ZL20250/LCE [ZARLINK]

RF and Baseband Circuit, PQCC56, 8 X 8 MM, QFN-56;
ZL20250/LCE
型号: ZL20250/LCE
厂家: ZARLINK SEMICONDUCTOR INC    ZARLINK SEMICONDUCTOR INC
描述:

RF and Baseband Circuit, PQCC56, 8 X 8 MM, QFN-56

文件: 总56页 (文件大小:406K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ZL20250  
2.5G Multimode Transceiver  
Data Sheet  
September 2003  
Features  
Quad Band GSM (800/900/1800/1900 MHz)  
Compatible  
Ordering Information  
Dual Band IS136 (800/1900 MHz) Compatible  
GPRS Class 12 and EDGE Capable  
Fully Integrated Dual Band Transceiver  
Receive - IF to Baseband I and Q  
Transmit - Baseband I / Q to RF  
Integrated Filters  
ZL20250/LCE (Tubes) 56 pin QFN  
ZL20250/LCF (Tape and Reel) 56 pin QFN  
-40°C to +85°C  
Description  
The ZL20250 is a fully integrated transceiver for  
multimode IS136/GSM/GPRS/EDGE handsets. The  
dual IF inputs to the receive path are amplified and  
down-converted to baseband I and Q signals. Gain  
control and baseband filtering are provided. A FM  
demodulator is also provided where AMPS  
compatibility is required.  
FM Demodulator  
RF and IF Synthesizers  
Fully Programmable via serial bus  
3 Volt operation  
Small scale package  
Applications  
The transmit path consists of a quadrature modulator,  
gain control at IF and up-conversion to RF. Dual band  
RF outputs are provided.  
GAIT IS136/GSM/EDGE Mobile Telephones  
Dual Band (850/PCS1900) TDMA/AMPS Mobile  
Telephones  
ZL20250 also includes a fractional N RF synthesizer  
and two IF synthesizers to provide all local oscillator  
signals required.  
Cellular 850MHz TDMA/AMPS Mobile  
Telephones  
PCS1900 TDMA Mobile Telephones  
Flexible programming is provided via a 3 wire serial  
bus. Additional control pins allow accurate timing  
control when switching between modes.  
2.5G World Phones - Quad Band  
(850/900/1800/1900)  
Cellular Telematic Systems  
GSM/EDGE  
Rx I  
90°  
Rx Q  
IS136  
FM  
FM  
Demod  
RSSI  
Rx VHF  
PLL  
LOCK DET  
Serial  
Interface  
Control  
Tx VHF  
PLL  
UHF LO O/P  
UHF  
PLL  
UHF VCO  
900 MHz Tx  
Tx I  
IQ  
Mod  
Tx Q  
1900 MHz Tx  
Tx IF Filter  
(Opt)  
Figure 1 - Block Diagram  
1
Zarlink Semiconductor Inc.  
Zarlink, ZL and the Zarlink Semiconductor logo are trademarks of Zarlink Semiconductor Inc.  
Copyright 2003, Zarlink Semiconductor Inc. All Rights Reserved.  
ZL20250  
Data Sheet  
Package Diagram  
RX Q-  
SDAT  
SCLK  
RX Q+  
RSSI  
SLATCH  
TCXO  
RX CP  
VCC VHF CP  
VCC UHF PLL  
UHF CP  
ISET  
LOCK DET  
VCC UHF LO OUT  
900 LO OUT  
1900 LO OUT  
RESETB  
ZL20250  
TX CP  
TX RXB  
TX I-  
TX I+  
ENABLE1  
VCC TX PLL  
TX VCO-  
900 LO IN  
VCC UHF LO  
1900 LO IN  
TX VCO+  
Figure 2 - ZL20250 Package Diagram  
2
Zarlink Semiconductor Inc.  
ZL20250  
Data Sheet  
Pin Description Table  
No  
Pin Name  
SDAT  
Type  
Input  
Description  
1
2
3
4
5
6
7
8
9
Serial Interface - Data  
Serial interface - Clock  
Serial Interface - Latch  
Reference input from TCXO  
Power  
SCLK  
Input  
SLATCH  
TCXO  
Input  
Input  
VCC UHF PLL  
UHF CP  
Power  
Output  
UHF PLL Charge Pump Output  
Power to LO output stages  
900 MHz buffered LO output to external receiver mixer  
1900 MHz buffered LO output to external receiver mixer  
Reset (Active low)  
VCC UHF LO OUT Power  
900 LO OUT  
1900 LO OUT  
Output  
Output  
Input  
10 RESETB  
11 ENABLE1  
12 900 LO IN  
13 VCC UHF LO  
14 1900 LO IN  
15 VCC TX RF  
16 TX 900  
Input  
Mode Control  
Input  
900 MHz LO input  
Power  
Input  
Power to UHF LO input stage  
1900 MHz LO input  
Power  
Output  
Power to transmit RF output stages  
900 MHz transmit output  
17 TX DEG900  
18 TX DEG1900  
19 TX 1900  
Degeneration for 900 MHz output  
Degeneration for 1900 MHz output  
1900 MHz transmit output  
Output  
Input  
20 ENABLE2  
21 TX GAIN  
22 TX FILT IN+  
23 TX FILT IN-  
24 VCC TX  
Mode Control  
Input  
Transmit gain control  
Input  
Input from transmit IF filter (optional)  
Input  
Power  
Output  
Output  
Input  
Power to transmit stages  
25 TX FILT OUT+  
26 TX FILT OUT-  
27 TX Q+  
Output to transmit IF filter (optional)  
Q transmit signal from baseband  
Transmit Oscillator tank circuit  
28 TX Q-  
Input  
29 TX VCO+  
30 TX VCO-  
31 VCC TX PLL  
32 TX I+  
Power  
Input  
Power to Transmit VHF PLL  
I transmit signal from baseband  
33 TX I-  
Input  
34 TX RXB  
Input  
Transmit / Receive control  
35 TX CP  
Output  
Output  
Transmit VHF PLL charge pump output  
PLL Lock Detect Output  
36 LOCK DET  
37 ISET  
Connect 50 kohm resistor to ground to set internal reference current  
Power to VHF charge pump outputs  
38 VCC VHF CP  
Power  
3
Zarlink Semiconductor Inc.  
ZL20250  
Data Sheet  
Pin Description Table (continued)  
No  
Pin Name  
Type  
Output  
Description  
39 RX CP  
Receive VHF PLL charge pump output  
RSSI Output  
40 RSSI  
Output  
Output  
Output  
Output  
Output  
Output  
41 RX Q+  
Baseband Q signal  
42 RX Q-  
43 RX I+  
Baseband I signal  
44 RX I-  
45 FM OUT  
46 FM FB  
Demodulated FM output  
Feedback to FM output stage  
Receive second LO Oscillator tank circuit  
47 RX VCO-  
48 RX VCO+  
49 VCC RX PLL  
50 VCC RX  
51 RX GAIN  
52 IF0 IN-  
Power  
Power  
Input  
Power to receive VHF PLL. Connect to VCC through 10 ohm resistor  
Power to receive stages  
Receive gain control  
IF Input (0)  
Input  
53 IF0 IN+  
54 IF1 IN-  
Input  
GSM  
Input  
IF Input (1)  
55 IF1 IN+  
56 VCC CONTROL  
Input  
IS136 Input  
Power  
Power to serial interface logic  
4
Zarlink Semiconductor Inc.  
ZL20250  
Data Sheet  
Table of Contents  
1.0 General Description......................................................................................................................................... 8  
1.1 Receive Path ............................................................................................................................................... 9  
1.1.1 IS136.................................................................................................................................................. 9  
1.1.2 AMPS FM......................................................................................................................................... 11  
1.1.3 GSM................................................................................................................................................. 14  
1.2 Transmit..................................................................................................................................................... 16  
1.3 UHF LO and Frequency Doubler............................................................................................................... 19  
1.4 UHF Frequency Synthesizer ..................................................................................................................... 19  
1.5 VHF Frequency Synthesizer...................................................................................................................... 22  
1.6 Internal Clock Generation.......................................................................................................................... 23  
1.7 VHF VCO................................................................................................................................................... 23  
1.8 Power Supply Connections ....................................................................................................................... 24  
2.0 Programming and Control ............................................................................................................................ 25  
2.1 Power Control Registers - Address 0 to 3 ................................................................................................. 25  
2.1.1 Power Control Modes - TDMA (GSM and IS136) ............................................................................ 27  
2.1.2 Power Control Modes - AMPS ......................................................................................................... 28  
2.2 Operating Register Address 4 ................................................................................................................... 29  
2.3 Synthesizer Register - Address 5.............................................................................................................. 33  
2.3.1 UHF PLL and LO.............................................................................................................................. 33  
2.3.2 UHF PLL Charge Pump Current ...................................................................................................... 34  
2.3.3 Receive LO Set Up .......................................................................................................................... 34  
2.3.4 Transmit LO Set Up ......................................................................................................................... 35  
2.4 Control Register - Address 6 ..................................................................................................................... 35  
2.4.1 IS136 Baseband Gain...................................................................................................................... 35  
2.4.2 TCXO Reference Selection............................................................................................................. 36  
2.4.3 Discriminator Output Filtering........................................................................................................... 36  
2.4.4 Transmit baseband Gain.................................................................................................................. 37  
2.4.5 Mode Control.................................................................................................................................... 37  
2.5 GSM/EDGE Baseband Control Register - Address 7................................................................................ 37  
2.5.1 Q Channel Gain Adjust .................................................................................................................... 38  
2.5.2 Baseband Offset Correction............................................................................................................. 38  
2.6 Test Mode Register - Address 8................................................................................................................ 38  
2.7 UHF PLL Divider Programming Register - Address 9 ............................................................................... 39  
2.8 UHF PLL Reference Divider and Fractional N Programming Register - Address 10 ................................ 39  
2.9 Receive VHF PLL Divider Programming Register - Address 11 ............................................................... 39  
2.10 Receive VHF PLL Reference Divider Programming Register - Address 12............................................ 40  
2.11 Transmit VHF PLL Divider Programming Register - Address 13 ............................................................ 40  
2.12 Transmit VHF PLL Reference Divider Programming Register Address 14............................................. 40  
2.13 PLL Lock Detect & Fractional N Compensation Programming Register Address 15.............................. 40  
2.13.1 Fractional N Compensation............................................................................................................ 41  
2.13.2 PLL Lock detect counters............................................................................................................... 41  
3.0 Absolute Maximum Ratings.......................................................................................................................... 41  
4.0 Operating Conditions .................................................................................................................................... 41  
5.0 Electrical Characteristics .............................................................................................................................. 43  
6.0 Typical Performance Curves ........................................................................................................................ 51  
6.1 Receive...................................................................................................................................................... 51  
6.2 Transmit..................................................................................................................................................... 52  
5
Zarlink Semiconductor Inc.  
