  
LSB  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
P9.0-P9.3  
/SEG32-SEG35  
/SEG36-SEG39  
P9.4-P9.7  
P10.0-P10.3  
/SEG24-SEG27  
P10.4-P10.7  
/SEG28-SEG31  
PG0CON bit-pair pin configuration settings:  
00  
01  
10  
11  
Input mode  
Input mode, pull-up  
Output mode, Push-pull  
Alternative function (SEG24-SEG39)  
Figure 9-28. Port Group 0 Control Register (PG0CON)  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
253  
10 BASIC TIMER  
OVERVIEW  
S3F82NB has an 8-bit basic timer.  
BASIC TIMER (BT)  
You can use the basic timer (BT) in two different ways:  
— As a watchdog timer to provide an automatic reset mechanism in the event of a system malfunction.  
— To signal the end of the required oscillation stabilization interval after a reset or a Stop mode release.  
The functional components of the basic timer block are:  
— Clock frequency divider (fxx divided by 4096, 1024, 128, or 16) with multiplexer  
— 8-bit basic timer counter, BTCNT (set 1, Bank 0, FDH, read-only)  
— Basic timer control register, BTCON (set 1, D3H, read/write)  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
254  
BASIC TIMER CONTROL REGISTER (BTCON)  
The basic timer control register, BTCON, is used to select the input clock frequency, to clear the basic timer  
counter and frequency dividers, and to enable or disable the watchdog timer function. It is located in set 1,  
address D3H, and is read/write addressable using Register addressing mode.  
A reset clears BTCON to "00H". This enables the watchdog function and selects a basic timer clock frequency of  
fxx/4096. To disable the watchdog function, you must write the signature code "1010B" to the basic timer register  
control bits BTCON.7–BTCON.4.  
The 8-bit basic timer counter, BTCNT (set 1, bank 0, FDH), can be cleared at any time during the normal  
operation by writing a "1" to BTCON.1. To clear the frequency dividers, write a "1" to BTCON.0.  
Basic TImer Control Register (BTCON)  
D3H, Set 1, R/W  
MSB  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
Divider clear bit:  
0 = No effect  
1= Clear dvider  
Watchdog timer enable bits:  
1010B = Disable watchdog function  
Other value = Enable watchdog function  
Basic timer counter clear bit:  
0 = No effect  
1= Clear BTCNT  
Basic timer input clock selection bits:  
00 = fXX/4096  
01 = fXX/1024  
10 = fXX/128  
11 = fXX/16  
Figure 10-1. Basic Timer Control Register (BTCON)  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
255  
BASIC TIMER FUNCTION DESCRIPTION  
Watchdog Timer Function  
You can program the basic timer overflow signal (BTOVF) to generate a reset by setting BTCON.7–BTCON.4 to  
any value other than "1010B". (The "1010B" value disables the watchdog function.) A reset clears BTCON to  
"00H", automatically enabling the watchdog timer function. A reset also selects the CPU clock (as determined by  
the current CLKCON register setting), divided by 4096, as the BT clock.  
A reset is generated whenever the basic timer counter overflow occurs. During normal operation, the application  
program must prevent the overflow, and the accompanying reset operation, from occurring, To do this, the  
BTCNT value must be cleared (by writing a “1” to BTCON.1) at regular intervals.  
If a system malfunction occurs due to circuit noise or some other error condition, the BT counter clear operation  
will not be executed and a basic timer overflow will occur, initiating a reset. In other words, during the normal  
operation, the basic timer overflow loop (a bit 7 overflow of the 8-bit basic timer counter, BTCNT) is always  
broken by a BTCNT clear instruction. If a malfunction does occur, a reset is triggered automatically.  
Oscillation Stabilization Interval Timer Function  
You can also use the basic timer to program a specific oscillation stabilization interval after a reset or when stop  
mode has been released by an external interrupt.  
In stop mode, whenever a reset or an external interrupt occurs, the oscillator starts. The BTCNT value then starts  
increasing at the rate of fxx/4096 (for reset), or at the rate of the preset clock source (for an external interrupt).  
When BTCNT.4 overflows, a signal is generated to indicate that the stabilization interval has elapsed and to gate  
the clock signal off to the CPU so that it can resume the normal operation.  
In summary, the following events occur when stop mode is released:  
1. During the stop mode, a power-on reset or an external interrupt occurs to trigger the Stop mode release and  
oscillation starts.  
2. If a power-on reset occurred, the basic timer counter will increase at the rate of fxx/4096. If an interrupt is  
used to release stop mode, the BTCNT value increases at the rate of the preset clock source.  
3. Clock oscillation stabilization interval begins and continues until bit 4 of the basic timer counter overflows.  
4. When a BTCNT.4 overflow occurs, the normal CPU operation resumes.  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
256  
RESET or STOP  
Data Bus  
Bit 1  
Bits 3, 2  
Basic Timer Control Register  
(Write '1010xxxxB' to Disable)  
f
f
f
f
XX/4096  
XX/1024  
XX/128  
XX/16  
Clear  
8-Bit Up Counter  
(BTCNT, Read-Only)  
f
XX  
DIV  
MUX  
OVF  
RESET  
Start the CPU (NOTE)  
R
Bit 0  
NOTE:  
During a power-on reset operation, the CPU is idle during the required oscillation  
stabilization interval (until bit 4 of the basic timer counter overflows).  
Figure 10-2. Basic Timer Block Diagram  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
257  
11 8-BIT TIMER 0  
8-BIT TIMER 0  
OVERVIEW  
The 8-bit timer 0 is an 8-bit general-purpose timer/counter. Timer 0 has three operating modes, one of which you  
select using the appropriate T0CON setting:  
— Interval timer mode (Toggle output at T0OUT pin)  
— Capture input mode with a rising or falling edge trigger at the T0CAP pin  
— PWM mode (T0PWM)  
Timer 0 has the following functional components:  
— Clock frequency divider (fxx divided by 1024, 256, 64, 8 or 1) with multiplexer  
— External clock input pin (T0CLK)  
— 8-bit counter (T0CNT), 8-bit comparator, and 8-bit reference data register (T0DATA)  
— I/O pins for capture input (T0CAP) or PWM or match output (T0PWM, T0OUT)  
— Timer 0 overflow interrupt (IRQ0 vector DCH) and match/capture interrupt (IRQ0 vector DAH) generation  
— Timer 0 control register, T0CON (set 1, Bank 0, E5H, read/write)  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
258  
TIMER 0 CONTROL REGISTER (T0CON)  
You use the timer 0 control register, T0CON, to  
— Select the timer 0 operating mode (interval timer, capture mode, or PWM mode)  
— Select the timer 0 input clock frequency  
— Clear the timer 0 counter, T0CNT  
— Enable the timer 0 counting operation  
T0CON is located in set 1, Bank 0 at address E5H, and is read/write addressable using Register addressing  
mode.  
A reset clears T0CON to '00H'. This sets timer 0 to normal interval timer mode, selects an input clock frequency of  
fxx/1024, and disable counting operation. You can clear the timer 0 counter at any time during normal operation  
by writing a "1" to T0CON.2.  
TIMER INTERRUPT CONTROL REGISTER (TINTCON)  
You use the timer interrupt control register, TINTCON, to  
— Enable the timer 0 overflow interrupt or timer 0 match/capture interrupt  
TINTCON is located in set 1, Bank 0 at address EDH, and is read/write addressable using Register addressing  
mode.  
The timer 0 overflow interrupt (T0OVF) is interrupt level IRQ0 and has the vector address DCH. When a timer 0  
overflow interrupt occurs and is serviced by the CPU, the pending condition is cleared automatically by hardware  
or must be cleared by software.  
To enable the timer 0 match/capture interrupt (IRQ0, vector DAH), you must write TINTCON.1 to "1". To detect a  
match/capture interrupt pending condition, the application program polls TINTPND.1. When a "1" is detected, a  
timer 0 match or capture interrupt is pending. When the interrupt request has been serviced, the pending  
condition must be cleared by software by writing a "0" to the timer 0 match/capture interrupt pending bit,  
TINTPND.1.  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
259  
Timer 0 Control Register (T0CON)  
E5H, Set 1, Bank 0, R/W  
MSB  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
Timer 0 clock selection bits:  
000 = fxx/1024  
001 = fxx/256  
Not used for the S3F82NB  
010 = fxx/64  
Timer 0 counter operating enable bit:  
0 = DIsable counting operating  
1 = Enable counting operating  
011 = fxx/8  
100 = fxx/1  
101 = External clock (T0CLK) falling edge  
110 = External clock (T0CLK) rising edge  
111 = Not available  
Timer 0 counter clear bit:  
0 = No effect  
1 = Clear the timer 0 counter (when write)  
Timer 0 operating mode selection bits:  
00 = Interval mode (T0OUT)  
01 = Capture mode (capture on rising edge,  
Counter running, OVF can occur)  
10 = Capture mode (Capture on falling edge,  
Counter running, OVF can occur)  
11 = PWM mode (OVF and match interrupt can occur)  
Figure 11-1. Timer 0 Control Register (T0CON)  
Timer Interrupt Control Register (TINTCON)  
EDH, Set 1, Bank 0, R/W  
LS  
B
MSB  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
Not used for the S3F82NB  
Timer 0 overflow interupt  
Timer 0 match/capture interupt  
Timer 1/A overflow interupt  
Timer 1/A match/capture interupt  
Timer B match interupt  
TINTCON bit configuration settings:  
0
1
Disable Interrupt  
Enable Interrupt  
Figure 11-2. Timer Interrupt Control Register (TINTCON)  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
260  
Timer Interrupt Pending Register (TINTPND)  
ECH, Set 1, Bank 0, R/W  
MSB  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
Not used for the S3F82NB  
Timer 0 overflow interupt pending bit  
Timer 0 match/capture interupt pending bit  
Timer 1/A overflow interupt pending bit  
Timer 1/A match/capture interupt pending bit  
Timer B match interupt pending bit  
0 = Interrupt request is not pending, pending bit clear when write "0"  
1 = Interrupt request is pending  
Figure 11-3. Timer Interrupt Pending Register (TINTPND)  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
261  
TIMER 0 FUNCTION DESCRIPTION  
Timer 0 Interrupts (IRQ0, Vectors DAH and DCH)  
The timer 0 can generate two interrupts: the timer 0 overflow interrupt (T0OVF), and the timer 0 match/capture  
interrupt (T0INT). T0OVF is interrupt level IRQ0, vector DCH. T0INT also belongs to interrupt level IRQ0, but is  
assigned the separate vector address, DAH.  
A timer 0 overflow interrupt pending condition is automatically cleared by hardware when it has been serviced or  
should be cleared by software in the interrupt service routine by writing a “0” to the TINTPND.0 interrupt pending  
bit. However, the timer 0 match/capture interrupt pending condition must be cleared by the application’s interrupt  
service routine by writing a "0" to the TINTPND.1 interrupt pending bit.  
Interval Timer Mode  
In interval timer mode, a match signal is generated when the counter value is identical to the value written to the  
timer 0 reference data register, T0DATA. The match signal generates a timer 0 match interrupt (T0INT, vector  
DAH) and clears the counter.  
If, for example, you write the value "10H" to T0DATA, the counter will increment until it reaches “10H”. At this  
point, the timer 0 interrupt request is generated, the counter value is reset, and counting resumes. With each  
match, the level of the signal at the timer 0 output pin is inverted (see Figure 11-4).  
Interrupt Enable/Disable  
Capture Signal  
TINTCON.1  
R (Clear)  
CLK  
8-Bit Up Counter  
8-Bit Comparator  
T0INT (IRQ0)  
(Match INT)  
M
U
X
Match  
TINTPND.1  
Pending  
T0OUT  
Timer 0 Buffer Register  
Timer 0 Data Register  
T0CON.4-.3  
Match Signal  
T0CON.2  
T0OVF  
Figure 11-4. Simplified Timer 0 Function Diagram: Interval Timer Mode  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
262  
Pulse Width Modulation Mode  
Pulse width modulation (PWM) mode lets you program the width (duration) of the pulse that is output at the  
T0PWM pin. As in interval timer mode, a match signal is generated when the counter value is identical to the  
value written to the timer 0 data register. In PWM mode, however, the match signal does not clear the counter.  
Instead, it runs continuously, overflowing at "FFH", and then continues incrementing from "00H".  
Although you can use the match signal to generate a timer 0 overflow interrupt, interrupts are not typically used in  
PWM-type applications. Instead, the pulse at the T0PWM pin is held to Low level as long as the reference data  
value is less than or equal to ( ) the counter value and then the pulse is held to High level for as long as the  
data value is greater than ( > ) the counter value. One pulse width is equal to tCLK 256 (see Figure 11-5).  
TINTCON.0  
Interrupt Enable/Disable  
TINTCON.1  
Capture Signal  
T0OVF(IRQ0)  
(Overflow INT)  
CLK  
8-Bit Up Counter  
8-Bit Comparator  
TINTPND.0  
T0INT (IRQ0)  
M
U
X
Match  
TINTPND.1  
Pending  
(Match INT)  
T0PWM  
Output (P0.3)  
High level when  
data > counter,  
Lower level when  
data < counter  
Timer 0 Buffer Register  
Timer 0 Data Register  
T0CON.4-.3  
Match Signal  
T0CON.2  
T0OVF  
Figure 11-5. Simplified Timer 0 Function Diagram: PWM Mode  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
263  
Capture Mode  
In capture mode, a signal edge that is detected at the T0CAP pin opens a gate and loads the current counter  
value into the timer 0 data register. You can select rising or falling edges to trigger this operation.  
Timer 0 also gives you capture input source: the signal edge at the T0CAP pin. You select the capture input by  
setting the values of the timer 0 capture input selection bits in the port 0 control register, P0CONL.7–.6, (set 1,  
bank 1, E1H). When P0CONL.7–.6 is "00" the T0CAP input is selected.  
Both kinds of timer 0 interrupts can be used in capture mode: the timer 0 overflow interrupt is generated whenever  
a counter overflow occurs; the timer 0 match/capture interrupt is generated whenever the counter value is loaded  
into the timer 0 data register.  
By reading the captured data value in T0DATA, and assuming a specific value for the timer 0 clock frequency, you  
can calculate the pulse width (duration) of the signal that is being input at the T0CAP pin (see Figure 11-6).  
TINTCON.0  
T0OVF(IRQ0)  
8-Bit Up Counter  
TINTPND.0  
CLK  
(Overflow INT)  
Interrupt Enable/Disable  
TINTCON.1  
T0INT (IRQ0)  
(Capture INT)  
M
U
X
T0CAP  
TINTPND.1  
Pending  
Match Signal  
T0CON.4-.3  
T0CON.4-.3  
Timer 0 Data Register  
Figure 11-6. Simplified Timer 0 Function Diagram: Capture Mode  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
264  
BLOCK DIAGRAM  
TINTCON.0  
T0CON.7-.5  
T0OVF  
(IRQ0)  
OVF  
TINTPND.0  
Data Bus  
8
fXX/1024  
fXX/256  
fXX/64  
fXX/8  
T0CON.1  
T0CON.2  
Clear  
M
U
X
8-bit Up-Counter  
(Read Only)  
fXX/1  
R
TINTCON.1  
T0CLK  
M
U
X
8-bit Comparator  
T0INT  
(IRQ0)  
Match  
TINTPND.1  
M
U
T0OUT  
T0CAP  
X
Timer 0 Buffer Register  
T0PWM  
T0CON.4-.3  
T0CON.4-.3  
Match Signal  
T0CON.2  
T0OVF  
Timer 0 Data Register  
8
Data Bus  
Figure 11-7. Timer 0 Functional Block Diagram  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
265  
12 TIMER 1  
OVERVIEW  
The 16-bit timer 1 is used in one 16-bit timer or two 8-bit timers mode. When TACON.0 is set to "1", it is in one 16-  
bit timer mode. When TACON.0 is set to "0", the timer 1 is used as two 8-bit timers.  
— One 16-bit timer mode (Timer 1)  
— Two 8-bit timers mode (Timer A and B)  
ONE 16-BIT TIMERS MODE (TIMER 1)  
OVERVIEW  
The 16-bit timer 1 is a 16-bit general-purpose timer. Timer 1 has three operating modes, one of which you select  
using the appropriate TACON setting:  
— Interval timer mode (Toggle output at T1OUT pin)  
— Capture input mode with a rising or falling edge trigger at the T1CAP pin  
— PWM mode (T1PWM)  
Timer 1 has the following functional components:  
— Clock frequency divider (fxx divided by 1024, 256, 64, 8, or 1) with multiplexer  
External clock input pin (T1CLK)  
— 16-bit counter (TACNT, TBCNT), 16-bit comparator, and 16-bit reference data register (TADATA, TBDATA)  
— I/O pins for capture input (T1CAP) or PWM or match output (T1PWM, T1OUT)  
— Timer 1 overflow interrupt (IRQ1 vector E0H) and match/capture interrupt (IRQ1 vector DEH) generation  
— Timer 1 control register, TACON (set 1, bank 0, EBH, read/write)  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
266  
TIMER 1 CONTROL REGISTER (TACON)  
You use the timer 1 control register, TACON, to  
— Enable the timer 1 operating (interval timer, capture mode, or PWM mode)  
— Select the timer 1 input clock frequency  
— Clear the timer 1 counter, TACNT and TBCNT  
— Enable the timer 1 counting operating  
TACON is located in set 1, bank 0, at address EBH, and is read/write addressable using register addressing  