ZL20250  
Data Sheet  
List of Figures  
Figure 1 - Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Figure 2 - ZL20250 Package Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Figure 3 - ZL20250 Detailed Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Figure 4 - IS136 Receiver Signal Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Figure 5 - AMPS Receive Signal Flow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Figure 6 - GSM Receive Signal Flow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Figure 7 - Transmit Path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Figure 8 - External Transmit IF Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Figure 9 - UHF Synthesizer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Figure 10 - Count Sequence for UHF PLL with 4 modulus prescaler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Figure 11 - UHF Synthesizer - Fractional N Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Figure 12 - VHF Frequency Synthesizer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Figure 13 - Typical VCO Tank Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Figure 14 - Serial Bus Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Figure 15 - Transmit Output Stage Current versus Gain Control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
6
Zarlink Semiconductor Inc.  
ZL20250  
Data Sheet  
List of Tables  
Table 1 - IS136 Receive Gain and Filter Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Table 2 - AMPS FM Receive Gain and Filter Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Table 3 - GSM Receive Gain and Filter Distribution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Table 4 - Transmit Circuit blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
7
Zarlink Semiconductor Inc.  
ZL20250  
Data Sheet  
1.0 General Description  
A detailed block diagram is shown in Figure 3. This shows the receive and transmit paths plus the LO generation  
circuitry. Control is via a serial bus with the addition of direct inputs to control receive and transmit modes and  
optimize power consumption.  
43 RX I+  
MUX  
53  
52  
IF0 IN+  
IF0 IN–  
44 RX I–  
FM OUT  
46 FM FB  
45  
AMPS demod.  
and RSSI  
RX GAIN 51  
π
/2  
RSSI  
40  
60kHz  
IF1 IN+ 55  
IF1 IN– 54  
41 RX Q+  
42 RX Q–  
dc  
Offset  
MUX  
÷
N
π
/2  
PLL  
50  
48  
47  
39  
Tank  
Circuit  
Loop  
Filter  
Control  
I SET 37  
VCC RX PLL 49  
36 LOCK DET  
4
TCXO  
10  
RESETB  
11 ENABLE1  
20  
Control  
13  
7
ENABLE2  
900 LO IN  
12  
VCC TX PLL 31  
34 TX RXB  
VCC VHF CP 38  
Loop  
Filter  
56 VCC CONTROL  
Loop  
Filter  
1900  
LO OUT  
LO Select  
and  
Doubler  
9
8
1
SDAT  
900  
LO OUT  
Serial  
interface  
Option  
2
3
SCLK  
SLATCH  
Tank  
Circuit  
14  
1900 LO IN  
29  
6
5
30  
35  
PLL  
PLL  
π
/2  
19  
TX 1900  
π
/2  
TX I+  
32  
33 TX I–  
π
/2  
MUX  
Σ
TX Q+  
TX Q–  
27  
28  
TX 900 16  
21  
24  
18  
17  
15  
23 22  
25 26  
Option  
Figure 3 - ZL20250 Detailed Block Diagram  
8
Zarlink Semiconductor Inc.  
ZL20250  
Data Sheet  
1.1 Receive Path  
There are two IF inputs which will receive an input signal from IS136/AMPS and GSM IF filters. The differential input  
stages are identical and are followed by an agc amplifier. Gain control is provided from an external analogue voltage.  
After the agc amplifier the signal is then down-converted either to a low IF frequency or baseband and the signal flow  
then depends on the mode selected. All internal signals are differential. The LO frequency for the down conversion  
is derived from an on chip oscillator and PLL. The LO frequency can be programmed to be either oscillator frequency  
divided by 2 or 4. When in divide by 2 mode a DLL (Delay Locked Loop) circuit can be selected to maintain accurate  
quadrature. It is particularly important to have good quadrature in IS136/AMPS modes using a low IF frequency, to  
achieve the required image rejection in conjunction with the following polyphase bandpass filter. It is also possible  
to programme high side or low LO injection. Each receive mode will now be described in more detail  
1.1.1 IS136  
The IS136 receive signal path is shown in detail in Figure 4 and performance for each stage is summarized in the  
following table.  
Filter  
Circuit  
Block  
Gain  
(dB)  
Bandwidth  
Description  
(If Applicable)  
IF Input (IF0)  
26  
Differential IF input stage  
max  
AGC Amplifier  
AGC Amplifier - Gain control range 90dB  
Down-conversion to 60kHz IF  
Quadrature  
Down-converter  
47  
Anti-alias filter  
230 kHz  
Low pass Butterworth (n= 3)  
Band Pass Filter  
+/- 20 kHz  
Switched capacitor polyphase Chebyshev. Also  
provides typically 30 dB image rejection. Centre  
frequency = 60 kHz. Clock frequencies 1.44 MHz and  
720 kHz.  
Gain Stage  
Baseband Down-converter  
Baseband filter 1  
Down conversion to baseband I and Q signals  
37.5 kHz  
60 kHz  
Switched capacitor low pass Chebyshev. Clock  
frequency = 240 kHz  
7
Baseband filter 2  
Smoothing filter. Low pass Butterworth  
Table 1 - IS136 Receive Gain and Filter Distribution  
The output of the agc amplifier is down-converted using a quadrature mixer to a low IF of 60kHz. High side or low  
side LO injection can be selected. The In Phase (I) and Quadrature (Q) signals at 60 kHz are then passed through  
anti alias filter stage to remove any high frequency signals prior to subsequent sampling. The 60 kHz IF signals are  
then fed into a switched capacitor polyphase bandpass filter which not only provides filtering but also provides image  
rejection. This switched capacitor filter provides very stable performance and no calibration is required. After the  
bandpass filter the 60 kHz IF signal is further amplified and then mixed down to baseband I and Q signals. Additional  
filtering is required at baseband to remove spurii from the down-converter. This filtering is provide in two stages, the  
first stage is a switched capacitor filter with the second stage being a smoothing filter to remove clock breakthrough  
from the preceding switched capacitor filter. The differential baseband outputs can then be fed directly into analogue  
to digital converters on a baseband processor.  
9
Zarlink Semiconductor Inc.  
ZL20250  
Data Sheet  
Figure 4 - IS136 Receiver Signal Flow  
10  
Zarlink Semiconductor Inc.  
ZL20250  
Data Sheet  
1.1.2 AMPS FM  
FM demodulation can be performed using the I and Q baseband signals if supported by the baseband. However the  
ZL20250 also contains an FM demodulator, the AMPS receive signal path using this mode is shown in detail in  
Figure 5 and performance for each stage is summarized in the following table.  
Filter  
Circuit  
Block  
Gain  
(dB)  
Bandwidth  
Description  
(If Applicable)  
IF Input (IF0)  
Differential IF input stage  
26  
max  
AGC Amplifier  
AGC Amplifier - Gain control range 90dB. Includes IF input stage  
gain.  
Quadrature  
Down-conversion to 60kHz IF  
Down-converter  
Anti-alias filter  
230 kHz  
Low pass Butterworth  
73  
Band Pass Filter  
+/- 16 kHz  
Switched capacitor polyphase Chebyshev. Also provides typically  
30dB image rejection. Centre frequency = 60 kHz. Clock frequency  
1.44 MHz and 720 kHz.  
Limiter  
Provides limited output to discriminator. Also provides RSSI output.  
Digital FM discriminator  
FM Discriminator  
Baseband filter 2 (I  
Channel)  
30 kHz  
25 kHz  
Smoothing filter. Low pass Butterworth. Provides filtering of FM  
discriminator output.  
Baseband filter 1  
(I Channel)  
Switched capacitor low pass Chebyshev. Clock frequency = 240  
kHz. Provides additional filtering of discriminator output. Selected  
using PDF and LPC bits  
Baseband filter 1  
(Q Channel)  
25 kHz  
Switched capacitor low pass Chebyshev. Clock frequency = 240  
kHz. Provides additional filtering of discriminator output. Selected  
using PDF and LPC bits  
Baseband filter 2 (Q  
Channel)  
60kHz  
30kHz  
Smoothing filter. Low pass Butterworth. Provides filtering of FM  
discriminator output.  
FM Output  
Configured using external components as bandpass filter.  
Table 2 - AMPS FM Receive Gain and Filter Distribution  
The signal path is initially the same as for IS136 with the down conversion to 60 kHz and channel filtering in the  
bandpass filter. In FM mode however, the baseband I and Q output stages are disabled, and the 60 kHz IF signal  
from the bandpass filter is input to a limiting amplifier and FM discriminator. The FM discriminator consists of a shift  
register acting as a delay line. The output of the discriminator is a digital signal which must then be filtered to recover  
the audio signal. The discriminator output is therefore routed through the baseband I and Q filters. The default  
condition is to use the cascaded I and Q smoothing filters (baseband filter 2) with the cut-off frequency set to 30kHz.  
This connection is automatically selected when programming FM mode. There is an option to use the cascaded  
switched capacitor filters (baseband filter 1) with the cut off frequency set to 25 kHz to provide extra filtering. These  
filters are selected using the PDF and LPC bits in control register 6 and are inserted between the smoothing filters  
as shown in Figure 5. The final output stage uses external feedback components to provide a bandpass filter with a  
bandwidth of at least 300 Hz to 10 KHz to cover the demodulated audio and control signals. The feedback  
components can be modified to change the output level to optimise compatibility with baseband.  
A RSSI output is provided. This is a full wave rectified output of the 60 kHz IF and therefore has a high 120 kHz  
content. This requires an external low pass filter - typically 10kohm and 2.7nF. There is a trade-off between settling  
11  
Zarlink Semiconductor Inc.  
ZL20250  
Data Sheet  
time and filtering. This is different to conventional RSSI circuits which operate at typically 450 kHz which is much  
easier to filter.  
Although the AMPS receive path includes a limiting amplifier, gain control is also required. This is because the band  
pass filter has limited dynamic range (50dB). At low signal levels the agc should be set to 1.6 volts to set the gain  
20dB below maximum to obtain optimum signal handling and noise performance. At higher signal levels the gain  
setting should be reduced to maintain the RSSI level approximately 10dB below maximum. Gain control would be  
provided by the baseband controller which would also monitor the RSSI level. Fine gain control is not required and  
can be implemented in large steps eg 20dB, allowing the use of a relatively slow gain control loop giving optimum  
performance under fading conditions.  
12  
Zarlink Semiconductor Inc.  
ZL20250  
Data Sheet  
Figure 5 - AMPS Receive Signal Flow  
13  
Zarlink Semiconductor Inc.  
ZL20250  
Data Sheet  
1.1.3 GSM  
The GSM receive signal path is shown in detail in Figure 6 and performance for each stage is summarized in the  
following table.  
Filter  
Circuit  
Block  
Gain  
(dB)  
Bandwidth  
Description  
(If Applicable)  
IF Input (IF0)  
AGC Amplifier  
Differential IF input stage  
26  
max  
AGC Amplifier - Gain control range 90dB. Includes IF input  
stage gain.  
Quadrature  
Down-conversion to baseband  
Down-converter  
54  
Anti-alias filter  
230 kHz  
Low pass Butterworth. Provides channel filtering in  
GSM/EDGE mode  
Baseband Gain  
Baseband gain with offset correction.  
Nominal gain is 35 dB and can be reduced in 3 dB steps to  
14 dB  
Table 3 - GSM Receive Gain and Filter Distribution  
In GSM mode the bandpass filter and IS136 baseband stages are disabled. After passing through the agc amplifier  
the signal is mixed down to baseband I and Q signals rather than to a low IF. The baseband signal must be dc  
coupled and this can introduce a dc offset in the output, which may vary with different gain settings. The ZL20250  
therefore includes the facility to correct the dc offset for each channel using an 8 bit offset correction word that must  
be supplied by the baseband via the serial bus.  
GSM Baseband gain can be programmed via serial bus. Reducing the baseband gain can be used to improve output  
signal to noise ratio. The IF gain should be increased to mainatin the total overall gain. In practice a gain reduction  
of 6 or 9 dB would give optimum performance  
14  
Zarlink Semiconductor Inc.  
ZL20250  
Data Sheet  
Figure 6 - GSM Receive Signal Flow  
15  
Zarlink Semiconductor Inc.  
ZL20250  
Data Sheet  
1.2 Transmit  
Transmit operation is similar for all modes and a detailed diagram is shown in Figure 7. This diagram also shows the  
UHF LO generation circuit blocks. A summary of the characteristics of the transmit path circuit blocks are given in  
the table below. All circuit blocks are differential with the exception of the transmit RF outputs.  
Circuit  
Block  
Gain  
(dB)  
Bandwidth  
(If Applicable)  
Description  
Reconstruction Filters 0 -12  
IS136/AMPS  
12.5 kHz  
GSM  
Baseband input stage. Gain is programmable in 3 dB steps from 0 to 12  
dB.  
Filter bandwidth is selected for IS136/AMPS or GSM.  
There is also a by-pass mode so that the baseband I and Q signal can go  
direct to the modulator  
100 kHz  
Quadrature Modulator  
Transmit IF  
Generates a modulated IF signal  
400 MHz  
Provides gain control at IF frequency. This stage also includes a low  
pass filter to remove harmonics and spurii from modulator output.  
This stage also includes a buffered IF output which can be used with an  
external IF filter.  
Up-converter  
Transmit RF  
SSB up-converter to RF frequency. The IF path includes phase shift  
networks for the up-converter. This stage also includes the input circuit  
from the optional external IF filter  
The 900 MHz and 1900 MHz RF stages each consist of 2 stages. The  
first stage gain be set from -6 to +3 dB in 3 dB steps. Output stage  
current is controlled by agc signal to reduce current consumption at low  
output power levels. Each output stage requires an external  
degeneration inductor  
Table 4 - Transmit Circuit blocks  
Differential baseband transmit I and Q signals from a baseband processor are input to the ZL20250. The baseband  
signals are passed through filters - the filter bandwidth is selected for the appropriate mode i.e. IS136 or GSM. A  
quadrature modulator modulates these baseband signals on to the transmit IF which is typically around 200 MHz.  
This modulated IF signal is passed through an on chip low pass filter which removes harmonics of the IF and then  
into a gain controlled amplifier. This amplifier is controlled by an external analogue signal and provides greater than  
60dB gain control The output of the gain controlled amplifier can then be up-converted to RF or alternatively the  
output can be sent to an off chip filter to provide further filtering and removal of noise before up-conversion. This filter  
is a parallel tuned circuit as shown in Figure 8. The choice of component values is dependent on the IF frequency  
being used. The filter output is then fed back on chip to the up-converter. A SSB mixer is used for the up-conversion  
to remove the unwanted image. High side or low side LO injection can be selected  
A buffer amplifier after the up-conversion provides a further 9 dB gain control in 3 dB increments. This gain is  
programmable via the serial bus and can be used to optimize noise and linearity performance in particular  
applications. Finally there are two RF output stages for 900 MHz and 1900 MHz frequency bands. Each RF output  
is single ended and requires a simple matching network. The supply current of the output stages is automatically  
reduced at low transmit gain control voltages improving the efficiency of the output buffer at low output power levels.  
The supply current of the output buffer can also be controlled via the serial bus. This allows the supply current to be  
reduced which is particularly useful when using AMPS or GSM where the linearity performance is less critical.  
The FM modulation for AMPS can be done using I,Q modulation if available. Alternatively FM modulation can be  
applied direct to the transmit IF VCO. The loop bandwidth for the transmit VHF PLL should be low ( ~100 Hz) to  
ensure the PLL does not remove the modulation. A dc voltage should be applied across the Tx I+, Tx I- and the Tx  
Q+, Tx Q- inputs to switch the modulator and generate an IF carrier signal. With a baseband gain of 0dB a dc voltage  
of at least 1.5 volts should be applied; a lower voltage can be used with the baseband gain increased to compensate.  
It is assumed that this bias can be provided by the baseband however if this is not possible then the simplest solution  
is to connect 200kohm resistors between I+, Q+ inputs and Vcc and 200kohm resistors between I+,Q- inputs and  
16  
Zarlink Semiconductor Inc.  
ZL20250  
Data Sheet  
ground assuming the transmit outputs from the baseband are in a high impedance state in AMPS mode. These  
resistors do produce a small dc offset in TDMA mode however this is insignificant if the output impedance of  
baseband transmit outputs is less than 1 kohm.As the FM modulation is applied direct to the VCO in this mode and  
is external to the ZL20250, any necessary filtering of the FM signal must be provided externally.  
17  
Zarlink Semiconductor Inc.  
ZL20250  
Data Sheet  
Figure 7 - Transmit Path  
18  
Zarlink Semiconductor Inc.  
ZL20250  
Data Sheet  
Figure 8 - External Transmit IF Filter  
1.3 UHF LO and Frequency Doubler  
Figure 8 also shows the UHF LO buffering and frequency doubler. The ZL20250 is designed to operate either with  
separate external UHF VCOs for the 900 and 1900 MHz frequency bands, or alternatively a single 900 MHz VCO  
can be used with the on-chip frequency doubler providing the LO for the 1900 MHz band. A UHF synthesizer is  
included. The input to the UHF synthesizer will normally be the active UHF LO signal, however when using the  
frequency doubler mode for 1900 MHz LO generation, the synthesizer input can be selected to be either the  
frequency doubler output or the 900 MHz input LO signal. The UHF LO input buffer minimizes any load pulling effects  
on the UHF VCO when internal modes are switched.  