mode.  
A reset clears TACON to "00H". This sets timer 1 to disable interval timer mode, selects an input clock frequency  
of fxx/1024, and disable counting operation. You can clear the timer 1 counter at any time during the normal  
operation by writing a "1" to TACON.2.  
TIMER INTERRUPT CONTROL REGISTER (TINTCON)  
You use the timer interrupt control register, TINTCON, to  
— Enable the timer 1/A overflow interrupt or timer 1/A match/capture interrupt  
TINTCON is located in set 1, Bank 0 at address EDH, and is read/write addressable using Register addressing  
mode.  
The timer 1 overflow interrupt (T1OVF) is interrupt level IRQ1 and has the vector address E0H. When a timer 1  
overflow interrupt occurs and is serviced by the CPU, the pending condition is cleared automatically by hardware  
or must be cleared by software.  
To enable the timer 1 match/capture interrupt (IRQ1, vector DEH), you must write TACON.0 to "1", TACON.1 and  
TINTCON.3 to "1". To detect a match/capture interrupt pending condition, the application program polls  
TINTPND.3. When a "1" is detected, a timer 1 match or capture interrupt is pending. When the interrupt request  
has been serviced, the pending condition must be cleared by software by writing a "0" to the timer 1  
match/capture interrupt pending bit, TINTPND.3.  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
267  
Timer 1 Control Register (TACON)  
EBH, Set 1, Bank 0, R/W  
MSB  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
Timer 1 operating enable bit:  
Timer 1 clock selection bits:  
000 = fxx/1024  
001 = fxx/256  
0 = Two 8-bit timer mode (Timer A/B)  
1 = One 16-bit timer mdoe (Timer 1)  
010 = fxx/64  
Timer 1 counter operating enable bit:  
0 = DIsable counting operating  
1 = Enable counting operating  
011 = fxx/8  
100 = fxx/1  
101 = External clock (T1CLK) falling edge  
110 = External clock (T1CLK) rising edge  
111 = Not available  
Timer 1 counter clear bit:  
0 = No effect  
1 = Clear the timer 1 counter (when write)  
Timer 1 operating mode selection bits:  
00 = Interval mode (T1OUT)  
01 = Capture mode (capture on rising edge,  
Counter running, OVF can occur)  
10 = Capture mode (Capture on falling edge,  
Counter running, OVF can occur)  
11 = PWM mode (OVF and match interrupt can occur)  
Figure 12-1. Timer 1 Control Register (TACON)  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
268  
Timer Interrupt Control Register (TINTCON)  
EDH, Set 1, Bank 0, R/W  
MSB  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
Not used for the S3F82NB  
Timer 0 overflow interupt  
Timer 0 match/capture interupt  
Timer 1/A overflow interupt  
Timer 1/A match/capture interupt  
Timer B match interupt  
TINTCON bit configuration settings:  
0
1
Disable Interrupt  
Enable Interrupt  
Figure 12-2. Timer Interrupt Control Register (TINTCON)  
Timer Interrupt Pending Register (TINTPND)  
ECH, Set 1, Bank 0, R/W  
MSB  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
Not used for the S3F82NB  
Timer 0 overflow interupt pending bit  
Timer 0 match/capture interupt pending bit  
Timer 1/A overflow interupt pending bit  
Timer 1/A match/capture interupt pending bit  
Timer B match interupt pending bit  
0 = Interrupt request is not pending, pending bit clear when write "0"  
1 = Interrupt request is pending  
Figure 12-3. Timer Interrupt Pending Register (TINTPND)  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
269  
TIMER 1 FUNCTION DESCRIPTION  
Timer 1 Interrupts (IRQ1, Vectors DEH and E0H)  
The timer 1 can generate two interrupts: the timer 1 overflow interrupt (T1OVF), and the timer 1 match/ capture  
interrupt (T1INT). T1OVF is belongs to interrupt level IRQ1, vector E0H. T1INT also belongs to interrupt level  
IRQ1, but is assigned the separate vector address, DEH.  
A timer 1 overflow interrupt pending condition is automatically cleared by hardware when it has been serviced or  
should be cleared by software in the interrupt service routine by writing a “0” to the TINTPND.2 interrupt pending  
bit. However, the timer 1 match/capture interrupt pending condition must be cleared by the application’s interrupt  
service routine by writing a "0" to the TINTPND.3 interrupt pending bit.  
Interval Timer Mode  
In interval timer mode, a match signal is generated when the counter value is identical to the value written to the  
timer 1 reference data register, TBDATA/TADATA. The match signal generates a timer 1 match interrupt (T1INT,  
vector DEH) and clears the counter.  
If, for example, you write the value "1087H" to TBDATA/TADATA, the counter will increment until it reaches  
“1087H”. At this point, the timer 1 interrupt request is generated, the counter value is reset, and counting  
resumes. With each match, the level of the signal at the timer 1 output pin is inverted (see Figure 12-4).  
Interrupt Enable/Disable  
Capture Signal  
TINTCON.3  
R (Clear)  
CLK  
16-Bit Up Counter  
16-Bit Comparator  
T1INT (IRQ1)  
(Match INT)  
M
U
X
Match  
TINTPND.3  
Pending  
T1OUT  
Timer 1 Buffer Register  
Timer 1 Data Register  
TACON.4-.3  
Match Signal  
TACON.2  
T1OVF  
Figure 12-4. Simplified Timer 1 Function Diagram: Interval Timer Mode  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
270  
Pulse Width Modulation Mode  
Pulse width modulation (PWM) mode lets you program the width (duration) of the pulse that is output at the  
T1PWM pin. As in interval timer mode, a match signal is generated when the counter value is identical to the  
value written to the timer 1 data register. In PWM mode, however, the match signal does not clear the counter.  
Instead, it runs continuously, overflowing at "FFFFH", and then continues incrementing from "0000H".  
Although you can use the match signal to generate a timer 1 overflow interrupt, interrupts are not typically used in  
PWM-type applications. Instead, the pulse at the T1PWM pin is held to Low level as long as the reference data  
value is less than or equal to ( ) the counter value and then the pulse is held to High level for as long as the data  
value is greater than ( > ) the counter value. One pulse width is equal to tCLK 65536 (see Figure 12-5).  
TINTCON.2  
Interrupt Enable/Disable  
TINTCON.3  
Capture Signal  
T1OVF(IRQ1)  
(Overflow INT)  
CLK  
16-Bit Up Counter  
16-Bit Comparator  
TINTPND.2  
T1INT (IRQ1)  
M
U
X
Match  
TINTPND.3  
Pending  
(Match INT)  
T1PWM  
High level when  
data > counter,  
Lower level when  
data < counter  
Timer 1 Buffer Register  
Timer 1 Data Register  
TACON.4-.3  
Match Signal  
TACON.2  
T1OVF  
Figure 12-5. Simplified Timer 1 Function Diagram: PWM Mode  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
271  
Capture Mode  
In capture mode, a signal edge that is detected at the T1CAP pin opens a gate and loads the current counter  
value into the timer 1 data register. You can select rising or falling edges to trigger this operation.  
Timer 1 also gives you capture input source: the signal edge at the T1CAP pin. You select the capture input by  
setting the values of the timer 1 capture input selection bits in the port 1 control register, P0CONL.5–.4, (set 1,  
bank 1, E1H). When P0CONL.5–.4 is "00", the T1CAP input is selected.  
Both kinds of timer 1 interrupts can be used in capture mode: the timer 1 overflow interrupt is generated whenever  
a counter overflow occurs; the timer 1 match/capture interrupt is generated whenever the counter value is loaded  
into the timer 1 data register.  
By reading the captured data value in TBDATA/TADATA, and assuming a specific value for the timer 1 clock  
frequency, you can calculate the pulse width (duration) of the signal that is being input at the T1CAP pin (see  
Figure 12-6).  
TINTCON.2  
T1OVF(IRQ1)  
16-Bit Up Counter  
TINTPND.2  
CLK  
(Overflow INT)  
Interrupt Enable/Disable  
TINTCON.3  
T1INT (IRQ1)  
(Capture INT)  
M
U
X
T1CAP  
TINTPND.3  
Pending  
Match Signal  
TACON.4-.3  
TACON.4-.3  
Timer 1 Data Register  
Figure 12-6. Simplified Timer 1 Function Diagram: Capture Mode  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
272  
TIMER 1 BLOCK DIAGRAM  
TINTCON.2  
Pending  
TINTPND.2  
TACON.7-.5  
T1OVF  
(IRQ1)  
OVF  
Data Bus  
16  
fXX/1024  
fXX/256  
fXX/64  
fXX/8  
TACON.1  
TACON.2  
Clear  
M
U
X
16-bit Up-Counter  
(Read Only)  
(TBCNT/TACNT)  
fXX/1  
R
TINTCON.3  
T1CLK  
M
U
X
16-bit Comparator  
Pending  
TINTPND.3  
T1INT  
(IRQ1)  
Match  
M
U
X
Timer 1 Buffer Register  
(16-Bit)  
T1OUT  
T1CAP  
T1PWM  
TACON.4-.3  
TACON.4-.3  
Match Signal  
TACON.2  
T1OVF  
Timer 1 Data Register  
(TBDATA/TADATA)  
16  
Data Bus  
NOTE: When TACON.0 is "1", 16-bit timer 1.  
Figure 12-7. Timer 1 Functional Block Diagram  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
273  
TWO 8-BIT TIMERS MODE (TIMER A and B)  
OVERVIEW  
The 8-bit timer A is an 8-bit general-purpose timer. Timer A has three operating modes, one of which you select  
using the appropriate TACON setting:  
— Interval timer mode (Toggle output at T1OUT pin)  
— Capture input mode with a rising or falling edge trigger at the T1CAP pin  
— PWM mode (T1PWM)  
Timer A has the following functional components:  
— Clock frequency divider (fxx divided by 1024, 256, 64, 8, or 1) with multiplexer  
— External clock input pin (T1CLK)  
— 8-bit counter (TACNT), 8-bit comparator, and 8-bit reference data register (TADATA)  
— I/O pins for capture input (T1CAP) or PWM or match output (T1PWM, T1OUT)  
— Timer A overflow interrupt (IRQ1 vector E0H) and match/capture interrupt (IRQ1 vector DEH) generation  
— Timer A control register, TACON (set 1, bank 0, EBH, read/write)  
The 8-bit timer B is an 8-bit general-purpose timer. Timer B includes interval timer mode using appropriate  
TBCON setting.  
Timer B has the following functional components:  
— Clock frequency divider (fxx divided by 1024, 256, 64, 8, or 1) with multiplexer  
— 8-bit counter (TBCNT), 8-bit comparator, and 8-bit reference data register (TBDATA)  
— Timer B match interrupt (IRQ2, vector E2H) generation  
— Timer B control register, TBCON (set 1, bank 0, EAH, read/write)  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
274  
TIMER A CONTROL REGISTER (TACON)  
You use the timer A control register, TACON, to  
— Enable the timer A (interval timer, capture mode, or PWM mode)  
— Select the timer A input clock frequency  
— Clear the timer A counter, TACNT  
— Select the timer A counting operation  
TACON is located in set 1, bank 0, at address EBH, and is read/write addressable using register addressing  
mode.  
A reset clears TACON to "00H". This sets timer A to disable interval timer mode, selects an input clock frequency  
of fxx/1024, and disables counting operation. You can clear the timer A counter at any time during normal  
operation by writing a "1" to TACON.2.  
TIMER INTERRUPT CONTROL REGISTER (TINTCON)  
You use the timer interrupt control register, TINTCON, to  
— Enable the timer 1/A overflow interrupt or timer 1/A match/capture interrupt  
TINTCON is located in set 1, Bank 0 at address EDH, and is read/write addressable using Register addressing  
mode.  
The timer A overflow interrupt (T1OVF) is interrupt level IRQ1 and has the vector address E0H. When a timer A  
overflow interrupt occurs and is serviced by the CPU, the pending condition is cleared automatically by hardware  
or must be cleared by software.  
To enable the timer A match/capture interrupt (IRQ1, vector DEH), you must write TACON.0 to "0", TACON.1 and  
TINTCON.3 to "1". To detect a match/capture interrupt pending condition, the application program polls  
TINTPND.3. When a "1" is detected, a timer A match or capture interrupt is pending. When the interrupt request  
has been serviced, the pending condition must be cleared by software by writing a "0" to the timer A  
match/capture interrupt pending bit, TINTPND.3.  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
275  
Timer A Control Register (TACON)  
EBH, Set 1, Bank 0, R/W  
MSB  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
Timer A operating enable bit:  
Timer A clock selection bits:  
000 = fxx/1024  
001 = fxx/256  
0 = Two 8-bit timer mode (Timer A/B)  
1 = One 16-bit timer mdoe (Timer 1)  
010 = fxx/64  
Timer A counter operating enable bit:  
0 = DIsable counting operating  
1 = Enable counting operating  
011 = fxx/8  
100 = fxx/1  
101 = External clock (T1CLK) falling edge  
110 = External clock (T1CLK) rising edge  
111 = Not available  
Timer A counter clear bit:  
0 = No effect  
1 = Clear the timer A counter (when write)  
Timer A operating mode selection bits:  
00 = Interval mode (T1OUT)  
01 = Capture mode (capture on rising edge,  
Counter running, OVF can occur)  
10 = Capture mode (Capture on falling edge,  
Counter running, OVF can occur)  
11 = PWM mode (OVF and match interrupt can occur)  
Figure 12-8. Timer A Control Register (TACON)  
Timer Interrupt Control Register (TINTCON)  
EDH, Set 1, Bank 0, R/W  
MSB  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
Not used for the S3F82NB  
Timer 0 overflow interupt  
Timer 0 match/capture interupt  
Timer 1/A overflow interupt  
Timer 1/A match/capture interupt  
Timer B match interupt  
TINTCON bit configuration settings:  
0
1
Disable Interrupt  
Enable Interrupt  
Figure 12-9. Timer Interrupt Control Register (TINTCON)  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
276  
Timer Interrupt Pending Register (TINTPND)  
ECH, Set 1, Bank 0, R/W  
MSB  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
Not used for the S3F82NB  
Timer 0 overflow interupt pending bit  
Timer 0 match/capture interupt pending bit  
Timer 1/A overflow interupt pending bit  
Timer 1/A match/capture interupt pending bit  
Timer B match interupt pending bit  
0 = Interrupt request is not pending, pending bit clear when write "0"  
1 = Interrupt request is pending  
Figure 12-10. Timer Interrupt Pending Register (TINTPND)  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
277  
TIMER A FUNCTION DESCRIPTION  
Timer A Interrupts (IRQ1, Vectors DEH and E0H)  
The timer A can generate two interrupts: the timer A overflow interrupt (TAOVF), and the timer A match/capture  
interrupt (TAINT). TAOVF is interrupt level IRQ1, vector E0H. TAINT also belongs to interrupt level IRQ1, but is  
assigned the separate vector address, DEH.  
A timer A overflow interrupt pending condition is automatically cleared by hardware when it has been serviced or  
should be cleared by software in the interrupt service routine by writing a “0” to the TINTPND.2 interrupt pending  
bit. However, the timer A match/capture interrupt pending condition must be cleared by the application’s interrupt  
service routine by writing a "0" to the TINTPND.3 interrupt pending bit.  
Interval Timer Mode  
In interval timer mode, a match signal is generated when the counter value is identical to the value written to the  
timer A reference data register, TADATA. The match signal generates a timer A match interrupt (TAINT, vector  
DEH) and clears the counter.  
If, for example, you write the value "10H" to TADATA, "0" to TACON.0, and 06H to TACON, the counter will  
increment until it reaches “10H”. At this point, the timer A interrupt request is generated, the counter value is  
reset, and counting resumes. With each match, the level of the signal at the timer A output pin is inverted (see  
Figure 12-11).  
Interrupt Enable/Disable  
Capture Signal  
TINTCON.3  
R (Clear)  
CLK  
8-Bit Up Counter  
8-Bit Comparator  
TAINT (IRQ1)  
(Match INT)  
M
U
X
Match  
TINTPND.3  
Pending  
T1OUT  
Timer A Buffer Register  
Timer A Data Register  
TACON.4-.3  
Match Signal  
TACON.2  
TAOVF  
Figure 12-11. Simplified Timer A Function Diagram: Interval Timer Mode  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
278  
Pulse Width Modulation Mode  
Pulse width modulation (PWM) mode lets you program the width (duration) of the pulse that is output at the  
T1PWM pin. As in interval timer mode, a match signal is generated when the counter value is identical to the  
value written to the timer A data register. In PWM mode, however, the match signal does not clear the counter.  
Instead, it runs continuously, overflowing at "FFH", and then continues incrementing from "00H".  
Although you can use the match signal to generate a timer A overflow interrupt, interrupts are not typically used in  
PWM-type applications. Instead, the pulse at the T1PWM pin is held to Low level as long as the reference data  
value is less than or equal to ( ) the counter value and then the pulse is held to High level for as long as the data  
value is greater than ( > ) the counter value. One pulse width is equal to tCLK 256 (see Figure 12-12).  
TINTCON.2  
Interrupt Enable/Disable  
TINTCON.3  
Capture Signal  
TAOVF(IRQ1)  
(Overflow INT)  
CLK  
8-Bit Up Counter  
8-Bit Comparator  
TINTPND.2  
TAINT (IRQ1)  
M
U
X
Match  
TINTPND.3  
Pending  
(Match INT)  
T1PWM  
High level when  
data > counter,  
Lower level when  
data < counter  
Timer A Buffer Register  
Timer A Data Register  
TACON.4-.3  
Match Signal  
TACON.2  
TAOVF  
Figure 12-12. Simplified Timer A Function Diagram: PWM Mode  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
279  
Capture Mode  
In capture mode, a signal edge that is detected at the T1CAP pin opens a gate and loads the current counter  
value into the timer A data register. You can select rising or falling edges to trigger this operation.  
Timer A also gives you capture input source: the signal edge at the T1CAP pin. You select the capture input by  
setting the values of the timer A capture input selection bits in the port 0 control register, P0CONL.5–.4, (set 1,  
bank 1, E1H). When P0CONL.5–.4 is "00" the T1CAP input is selected.  
Both kinds of timer A interrupts can be used in capture mode: the timer A overflow interrupt is generated  
whenever a counter overflow occurs; the timer A match/capture interrupt is generated whenever the counter value  
is loaded into the timer A data register.  
By reading the captured data value in TADATA, and assuming a specific value for the timer A clock frequency,  
you can calculate the pulse width (duration) of the signal that is being input at the T1CAP pin (see Figure 12-13).  
TINTCON.2  
TAOVF(IRQ1)  
8-Bit Up Counter  
TINTPND.2  
CLK  
(Overflow INT)  
Interrupt Enable/Disable  
TINTCON.3  
TAINT (IRQ1)  
(Capture INT)  
M
U
X
T1CAP  
TINTPND.3  
Pending  
Match Signal  
TACON.4-.3  
TACON.4-.3  
Timer A Data Register  
Figure 12-13. Simplified Timer A Function Diagram: Capture Mode  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
280  
TIMER A BLOCK DIAGRAM  
TINTCON.2  
Pending  
TINTPND.2  
TACON.7-.5  
TAOVF  
(IRQ1)  
OVF  
Data Bus  
8
fXX/1024  
fXX/256  
fXX/64  
fXX/8  
TACON.1  
TACON.2  
Clear  
M
U
X
8-bit Up-Counter  
(Read Only)  
(TACNT)  
fXX/1  
R
TINTCON.3  
T1CLK  
M
U
X
8-bit Comparator  
Pending  
TINTPND.3  
TAINT  
(IRQ1)  
Match  
M
U
X
T1OUT  
T1PWM  
T1CAP  
Timer A Buffer Register  
TACON.4-.3  
TACON.4-.3  
Match Signal  
TACON.2  
TAOVF  
Timer A Data Register  
(TADATA)  
8
Data Bus  
NOTE: When TACON.0 is "0", two 8-bit timer A/B.  
Figure 12-14. Timer A Functional Block Diagram  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
281  
TIMER B CONTROL REGISTER (TBCON)  
You use the timer B control register, TBCON, to  
— Enable the timer B operating (interval timer)  
— Select the timer B input clock frequency  
— Clear the timer B counter, TBCNT  
— Select the timer B counting operation  
TBCON are located in set 1, bank 0, at address EAH, and is read/write addressable using register addressing  
mode.  
A reset clears TBCON to "00H". This sets timer B to disable interval timer mode, selects an input clock frequency  
of fxx/1024, and disables counting operation. You can clear the timer B counter at any time during normal  
operation by writing a "1" to TBCON.2.  
TIMER INTERRUPT CONTROL REGISTER (TINTCON)  
You use the timer interrupt control register, TINTCON, to  
— Enable the timer B match interrupt  
TINTCON is located in set 1, Bank 0 at address EDH, and is read/write addressable using Register addressing  
mode.  
To enable the timer B match interrupt (IRQ2, vector E2H), you must write TACON.0 to "0", TBCON.1 and  
TINTCON.4 to "1". To detect a match interrupt pending condition, the application program polls TINTPND.4.  
When a "1" is detected, a timer B match interrupt is pending. When the interrupt request has been serviced, the  
pending condition must be cleared by software by writing a "0" to the timer B match interrupt pending bit,  
TINTPND.4.  
TIMER B FUNCTION DESCRIPTION  
Interval Timer Function  
The timer B module can generate an interrupt: the timer B match interrupt (TBINT). TBINT belongs to the interrupt  
level IRQ2 and is assigned a separate vector address, E2H.  
The TBINT pending condition should be cleared by software after they are serviced.  
In interval timer mode, a match signal is generated when the counter value is identical to the values written to the  
TB reference data registers, TBDATA. The match signal generates corresponding match interrupt (TBINT, vector  
E2H) and clears the counter.  
If, for example, you write the value 10H to TBDATA, "0" to TACON.0, and 06H to TBCON, the counter will  
increment until it reaches 10H. At this point, the TB interrupt request is generated, the counter value is reset, and  
counting resumes.  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
282  
Timer B Control Register (TBCON)  
EAH, Set 1, Bank 0, R/W  
MSB  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
Not used for the S3F82NB  
Timer B clock selection bits:  
000 = fxx/1024  
001 = fxx/256  
Timer B counter operating enable bit:  
0 = DIsable counting operating  
1 = Enable counting operating  
010 = fxx/64  
011 = fxx/8  
100 = fxx/1  
Others = Not available  
Timer B counter clear bit:  
0 = No effect  
1 = Clear the timer B counter (when write)  
Not used for the S3F82NB  
Figure 12-15. Timer B Control Register (TBCON)  
Timer Interrupt Control Register (TINTCON)  
EDH, Set 1, Bank 0, R/W  
MSB  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
Not used for the S3F82NB  
Timer 0 overflow interupt  
Timer 0 match/capture interupt  
Timer 1/A overflow interupt  
Timer 1/A match/capture interupt  
Timer B match interupt  
TINTCON bit configuration settings:  
0
1
Disable Interrupt  
Enable Interrupt  
Figure 12-16. Timer Interrupt Control Register (TINTCON)  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
283  
Timer Interrupt Pending Register (TINTPND)  
ECH, Set 1, Bank 0, R/W  
MSB  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
Not used for the S3F82NB  
Timer 0 overflow interupt pending bit  
Timer 0 match/capture interupt pending bit  
Timer 1/A overflow interupt pending bit  
Timer 1/A match/capture interupt pending bit  
Timer B match interupt pending bit  
0 = Interrupt request is not pending, pending bit clear when write "0"  
1 = Interrupt request is pending  
Figure 12-17. Timer Interrupt Pending Register (TINTPND)  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
284  
TIMER B BLOCK DIAGRAM  
TBCON.7-.5  
Data BUS  
8
TBCON.1  
TBCON.2  
fxx/1024  
fxx/256  
fxx/64  
fxx/8  
MUX  
8-Bit Up Counter  
(Read-Only)  
(TBCNT)  
Clear  
R
fxx/1  
TINTCON.4  
Pending  
TINTPND.4  
TBINT  
(IRQ2)  
8-Bit Comparator  
Match  
Timer B Buffer Register  
Match signal  
TBCON.2  
Timer B Data Register  
(Read-Only)  
(TBDATA)  
8
Data BUS  
NOTE: When TACON.0 is "0", two 8-bit timer A/B.  
Figure 12-18. Timer B Function Block Diagram  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
285  
13 WATCH TIMER  
OVERVIEW  
Watch timer functions include real-time and watch-time measurement and interval timing for the system clock. To  
start watch timer operation, set bit 1 of the watch timer control register, WTCON.1 to "1".  
And if you want to service watch timer overflow interrupt (IRQ4, vector E6H), then set the WTCON.6 to “1”.  
The watch timer overflow interrupt pending condition (WTCON.0) must be cleared by software in the application’s  
interrupt service routine by means of writing a "0" to the WTCON.0 interrupt pending bit.  
After the watch timer starts and elapses a time, the watch timer interrupt pending bit (WTCON.0) is automatically  
set to "1", and interrupt requests commence in 3.91 ms, 0.125, 0.25 and 0.5-second intervals by setting Watch  
timer speed selection bits (WTCON.3–.2).  
The watch timer can generate a steady 0.5 kHz, 1 kHz, 2 kHz, or 4 kHz signal to BUZ output pin for Buzzer. By  
setting WTCON.3 and WTCON.2 to "11b", the watch timer will function in high-speed mode, generating an  
interrupt every 3.91 ms. High-speed mode is useful for timing events for program debugging sequences.  
The watch timer supplies the clock frequency for the LCD controller (fLCD). Therefore, if the watch timer is  
disabled, the LCD controller does not operate.  
Watch timer has the following functional components:  
— Real Time and Watch-Time Measurement  
— Using a Main Clock Source or Sub clock  
— Clock Source Generation for LCD Controller (fLCD  
)
— I/O pin for Buzzer Output Frequency Generator (BUZ)  
— Timing Tests in High-Speed Mode  
— Watch timer overflow interrupt (IRQ4, vector E6H) generation  
— Watch timer control register, WTCON (set 1, bank 0, EEH, read/write)  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
286  
WATCH TIMER CONTROL REGISTER (WTCON)  
The watch timer control register, WTCON is used to select the watch timer interrupt time and Buzzer signal, to  
enable or disable the watch timer function. It is located in set 1, bank 0 at address EEH, and is read/write  
addressable using register addressing mode.  
A reset clears WTCON to "00H". This disable the watch timer.  
So, if you want to use the watch timer, you must write appropriate value to WTCON.  
Watch Timer Control Register (WTCON)  
EEH, Set 1, Bank 0, R/W  
MSB  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
Watch timer interrupt pending bit:  
0 = Interrupt request is not pending  
(Clear pending bit when write"0")  
1 = Interrupt request is pending  
Watch timer clock selection bit:  
0 = Select main clock divided by 27 (fx/128)  
1 = Select sub clock (fxt)  
Watch timer INT Enable/Disable bit:  
0 = Disable watch timer INT  
1 = Enable watch timer INT  
Watch timer Enable/Disable bit:  
0 = Disable watch timer  
(Clear frequency dividing circuits)  
1 = Enable watch timer  
Buzzer signal selection bits:  
00 = 0.5 kHz  
Watch timer speed selection bits:  
00 = Set watch timer interrupt to 0.5 s  
01 = Set watch timer interrupt to 0.25 s  
10 = Set watch timer interrupt to 0.125 s  
11 = Set watch timer interrupt to 3.91 ms  
01 = 1 kHz  
10 = 2 kHz  
11 = 4 kHz  
Figure 13-1. Watch Timer Control Register (WTCON)  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
287  
WATCH TIMER CIRCUIT DIAGRAM  
WTCON.7  
WTCON.6  
BUZ  
WT INT  
Enable  
WTCON.6  
WTCON.5  
WTCON.4  
MUX  
WTINT  
(IRQ4)  
8
fw/64 (0.5 kHz)  
fw/32 (1 kHz)  
fw/16 (2 kHz)  
fw/8 (4 kHz)  
WTCON.3  
WTCON.2  
Enable/Disable  
Selector  
Circuit  
WTCON.1  
WTCON.0  
WTCON.0  
(Pending Bit)  
0.5sec  
0.25sec  
0.125sec  
3.91msec  
Frequency  
Dividing  
Circuit  
fw  
Clock  
Selector  
32.768 kHz  
f
LCD = 4096 Hz  
fx = Main clock (where fx = 4.19 MHz)  
fxt = Sub clock (32.768 kHz)  
fxt  
fx/128  
fw = Watch timer frequency  
Figure 13-2. Watch Timer Circuit Diagram  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
288  
14 LCD CONTROLLER/DRIVER  
OVERVIEW  
The S3F82NB microcontroller can directly drive an up-to-1280-dot (80 segments x 16 commons) LCD panel. Its  
LCD block has the following components:  
— LCD controller/driver  
— Display RAM (F00H–FAFH) for storing display data in page 15  
— 8 common/segment output pins (COM8/SEG0–COM15/SEG7)  
— 80 segment output pins (SEG8–SEG87)  
— 8 common output pins (COM0–COM7)  
— Five LCD operating power supply pins (VLC0–VLC4  
— VLC0 pin for controlling the driver and bias voltage  
— LCD contrast control circuit by software (16 steps)  
)
The LCD control register, LCON, is used to turn the LCD display on and off, select frame frequency, LCD duty  
and bias. The LCD mode control register, LMOD, is used to control LCD bias voltage by 16 steps. Data written to  
the LCD display RAM can be automatically transferred to the segment signal pins without any program control.  
When a subsystem clock is selected as the LCD clock source, the LCD display is enabled even in the main clock  
stop or idle modes.  
VLC0-VLC4  
5
COM0-COM7  
8
LCD  
Controller/Driver  
COM8-COM15  
/SEG0-SEG7  
8
8
SEG8-SEG87  
80  
Figure 14-1. LCD Function Diagram  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
289  
LCD CIRCUIT DIAGRAM  
SEG87/P5.7  
SEG72/P4.0  
SEG64/P3.0  
SEG56/P2.0  
SEG48/P7.0  
SEG40/P8.0  
SEG32/P9.0  
Port  
Latch  
SEG/Port  
Driver  
SEG24/P10.0  
SEG23  
SEG8  
LCD  
Display RAM  
(F00H-FAFH)  
COM15/SEG7  
COM8/SEG0  
COM7  
COM/Port  
Driver  
fLCD  
COM0  
Timing  
Controller  
LCON  
LMOD  
VLC0  
VLC1  
VLC2  
VLC3  
VLC4  
LCD  
Voltage  
Control  
Contrast  
Controller  
Figure 14-2. LCD Circuit Diagram  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
290  
LCD RAM ADDRESS AREA  
RAM addresses of 00H - AFH page 15 are used as LCD data memory. These locations can be addressed by 1-  
bit or 8-bit instructions. When the bit value of a display segment is "1", the LCD display is turned on; When the bit  
value is "0", the display is turned off.  
Display RAM data are sent out through the segment pins, SEG0–SEG87, using the direct memory access (DMA)  
method that is synchronized with the fLCD signal. RAM addresses in this location that are not used for LCD  
display can be allocated to general-purpose use.  
COM  
COM0  
COM1  
COM2  
COM3  
COM4  
COM5  
COM6  
COM7  
COM8  
COM9  
COM10  
COM11  
COM12  
COM13  
COM14  
COM15  
Bit  
.0  
.1  
.2  
.3  
.4  
.5  
.6  
.7  
.0  
.1  
.2  
.3  
.4  
.5  
.6  
.7  
SEG0  
F00H  
SEG1  
F02H  
SEG2  
F04H  
SEG3  
F06H  
SEG4  
F08H  
SEG5  
F0AH  
SEG85 SEG86 SEG87  
FAAH  
FACH  
FAEH  
F01H  
F03H  
F05H  
F07H  
F09H  
F0BH  
FABH  
FADH  
FAFH  
Figure 14-3. LCD Display Data RAM Organization  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
291  
LCD CONTROL REGISTER (LCON)  
A LCON is located in set1, bank0 at address EFH, and is read/write addressable using register addressing mode.  
It has the following control functions.  
— LCD duty and bias selection  
— LCD clock selection  
— LCD display control  
The LCON register is used to turn the LCD display on/off, to select duty and bias and select LCD clock. A reset  
clears the LCON registers to "00H", configuring turns off the LCD display, select 1/8 duty and 1/4 bias and select  
256Hz for LCD clock.  
The LCD clock signal determines the frequency of COM signal scanning of each segment output. This is also  
referred as the LCD frame frequency. Since the LCD clock is generated by watch timer clock (fw). The watch  
timer should be enabled when the LCD display is turned on.  
NOTE: The clock and duty for LCD controller/driver is automatically initialized by hardware, whenever LCON register data  
value is re-write. So, the LCON register don’t re-write frequently.  
LCD Control Register (LCON)  
EFH, Set 1, Bank 0, R/W  
MSB  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
LCD output control bit:  
0 = Display off  
LCD clock selection bits:  
000 = fw/27 (256 Hz)  
001 = fw/26 (512 Hz)  
010 = fw/25 (1024 Hz)  
011 = fw/24 (2048 Hz)  
100 = fw/23 (4096 Hz)  
Others = Not available  
1 = Display on  
Not used for the S3F82NB  
LCD duty selection bit:  
0 = 1/8 duty  
1 = 1/16 duty  
LCD bias selection bit:  
0 = 1/4 bias  
1 = 1/5 bias  
Figure 14-4. LCD Control Register (LCON)  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
292  
LCD MODE CONTROL REGISTER (LMOD)  
A LMOD is located in set 1, bank 0 at address F0H, and is read/write addressable using Register addressing  
mode. It has the following control functions.  
— LCD contrast control circuit by software (16 steps)  
The LMOD register is used to control the LCD contrast up to 16 step contrast level. A reset clears the LMOD  
registers to "00H", configuring select 1/16 step contrast level and disable LCD contrast control.  
You can’t control LCD contrast by software when the VLCD voltage is supplied by external voltage source. Only  
when you use internal VDD for VLCD voltage, you can control LCD contrast by software.  
LCD Mode Control Register (LMOD)  
F0H, Set 1, Bank 0, R/W  
MSB  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
Not used for the S3F82NB  
LCD contrast level control bits:  
0000 = 1/16 step (The dimmest level)  
0001 = 2/16 step  
LCD contrast enabel/disable selection bit:  
0 = Disable LCD contrast control  
1 = Enabel LCD contrast control  
0010 = 3/16 step  
1111 = 16/16 step (The brightest level)  
(VLCD = VDD x (n+17)/32, where n = 0 - 15)  
Figure 14-5. LCD Mode Control Register (LMOD)  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
293  
LCD VOLTAGE DIVIDING RESISTOR  
1/5 bias  
1/4 bias  
VDD  
VDD  
LCON.0  
Contrast  
Controller  
LCON.0  
Contrast  
Controller  
"0"  
"1"  
"0"  
"1"  
16 steps of voltage  
16 steps of voltage  
LMOD.3=0  
LMOD.3=0  
V
LC0  
VLC0  
V
V
V
V
LC1  
LC2  
LC3  
LC4  
VLC1  
VLC2  
VLC3  
VLC4  
VLCD  
VLCD  
VSS  
VSS  
Application With Contrast Control  
VDD  
LCON.0  
Contrast  
Controller  
16 steps of voltage  
"0"  
"1"  
LMOD.3=1  
VLC0  
V
LCD = VDD x (n+17)/32  
n = 0, 1, 2, .........., 15  
VLC1  
VLC2  
VLC3  
VLC4  
VLCD  
VSS  
Figure 14-6. LCD Voltage Dividing Resistor Connection  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
294  
COMMON (COM) SIGNALS  
The common signal output pin selection (COM pin selection) varies according to the selected duty cycle.  