UHF LO output buffers are also provided. These can be used to drive an external mixer for the receive section. If not  
required these buffers can be powered down.  
1.4 UHF Frequency Synthesizer  
A fractional N UHF synthesizer is included on the ZL20250 to provide LO signals for the transmit up-converter and  
the external receive RF down-converters. The UHF synthesizer operates with an external VCO. A block diagram of  
the synthesizer is shown in Figure 9.  
.
Lock Detect  
TCXO  
Reference Counter  
14 bit  
UHF  
CP  
Phase  
Detector  
Charge  
Pump  
Quad Modulus  
Prescaler  
64/65/72/73  
UHF LO  
M Counter  
13 bit  
+1  
+8  
B
3 bit  
Fractional N  
Counter  
A
4 bit  
+1  
5 bits  
Frac N  
Compensation  
Fractional N  
Scaling DAC  
Fractional N  
Compensation DAC  
8 bits  
Figure 9 - UHF Synthesizer  
19  
Zarlink Semiconductor Inc.  
ZL20250  
Data Sheet  
The synthesizer uses a 4 modulus prescaler with an 'M' counter and 'A' and 'B' swallow counters together with a  
fractional N counter in the UHF counter allowing maximum flexibility. The reference counter is a simple 14 bit  
counter. All counter values are programmed via the serial bus and programming details are shown in the  
programming section. Each of the counters operates as count down. At the start of a count the counters are loaded  
with their respective values. The initial prescaler ratio is dependent on the values loaded into the A and B counters;  
when both the A and B counters reach zero the prescaler ratio is 64 and then remains until the M counter reaches  
zero. The complete process is then repeated.  
This can be shown in a simple example where M = 9, A = 4 and B = 2 which gives a total divide ratio of 596. The  
count sequence is shown in Figure 10.  
9
4
8
3
7
2
6
1
5
0
4
0
3
0
2
0
1
0
9
4
8
3
M Counter  
A Counter  
+1 Prescaler  
2
1
0
0
0
0
0
0
0
2
1
B Counter  
+8 Prescaler  
Prescaler  
73 73 65 65 64 64 64 64 64 73 73  
Figure 10 - Count Sequence for UHF PLL with 4 modulus prescaler  
At the start of the count sequence the '+1' and '+8' controls to the prescaler are both asserted and the prescaler ratio  
is 73. After 2 cycles only the '+1' control is asserted and the divide ratio is 65. After a further 2 cycles the A counter  
reaches zero as well and the prescaler ratio is 64 for the remainder of the count sequence. At the end of the  
sequence all counters are reloaded and the sequence repeats.  
The total divide ratio (N) for this type of counter is given by  
N = 64*M + 8*B + A  
M is always greater then A or B  
A value of A = 0 does not support fractional N operation. Valid values of A are 1 to 8.  
The values of M, B and A can be easily calculated from the total divide ratio as shown below.  
M = INT ((N - 1)/64)  
B = INT (((N - 1) - 64*M)/8)  
A = N - 64*M - 8*B  
The value of M must always be greater than A or B. The maximum value of B is 7.  
20  
Zarlink Semiconductor Inc.  
ZL20250  
Data Sheet  
The UHF synthesizer also includes a fractional N capability which allows the use of higher comparison frequencies  
but maintain narrow channel spacing. The use of higher comparison frequencies allows faster loop settling and  
reduces comparison spur level. This is particularly important in TDMA mode where settling times of < 1.5 ms are  
required and still obtain good spur performance.  
Fractional N allows the use of non-integer divide ratios. For example if the total divide ratio is N + 1/5 the counter will  
divide by N for 4 count cycles and N+1 on the fifth cycle giving the required total divide ratio over five cycles. The  
ZL20250 can use 5,8,13 or 20 as the fractional denominator (also referred to as the fractional modulus) allowing  
maximum flexibility in the choice of comparison frequencies.  
An extra counter - fractional N counter - is required. The input to this counter is from the M counter output. The  
fractional N modulus can be programmed to be 5,8,13, or 20. Each output pulse from the M counter will increment  
the fractional N divided by the required fractional numerator. For example if the fraction is 2/5 then the fractional N  
counter will increment by 2 for each output pulse from the M counter. When the fractional N counter overflows the A  
counter is incremented by 1, thus generating an additional '+1' count sequence.  
An example is shown in Figure 11 for a divide ratio of 596+2/5. The values for M, A, B are calculated using the integer  
value (596) as in the previous example. The fractional denominator is programmed as 5 and the fractional numerator  
as 2. At the end of the first count cycle (596) the fractional counter is incremented to 2. At the end of the third count  
cycle the fractional N counter overflows, incrementing the A counter by 1 which gives a subsequent count cycle of  
597. After five count cycles the sequence repeats with a total count of 2982 over the five count cycle giving a mean  
value of 596 + 2/5.  
Total Count Cycle  
Count Value  
596  
2
596  
4
597  
1
596  
3
597  
0
596  
2
Fractional N  
Counter  
0
Initial A  
Counter  
Value  
4
4
5
4
5
4
Figure 11 - UHF Synthesizer - Fractional N Operation  
A result of this count sequence is that the output phase of the total counter changes through the count cycle, which  
causes the output pulse from the phase detector, and therefore the charge pump, to vary. This would cause large  
fractional spurs on the synthesizer output. These spurs can be compensated by applying a current pulse with the  
opposite polarity to the charge pump output. This compensation pulse has a fixed width of two reference clock  
(TCXO) periods; the amplitude is proportional to the value in the fractional N counter. The correction current is scaled  
by a 8 bit compensation DAC, with an externally provided input from the serial bus. This allows performance to be  
optimized in a given application.  
21  
Zarlink Semiconductor Inc.  
ZL20250  
Data Sheet  
The compensation value can be calculated from the following formula:  
Comp Value = 255 - INT((Icp * Ftcxo)/(0.0245 * 6 * MOD *Fvco))  
where  
Icp  
= charge pump current (uA)  
Ftcxo = Reference frequency  
MOD = Fractional Modulus  
Fvco = UHF VCO Frequency  
The synthesizer provides a lock detect output. When the output pulse from the phase detector is less than half a  
reference clock period an in-lock signal is generated. These in-lock signals then clock a 4 bit counter into which a  
threshold value has been programmed. When the required number of successive in-lock pulses have been  
generated the lock detect output is set.  
The ZL20250 has a single lock detect output pin for the UHF synthesizer and VHF synthesizers. The lock detect  
signal is asserted when all active synthesizers are in lock. If a synthesizer has not been enabled in the power control  
registers then that synthesizer will be inactive and will have no effect on the lock detect output.  
1.5 VHF Frequency Synthesizer  
The ZL20250 includes two VHF synthesizers to generate the second LO for the receiver and the transmit IF. They  
operate with their respective on-chip VHF VCO's and off-chip loop filters. The tank circuits and tuning components  
for the VCO's are also off chip. The two synthesizers are identical and are shown in Figure 12.  
Lock Detect  
TCXO  
Reference Counter  
14 bit  
VHF  
CP  
Phase  
Detector  
Charge  
Pump  
Dual Modulus  
Prescaler  
16/17  
VHF LO  
M Counter  
13 bit  
+1  
A
4 bit  
Figure 12 - VHF Frequency Synthesizer  
The synthesizer uses a 2 modulus 16/17 prescaler with an 'M' counter and an 'A' swallow counter. This allows  
maximum flexibility when using this synthesizer. The reference counter is a simple 14 bit counter. All counter values  
are programmed via the serial bus and programming details are shown in the programming section. Both counters  
operate as count down. At the start of a count the counters are loaded with their respective values. The initial  
22  
Zarlink Semiconductor Inc.  
ZL20250  
Data Sheet  
prescaler ratio is 17 assuming A > 0; when the A counter reaches zero the prescaler ratio is 16 until the M counter  
reaches zero. The complete process is then repeated.  
The total divide ratio (N) for this type of counter is given by  
N = 16*M + A  
M is always greater then A  
The values of M and A can be easily calculated from the total divide ratio N.  
M = INT (N/16)  
A = N - 16*M  
The maximum value for A is 15 and M must always be greater than A.  
The VHF PLLs do not have fractional N capability however it is recommended that thay are operated at as high a  
comparison frequency as allowed by the chosen frequency plan to minimise spurs levels.  
Both VHF synthesizers have lock detection circuits. These operate in the same way as described for the UHF  
synthesizer.  
1.6 Internal Clock Generation  
ZL20250 can use 14.4 MHz or 19.44MHz reference frequency (standard for IS136), or 13 MHz or 26 MHz (standard  
for GSM). The appropriate reference must be programmed via the serial bus. The clock signals for the switched  
capacitor filters and FM demodulator are generated from the reference TCXO signal. The internal divide ratios are  
switched to give the optimum ratio. For dual mode applications (GSM/IS136) a 13 MHz or 26 MHz reference should  
be used. This will give a small error in the switched capactor clock frequency used for IS136 but has negligible effect  
on performance.  
1.7 VHF VCO  
ZL20200 has two VHF VCOs which operate with the VHF PLLs to provide the IF LO signals for both receive and  
transmit IF signals. The oscillators are a differential design and require an external tank circuit. A basic circuit with  
varactor is shown in Figure 13. It is recommended to include series resistors (eg 43 ohms) in each arm of the tank  
circuit to prevent any spurious high frequency oscillation due to parasitic capacitances.  