— In 1/16 duty mode, COM0-COM15 (SEG8–SEG87) pins are selected.  
— In 1/8 duty mode, COM0-COM7 (SEG0–SEG87) pins are selected.  
SEGMENT (SEG) SIGNALS  
The 88 LCD segment signal pins are connected to corresponding display RAM locations at page 15. Bits of the  
display RAM are synchronized with the common signal output pins.  
When the bit value of a display RAM location is "1", a select signal is sent to the corresponding segment pin.  
When the display bit is "0", a 'no-select' signal to the corresponding segment pin.  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
295  
COM0  
COM1  
COM2  
COM3  
COM4  
COM5  
COM6  
COM7  
0
1
2
3
15 0  
1
2
3
15  
VLC0  
VSS  
FR  
1 Frame  
VLC0  
VLC1  
VLC2  
VLC3  
VLC4  
VSS  
COM0  
COM8  
COM9  
COM10  
COM11  
COM12  
COM13  
COM14  
COM15  
VLC0  
VLC1  
VLC2  
VLC3  
VLC4  
VSS  
S S S S S  
E E E E E  
G G G G G  
COM1  
COM2  
SEG8  
8
9
1
0
1
1
1
2
VLC0  
VLC1  
VLC2  
VLC3  
VLC4  
VSS  
VLC0  
VLC1  
VLC2  
VLC3  
VLC4  
VSS  
Figure 14-7. LCD Signal Waveforms (1/16 Duty, 1/5 Bias)  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
296  
0
1
2
3
15  
0
1
2
3
15  
VLC0  
VSS  
FR  
1 Frame  
VLC0  
VLC1  
VLC2  
VLC3  
VLC4  
VSS  
SEG9  
VLC0  
VLC1  
VLC2  
VLC3  
VLC4  
0V  
SEG8-COM0  
-VLC4  
-VLC3  
-VLC2  
-VLC1  
-VLC0  
VLC0  
VLC1  
VLC2  
VLC3  
VLC4  
0V  
SEG9-COM0  
-VLC4  
-VLC3  
-VLC2  
-VLC1  
-VLC0  
Figure 14-7. LCD Signal Waveforms (1/16 Duty, 1/5 Bias) (Continued)  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
297  
COM0  
COM1  
COM2  
COM3  
COM4  
COM5  
COM6  
COM7  
0
1 2 3 4 5 6 7 0 1 2 3 4 5 6 7  
VLC0  
VSS  
FR  
1 Frame  
VLC0  
S S S S S  
E E E E E  
G G G G G  
0 1 2 3 4  
VLC1  
VLC2 (VLC3)  
VLC4  
COM0  
VSS  
VLC0  
VLC1  
COM1  
COM2  
SEG0  
VLC2 (VLC3)  
VLC4  
VSS  
VLC0  
VLC1  
VLC2 (VLC3)  
VLC4  
VSS  
VLC0  
VLC1  
VLC2 (VLC3)  
VLC4  
VSS  
VLC0  
VLC1  
VLC2 (VLC3)  
VLC4  
SEG0-COM0  
0V  
-VLC4  
-VLC2 (-VLC3)  
-VLC1  
-VLC0  
Figure 14-8. LCD Signal Waveforms (1/8 Duty, 1/4 Bias)  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
298  
0
1 2 3 4 5 6 7 0 1 2 3 4 5 6 7  
VLC0  
VSS  
FR  
1 Frame  
VLC0  
VLC1  
SEG1  
VLC2(VLC3)  
VLC4  
VSS  
VLC0  
VLC1  
VLC2(VLC3)  
VLC4  
SEG1-COM0  
0V  
-VLC4  
-VLC2(-VLC3)  
-VLC1  
-VLC0  
Figure 14-8. LCD Signal Waveforms (1/8 Duty, 1/4 Bias) (Continued)  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
299  
15 10-BIT ANALOG-TO-DIGITAL CONVERTER  
OVERVIEW  
The 10-bit A/D converter (ADC) module uses successive approximation logic to convert analog levels entering at  
one of the eight input channels to equivalent 10-bit digital values. The analog input level must lie between the  
AVREF and AVSS values. The A/D converter has the following components:  
— Analog comparator with successive approximation logic  
— D/A converter logic (resistor string type)  
— ADC control register (ADCON)  
— Eight multiplexed analog data input pins (AD0–AD7)  
— 10-bit A/D conversion data output register (ADDATAH/L)  
— 8-bit digital input port (Alternately, I/O port)  
— AVREF and VSS pins  
FUNCTION DESCRIPTION  
To initiate an analog-to-digital conversion procedure, at the first you must set ADCEN signal for ADC input enable  
at port 0, the pin set with alternative function can be used for ADC analog input. And you write the channel  
selection data in the A/D converter control register ADCON.4–.6 to select one of the eight analog input pins  
(AD0–7) and set the conversion start or disable bit, ADCON.0. The read-write ADCON register is located in set 1,  
bank 0 at address E2H. The pins which are not used for ADC can be used for normal I/O.  
During a normal conversion, ADC logic initially sets the successive approximation register to 200H (the  
approximate half-way point of an 10-bit register). This register is then updated automatically during each  
conversion step. The successive approximation block performs 10-bit conversions for one input channel at a time.  
You can dynamically select different channels by manipulating the channel selection bit value (ADCON.6–.4) in  
the ADCON register. To start the A/D conversion, you should set the start bit, ADCON.0. When a conversion is  
completed, ADCON.3, the end-of-conversion (EOC) bit is automatically set to 1 and the result is dumped into the  
ADDATAH/L register where it can be read. The A/D converter then enters an idle state. Remember to read the  
contents of ADDATAH/L before another conversion starts. Otherwise, the previous result will be overwritten by  
the next conversion result.  
NOTE  
Because the A/D converter has no sample-and-hold circuitry, it is very important that fluctuation in the  
analog level at the AD0–AD7 input pins during a conversion procedure be kept to an absolute minimum.  
Any change in the input level, perhaps due to noise, will invalidate the result. If the chip enters to STOP or  
IDLE mode in conversion process, there will be a leakage current path in A/D block. You must use STOP  
or IDLE mode after ADC operation is finished.  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
300  
CONVERSION TIMING  
The A/D conversion process requires 4 steps (4 clock edges) to convert each bit and 10 clocks to set-up A/D  
conversion. Therefore, total of 50 clocks are required to complete an 10-bit conversion: When fxx/8 is selected for  
conversion clock with an 8 MHz fxx clock frequency, one clock cycle is 1 us. Each bit conversion requires 4  
clocks, the conversion rate is calculated as follows:  
4 clocks/bit  
10 bits + set-up time = 50 clocks, 50 clock 1us = 50 s at 1 MHz  
A/D CONVERTER CONTROL REGISTER (ADCON)  
The A/D converter control register, ADCON, is located at address E2H in set1, bank 0. It has three functions:  
— Analog input pin selection (ADCON.6–.4)  
— End-of-conversion status detection (ADCON.3)  
— ADC clock selection (ADCON.2–.1)  
— A/D operation start or disable (ADCON.0)  
After a reset, the start bit is turned off. You can select only one analog input channel at a time. Other analog input  
pins (AD0–AD7) can be selected dynamically by manipulating the ADCON.4–6 bits. And the pins not used for  
analog input can be used for normal I/O function.  
A/D Converter Control Register (ADCON)  
E2H, Set1, Bank 0, R/W (EOC bit is read-only)  
MSB  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
Always logic "0"  
Start or disable bit:  
0 = Disable operation  
1 = Start operation  
A/D input pin selection bits:  
Clock Selection bit:  
0 0 = fxx/16  
0 1 = fxx/8  
1 0 = fxx/4  
1 1 = fxx/1  
0 0 0 = AD0  
0 0 1 = AD1  
0 1 0 = AD2  
0 1 1 = AD3  
1 0 0 = AD4  
1 0 1 = AD5  
1 1 0 = AD6  
1 1 1 = AD7  
End-of-conversion bit:  
0 = Conversion not complete  
1 = Conversion complete  
Figure 15-1. A/D Converter Control Register (ADCON)  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
301  
A/D Converter Data Register, High Byte (ADDATAH)  
E0H, Set 1, Bank 0, Read Only  
MSB  
MSB  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
LSB  
A/D Converter Data Register, Low Byte (ADDATAL)  
E1H, Set1, Bank 0, Read Only  
.1  
.0  
Figure 15-2. A/D Converter Data Register (ADDATAH/L)  
INTERNAL REFERENCE VOLTAGE LEVELS  
In the ADC function block, the analog input voltage level is compared to the reference voltage. The analog input  
level must remain within the range AVSS to AVREF (usually, AVREF DD, AVSS SS).  
V
V
Different reference voltage levels are generated internally along the resistor tree during the analog conversion  
process for each conversion step. The reference voltage level for the first conversion bit is always 1/2 AVREF  
.
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
302  
BLOCK DIAGRAM  
ADCON.2-.1  
ADCON.6-.4  
(Select one input pin of the assigned pins)  
To ADCON.3  
(EOC Flag)  
Clock  
Selector  
ADCON.0  
(AD/C Enable)  
M
Analog  
Comparator  
Successive  
Approximation  
Logic & Register  
-
Input Pins  
AD0-AD7  
(P0.0-P0.7)  
U
X
.
.
.
+
ADCON.0  
(AD/C Enable)  
Upper 8-bit is loaded to  
A/D Conversion  
Data Register  
P0CONH/L  
(Assign Pins to ADC Input)  
Conversion  
Result  
(ADDATAH/L)  
AVREF  
10-bit D/A  
Converter  
AVSS(VSS)  
Figure 15-3. A/D Converter Functional Block Diagram  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
303  
DD  
V
Reference  
Voltage  
Input  
REF  
AV  
+
-
C
103  
10 F  
REF  
(AV  
VDD  
)
DD  
V
Analog  
Input Pin  
AD0-AD7  
C
101  
S3F82NB  
AVSS(VSS  
)
Figure 15-4. Recommended A/D Converter Circuit for Highest Absolute Accuracy  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
304  
16 SERIAL I/O INTERFACE  
OVERVIEW  
Serial I/O module, SIO can interface with various types of external device that require serial data transfer. The  
components of each SIO function block are:  
— 8-bit control register (SIOCON)  
— Clock selector logic  
— 8-bit data buffer (SIODATA)  
— 8-bit pre-scaler (SIOPS)  
— 3-bit serial clock counter  
— Serial data I/O pins (SI, SO)  
— Serial clock input/output pins (SCK)  
The SIO module can transmit or receive 8-bit serial data at a frequency determined by its corresponding control  
register settings. To ensure flexible data transmission rates, you can select an internal or external clock source.  
PROGRAMMING PROCEDURE  
To program the SIO modules, follow these basic steps:  
1. Configure the I/O pins at port (SO, SCK, SI) by loading the appropriate value to the P6CONH register if  
necessary.  
2. Load an 8-bit value to the SIOCON control register to properly configure the serial I/O module. In this  
operation, SIOCON.2 must be set to "1" to enable the data shifter.  
3. For interrupt generation, set the serial I/O interrupt enable bit (SIOCON.1) to "1".  
4. When you transmit data to the serial buffer, write data to SIODATA and set SIOCON.3 to 1, the shift  
operation starts.  
5. When the shift operation (transmit/receive) is completed, the SIO pending bit (SIOCON.0) is set to "1" and an  
SIO interrupt request is generated.  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
305  
SIO CONTROL REGISTER (SIOCON)  
The control register for serial I/O interface module, SIOCON, is located at F3H in set 1, bank 0. It has the control  
settings for SIO module.  
— Clock source selection (internal or external) for shift clock  
— Interrupt enable  
— Edge selection for shift operation  
— Clear 3-bit counter and start shift operation  
— Shift operation (transmit) enable  
— Mode selection (transmit/receive or receive-only)  
— Data direction selection (MSB first or LSB first)  
A reset clears the SIOCON value to "00H". This configures the corresponding module with an internal clock  
source at the SCK, selects receive-only operating mode, and clears the 3-bit counter. The data shift operation  
and the interrupt are disabled. The selected data direction is MSB-first.  
Serial I/O Module Control Register (SIOCON)  
F3H, Set 1, Bank 0, R/W  
MSB  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
SIO interrupt pending bit:  
0 = No interrupt pending  
0 = Clear pending condition  
(when write)  
SIO shift clock selection bit:  
0 = Internal clock (P.S Clock)  
1 = External clock (SCK)  
1 = Interrupt is pending  
Data direction control bit:  
0 = MSB-first mode  
1 = LSB-first mode  
SIO interrupt enable bit:  
0 = Disable SIO interrupt  
1 = Enable SIO interrupt  
SIO mode selection bit:  
0 = Receive only mode  
1 = Transmit/receive mode  
SIO shift operation enable bit:  
0 = Disable shifter and clock counter  
1 = Enable shifter and clock counter  
Shift clock edge selection bit:  
0 = TX at falling edges, Rx at rising edges  
1 = TX at rising edges, Rx at falling edges  
SIO counter clear and shift start bit:  
0 = No action  
1 = Clear 3-bit counter and start shifting  
Figure 16-1. Serial I/O Module Control Registers (SIOCON)  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
306  
SIO PRE-SCALER REGISTER (SIOPS)  
The control register for serial I/O interface module, SIOPS, is located at F5H in set 1, bank 0.  
The value stored in the SIO pre-scaler register, SIOPS, lets you determine the SIO clock rate (baud rate) as  
follows:  
Baud rate = Input clock (fxx/4)/(Pre-scaler value + 1), or SCK input clock, where the input clock is fxx/4  
SIO Pre-scaler Register (SIOPS)  
F5H, Set 1, Bank 0, R/W  
MSB  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
Baud rate = (fxx/4)/(SIOPS +1)  
Figure 16-2. SIO Pre-scaler Register (SIOPS)  
BLOCK DIAGRAM  
SIO INT  
3-Bit Counter  
SIOCON.0  
Pending  
IRQ3  
Clear  
CLK  
SIOCON.1  
(Interrupt Enable)  
SIOCON.3  
SIOCON.7  
SIOCON.4  
(Edge Select)  
SIOCON.2  
(Shift Enable)  
SIOCON.5  
(Mode Select)  
M
U
X
SCK  
SIOPS (F5H, bank 0)  
8-bit P.S. 1/2  
CLK  
8-Bit SIO Shift Buffer  
SO  
(SIODATA, F4H, bank 0)  
fxx/2  
SIOCON.6  
(LSB/MSB First  
Mode Select)  
8
SI  
Data Bus  
Figure 16-3. SIO Functional Block Diagram  
P R E L I M I N A R Y  
PS031601-0813  
S3F82NB  
Product Specification  
307  
SERIAL I/O TIMING DIAGRAM  
SCK  
SI  
DI7  
DI6  
DI5  
DI4  
DI3  
DI2  
DI1  
DI0  
SO  
DO7  
DO6  
DO5  
DO4  
DO3  
DO2  
DO1  
DO0  
Transmit  
Complete  
IRQ4  
Set SIOCON.3  
Figure 16-4. Serial I/O Timing in Transmit/Receive Mode (Tx at falling, SIOCON.4 = 0)  
SCK  
DI7  
DI6  
DI5  
DI4  
DI3  
DI2  
DI1  
DI0  
SI  
SO  
DO7  
DO6  
DO5  
DO4  
DO3  
DO2  
DO1  
DO0  
Transmit  
Complete  
IRQ4  
Set SIOCON.3  
Figure 16-5. Serial I/O Timing in Transmit/Receive Mode (Tx at rising, SIOCON.4 = 1)  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
308  
17 COMPARATOR  
OVERVIEW  
P6.0, P6.1 and P6.2 can be used as an analog input port for a comparator. The reference voltage for the  
4-channel comparator can be supplied either internally or externally at P6.2. When an internal reference voltage  
is used, four channels (P6.0-P6.2) are used for analog inputs and the internal reference voltage is varied in 16  
levels. If an external reference voltage is input at P6.2, the other P6.0 and P6.1 pins are used for analog input.  
When a conversion is completed, the result is saved in the comparison result register CMPREG. The initial values  
of the CMPREG are undefined and the comparator operation is disabled by a RESET. The comparator module  
has the following components:  
— Comparator  
— Internal reference voltage generator (4-bit resolution)  
— External reference voltage source at P6.2  
— Comparator mode register (CMPCON)  
— Comparator result register (CMPREG)  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
309  
COMPARATOR CONTROL REGISTER (CMPCON)  
The comparator mode register CMPCON is an 8-bit register that is used to select operation mode of the  
comparator. It is located in set 1, bank 0 at address F1H, and is read/write addressable using register addressing  
mode.  
A reset clears CMPCON to "00H". This disable the comparator, selects conversion time of 8 x 25/fx, the P6.0-  
P6.2 (CIN0-CIN2) can be used analog input. CMPCON.6 bit controls conversion timer while CMPCON.7 bit  
enables or disables comparator operation to reduce power consumption. Based on the CMPCON.5 bit setting, an  
internal or an external reference voltage is input for the comparator, as follows:  
When CMPCON.5 is set to logic “0”:  
— A reference voltage is selected by the CMPCON.0 to CMPCON.3 bit settings.  
— P6.0-P6.2 (CIN0-CIN2) are used as analog input pins.  
— The internal digital to analog converter generates 16 reference voltages.  
— The comparator can detect 150-mV differences between the reference voltage and the analog input voltages.  
— Comparator results are written into bit0-bit2 of the comparison result register (CMPREG)  
When CMPCON.5 is set to logic “1”:  
— A external reference voltage is supplied from P6.2/CIN2.  
— P6.0 and P6.1 (CIN0-CIN1) are used as the analog input pins.  
— The internal digital to analog converter generates 16 reference voltages.  
— The comparator can detect 150-mV differences between the reference voltage and the analog input voltages.  
— Bit0 and bit1 in the CMPREG register contain the results.  
Comparator Control Register  
F1H, Set 1, Bank 0, R/W  
MSB  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
Comparator enable bit:  
0 = Disable comparator  
1 = Enable comparator  
Reference Voltage Selection bits:  
Selected VREF = VDD X (N+0.5)/16, N = 0 to 15  
Not used, But you must keep "0"  
External/Internal reference selection bit:  
0 = Internal reference, CIN0-CIN2; analog input  
1 = CIN2; External reference, CIN0-CIN1; analog input  
Conversion time selection bit:  
0 = 8 X 25/fx  
1 = 8 X 24/fx  
Figure 17-1. Comparator Control Register (CMPCON)  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
310  
BLOCK DIAGRAM  
Comparison  
P6.0/CIN0  
+
-
Result  
MUX  
3
P6.1/CIN1  
P6.2/CIN2  
Register  
(CMPREG)  
VREF  
(External)  
MUX  
VDD  
CMPCON.7  
CMPCON.6  
CMPCON.5  
0
CMPCON.3  
CMPCON.2  
CMPCON.1  
CMPCON.0  
VREF  
(Internal)  
1/2R  
R
R
MUX  
1/2R  