From PLL  
Loop  
Filter  
10k  
VCO+  
43R  
18p  
nm  
VCO-  
43R  
18p  
10k  
33n  
Figure 13 - Typical VCO Tank Circuit  
23  
Zarlink Semiconductor Inc.  
ZL20250  
Data Sheet  
1.8 Power Supply Connections  
The circuit blocks within ZL20250 have separate supply connections to minimize interaction between circuit blocks.  
Details are shown in the earlier ‘Pin Names’ section. These supplies are also grouped to allow different groups of  
supply pins to be connected to separate supplies for example, receive or transmit. These groups are shown below:  
VCC – Control Supply  
Pin No.  
Pin Name  
56  
VCC CONTROL  
VCC – TxRx Common (Synth)  
Pin No.  
Pin Name  
5
VCC UHF PLL  
VCC UHF LO OUT  
VCC UHF LO  
VCC VHF CP  
900 LO OUT  
1900 LO OUT  
7
13  
38  
8
9
VCC – Rx  
Pin No.  
Pin Name  
VCC RX PLL  
VCC RX  
49  
50  
VCC – Tx  
Pin No.  
15  
Pin Name  
VCC TX RF  
VCC TX  
24  
31  
VCC TX PLL  
TX 900  
16  
19  
TX 1900  
The LO OUT and TX 900/1900 pins require bias and are normally connected to VCC through an inductor.  
All supply pins within a group must be powered together. Each group of pins can be powered up independent of the  
other groups.  
24  
Zarlink Semiconductor Inc.  
ZL20250  
Data Sheet  
2.0 Programming and Control  
Programming via the serial bus is via 24 bit words with a 4 bit address as shown below  
23  
22  
21  
20  
19  
18  
17  
17  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Data  
Address  
Bit23 (MSB) is loaded first. Bits 3:0 are used as address bits for the control registers. Details of serial bus timing are  
shown in Figure 14.  
t1  
t2  
t3  
SCLK  
SDAT  
t6  
Bit 23  
Bit 22  
Bit 21  
Bit 0  
t4  
t5  
SLATCH  
t7  
ENABLE1/2  
Figure 14 - Serial Bus Timing  
2.1 Power Control Registers - Address 0 to 3  
These registers are used in conjunction with the TX RXB and ENABLE1 and ENABLE2 control pins to power up the  
required sections of the device for any required mode. This enables power consumption to be optimized under all  
conditions. Figures 4 - 7, which show the receive and transmit paths in detail, show which sections are powered up  
by each control bit.  
The assignment is common for each of the registers 0 to 3 and is shown below.  
Bit  
23  
Circuit Section  
Not used  
22  
21  
20  
Receive Baseband section  
UHF LO Buffer  
Receive VHF VCO  
25  
Zarlink Semiconductor Inc.  
ZL20250  
Data Sheet  
Bit  
19  
Circuit Section  
UHF synthesizer  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
Receive RSSI circuit  
Not used  
Receive Quadrature down-converter  
Receive VHF PLL  
Receive IF input  
Receive AGC amplifier  
Transmit reconstruction filters  
Transmit RF  
Transmit UHF LO  
UHF LO input buffer  
Transmit IF  
8
7
Transmit quadrature modulator  
Transmit VHF PLL  
6
5
Transmit VHF VCO  
Transmit up-converter IF input  
4
Note 1: If a bit is set to logic 1 then that circuit section is powered on.  
Note 2: UHF LO input (bit 9) must be enabled for Transmit UHF LO (bit 10), UHF synthesizer (bit 19) and UHF LO Buffer (bit 21) to be  
active.  
The 4 registers address 0 to 3 are assigned as follows:  
Register  
Address  
Register  
Name  
Description  
0
Receive  
All circuit blocks required in receive mode should be set to 1. This register will be  
selected when TX RXB is low. No circuits will be actually powered up if ENABLE1  
and ENABLE 2 are both low.  
1
Transmit  
Transmit register All circuit blocks required in transmit mode should be set to 1. In  
duplex modes e.g. AMPS then both receive and transmit circuits must be selected.  
This register will be selected when TX RXB is high. No circuits will be actually  
powered up if ENABLE1 and ENABLE 2 are both low  
2
3
ENABLE1  
This register determines which circuit sections are powered up when ENABLE1 is  
Configuration high. The contents of this register are logical ANDed with the contents of the  
Receive or Transmit register as selected by TX RXB input.  
ENABLE2  
This register determines which circuit sections are powered up when ENABLE2 is  
Configuration high. The contents of this register are logical ANDed with the contents of the  
Receive or Transmit register as selected by TX RXB input.  
26  
Zarlink Semiconductor Inc.  
ZL20250  
Data Sheet  
A feature of this programming approach is that once a phone operating mode has been selected and set up via the  
serial bus, all power control can then be via the TX RXB, ENABLE1 and ENABLE2 control pins. Alternatively full  
power control is possible via the 3 wire serial bus without the use of any external control pins.  
If ENABLE1 and ENABLE2 are both low then the device is in Sleep mode. No circuits will be enabled unless either  
ENABLE1 or ENABLE2 are high regardless of the contents of the receive and transmit registers.  
An example of how these control bits can be used, is that the oscillators and PLL circuits can be powered up and  
allowed to settle prior to powering up the complete transmit or receive path. In the case of the receive path the UHF  
synthesizer, UHF LO input buffer, UHF LO Buffer and Receive VHF VCO, Receive VHF PLL bits would be set in the  
ENABLE1 Configuration register. The ENABLE2 Configuration register would contain these bits plus the remainder  
of the receive path bits, Receive IF input, Receive AGC amplifier, Receive quadrature down-converter and receive  
baseband section.  
This is demonstrated in the following examples.  
2.1.1 Power Control Modes - TDMA (GSM and IS136)  
In a TDMA system the transceiver will either operate in receive only, or transmit only mode. It is assumed that an  
interim power on state will be used during which the oscillators and PLLs will be set up, and allowed to settle prior  
to activating the full signal path. The suggested programming for the power control registers (0 - 3) is shown in the  
table below.  
Enable 1  
Config.  
Addr 2  
Enable 2  
Config.  
Addr 3  
Circuit  
Section  
Receive  
Addr 0  
Transmit  
Addr 1  
Bit  
Comments  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
Not used  
0
1
0
1
1
0
0
1
1
1
1
0
0
0
1
0
0
0
0
0
0
0
1
0
0
0
0
0
0
1
1
1
1
1
1
1
0
0
0
1
1
0
0
0
1
0
0
0
0
0
1
0
0
1
0
1
0
1
1
0
0
1
1
1
1
1
1
1
1
1
1
1
Receive Baseband section  
UHF LO Buffer  
Note 1  
Note 2  
Receive VHF VCO  
UHF synthesizer  
Receive RSSI circuit  
Not used  
Receive Quadrature down-converter  
Receive VHF PLL  
Receive IF input  
Receive AGC amplifier  
Transmit reconstruction filters  
Transmit RF  
Transmit UHF LO  
UHF LO input buffer  
Transmit IF  
8
7
Transmit quadrature modulator  
Transmit VHF PLL  
6
27  
Zarlink Semiconductor Inc.  
ZL20250  
Data Sheet  
Enable 1  
Config.  
Addr 2  
Enable 2  
Config.  
Addr 3  
Circuit  
Section  
Receive  
Addr 0  
Transmit  
Addr 1  
Bit  
Comments  
5
4
Transmit VHF VCO  
Transmit up-converter IF input  
0
0
1
1
1
0
1
1
Note 1: Not required if driving external receive mixer direct from UHF VCO.  
Note 2: Can be used for IS136 if required.  
The receive register contains all bits required when in receive mode: the transmit register contains all bits required  
in transmit mode. The Enable1 configuration register contains all bits required to power up oscillators and  
synthesizers in both receive and transmit mode. The Enable2 configuration register contains all bits required to  
power up the complete receive and transmit modes (this register can be set to all '1's if preferred).  
The following words should therefore be programmed on the serial bus (Hex format):  
Receive register (0)  
Transmit register (1)  
Enable1 Config. register (2)  
Enable2 Config. register (3)  
59E200  
081FF1  
188262  
59FFF3  
2.1.2 Power Control Modes - AMPS  
When operating in AMPS mode the ZL20250 will operate in either Receive only or Duplex. The enable registers  
should therefore be programmed as shown below.  
Enable 1  
Config.  
Addr 2  
Enable 2  
Config.  
Addr 3  
Receive  
Addr 0  
Transmit  
Addr 1  
Bit  
Circuit Section  
Comments  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
Not used  
0
1
0
1
1
1
0
1
1
1
1
0
0
0
1
0
0
1
0
1
1
1
0
1
1
1
1
1
1
1
1
1
0
0
0
1
1
0
0
0
1
0
0
0
0
0
1
0
0
1
0
1
1
1
0
1
1
1
1
1
1
1
1
1
Receive Baseband section  
UHF LO Buffer  
Note 1  
Receive VHF VCO  
UHF synthesizer  
Receive RSSI circuit  
Not used  
Receive Quadrature down-converter  
Receive VHF PLL  
Receive IF input  
Receive AGC amplifier  
Transmit reconstruction filters  
Transmit RF  
Transmit UHF LO  
UHF LO input buffer  
Transmit IF  
8
28  
Zarlink Semiconductor Inc.  
ZL20250  
Data Sheet  
Enable 1  
Config.  
Addr 2  
Enable 2  
Config.  
Addr 3  
Receive  
Addr 0  
Transmit  
Addr 1  
Bit  
Circuit Section  
Comments  
7
6
5
4
Transmit quadrature modulator  
Transmit VHF PLL  
0
0
0
0
1
1
1
1
0
1
1
0
1
1
1
1
Transmit VHF VCO  
Transmit up-converter IF input  
Note 1: Not required if driving external receive mixer direct from UHF VCO.  
The receive register contains all bits required when in receive mode: the transmit register contains all bits required  
in duplex mode. The Enable1 configuration register contains all bits required to power up oscillators and synthesizers  
in both receive and duplex mode. The Enable2 configuration register contains all bits required to power up the  
complete receive and duplex modes (this register can be set to all '1's if preferred).  
The following words should therefore be programmed on the serial bus (Hex format):  
Receive register (0)  
Transmit register (1)  
Enable1 Config. register (2)  
Enable2 Config. register (3)  
5DE200  
5DFFF1  
188262  
5DFFF3  
2.2 Operating Register Address 4  
This registers selects internal setups for example IS136 or GSM. The bits are assigned for control of receive and  
transmit bits as shown below:  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
TX <11:0>  
Transmit Set Up  
10  
9
8
7
6
5
4
3
0
2
1
1
0
0
0
RX<7:0>  
Receive Set Up  
Address  
The function of the receive bits is shown below:  
Register  
Bit No.  
Control  
Bit  
Action if '0'  
Action if '1'  
Receive DLL enabled  
23  
22  
21  
20  
19  
18  
17  
16  
RX<7>  
RX<6>  
RX<5>  
RX<4>  
RX<3>  
RX<2>  
RX<1>  
RX<0>  
Receive DLL disabled  
Bandpass Filter BW = +/- 20 kHz  
GSM Filters active  
Bandpass Filter BW = +/- 16 kHz  
Receive GSM filters bypassed  
LO Output = 1900 MHz  
Receive output dc bias (I/Q) = Vcc/2  
GSM Mode IF0 Input enabled  
IS136  
LO output = 900 MHz  
Receive output dc bias (I/Q) = 1.25 V  
IS136 Mode IF1 Input enabled  
AMPS  
Not used  
Not used  
Bit 23 RX<7> is only applicable when VCO divide by 2 mode is selected in register 5.  
29  
Zarlink Semiconductor Inc.  
ZL20250  
Data Sheet  
The function of the transmit bits is shown below:  
Register Bit  
No.  
Control  
Bit  
Action if '0'  
Transmit output stage gain control  
Action if '1'  
15  
14  
13  
TX<11>  
TX<10>  
TX<9>  
Control of RF Transmit output stage current with VGA control voltage.  
Nominal value for TX<11:4> is 101010  
12  
11  
10  
9
TX<8>  
TX<7>  
TX<6>  
TX<5>  
TX<4>  
TX<3>  
TX<2>  
TX<1>  
TX<0>  
8
7
900 MHz output  
1900MHz output  
6
Internal  
External transmit IF Filter  
GSM/EDGE baseband filters  
Transmit baseband filters by-passed  
5
IS136 baseband filters  
Transmit baseband filters selected  
4
Control bits TX<11:4> allow optimization of the transmit output stage. This allows variation of the decrease in supply  
current with decreasing agc voltage and also allows optimization depending on output power and linearity  
requirements. Figure 15 shows the variation of output stage supply current with agc voltage and the programmable  
characteristics. The maximum current, agc threshold and slope can be programmed. The minimum current is not  
programmable.  
TX<11:10> (bits 15,14) allow the gain of the transmit output stage to be varied in 3 dB steps as shown in the table  
below:  
TX<11>  
TX<10>  
Gain (dB)  
0
0
1
1
0
1
0
1
-6  
-3  
Nominal  
+3  
30  
Zarlink Semiconductor Inc.  
ZL20250  
Data Sheet  
Imax  
Icc  
Slope  
Imin  
Vagc  
Vth  
Figure 15 - Transmit Output Stage Current versus Gain Control  
TX<9:8> (bits 13:12) control the agc voltage (Vth) at which the output stage current starts reducing. Typical values  
are shown in the table below:  
TX<9>  
TX<8>  
Vth (V)  
0
0
1
1
0
1
0
1
1.09  
1.25  
1.48  
2.81  
TX<7:6> (bits 11,10) control the rate of current reduction as shown in Figure 15. Typical vales are shown in the  
below:  
TX<7>  
TX<6>  
Slope (mA/V)  
0
0
1
1
0
1
0
1
8.5  
10.5  
12.0  
14.0  
31  
Zarlink Semiconductor Inc.  
ZL20250  
Data Sheet  
TX<5:4> (bits 9:8) adjust the maximum current (Imax) of the transmit output stage. The gain of the output stage is  
not changed. Typical values are shown in the table below:  
TX<5>  
TX<4>  
Current  
0
0
1
1
0
1
0
1
25%  
50%  
Nominal  
150%  
Using these controls allows the performance of the output stage to be optimized under various conditions; for  
example, current cant can be reduced if non-linear operation is required.  
The nominal value recommended for TX<11:4> is 10101010.  
An example of setting up the control register (address 4) for various systems is shown below:  
GSM  
(850)  
GSM  
(1900)  
IS136  
(900)  
IS136  
(1900)  
Bit  
Name  
AMPS  
Comments  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
RX<7>  
RX<6>  
RX<5>  
RX<4>  
RX<3>  
RX<2>  
RX<1>  
RX<0>  
TX<11>  
TX<10>  
TX<9>  
TX<8>  
TX<7>  
TX<6>  
TX<5>  
TX<4>  
TX<3>  
TX<2>  
0
0
0
0
0
1
0
0
1
0
1
0
1
0
1
0
0
0
0
0
0
1
0
1
0
0
1
0
1
0
1
0
1
0
1
1
0
0
0
0
0
0
1
1
1
0
1
0
1
0
1
0
0
0
0
0
0
1
0
0
1
1
1
0
1
0
1
0
1
0
1
1
0
1
0
0
0
0
0
1
1
0
1
0
1
0
1
0
0
0
Note 1  
8
7
6
Note 2  
32  
Zarlink Semiconductor Inc.  
ZL20250  
Data Sheet  
GSM  
(850)  
GSM  
(1900)  
IS136  
(900)  
IS136  
(1900)  
Bit  
Name  
AMPS  
Comments  
5
4
TX<1>  
TX<0>  
1
0
1
0
0
0
0
0
0
0
Note 1: The setting for RX<3> is dependent on the optimum common mode input voltage of the analog to digital converter in the  
baseband.  
Note 2: Selects external transmit IF filter if used.  
The following hex words are therefore recommended for the control register (address 4):  
GSM (850)  
GSM (1900)  
IS136 (900)  
IS136 (1900)  
AMPS  
04AA24  
4AAE4  
03AA04  
13AAC4  
41AA04  
2.3 Synthesizer Register - Address 5  
This register sets up LO options for receive and transmit and also UHF synthesizer set up.  
23 22 21 20 19 18  
17  
16 15  
14  
13 12 11 10  
9
8
7
6
5
4
3
2
1
0
0
0
1
0
1
UI  
RX LO2 Set Up  
UC  
DL UD  
TX LO Set Up  
UHF PLL Set Up  
Address  
Bits 23,17,14 are also used for UHF PLL and LO set up.  
Bits 16,15 are not used and should be set to zero.  
2.3.1 UHF PLL and LO  
Register  
Action if '0'  
Bit No.  
Action if '1'  
23  
17  
14  
8
UHF PLL input = 900 MHz  
UHF PLL input = 1900 MHz  
Fractional N Compensation selected  
UHF Doubler Selected  
Fractional N Denominator - see table below  
7
6
Not Used - Set to 0  
5
UHF PLL Charge Pump Current - see table below  
4
Note 1: Bit 14 is only effective if 1900 MHz mode has been selected (register 4 Bit 7).  
Note 2: Bit 23 is only effective if 1900 MHz mode has been selected (register 4 Bit 7) and the UHF frequency doubler selected  
(Register 5 Bit 14). This control allows the use of the doubled frequency to be used as the input to the UHF PLL.  
Note 3: Fractional N Denominator  
Note 4: Bits 8,7 select the fractional N denominator for the UHF PLL as shown below:  
33  
Zarlink Semiconductor Inc.  
ZL20250  
Data Sheet  
<8>  
<7>  
Frac N Denom.  
0
0
1
1
0
1
0
1
5
8
13  
20  
2.3.2 UHF PLL Charge Pump Current  
Bits 5,4 select the charge pump current for the UHF PLL as shown below:  
<5>  
<4>  
Current (mA)  
0
0
1
1
0
1
0
1
1.00  
0.50  
0.25  
0.125  
2.3.3 Receive LO Set Up  
Register Bit No.  
Action if '0'  
Action if '1'  
22  
21  
20  
19  
18  
High side Rx second LO injection  
Rx second LO = VCO/2  
Low side Rx second LO injection  
Rx second LO = VCO/4  
Rx LO phase detector polarity normal  
Rx LO phase detector polarity inverted  
Receive VHF PLL Charge Pump Current - see table below  
Bits 19,18 select the charge pump current for the receive VHF PLL as shown below:  
<19>  
<18>  
Current (mA)  
0
0
1
1
0
1
0
1
1.00  
0.50  
0.25  
0.125  
34  
Zarlink Semiconductor Inc.  