NOTE: The comparison result of CIN0, CIN1 and CIN2 are respectively  
stored in CMPREG.0, CMPREG.1 and CMPREG.2.  
Figure 17-2. Comparator Circuit Diagram  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
311  
COMPARATOR OPERATION  
The comparator compares analog voltage input at CIN0-CIN2 with an external or internal reference voltage  
(VREF) that is selected by the CMPCON register. The result is written to the comparison result register CMPREG  
at address F2H, set 1, bank 0.  
The comparison result at internal reference is calculated as follows:  
If “1” Analog input voltage ˻ VREF + 150mV  
If “0” Analog input voltage ˺ VREF - 150mV  
To obtain a comparison result, the data must be read out from the CMPREG register after VREF is updated by  
changing the CMPCON value after a conversion time has elapsed.  
Comparsion Time  
(CMPCLK x8)  
Comparator Clock  
(CMPCLK, fx/16, fx/32)  
Comparsion  
End  
Comparsion  
Start  
Analog Input  
Voltage (CIN0-CIN2)  
Reference  
Voltage (VREF)  
Comparison  
Result (CMPREG)  
1
1
0
Invalid  
Valid  
Invalid  
Figure 17-3. Conversion Characteristics  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
312  
PROGRAMMING TIP — Programming the Comparator  
The following code converts the analog voltage input at the CIN0-CIN2 pins into 3-bit digital code:  
LD  
LD  
R0,#0FH  
CMPCON,#0CXH  
; Analog input selection (CIN0-CIN2)  
; X = 0 – F, comparator enable  
; internal reference, conversion time (8 x 25/fx)  
WAIT0  
WAIT1  
LD  
LD  
LD  
R2,#02H  
R1,R0  
R3,#10H  
WAIT2  
NOP  
DJNZ  
R3,WAIT2  
LD  
R0,CMPREG  
; Read the result  
NOP  
NOP  
DJNZ  
CP  
R2,WAIT1  
R0,R1  
JR  
NE,WAIT0  
SB1  
LD  
P2,R0  
; Output the result from port 2  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
313  
18 EMBEDDED FLASH MEMORY INTERFACE  
OVERVIEW  
The S3F82NB has an on-chip flash memory internally instead of masked ROM. The flash memory is accessed by  
'LDC' instruction and the type of sector erase and a byte programmable flash, a user can program the data in a  
flash memory area any time you want. The S3F82NB's embedded 64K-bytes memory has two operating features  
as below:  
— User Program Mode  
— Tool Program Mode: Refer to the chapter 21. S3F82NB FLASH MCU.  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
314  
USER PROGRAM MODE  
This mode supports sector erase, byte programming, byte read and one protection mode (Hard lock protection).  
The read protection mode is available only in Tool Program mode. So in order to make a chip into read protection,  
you need to select a read protection option when you program an initial your code to a chip by using Tool  
Program mode by using a programming tool.  
The S3F82NB has the pumping circuit internally; therefore, 12.5V into VPP (Test) pin is not needed. To program a  
flash memory in this mode several control registers will be used. There are four kind functions – programming,  
reading, sector erase and hard lock protection  
NOTES  
1. The user program mode cannot be used when the CPU operates with the subsystem clock.  
2. Be sure to execute the DI instruction before starting user program mode. The user program mode  
checks the interrupt request register (IRQ). If an interrupt request is generated, user program mode  
is stopped.  
3. User program mode is also stopped by an interrupt request that is masked even in the DI status.  
To prevent this, Be disable the interrupt by using the each peripheral interrupt enable bit.  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
315  
FLASH MEMORY CONTROL REGISTERS (User Program Mode)  
Flash Memory Control Register  
FMCON register is available only in user program mode to select the Flash Memory operation mode; sector  
erase, byte programming, and to make the flash memory into a hard lock protection.  
Flash Memory Control Register (FMCON)  
F9H, Set 1, Bank 0, R/W  
MSB  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
Flash operation start bit:  
0 = Operation stop  
Flash memory mode selection bits:  
0101 = Programming mode  
1010 = Sector erase mode  
0110 = Hard lock mode  
1 = Operation start  
(This bit will be cleared automatically  
just after the corresponding operation  
completed).  
others = Not available  
Sector erase status bit:  
0 = Success sector erase  
1 = Fail sector erase  
Not used for S3F82NB  
Figure 18-1. Flash Memory Control Register (FMCON)  
The bit0 of FMCON register (FMCON.0) is a start bit for Erase and Hard Lock operation mode. Therefore,  
operation of Erase and Hard Lock mode is activated when you set FMCON.0 to "1". Also you should wait a time  
of Erase (Sector erase) or Hard lock to complete it's operation before a byte programming or a byte read of same  
sector area by using "LDC" instruction. When you read or program a byte data from or into flash memory, this bit  
is not needed to manipulate.  
The sector erase status bit is read only. Even if IMR bits are “0”, the interrupt is serviced during the operation of  
"Sector erase", when the each peripheral interrupt enable bit is set “1” and interrupt pending bit is set “1”. If an  
interrupt is requested during the operation of "Sector erase", the operation of "Sector erase" is discontinued, and  
the interrupt is served by CPU. Therefore, the sector erase status bit should be checked after executing "Sector  
erase". The "sector erase" operation is success if the bit is logic "0", and is failure if the bit is logic "1".  
NOTE  
When the ID code, "A5H", is written to the FMUSR register. A mode of sector erase, user program, and  
hard lock may be executed unfortunately. So, it should be careful of the above situation.  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
316  
Flash Memory User Programming Enable Register  
The FMUSR register is used for a safety operation of the flash memory. This register will protect undesired erase  
or program operation from malfunctioning of CPU caused by an electrical noise.  
After reset, the user-programming mode is disabled, because the value of FMUSR is "00000000B" by reset  
operation. If necessary to operate the flash memory, you can use the user programming mode by setting the  
value of FMUSR to "10100101B". The other value of "10100101b", User Program mode is disabled.  
Flash Memory User Programming Enable Register (FMUSR)  
F8H, Set 1, Bank 0, R/W  
MSB  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
Flash memory user programming enable bits:  
10100101: Enable user programming mode  
Other values: Disable user programming mode  
Figure 18-2. Flash Memory User Programming Enable Register (FMUSR)  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
317  
Flash Memory Sector Address Registers  
There are two sector address registers for addressing a sector to be erased. The FMSECL (Flash Memory Sector  
Address Register Low Byte) indicates the low byte of sector address and FMSECH (Flash Memory Sector  
Address Register High Byte) indicates the high byte of sector address.  
The FMSECH is needed for S3F82NB because it has 512 sectors, respectively. One sector consists of 128-  
bytes. Each sector's address starts XX00H or XX80H that is a base address of sector is XX00H or XX80H. So  
FMSECL register 6-0 don't mean whether the value is '1' or '0'. We recommend that the simplest way is to load  
sector base address into FMSECH and FMSECL register.  
When programming the flash memory, you should write data after loading sector base address located in the  
target address to write data into FMSECH and FMSECL register. If the next operation is also to write data, you  
should check whether next address is located in the same sector or not. In case of other sectors, you must load  
sector address to FMSECH and FMSECL register according to the sector.  
Flash Memory Sector Address Register (FMSECH)  
F6H, Set 1, Bank 0, R/W  
MSB  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
Flash Memory Setor Address (High Byte)  
NOTE:  
The high-byte flash memory sector address pointer  
value is the higher eight bits of the 16-bit pointer address.  
Figure 18-3. Flash Memory Sector Address Register High Byte (FMSECH)  
Flash Memory Sector Address Register (FMSECL)  
F7H, Set 1, Bank 0, R/W  
MSB  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
LSB  
Don't care  
Flash Memory Sector Address (Low Byte)  
NOTE:  
The low-byte flash memory sector address pointer  
value is the lower eight bits of the 16-bit pointer address.  
Figure 18-4. Flash Memory Sector Address Register Low Byte (FMSECL)  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
318  
ISPTM (ON-BOARD PROGRAMMING) SECTOR  
ISPTM sectors located in program memory area can store On Board Program software (Boot program code for  
upgrading application code by interfacing with I/O port pin). The ISPTM sectors can not be erased or programmed  
by LDC instruction for the safety of On Board Program software.  
The ISP sectors are available only when the ISP enable/disable bit is set 0, that is, enable ISP at the Smart  
Option. If you don't like to use ISP sector, this area can be used as a normal program memory (can be erased or  
programmed by LDC instruction) by setting ISP disable bit ("1") at the Smart Option. Even if ISP sector is  
selected, ISP sector can be erased or programmed in the Tool Program mode, by Serial programming tools.  
The size of ISP sector can be varied by settings of Smart Option. You can choose appropriate ISP sector size  
according to the size of On Board Program software.  
(Decimal)  
65,535  
(HEX)  
FFFFH  
64K-bytes  
Internal Program  
Memory Area  
8FFH  
FFH  
Available  
ISP Sector Area  
255  
0
Interrupt Vector Area  
Smart Option Area  
3FH  
3CH  
00H  
Byte  
Figure 18-5. Program Memory Address Space  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
319  
Table 18-1. ISP Sector Size  
Smart Option(003EH) ISP Size Selection Bit  
Area of ISP Sector  
ISP Sector Size  
Bit 2  
Bit 1  
Bit 0  
1
0
0
0
0
x
0
0
1
1
x
0
1
0
1
0
100H – 1FFH (256 Byte)  
100H – 2FFH (512 Byte)  
100H – 4FFH (1024 Byte)  
100H – 8FFH (2048 Byte)  
256 Bytes  
512 Bytes  
1024 Bytes  
2048 Bytes  
NOTE: The area of the ISP sector selected by Smart Option bit (003EH.2 – 003EH.0) can not be erased and programmed  
by LDC instruction in User Program mode.  
ISP RESET VECTOR AND ISP SECTOR SIZE  
If you use ISP sectors by setting the ISP Enable/Disable bit to "0" and the Reset Vector Selection bit to “0” at the  
Smart Option, you can choose the reset vector address of CPU as shown in Table 18-2 by setting the ISP Reset  
Vector Address Selection bits.  
Table 18-2. Reset Vector Address  
Smart Option (003EH)  
ISP Reset Vector Address Selection Bit  
Reset Vector  
Address After POR  
Usable Area for  
ISP Sector  
ISP Sector Size  
Bit 7  
Bit 6  
Bit 5  
1
0
0
0
0
x
0
0
1
1
x
0
1
0
1
0100H  
0200H  
0300H  
0500H  
0900H  
100H – 1FFH  
100H – 2FFH  
100H – 4FFH  
100H – 8FFH  
256 Bytes  
512 Bytes  
1024 Bytes  
2048 Bytes  
NOTE: The selection of the ISP reset vector address by Smart Option (003EH.7 – 003EH.5) is not dependent of the  
selection of ISP sector size by Smart Option (003EH.2 – 003EH.0).  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
320  
SECTOR ERASE  
User can erase a flash memory partially by using sector erase function only in User Program Mode. The only unit  
of flash memory to be erased and programmed in User Program Mode is called sector.  
The program memory of S3F82NB is divided into 512 sectors for unit of erase and programming, respectively.  
Every sector has all 128-byte sizes of program memory areas. So each sector should be erased first to program a  
new data (byte) into a sector.  
Minimum 10ms delay time for erase is required after setting sector address and triggering erase start bit  
(FMCON.0). Sector Erase is not supported in Tool Program Modes (MDS mode tool or Programming tool).  
FFFFH  
Sector 511  
(128 byte)  
FF7FH  
Sector 510  
(128 byte)  
FEFFH  
3FFFH  
Sector 127  
(128 byte)  
3F7FH  
05FFH  
Sector 11  
(128 byte)  
057FH  
Sector 10  
(128 byte)  
0500H  
04FFH  
Sector 0-9  
(128 byte x 10)  
0000H  
S3F82NB  
Figure 18-6. Sector Configurations in User Program Mode  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
321  
The Sector Erase Procedure in User Program Mode  
1.  
If the procedure of Sector Erase needs to be stopped by any interrupt, set the appropriately bit of Interrupt  
Mask Enable Register (IMR) and the appropriately peripheral interrupt enable bit. Otherwise clear all bits of  
Interrupt Mask Enable Register (IMR) and all peripheral interrupt enable bits.  
2.  
3.  
4.  
5.  
6.  
7.  
Set Flash Memory User Programming Enable Register (FMUSR) to “10100101B”.  
Set Flash Memory Sector Address Register (FMSECH/ FMSECL).  
Check user’s ID code (written by user)  
Set Flash Memory Control Register (FMCON) to “10100001B”.  
Set Flash Memory User Programming Enable Register (FMUSR) to “00000000B”.  
Check the “Sector erase status bit” whether “Sector erase” is success or not.  
PROGRAMMING TIP — Sector Erase  
SB0  
reErase:  
LD  
FMUSR,Temp0  
; User Program mode enable  
; Temp0 = #0A5H  
; Temp0 variable is must be setting another routine  
LD  
LD  
CP  
FMSECH,#10H  
FMSECL,#00H  
; Set sector address (1000H–107FH)  
UserID_Code,#User_value ; Check user’s ID code (written by user)  
; User_value is any value by user  
JR  
LD  
NE,Not_ID_Code  
FMCON,Temp1  
; If not equal, jump to Not_ID_Code  
; Start sector erase  
; Temp1 = #0A1H  
; Temp1 variable is must be setting another routine  
; Dummy Instruction, This instruction must be needed  
; Dummy Instruction, This instruction must be needed  
; User Program mode disable  
; Check “Sector erase status bit”  
; Jump to reErase if fail  
NOP  
NOP  
LD  
FMUSR,#0  
FMCON,#00001000B  
NZ,reErase  
TM  
JR  
Not_ID_Code:  
SB0  
LD  
LD  
FMUSR,#0  
FMCON,#0  
; User Program mode disable  
; Sector erase mode disable  
NOTE: In case of Flash User Mode, the Tmep0~Temp1’s data values are must be setting another routine.  
Temp0~Temp(n) variables are should be defined by user.  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
322  
PROGRAMMING  
A flash memory is programmed in one byte unit after sector erase. And for programming safety's sake, must set  
FMSECH and FMSECL to flash memory sector value.  
The write operation of programming starts by 'LDC' instruction.  
You can write until 128 byte, because this flash sector's limit is 128 byte.  
So, if you written 128 byte, must reset FMSECH and FMSECL.  
The Program Procedure in User Program Mode  
1. Must erase sector before programming.  
2. Set Flash Memory User Programming Enable Register (FMUSR) to “10100101B”.  
3. Set Flash Memory Sector Register (FMSECH, FMSECL) to sector value of write address.  
4. Load a flash memory upper address into upper register of pair working register.  
5. Load a flash memory lower address into lower register of pair working register.  
6. Load a transmission data into a working register.  
7. Check user’s ID code (written by user)  
8. Set Flash Memory Control Register (FMCON) to “01010001B”.  
9. Load transmission data to flash memory location area on ‘LDC’ instruction by indirectly addressing mode  
10. Set Flash Memory User Programming Enable Register (FMUSR) to “00000000B”.  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
323  
PROGRAMMING TIP — Programming  
SB0  
LD  
FMUSR,Temp0  
; User Program mode enable  
; Temp0 = #0A5H  
; Temp0 variable is must be setting another routine  
LD  
LD  
LD  
LD  
LD  
CP  
FMSECH,#17H  
FMSECL,#80H  
R2,#17H  
; Set sector address (1780H-17FFH)  
; Set a ROM address in the same sector 1780H–17FFH  
R3,#84H  
R4,#78H  
; Temporary data  
UserID_Code,#User_value ; Check user’s ID code (written by user)  
; User_value is any value by user  
JR  
LD  
NE,Not_ID_Code  
FMCON,Temp1  
; If not equal, jump to Not_ID_Code  
; Start program  
; Temp1 = #51H  
; Temp1 variable is must be setting another routine  
; Write the data to a address of same sector(1784H)  
; Dummy Instruction, This instruction must be needed  
; User Program mode disable  
LDC  
NOP  
LD  
@RR2,R4  
FMUSR,#0  
Not_ID_Code:  
SB0  
LD  
LD  
FMUSR,#0  
FMCON,#0  
; User Program mode disable  
; Programming mode disable  
NOTE: In case of Flash User Mode, the Tmep0~Temp1’s data values are must be setting another routine.  
Temp0~Temp(n) variables are should be defined by user.  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
324  
READING  
The read operation of programming starts by ‘LDC’ instruction.  
The Reading Procedure in User Program Mode  
1.  
2.  
3.  
Load a flash memory upper address into upper register of pair working register.  
Load a flash memory lower address into lower register of pair working register.  
Load receive data from flash memory location area on ‘LDC’ instruction by indirectly addressing mode  
PROGRAMMING TIP — Reading  
LD  
R2,#3H  
R3,#0  
; Load flash memory upper address  
; to upper of pair working register  
; Load flash memory lower address  
; to lower pair working register  
; Read data from flash memory location  
; (Between 300H and 3FFH)  
LD  
LOOP:  
LDC  
R0,@RR2  
INC  
CP  
JP  
R3  
R3,#0H  
NZ,LOOP  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
325  
HARD LOCK PROTECTION  
User can set Hard Lock Protection by write ‘0110’ in FMCON.7-4. If this function is enabled, the user cannot write  
or erase the data in a flash memory area. This protection can be released by the chip erase execution (in the tool  
program mode).  
In terms of user program mode, the procedure of setting Hard Lock Protection is following that. Whereas in tool  
mode the manufacturer of serial tool writer could support Hardware Protection. Please refer to the manual of  
serial program writer tool provided by the manufacturer.  
The Hard Lock Protection Procedure in User Program Mode  
1. Set Flash Memory User Programming Enable Register (FMUSR) to “10100101B”.  
2. Check user’s ID code (written by user)  
3. Set Flash Memory Control Register (FMCON) to “01100001B”.  
4. Set Flash Memory User Programming Enable Register (FMUSR) to “00000000B”.  
PROGRAMMING TIP — Hard Lock Protection  
SB0  
LD  
FMUSR,Temp0  
; User Program mode enable  
; Temp0 = #0A5H  
; Temp0 variable is must be setting another routine  
CP  
UserID_Code,#User_value ; Check user’s ID code (written by user)  
; User_value is any value by user  
NE,Not_ID_Code  
FMCON,Temp1  
JR  
LD  
; If not equal, jump to Not_ID_Code  
; Hard Lock mode set & start  
; Temp1 = #61H  
; Temp1 variable is must be setting another routine  
; Dummy Instruction, This instruction must be needed  
; User Program mode disable  
NOP  
LD  
FMUSR,#0  
Not_ID_Code:  
SB0  
LD  
LD  
FMUSR,#0  
FMCON,#0  
; User Program mode disable  
; Hard Lock Protection mode disable  
NOTE: In case of Flash User Mode, the Tmep0~Temp1’s data values are must be setting another routine.  
PS031601-0813 P R E L I M I N A R Y  
Temp0~Temp(n) variables are should be defined by user.  
S3F82NB  
Product Specification  
326  
19 ELECTRICAL DATA  
OVERVIEW  
In this chapter, S3F82NB electrical characteristics are presented in tables and graphs. The information is  
arranged in the following order:  
— Absolute maximum ratings  
— Input/output capacitance  
— D.C. electrical characteristics  
— A.C. electrical characteristics  
— Oscillation characteristics  
— Oscillation stabilization time  
— Data retention supply voltage in stop mode  
— LVR timing characteristics  
— A/D converter electrical characteristics  
— Serial I/O timing characteristics  
— Comparator electrical characteristics  
— LCD contrast controller electrical characteristics  
— Internal Flash ROM electrical characteristics  
— Operating voltage range  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
327  
Table 19-1. Absolute Maximum Ratings  
(TA = 25 C)  
Parameter  
Symbol  
Conditions  
Rating  
Unit  
VDD  
Supply voltage  
Input voltage  
– 0.3 to + 6.5  
V
VI  
– 0.3 to VDD + 0.3  
– 0.3 to VDD + 0.3  
Ports 0-10  
VO  
IOH  
Output voltage  
Output current high  
One I/O pin active  
All I/O pins active  
One I/O pin active  
Total pin current for ports  
– 15  
mA  
– 60  
IOL  
Output current low  
+ 30 (Peak value)  
+ 100 (Peak value)  
– 40 to + 85  
C
TA  
Operating temperature  
Storage temperature  
TSTG  
– 65 to + 150  
Table 19-2. D.C. Electrical Characteristics  
(TA = – 40 C to + 85 C, VDD = 1.8 V to 5.5 V)  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
VDD  
f
f
f
Operating voltage  
1.8  
5.5  
V
x = 0.4–4.2 MHz, xt = 32.768 kHz  
2.2  
5.5  
VDD  
VDD  
x = 0.4–12.0 MHz  
VIH1  
VIH2  
All input pins except VIH2, 3  
0.7VDD  
0.8VDD  
Input high voltage  
Input low voltage  
P0.0-P0.1, P1, P5.4-P5.7, P6,  
nRESET  
VIH3  
VIL1  
VIL2  
XIN  
X
XT XT  
OUT  
VDD–0.1  
VDD  
,
,
,
IN  
OUT  
All input pins except VIL2, 3  
0.3VDD  
0.2VDD  
P0.0-P0.1, P1, P5.4-P5.7, P6,  
nRESET  
VIL3  
XIN  
X XT XT  
, ,  
OUT IN OUT  
0.1  
,
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
328  
Table 19-2. D.C. Electrical Characteristics (Continued)  
(TA = – 40 C to + 85 C, VDD = 1.8 V to 5.5 V)  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
VOH  
VDD = 4.5V to 5.5V  
VDD–1.0  
Output high voltage  
V
IOH = –1mA  
All output ports  
VOL  
VDD = 4.5V to 5.5V  
Output low voltage  
2.0  
IOL = 15mA  
All output ports  
VDD = 1.8V to 5.5V  
0.4  
3
IOL = 1.6mA  
ILIH1  
ILIH2  
ILIL1  
VIN = VDD  
All input pins except I  
Input high leakage  
current  
A  
LIH2  
VIN = VDD  
XIN, XOUT, XTIN, XTOUT  
20  
–3  
VIN = 0 V  
Input low leakage  
current  
All input pins except for  
nRESET, ILIL2  
ILIL2  
VIN = 0 V  
–20  
XIN, XOUT, XTIN, XTOUT  
ILOH  
ILOL  
RLCD  
ROSC1  
ROSC2  
RL1  
VOUT = VDD  
All output pins  
VOUT = 0 V  
All output pins  
Output high  
3
–3  
leakage current  
Output low leakage  
current  
LCD voltage  
dividing resistor  
40  
420  
60  
850  
80  
kꢐ  
T = 25 C  
A
Oscillator feed  
back resistors  
1700  
VDD = 5 V, TA= 25 C  
XIN = VDD, XOUT = 0 V  
2200  
25  
4500  
50  
9000  
100  
150  
400  
700  
VDD = 5 V, TA= 25 C  
XTIN = VDD, XTOUT = 0 V  
VIN = 0 V; VDD = 5 V  
Pull-up resistor  
TA = 25 C, Ports 0–10  
VIN = 0 V; VDD = 3 V  
50  
100  
250  
500  
TA = 25 C, Ports 0–10  
RL2  
VIN = 0 V; VDD = 5 V  
150  
300  
TA = 25 C, nRESET  
VIN = 0 V; VDD = 3 V  
TA = 25 C, nRESET  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
329  
Table 19-2. D.C. Electrical Characteristics (Continued)  
(TA = – 40 C to + 85 C, VDD = 1.8 V to 5.5 V)  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
VLC1  
VDD = 2.4V to 5.5V, 1/5 Bias  
LCD clock = 0Hz, VLC0 = VDD  
0.8VDD–0.2  
0.8VDD  
0.6VDD  
0.4VDD  
0.2VDD  
0.8VDD+0.2  
Middle output  
voltage (note)  
V
VLC2  
VLC3  
VLC4  
VDC  
0.6VDD–0.2  
0.4VDD–0.2  
0.2VDD–0.2  
0.6VDD+0.2  
0.4VDD+0.2  
0.2VDD+0.2  
|VLCD – COMi|  
Voltage drop  
(i = 0 – 15)  
120  
–15 A per common pin  
–15 A per segment pin  
mV  
|VLCD – SEGx|  
VDS  
120  
Voltage drop  
(x = 0 – 87)  
NOTE: It is middle output voltage when the V  
and V  
pin are connected.  
DD  
LC0  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
330  
Table 19-2. D.C. Electrical Characteristics (Concluded)  
(TA = – 40 C to + 85 C, VDD = 1.8 V to 5.5 V)  
Parameter  
Supply current (1)  
Symbol  
Conditions  
Run mode:  
Min  
Typ  
Max  
Unit  
(2)  
2.2  
4.0  
12.0 MHz  
4.2 MHz  
mA  
IDD1  
V
DD = 5.0V  
Crystal oscillator  
C1 = C2 = 22pF  
1.2  
2.0  
VDD = 3.0V  
Idle mode:  
0.8  
1.3  
1.5  
2.3  
4.2 MHz  
(2)  
12.0 MHz  
IDD2  
V
DD = 5.0V  
Crystal oscillator  
C1 = C2 = 22pF  
0.8  
1.5  
4.2 MHz  
VDD = 3.0V  
0.4  
0.8  
4.2 MHz  
(3)  
65.0  
100.0  
Sub Operating mode:  
DD = 3.0V  
32kHz crystal oscillator  
A  
IDD3  
V
(3)  
6.0  
0.3  
15.0  
6.0  
Sub Idle mode:  
IDD4  
VDD = 3.0V  
32kHz crystal oscillator  
(4)  
Stop mode: VDD = 5.0V  
IDD5  
NOTES:  
1. Supply current does not include current drawn through internal pull-up resistors, LCD voltage dividing resistors, the  
LVR block, and external output current loads.  
2.  
3.  
4.  
I
and I  
include a power consumption of sub clock oscillation.  
DD1  
DD2  
I
and I are the current when the main clock oscillation stops and the sub clock is used.  
DD4  
DD3  
I
is the current when the main and sub clock oscillation stops.  
DD5  
5. Every value in this table is measured when bits 4-3 of the system clock control register (CLKCON.4–.3) is  
set to 11B.  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
331  
Table 19-3. A.C. Electrical Characteristics  
(TA = – 40 C to + 85 C, VDD = 1.8 V to 5.5 V)  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
tINTH, tINTL  
All interrupt, VDD = 5 V  
Interrupt input high, low  
width  
(P1.0-P1.7, P5.4-P5.7)  
500  
ns  
tRSL  
Input, VDD = 5 V  
nRESET input low width  
10  
s  
NOTE: If width of interrupt or reset pulse is greater than min. value, pulse is always recognized as valid pulse.  
t
INTL  
tINTH  
External  
Interrupt  
0.8 VDD  
0.2 VDD  
Figure 19-1. Input Timing for External Interrupts  
t
RSL  
nRESET  
0.2 VDD  
Figure 19-2. Input Timing for nRESET  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
332  
Table 19-4. Input/Output Capacitance  
(TA = – 40 C to + 85 C, VDD = 0 V )  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
CIN  
Input  
capacitance  
f = 1 MHz; unmeasured pins  
are returned to VSS  
10  
pF  
COUT  
CIO  
Output  
capacitance  
I/O capacitance  
Table 19-5. Data Retention Supply Voltage in Stop Mode  
(TA = – 40 C to + 85 C)  
Parameter  
Symbol  
VDDDR  
Conditions  
Min  
Typ  
Max  
Unit  
Data retention  
supply voltage  
1.8  
5.5  
V
IDDDR  
Data retention  
supply current  
1
A  
Stop mode, TA = 25 C  
DDDR = 1.8V  
Disable LVR block  
V
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
333  
nRESET  
Occurs  
Oscillation  
Stabilization  
Time  
Stop Mode  
Normal  
Operating Mode  
Data Retention Mode  
VDD  
VDDDR  
Execution of  
STOP Instrction  
nRESET  
0.8 VDD  
tWAIT  
0.2 VDD  
NOTE:  
tWAIT is the same as 4096 x 16 x 1/fxx.  
Figure 19-3. Stop Mode Release Timing Initiated by nRESET  
Oscillation  
Stabillization TIme  
IDLE Mode  
Stop Mode  
VDD  
Data Retention Mode  
VDDDR  
Normal  
Operation Mode  
Execution of  
STOP Instruction  
Interrupt  
0.2VDD  
tWAIT  
NOTE:  
tWAIT is the same as 16 x 1/fBT. (fBT is basic timer clock selected)  
Figure 19-4. Stop Mode Release Timing Initiated by Interrupts  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
334  
Table 19-6. A/D Converter Electrical Characteristics  
(T = – 40 C to + 85 C, VDD = 2.7 V to 5.5 V)  
A
Parameter  
Resolution  
Symbol  
Conditions  
Min  
Typ  
10  
Max  
Unit  
bit  
Total accuracy  
LSB  
3  
2  
1  
VDD = 5.120 V  
SS = 0 V  
CPU clock = 12.0 MHz  
Integral linearity error  
ILE  
DLE  
V
Differential linearity  
error  
Offset error of top  
EOT  
EOB  
TCON  
1  
1  
3  
3  
Offset error of bottom  
Conversion time (1)  
Analog input voltage  
25  
VSS  
2
S  
V
VIAN  
RAN  
AVREF  
Analog input  
impedance  
1000  
Mꢐ  
AVREF  
VDD  
Analog reference  
voltage  
1.8  
V
IADIN  
IADC  
VDD = 5.0 V  
VDD = 5.0 V  
Analog input current  
10  
1.5  
500  
A  
mA  
nA  
Analog block current (2)  
0.5  
100  
VDD = 5.0 V  
When power down mode  
NOTES:  
1. 'Conversion time' is the time required from the moment a conversion operation starts until it ends.  
2. is an operating current during A/D converter.  
I
ADC  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
335  
Table 19-7. Synchronous SIO Electrical Characteristics  
(TA = – 40 C to + 85 C, VDD = 1.8 V to 5.5 V)  
Parameter  
SCK Cycle time  
Symbol  
tKCY  
Conditions  
Min  
Typ  
Max  
Unit  
External SCK source  
1,000  
ns  
Internal SCK source  
External SCK source  
1,000  
500  
tKH, tKL  
SCK high, low width  
t
KCY/2-50  
Internal SCK source  
External SCK source  
tSIK  
SI setup time to SCK high  
SI hold time to SCK high  
Output delay for SCK to SO  
250  
Internal SCK source  
External SCK source  
250  
400  
tKSI  
Internal SCK source  
External SCK source  
400  
tKSO  
300  
250  
Internal SCK source  
tKCY  
tKL  
tKH  
SCK  
0.8 VDD  
0.2 VDD  
tSIK  
tKSI  
0.8 VDD  
0.2 VDD  
SI  
Input Data  
tKSO  
SO  
Output Data  
Figure 19-5. Serial Data Transfer Timing  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
336  
Table 19-8. Low Voltage Reset Electrical Characteristics  
(T = – 40 C to + 85 C, VDD = 1.8 V to 5.5 V)  
A
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
VLVR  
Voltage of LVR  
1.9  
2.0  
2.1  
V
VDD voltage rising time  
VDD voltage off time  
tR  
10  
0.5  
S  
S
tOFF  
Hysteresis LVR  
10  
30  
100  
60  
mV  
A  
V  
ILVR  
VDD = 3.0 V  
Current consumption  
NOTE: The current of LVR circuit is consumed when LVR is enabled by “Smart Option”.  
t
OFF  
t
R
0.9VDD  
0.1VDD  
V
DD  
Figure 19-6. LVR (Low Voltage Reset) Timing  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
337  
Table 19-9. Comparator Converter Electrical Characteristics  
(T = – 40 C to + 85 C, VDD = 4.0 V to 5.5 V)  
A
Parameter  
Symbol  
Condition  
Min  
Typ  
Max  
Unit  
VDD  
Input voltage range  
0
V
VREF  
VCIN  
VDD  
Reference voltage range  
Input voltage accuracy  
0
V
8 x 25/fx, @0.4 ~ 12.0 MHz  
8 x 24/fx, @0.4 ~ 6.0 MHz  
mV  
150  
I
CIN, IREF  
Input leakage current  
– 3  
3
A  
Table 19-10. LCD Contrast Controller Electrical Characteristics  
(T = – 40 C to + 85 C, VDD = 4.5 V to 5.5 V)  
A
Parameter  
Symbol  
Condition  
Min  
Typ  
Max  
4
Unit  
Bits  
mV  
Resolution  
Linearity  
RLIN  
VDD = 5.0 V  
150  
VLC0  
VLPP  
VLC0 = VDD = 5.0 V  
LMOD = #F8H  
Max output voltage  
4.9  
V
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
338  
Table 19-11. Main Oscillator Characteristics  
(TA = – 40 C to + 85 C, VDD = 1.8 V to 5.5 V)  
Oscillator  
Clock Configuration  
Parameter  
Test Condition Min  
Typ  
Max Units  
C1  
Crystal  
Main oscillation  
frequency  
2.2 V – 5.5 V  
0.4  
12.0  
MHz  
XIN  
1.8 V – 5.5 V  
0.4  
4.2  
XOUT  
C1  
Ceramic  
Oscillator  
Main oscillation  
frequency  
2.2 V – 5.5 V  
1.8 V – 5.5 V  
0.4  
0.4  
12.0  
4.2  
X
IN  
XOUT  
XIN input frequency  
Frequency  
External  
Clock  
2.2 V – 5.5 V  
1.8 V – 5.5 V  
0.4  
0.4  
12.0  
4.2  
X
IN  
XOUT  
RC  
Oscillator  
3.0 V  
5.0 V  
0.4  
0.4  
1
2
MHz  
XIN  
R
XOUT  
Table 19-12. Sub Oscillation Characteristics  
(TA = – 40 C to + 85 C, VDD = 1.8 V to 5.5 V)  
Oscillator  
Clock Configuration  
Parameter  
Test  
Condition  
Min  
Typ  
Max Units  
Crystal  
Sub oscillation  
frequency  
1.8 V – 5.5 V  
32.768  
kHz  
C1  
XTIN  
C2  
XTOUT  
XTIN input  
frequency  
External  
clock  
1.8 V – 5.5 V  
32  
100  
XTIN  
XTOUT  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
339  
Table 19-13. Main Oscillation Stabilization Time  
(TA = – 40 C to + 85 C, VDD = 1.8 V to 5.5 V)  
Oscillator Test Condition  
Crystal  
Min  
Typ  
Max  
40  
Unit  
ms  
fx > 1 MHz  
Oscillation stabilization occurs when VDD is  
Ceramic  
10  
ms  
equal to the minimum oscillator voltage range.  
XIN input high and low width (tXH, tXL)  
External clock  
62.5  
1250  
ns  
1/fx  
t
XL  
tXH  
XIN  
V
DD - 0.1V  
0.1V  
0.1V  
Figure 19-7. Clock Timing Measurement at XIN  
Table 19-14. Sub Oscillation Stabilization Time  
(TA = – 40 C to + 85 C, VDD = 1.8 V to 5.5 V)  
Oscillator Test Condition  
Crystal  
External clock  
Min  
Typ  
Max  
10  
Unit  
s
XTIN input high and low width (tXTH, tXTL  
)
5
15  
s  
1/fxt  
t
XTL  
tXTH  
XTIN  
V
DD - 0.1V  
0.1V  
0.1V  
Figure 19-8. Clock Timing Measurement at XTIN  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
340  
Instruction Clock  
3.0MHz  
Main oscillation frequency  
12.0 MHz  
1.05 MHz  
4.2 MHz  
0.5 MHz  
100 kHz  
2.0 MHz  
400 kHz  
3
4
5
1.8V  
2.2V  
5.5V  
Supply Voltage (V)  
CPU Clock = 1/4n x oscillator frequency (n = 1, 2, 8, 16)  
Figure 19-9. Operating Voltage Range  
Table 19-15. Internal Flash ROM Electrical Characteristics  
(TA = – 40 C to + 85 C, VDD = 1.8 V to 5.5 V)  
Parameter  
Symbol  
Ftp  
Conditions  
Min  
20  
32  
4
Typ  
25  
50  
8
Max  
30  
Unit  
Programming Time (1)  
Chip Erasing Time (2)  
Sector Erasing Time (3)  
Read frequency  
s  
ms  
Ftp1  
Ftp2  
fR  
70  
12  
ms  
12  
10,000(4)  
MHz  
Times  
FNWE  
Number of Writing/Erasing  
NOTES:  
1. The Programming time is the time during which one byte (8-bit) is programmed.  
2. The Chip erasing time is the time during which all 64K byte block is erased.  
3. The Sector erasing time is the time during which all 128 byte block is erased.  
4. The Chip erasing is available in Tool Program Mode only.  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
341  
NOTES  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
342  
20 MECHANICAL DATA  
OVERVIEW  
The S3F82NB microcontroller is currently available in 128-pin-QFP package.  
22.00ꢂꢑꢂ0.30  
0-8  
20.00 ꢑꢂ0.20  
+ 0.10  
- 0.05  
0.15  
0.10 MAX  
128-QFP-1420  
#128  
+ 0.10  
- 0.05  
#1  
0.20  
0.05 MIN  
0.50  
(0.75)  
0.10 MAX  
2.10 ꢑꢂ0.10  
2.40 MAX  
0.10 MAX  
0.50ꢑꢂ0.20  
NOTE: Dimensions are in millimeters.  
Figure 20-1. Package Dimensions (128-QFP-1420)  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
343  
21 S3F82NB FLASH MCU  
OVERVIEW  
The S3F82NB single-chip CMOS microcontroller is the Flash MCU. It has an on-chip Flash MCU ROM. The Flash  
ROM is accessed by serial data format.  
NOTE  
This chapter is about the Tool Program Mode of Flash MCU. If you want to know the User Program  
Mode, refer to the chapter 18. Embedded Flash Memory Interface.  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
344  
COM9/SEG1  
1
102  
101  
100  
99  
98  
97  
96  
95  
94  
93  
92  
91  
90  
89  
88  
87  
86  
85  
84  
83  
82  
81  
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