ZL20250  
Data Sheet  
2.3.4 Transmit LO Set Up  
Register  
Bit No.  
Action if '0'  
Transmit DLL disabled  
Action if '1'  
Transmit DLL enabled  
15  
13  
12  
11  
10  
9
Low side Tx up-converter LO injection  
Tx second LO = VCO/2  
High side Tx up-converter LO injection  
Tx second LO = VCO/4  
Tx LO phase detector polarity normal  
Tx LO phase detector polarity inverted  
Transmit VHF PLL Charge Pump Current - see table below  
Bits 10,9 select the charge pump current for the receive VHF PLL as shown below:  
<10>  
<9>  
Current (mA)  
0
0
1
1
0
1
0
1
1.00  
0.50  
0.25  
0.125  
2.4 Control Register - Address 6  
23 22 21 20 19 18 17 16 15 14 13 12 11 10  
9
8
7
6
5
4
3
0
2
1
1
1
0
0
0
0
BBG  
TCXO  
PDF  
LPC  
Tx Gain  
R
Mode Control  
Address  
2.4.1 IS136 Baseband Gain  
Bits 22:21 can be used to vary the gain of the baseband output stages in IS136 mode only. The gain of the 60 kHz  
IF stage preceding the baseband mixer is also varied so that the overall gain of the device can be maintained if  
required. The nominal gain is 20 dB and the recommended setting is BBG<1:0> = 11 to minimize output dc offsets.  
BBG<1>  
Bit 22  
BBG<0>  
Bit 21  
IF Gain  
(dB)  
Baseband Gain  
(dB)  
Overall Gain  
(dB)  
0
0
1
1
0
1
0
1
14  
17  
17  
20  
6
6
0
0
20  
23  
17  
20  
35  
Zarlink Semiconductor Inc.  
ZL20250  
Data Sheet  
2.4.2 TCXO Reference Selection  
Bits 20:19 are used to set the device to the required TCXO reference frequency.  
TCXO<1>  
Bit 20  
TCXO<0>  
Bit 19  
TCXO Frequency  
(MHz)  
0
0
1
1
0
1
0
1
13.0  
14.4  
19.44  
26.0  
2.4.3 Discriminator Output Filtering  
Bits 17:14 set up on chip filtering of the FM output signal and are therefore only used in AMPS mode. Two cascaded  
filters can be selected and the bandwidth can be set to 25 or 37.5 kHz cut-off. Bits 17,16 (PDF) select the filters and  
bits 15,14 set the cutoff frequency.  
<17> <16> <15>  
<14>  
Filter Selection  
0
0
0
1
X
X
X
X
0
0
1
1
X
X
X
X
0
1
0
1
No filters  
Filter 1 selected  
Filter 2 selected  
1
0
1
1
Filters 1 and 2 selected  
Both filters 37.5 kHz  
X
X
X
X
X
X
X
X
Filter 1 25kHz, Filter 2 37.5kHz  
Filter 1 37.5 kHz, Filter 2 25 kHz  
Both filters 25kHz  
In GSM and IS136 modes Bits <17:14> should be set to 0000. It is recommended that if the additional discriminator  
filtering is required in AMPS mode then both filters should be used with 25 kHz bandwidth, i.e. Bits<17:14> should  
be set 1111.  
36  
Zarlink Semiconductor Inc.  
ZL20250  
Data Sheet  
2.4.4 Transmit baseband Gain  
Bits 13:11 set the transmit baseband gain as shown below:  
<13>  
<12>  
<11>  
Gain (dB)  
0
0
0
0
1
0
0
1
1
0
0
1
0
1
0
0
3
6
9
12  
2.4.5 Mode Control  
Bit 10 resets the contents of all registers to '0'. After the reset is complete bit 10 is also reset to '0'.  
Bits 9:4 allow TXRXB, ENABLE1 and ENABLE2 to be programmed by either the external pins or via the serial bus.  
This allows mode control to be either via the external pins or the serial bus. The default state is using the external  
pins as this allows more accurate timing of power control.  
Register Bit No.  
Action if '0'  
Action if '1'  
9
8
7
6
5
4
Receive Register (0) selected  
Transmit Register (1) selected  
Enable2 Configuration Register (3) selected  
Enable1 Configuration Register (2) selected  
Serial Bus selected - Bit 9  
TXRXB Pin (34) selected  
Enable2 Pin (20) selected  
Enable1 Pin (11) selected  
Serial Bus selected - Bit 8  
Serial Bus selected - Bit 7  
Bits 9:7 can only be used if the appropriate bits 6:4 have been set to disable the external pins. If serial mode has  
been selected then the operation of bits 9:7 is the same as the external TX RXB, ENABLE1 and ENABLE2 pins  
respectively.  
2.5 GSM/EDGE Baseband Control Register - Address 7  
23  
22 21 20 19 18 17 16 15 14 13 12 11 10  
9
8
7
6
5
4
3
0
2
1
1
1
0
1
OE  
BB Gain  
Q Offset  
I Offset  
Address  
This register is only used when in GSM/EDGE mode. The BB Gain bits enable the GSM baseband gain section to  
be reduced in 3 dB increments. The nominal gain is 35 dB (000). The I and Q offset bits allow the GAM baseband  
dc offset to be cancelled.  
37  
Zarlink Semiconductor Inc.  
ZL20250  
Data Sheet  
2.5.1 Q Channel Gain Adjust  
Bits 22:20 adjust Q channel gain.  
<22>  
<21>  
<20>  
Gain Adjustment(dB)  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
-3  
-6  
-9  
-12  
-15  
-18  
-21  
2.5.2 Baseband Offset Correction  
Bits 19:12 adjust the dc offset for the Q channel. Bit 19 is the sign bit and bit 12 the LSB. Bits 11:4 adjust the dc offset  
for the I channel with bit 11 the sign bit and bit 4 the LSB. The coding is the same for both I and Q channels and is  
shown below:  
00000000  
Maximum positive correction  
00000001  
01111110  
01111111  
11111111  
11111110  
Zero positive correction  
Zero negative correction  
10000001  
10000000  
Maximum negative correction  
Bit 23 must be set to '1' to enable dc offset correction.  
2.6 Test Mode Register - Address 8  
This register is used for test purposes only and should not be used.  
38  
Zarlink Semiconductor Inc.  
ZL20250  
2.7 UHF PLL Divider Programming Register - Address 9  
23 22 21 20 19 18 17 16 15 14 13 12 11 10  
Data Sheet  
9
8
7
0
x
6
5
4
3
1
2
0
1
0
0
1
M Counter  
Value  
B Counter  
Value  
A Counter  
Value  
Address  
Bits 23:11 set M counter value (Bit 23 = MSB)  
Bits 10:8 set B counter value - max value = 7 (Bit 10 = MSB)  
Bits 7:4 set A counter value - max value = 7 (Bit 6 = MSB)  
The A counter is a 4 bit counter to enable correct fractional N operation. Valid values of A are in the range 1 to 8.  
Using the 64/65/72/73 four modulus prescaler the divide ratio (N) is given by:  
N = 64 * M + 8 * B + A  
Values of M, B, A can be easily calculated using the formulae in the synthesizer section.  
2.8 UHF PLL Reference Divider and Fractional N Programming Register - Address 10  
23 22 21 20 19 18 17 16 15 14 13 12 11 10  
0
9
8
7
6
5
4
3
1
2
0
1
1
0
0
X
Frac N Numerator  
UHF PLL Reference Counter Value  
Address  
Bit 23 is unused and should be set to '0'  
Bits 22:18 set the fractional N numerator (Bit 22 = MSB)  
Bits 17:4 set the Reference counter value (Bit 17 = MSB)  
2.9 Receive VHF PLL Divider Programming Register - Address 11  
23 22 21 20 19 18 17 16 15 14 13 12 11 10  
9
8
7
6
5
4
3
1
2
0
1
1
0
0
0
0
1
X
X
X
M Counter Value  
A Counter Value  
Address  
Bits 23:21 are unused and should be set to '0'  
Bits 20:8 set M counter value (Bit 20 = MSB)  
Bits 7:4 set A counter value - max value = 15 (Bit 7 = MSB)  
Using the 16/17 two modulus prescaler the divide value (N) is given by:  
N = 16 * M + A  
Values of M, A can be easily calculated using the formulae in the synthesizer section, however the programming  
register has been organized to simplify this.  
39  
Zarlink Semiconductor Inc.  
ZL20250  
Data Sheet  
For example for a divide ratio of 13235, the binary equivalent is: 11001110110011. The programming values can be  
selected as shown below:  
Bit No.  
20  
0
19  
0
18  
0
17  
1
16  
1
15  
0
14  
0
13  
1
12  
1
11  
1
10  
0
9
1
8
1
7
0
6
0
5
1
4
1
Count Value  
M
A
2.10 Receive VHF PLL Reference Divider Programming Register - Address 12  
23 22 21 20 19  
18  
17 16 15 14 13 12 11 10  
9
8
7
6
5
4
3
1
2
1
0
0
0
0
0
0
0
0
1
X
X
X
X
X
RS  
Receive VHF PLL Reference Counter Value  
Address  
Bits 23:19 are unused and should be set to '0'  
Bit 18 selects common reference divider for VHF receive and transmit PLLs ('0' to select). If a common reference  
divider is selected then the transmit VHF reference divider is used which must be programmed in register 13.  