P10.4/SEG28  
P10.5/SEG29  
P10.6/SEG30  
P10.7/SEG31  
P9.0/SEG32  
P9.1/SEG33  
P9.2/SEG34  
P9.3/SEG35  
P9.4/SEG36  
P9.5/SEG37  
P9.6/SEG38  
P9.7/SEG39  
P8.0/SEG40  
P8.1/SEG41  
P8.2/SEG42  
P8.3/SEG43  
P8.4/SEG44  
P8.5/SEG45  
P8.6/SEG46  
P8.7/SEG47  
P7.0/SEG48  
P7.1/SEG49  
P7.2/SEG50  
P7.3/SEG51  
P7.4/SEG52  
P7.5/SEG53  
P7.6/SEG54  
P7.7/SEG55  
P2.0/SEG56  
P2.1/SEG57  
P2.2/SEG58  
P2.3/SEG59  
P2.4/SEG60  
P2.5/SEG61  
P2.6/SEG62  
P2.7/SEG63  
P3.0/SEG64  
P3.1/SEG65  
COM8/SEG0  
2
COM7  
3
COM6  
4
COM5  
5
COM4  
6
COM3  
7
COM2  
8
COM1  
9
COM0  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
VLC4  
VLC3  
VLC2  
VLC1  
VLC0  
P1.7/SCK/INT7  
P1.6/SO/INT6  
SDAT/P1.5/SI/INT5  
SCLK/P1.4/BUZ/INT4  
VDD/VDD  
S3F82NB  
128-QFP-1420  
VSS/VSS  
XOUT  
XIN  
VPP/TEST  
XTIN  
XTOUT  
nRESET/nRESET  
P1.3/INT3  
P1.2/INT2  
P1.1/INT1  
P1.0/AVREF/INT0  
P0.7/AD7  
P0.6/AD6  
P0.5/AD5  
P0.4/AD4  
P0.3/T0OUT/T0PWM/T0CAP/AD3  
P0.2/T1OUT/T1PWM/T1CAP/AD2  
P0.1/T0CLK/AD1  
Figure 21-1. S3F82NB Pin Assignments (100-QFP-1420)  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
345  
Table 21-1. Descriptions of Pins Used to Read/Write the Flash ROM  
Main Chip  
Pin Name  
P1.5  
During Programming  
I/O  
Pin Name  
Pin No.  
Function  
SDAT  
18  
I/O  
Serial data pin. Output port when reading and  
input port when writing. Can be assigned as a  
Input/push-pull output port.  
P1.4  
SCLK  
VPP  
19  
24  
I/O  
I
Serial clock pin. Input only pin.  
Tool mode selection when TEST/ VPP pin sets  
TEST  
Logic value ‘1’. If user uses the flash writer tool  
mode (ex.spw2+ etc..), user should be connected  
TEST/ VPP pin to VDD. (S3F82NB supplies high  
voltage 12.5V by internal high voltage generation  
circuit.)  
nRESET  
VDD, VSS  
nRESET  
VDD, VSS  
27  
I
Chip Initialization  
Power supply pin for logic circuit. VDD should be  
tied to 5.0V during programming.  
20, 21  
ꢁꢂ  
Test Pin Voltage  
The TEST pin on socket board for MTP writer must be connected to VDD (5.0V) with RC delay as the figure  
21-2 (only when SPW 2+ and GW-pro2 are used to). The TEST pin on socket board must not be connected  
Vpp (12.5V) which is generated from MTP Writer. So the specific socket board for S3F82NB must be used,  
when writing or erasing using MTP writer.  
VDD  
R (330ȳ)  
}
ww  
C (0.1uF)  
Figure 21-2. RC Delay Circuit  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
346  
ON BOARD WRITING  
The S3F82NB needs only 6 signal lines including VDD and VSS pins for writing internal flash memory with serial  
protocol. Therefore the on-board writing is possible if the writing signal lines are considered when the PCB of  
application board is designed.  
Circuit Design Guide  
At the flash writing, the writing tool needs 6 signal lines that are VSS, VDD, nRESET, TEST, SDAT and SCLK.  
When you design the PCB circuits, you should consider the usage of these signal lines for the on-board writing.  
In case of TEST pin, normally test pin is connected to VSS but in writing mode the programming these two cases,  
a resistor should be inserted between the TEST pin and VSS. The nRESET, SDAT and SCLK should be treated  
under the same consideration.  
Please be careful to design the related circuit of these signal pins because rising/falling timing of VPP, SCLK and  
SDAT is very important for proper programming.  
G
R
R
R
R
SCLK  
SCLK(I/O)  
SDAT(I/O)  
nRESET  
To Application circuit  
To Application circuit  
To Application circuit  
SDAT  
nRESET  
VPP  
V
PP(TEST)  
C VPP  
C nRESET  
V
DD  
V
PP  
SDAT  
SCLK  
V
SS  
VDD  
nRESET  
C nRESET and C VPP are used to  
improve the noise effect.  
GND  
SPW-uni,GW-uni, AS-pro, US-pro  
NOTE: If writer tool is the SPW 2+ and GW-pro2, reference to the page 21-3.  
Figure 21-3. PCB Design Guide for on Board Programming  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
347  
Reference Table for Connection  
Table 21-2. Reference Table for Connection  
Pin Name  
I/O mode  
in Applications  
Resistor  
(need)  
Required value  
RVpp is 10 Kohm ~ 50 Kohm.  
VPP (TEST)  
nRESET  
Input  
Input  
Yes  
Yes  
CVpp is 0.01uF ~ 0.02uF.  
RnRESET is 2 Kohm ~ 5 Kohm.  
CnRESET is 0.01uF ~ 0.02uF.  
RSDAT is 2 Kohm ~ 5 Kohm.  
ꢁꢂ  
Input  
Output  
Input  
Yes  
No(NOTE)  
Yes  
SDAT(I/O)  
SCLK(I/O)  
RSCLK is 2 Kohm ~ 5 Kohm.  
ꢁꢂ  
Output  
No(NOTE)  
NOTES:  
1. In on-board writing mode, very high-speed signal will be provided to pin SCLK and SDAT. And it will cause  
some damages to the application circuits connected to SCLK or SDAT port if the application circuit is designed  
as high speed response such as relay control circuit. If possible, the I/O configuration of SDAT, SCLK pins had  
better be set to input mode.  
2. The value of R, C in this table is recommended value. It varies with circuit of system.  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
348  
22 DEVELOPMENT TOOLS  
OVERVIEW  
Samsung provides a powerful and easy-to-use development support system on a turnkey basis. The development  
support system is composed of a host system, debugging tools, and supporting software. For a host system, any  
standard computer that employs Win95/98/2000/XP as its operating system can be used. A sophisticated  
debugging tool is provided both in hardware and software: the powerful in-circuit emulator, OPENice-i500 and SK-  
1200, for the S3C7-, S3C9-, and S3C8- microcontroller families. Samsung also offers supporting software that  
includes, debugger, an assembler, and a program for setting options.  
TARGET BOARDS  
Target boards are available for all the S3C8/S3F8-series microcontrollers. All the required target system cables  
and adapters are included on the device-specific target board. TB82NB is a specific target board for the  
development of application systems using S3F82NB.  
PROGRAMMING SOCKET ADAPTER  
When you program S3F82NB’s flash memory by using an emulator or OTP/MTP writer, you need a specific  
programming socket adapter for S3F82NB.  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
349  
IBM-PC AT or Compatible  
Emulator [SK-1200 (RS-232, USB)  
RS-232C/USB  
or OPENice i-500 (RS-232) ]  
Target  
Application  
System  
OTP/MTP Writer Block  
RAM Break/Display Block  
Probe  
Adapter  
Trace/Timer Block  
SAM8 Base Block  
TB82NB  
Target  
Board  
POD  
EVAChip  
Power Supply Block  
Figure 22-1. Emulator Product Configuration  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
350  
TB82NB TARGET BOARD  
The TB82NB target board can be used for development of the S3F82NB microcontroller.  
The TB82NB target board is operated as target CPU with Emulator (SK-1200, OPENice-i500)).  
TB82NB  
In-Circuit Emulator  
To User_VCC  
(SK-1200, OPENice-i500)  
Off  
On  
IDLE  
STOP  
RESET  
U2  
7411  
J1  
JP2  
Y1  
(sub-clock)  
VDD  
AVREF  
J2  
J2  
VCC  
CN4  
4
25  
CN6  
J101  
J102  
(TB Mode Selection)  
Main Mode  
1
2
65  
66  
Eva Mode  
50  
1
60  
200  
208 QFP  
S3E82N0  
EVA Chip  
1
160  
100  
JP1  
110  
150  
(Smart Option Source)  
External  
TP1  
63  
Smart Option Selection  
64 127  
128  
Internal  
"0"  
ON  
1
SW1  
6
2
3
7
8
4
5
9
10  
"1"  
Figure 22-2. TB82NB Target Board Configuration  
NOTE: The symbol ‘ ‘ marks start point of jumper signals.  
PS031601-0813 P R E L I M I N A R Y  
S3F82NB  
Product Specification  
351  
Table 22-1. Components of TB82NB  
Symbols  
Usage  
100-pin connector  
64-pin connector  
Description  
J2  
Connection between emulator and TB82NB target board.  
J101, J102  
Connection between target board and user application  
system  
RESET  
Push button  
Generation low active reset signal to S3F82NB EVA-chip  
External power connector for TB82NB  
VDD, GND  
STOP, IDLE LED  
POWER connector  
STOP/IDLE Display  
Indicate the status of STOP or IDLE of S3F82NB EVA-chip  
on TB82NB target board  
CN1  
CN6  
Flash serial programming  
TB Mode Selection  
Signal points for programming Flash ROM by external  
programmer. Don’t use this one in user mode.  
Selection of EVA/MAIN-chip mode  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
352  
Table 22-2. Setting of the Jumper in TB82NB  
1-2 Connection  
JP#  
Description  
2-3 Connection  
Default  
Setting  
CN4  
AVREF power source  
VDD  
User power  
Join 2-3  
You should activate AVREF on the TB82NB by setting the  
related TP1.  
TP1  
P1.0/INT0 or AVREF selection  
TP1 should be used P1.0/INT0 normally. If user wants to use  
the AVREF, user should be connected to VSS.  
CN6  
JP2  
Target board mode selection  
Clock source selection  
H: MAIN-Mode  
L: EVA-Mode  
Join 2-3  
When using the internal clock source which is generated from  
Emulator, join connector 2-3 and 4-5 pin. If user wants to use  
the external clock source like a crystal, user should change the  
jumper setting from 1-2 to 5-6 and connect J1 to an external  
clock source.  
Emulator  
2-3  
4-5  
J1  
External clock source  
Connecting points for external clock source  
JP1  
Smart option source selection  
The Smart Option is selected The Smart Option is selected  
by external smart option switch by internal smart option area  
Join 1-2  
(SW1)  
(003EH–0003FH of ROM). But  
this selection is not available.  
SW1  
CN1  
Smart option selection  
The Smart Option can be selected by this switch when the  
Smart Option source is selected by external. The B2–B0 are  
comparable to the 003EH.2–.0. The B7–B5 are comparable to  
the 003EH.7–.5. The B8 is comparable to the 003FH.0.  
The B4–B3 and B9 are not connected. The TP1 is comparable  
to the 003FH.7. Refer to the page 2-3.  
Header for flash serial  
programming signals  
To program an internal flash, connect the signals with flash  
writer tool.  
Target System is supplied VDD  
Target Board is supplied VDD  
from user System.  
To  
User_Vcc  
Target Board is not supplied  
DD from user System.  
Join 2-3  
V
IDLE LED  
This LED is ON when the evaluation chip (S3E82N0) is in idle mode.  
STOP LED  
This LED is ON when the evaluation chip (S3E82N0) is in stop mode  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
353  
J101  
COM9/SEG1  
COM7  
1
2
4
COM8/SEG0  
COM6  
3
COM5  
5
6
COM4  
COM3  
7
8
COM2  
COM1  
9
10  
12  
14  
16  
18  
20  
22  
24  
26  
28  
30  
32  
34  
36  
38  
40  
42  
44  
46  
48  
50  
52  
54  
56  
58  
60  
62  
64  
COM0  
VLC4  
11  
13  
15  
17  
19  
21  
23  
25  
27  
29  
31  
33  
35  
37  
39  
41  
43  
45  
47  
49  
51  
53  
55  
57  
59  
61  
63  
VLC3  
VLC2  
VLC1  
VLC0  
P1.7/INT7/SCK  
P1.5/INT5/SI  
VDD  
P1.6/INT6/SO  
P1.4/INT4/BUZ  
VSS  
N.C  
N.C  
N.C  
N.C  
N.C  
nRESET  
P1.3/INT3  
P1.1/INT1  
P0.7/AD7  
P0.5/AD5  
P1.2/INT2  
P1.0/INT0/AVREF  
P0.6/AD6  
P0.4/AD4  
P0.3/AD3/T0OUT/T0PWM/T0CAP  
P0.1/AD1/T0CLK  
P6.2/CIN2  
P0.2/T1OUT/T1PWM/T1CAP/AD2  
P0.0/T1CLK/AD0  
P6.1/CIN1  
P6.0/CIN0  
P5.7/INT11/SEG87  
P5.5/INT9/SEG85  
P5.3/SEG83  
P5.1/SEG81  
P4.7/SEG79  
P4.5/SEG77  
P4.3/SEG75  
P4.1/SEG73  
P3.7/SEG71  
P3.5/SEG69  
P3.3/SEG67  
P5.6/INT10/SEG86  
P5.4/INT8/SEG84  
P5.2/SEG82  
P5.0/SEG80  
P4.6/SEG78  
P4.4/SEG76  
P4.2/SEG74  
P4.0/SEG72  
P3.6/SEG70  
P3.4/SEG68  
P3.2/SEG66  
Figure 22-3. 64-Pin Connectors (J101, J102) for TB82NB  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
354  
J102  
P3.1/SEG65  
P2.7/SEG63  
P2.5/SEG61  
P2.3/SEG59  
P2.1/SEG57  
P7.7/SEG55  
P7.5/SEG53  
P7.3/SEG51  
P7.1/SEG49  
P8.7/SEG47  
P8.5/SEG45  
P8.3/SEG43  
P8.1/SEG41  
P9.7/SEG39  
P9.5/SEG37  
P9.3/SEG35  
P9.1/SEG33  
P10.7/SEG31  
P10.5/SEG29  
P10.3/SEG27  
P10.1/SEG25  
SEG23  
1
2
4
P3.0/SEG64  
P2.6/SEG62  
P2.4/SEG60  
P2.2/SEG58  
P2.0/SEG56  
P7.6/SEG54  
P7.4/SEG52  
P7.2/SEG50  
P7.0/SEG48  
P8.6/SEG46  
P8.4/SEG44  
P8.2/SEG42  
P8.0/SEG40  
P9.6/SEG38  
P9.4/SEG36  
P9.2/SEG34  
P9.0/SEG32  
P10.6/SEG30  
P10.4/SEG28  
P10.2/SEG26  
P10.0/SEG24  
SEG22  
3
5
6
7
8
9
10  
12  
14  
16  
18  
20  
22  
24  
26  
28  
30  
32  
34  
36  
38  
40  
42  
44  
46  
48  
50  
52  
54  
56  
58  
60  
62  
64  
11  
13  
15  
17  
19  
21  
23  
25  
27  
29  
31  
33  
35  
37  
39  
41  
43  
45  
47  
49  
51  
53  
55  
57  
59  
61  
63  
SEG21  
SEG20  
SEG19  
SEG18  
SEG17  
SEG16  
SEG15  
SEG14  
SEG13  
SEG12  
SEG11  
SEG10  
SEG9  
SEG8  
COM15/SEG7  
COM13/SEG5  
COM11/SEG3  
COM14/SEG6  
COM12/SEG4  
COM10/SEG2  
Figure 22-3. 64-Pin Connectors (J101, J102) for TB82NB (Continued)  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
355  
Target Board  
Target System  
J102  
J101  
J101  
J102  
1
2
65 66  
65 66  
1
2
Target Cable for 64-Pin  
Connector  
63 64 127 128  
127 128 63 64  
Figure 22-4. S3F82NB Cables for 128-QFP Package  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
356  
THIRD PARTIES FOR DEVELOPMENT TOOLS  
SAMSUNG provides a complete line of development tools for SAMSUNG's microcontroller. With long experience  
in developing MCU systems, our third parties are leading companies in the tool's technology. SAMSUNG In-circuit  
emulator solution covers a wide range of capabilities and prices, from a low cost ICE to a complete system with  
an OTP/MTP programmer.  
In-Circuit Emulator for SAM8 family  
OPENice-i500  
SmartKit SK-1200  
OTP/MTP Programmer  
SPW-uni  
GW-uni  
AS-pro  
US-pro  
Development Tools Suppliers  
Please contact our local sales offices or the 3rd party tool suppliers directly as shown below for getting  
development tools.  
8-bit In-Circuit Emulator  
OPENice - i500  
AIJI System  
TEL: 82-31-223-6611  
FAX: 82-331-223-6613  
E-mail : openice@aijisystem.com  
URL : http://www.aijisystem.com  
SK-1200  
Seminix  
TEL: 82-2-539-7891  
FAX: 82-2-539-7819  
E-mail: sales@seminix.com  
URL: http://www.seminix.com  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
357  
OTP/MTP PROGRAMMER (WRITER)  
SEMINIX  
SPW-uni  
Single OTP/ MTP/FLASH Programmer  
TEL: 82-2-539-7891  
FAX: 82-2-539-7819.  
E-mail:  
sales@seminix.com  
URL:  
Download/Upload and data edit function  
PC-based operation with USB port  
Full function regarding OTP/MTP/FLASH MCU  
programmer  
http://www.seminix.com  
(Read, Program, Verify, Blank, Protection..)  
Fast programming speed (4Kbyte/sec)  
Support all of SAMSUNG OTP/MTP/FLASH MCU  
devices  
Low-cost  
NOR Flash memory (SST, Samsung…)  
NAND Flash memory (SLC)  
New devices will be supported just by adding  
device files or upgrading the software.  
SEMINIX  
GW-uni  
TEL: 82-2-539-7891  
Gang Programmer for OTP/MTP/FLASH MCU  
FAX: 82-2-539-7819.  
E-mail:  
8 devices programming at one time  
Download/Upload and data edit function  
PC-based operation with USB port  
Full function regarding OTP/MTP/FLASH MCU  
programmer  
sales@seminix.com  
URL:  
http://www.seminix.com  
(Read, Program, Verify, Blank, Protection..)  
Fast programming speed (4Kbyte/sec)  
Support all of SAMSUNG OTP/MTP/FLASH MCU  
devices  
Low-cost  
NOR Flash memory (SST, Samsung…)  
NAND Flash memory (SLC)  
New devices will be supported just by adding  
device files or upgrading the software.  
Will be developed in March, 2008.  
PS031601-0813  
P R E L I M I N A R Y  
S3F82NB  
Product Specification  
358  
OTP/MTP PROGRAMMER (WRITER) (Continued)  
SEMINIX  
AS-pro  
TEL: 82-2-539-7891  
FAX: 82-2-539-7819.  
E-mail:  
sales@seminix.com  
URL:  
On-board programmer for Samsung Flash MCU  
Portable & Stand alone Samsung  
OTP/MTP/FLASH Programmer for After Service  
Small size and Light for the portable use  
Support all of SAMSUNG OTP/MTP/FLASH  
http://www.seminix.com  
devices  
HEX file download via USB port from PC  
Very fast program and verify time  
( OTP:2Kbytes per second, MTP:10Kbytes per  
second)  
Internal large buffer memory (118M Bytes)  
Driver software run under various O/S  
(Windows 95/98/2000/XP)  
Full function regarding OTP/MTP programmer  
(Read, Program, Verify, Blank, Protection..)  
Two kind of Power Supplies  
(User system power or USB power adapter)  
Support Firmware upgrade  
SEMINIX  
US-pro  
Portable Samsung OTP/MTP/FLASH Programmer  
TEL: 82-2-539-7891  
Portable Samsung OTP/MTP/FLASH Programmer  
Small size and Light for the portable use  
Support all of SAMSUNG OTP/MTP/FLASH  
devices  
Convenient USB connection to any IBM compatible  
PC or Laptop computers.  
FAX: 82-2-539-7819.  
E-mail:  
sales@seminix.com  
URL:  
http://www.seminix.com  
Operated by USB power of PC  
PC-based menu-drive software for simple operation  
Very fast program and verify time  
( OTP:2Kbytes per second, MTP:10Kbytes per  
second)  
Support Samsung standard Hex or Intel Hex format  
Driver software run under various O/S  
(Windows 95/98/2000/XP)  
Full function regarding OTP/MTP programmer  
(Read, Program, Verify, Blank, Protection..)  
Support Firmware upgrade  
SEMINIX  
Flash writing adapter board  
TEL: 82-2-539-7891  
Specific flash writing socket only for S3F82NB  
FAX: 82-2-539-7819.  
E-mail:  
- 128QFP  
sales@seminix.com  
URL:  
http://www.seminix.com  
PS031601-0813  
P R E L I M I N A R Y  

相关型号:

S3F84B8XXX-DK98

Microcontroller, 8-Bit, FLASH, SAM88RC CPU, 10MHz, CMOS, PDIP20,
IXYS

S3F84BB

8-BIT CMOS
SAMSUNG

S3F84K4

8-Bit CMOS Microcontrollers
SAMSUNG

S3F8647

8-bit single-chip CMOS microcontroller
SAMSUNG

S3F8647-AO

Microcontroller, 8-Bit, FLASH, SAM8 CPU, 12MHz, CMOS, PDIP32, SDIP-32
SAMSUNG

S3F8647-SO

Microcontroller, 8-Bit, FLASH, SAM8 CPU, 12MHz, CMOS, PDSO32, SOP-32
SAMSUNG

S3F880A

8-BIT CMOS 8-BIT 8-BIT MICROCONTROLLERS
SAMSUNG

S3F880A-AQ

暂无描述
SAMSUNG

S3F880A-QZ

Microcontroller, 8-Bit, FLASH, SAM88LP CPU, 8MHz, CMOS, PQFP44
SAMSUNG

S3F8S39XZZ-LO89

IC MCU 8BIT 32KB FLASH 32WFQFN
ZILOG

S3F9444

SAM88RCRI family of 8-bit single-chip CMOS microcontrollers
SAMSUNG

S3F9444-DC

Microcontroller, 8-Bit, FLASH, SAM88RCRI CPU, 10MHz, CMOS, PDIP8
SAMSUNG