Bits 17:4 set the Reference divider value (Bit 17 = MSB)  
2.11 Transmit VHF PLL Divider Programming Register - Address 13  
23 22 21 20 19 18 17 16 15 14 13 12 11 10  
9
8
7
6
5
4
3
1
2
1
1
0
0
1
0
0
0
X
X
X
M Counter Value  
A Counter Value  
Address  
Bits 23:21 are unused and should be set to '0'  
Bits 20:8 set M counter value (Bit 20 = MSB)  
Bits 7:4 set A counter value - max value = 15 (Bit 7 = MSB)  
Programming is identical to that for the receive VHF PLL register 11.  
2.12 Transmit VHF PLL Reference Divider Programming Register Address 14  
23 22 21 20 19 18 17 16 15 14 13 12 11 10  
9
8
7
6
5
4
3
1
2
1
1
0
0
0
0
0
0
0
1
0
X
X
X
X
X
X
Transmit VHF PLL Reference Counter Value  
Address  
Bits 23:18 are unused and should be set to '0'  
Bits 17:4 set the Reference counter value (Bit 17 = MSB)  
2.13 PLL Lock Detect & Fractional N Compensation Programming Register Address 15  
23 22 21 20 19 18 17 16 15 14 13 12 11  
10  
9
8
7
6
5
4
3
1
2
1
1
0
1
1
Fractional N Compensation  
UHF PLL  
Lock Count  
Transmit VHF PLL Receive VHF PLL  
Lock Count Lock Count  
Address  
40  
Zarlink Semiconductor Inc.  
ZL20250  
Data Sheet  
2.13.1 Fractional N Compensation  
Bits 23:16 set the value for fractional N compensation in the UHF PLL with bit 23 as MSB. The value for the  
compensation is dependent on a number of parameters which are described in the synthesizer section.  
2.13.2 PLL Lock detect counters  
These 4 bit counters count the consecutive comparison cycles where the lock detect circuit gives an in-lock result.  
When the counter reaches its programmed count then that PLL is deemed to have achieved full lock. This prevents  
spurious false in-lock signals while the PLL is achieving lock up. There are separate counters for the UHF, Rx VHF  
and Tx VHF PLLs which are programmed as shown above. Bits 15,11,7 are the MSB's for the UHF, Rx VHF and Tx  
VHF PLL lock detector counters respectively. A non zero value must be programmed for the lock detect to operate  
correctly.  
3.0 Absolute Maximum Ratings  
Supply Voltage  
-0.3 to 3.6V  
Voltage applied to any pin  
Operating Temperature  
Storage Temperature  
Max Junction Temperature  
-0.3 to Vcc + 0.3 V  
-40°C to 85°C  
-55°C to 125°C  
125°C  
This device is sensitive to ESD. Most pins have an ESD rating greater than 2000V (Human Body Model HBM),  
however some pins have limited protection (800 to 2000V )in order to meet the RF performance. Anti-static  
precautions should be used when handling this device.  
4.0 Operating Conditions  
Device operation is guaranteed under the following coonditions:  
Value  
Typ  
Condition  
Min  
Max  
Units  
Comments  
General  
Supply Voltage  
2.7  
-40  
3.3  
V
Operating Temperature  
+85  
°C  
Logic Input Voltage High – VIH  
Logic Input Voltage Low – VIL  
TCXO Reference Frequency  
Frequency  
0.8Vcc  
Volts  
Volts  
0.2Vcc  
13.0  
14.4  
MHz  
MHz  
MHz  
GSM  
IS136  
IS136  
Frequency  
Frequency  
19.44  
41  
Zarlink Semiconductor Inc.  
ZL20250  
Data Sheet  
Value  
Typ  
Condition  
Min  
Max  
Units  
Comments  
Receiver  
Receiver IF Frequency  
70  
50  
215  
MHz  
Transmitter  
Transmit IF Frequency  
I & Q common mode voltage  
I & Q input voltage level  
215  
1.5  
MHz  
V
1.2  
V p-p  
0dB input buffer gain  
Cellular band LO input level  
PCS band LO input level  
Cellular band LO frequency  
PCS1900 band frequency  
-15  
-15  
-10  
-10  
-5  
-5  
dBm  
dBm  
900  
1900  
1100  
2200  
MHz  
Serial Control Timing  
SDATA Set Up t1  
See Figure 14  
20  
20  
50  
20  
ns  
ns  
ns  
ns  
SDATA Hold t2  
SCLK Pulse Width t3  
SLATCH Set up t4  
Serial Control Timing (cont’d)  
SLATCH Pulse Width t5  
SCLK Period t6  
50  
100  
20  
ns  
ns  
ns  
Power Control Set up t7  
42  
Zarlink Semiconductor Inc.  
ZL20250  
Data Sheet  
5.0 Electrical Characteristics  
The electrical characteristics are guaranteed under the following conditions unless stated otherwise. Vcc =3.0 V, T  
= 25°C, TCXO Ref Frequency = 19.44 MHz.  
Value  
Typ  
Characteristics  
Supply Current  
Min  
Max  
Units  
Comments  
Sleep  
10  
40  
µA  
Logic inputs = 0V or Vcc  
Receive Operation  
AMPS  
32  
33  
30  
38  
39  
36  
mA  
mA  
mA  
Note 1, AGC = 1.6V  
Note 1, AGC = 1.6V  
Note 1, AGC = 1.6V  
IS136  
GSM/EDGE  
Transmit Operation  
900 MHz Output  
141  
106  
170  
125  
mA  
mA  
VGA = 2.4V, Note 2  
VGA = 1V , Note 2  
1900 MHz Output  
120  
102  
145  
120  
mA  
mA  
VGA = 2.4V, Note 2  
VGA = 1V, Note 2  
Standby Operation  
UHF PLL  
12.5  
5.2  
15.0  
6.3  
mA  
mA  
mA  
Note 3  
Receive VHF PLL  
Transmit VHF PLL  
4.9  
6.0  
Additional Circuits  
Frequency Doubler  
UHF LO Output Buffer  
Logic Inputs  
4
5
mA  
mA  
Note 4  
4.5  
5.5  
900 or 1900 Band Note 5  
Input Current  
10  
10  
nA  
pF  
Vin = 0 to Vcc  
Input Capacitance  
Lock Detect Output  
43  
Zarlink Semiconductor Inc.  
ZL20250  
Data Sheet  
Value  
Typ  
Characteristics  
Output Voltage Low  
Min  
Max  
Units  
Comments  
0.2Vcc  
Volts  
Volts  
I out = 1mA  
I out = -1 mA  
Output Voltage High  
0.8Vcc  
TCXO Input  
Input Resistance  
Input Capacitance  
Input Sensitivity  
10  
kΩ  
pF  
10  
2
0.5  
V p-p  
ac coupled  
Receiver - IS136  
All parameters are measured at  
an IF frequency of 135.06 MHz,  
Rx VCO = 270 MHz unless  
stated otherwise  
Input impedance  
Max Voltage Gain  
Min Voltage Gain  
Gain slope  
500  
80  
1500  
dB  
91  
-13  
56  
8
AGC = 2.4 V  
AGC = 0.3 V  
AGC = 0.3 to 2V  
Rs =800Ω  
5
dB  
50  
62  
dB/V  
dB  
NF Gainmax  
Input V1dB Gainmin  
IIP3 Gainmax  
101  
104  
74  
dBµV  
dBµV  
dB  
Minimum gain  
Max Gain  
I/Q Amplitude Matching  
I/Q Quadrature Accuracy  
Output 1dB Compression  
Output dc Offset  
+/- 0.5  
+/- 2  
°
3
V p-p  
mV  
+/-20  
Receiver AMPS (Fixed Gain)  
All parameters are measured at  
an IF frequency of 135.06 MHz,  
Rx VCO = 270 MHz unless  
stated otherwise.  
Vagc = 1.6V (Gain 20 dB below  
maximum)  
Input impedance  
Input Sensitivity  
Noise Figure  
Input IP3  
500  
1500  
14  
12  
93  
dBµV  
dB  
Note 6  
dBµV  
44  
Zarlink Semiconductor Inc.  
ZL20250  
Data Sheet  
Value  
Characteristics  
Audio Output  
Min  
Max  
Units  
Comments  
Typ  
900  
1000  
1100  
mV  
Note 7  
RSSI Dynamic Range  
Accuracy  
50  
dB  
dB  
-3  
+3  
RSSI Slope  
16  
25  
mV/dB  
dBµV  
dBµV  
Input Signal - Min  
Input Signal - Max  
Min RSSI Level  
Max RSSI Level  
RSSI Output Impedance  
75  
0.35  
1.45  
0.5  
1.55  
1
0.70  
1.65  
V
kΩ  
Bandpass Filter  
IS136 and AMPS  
Narrow bandwidth mode  
Centre Frequency  
3dB Bandwidth  
60  
kHz  
kHz  
+/- 16  
+/- 18  
Stop Band Attenuation  
0 to 3 kHz  
Relative to signal at 60kHz  
67  
61  
48  
18  
18  
48  
61  
68  
71  
36  
71  
69  
63  
51  
20  
20  
50  
63  
70  
73  
48  
73  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
3 kHz to 10 kHz  
10 kHz to 22 kHz  
38 kHz  
82 kHz  
98 kHz to 110 kHz  
110 kHz to 117 kHz  
117 kHz to 123 kHz  
123 kHz to 1.36 MHz  
1.36 MHz to 1.52 MHz  
1.52 MHz to 10 MHz  
Image Attenuation  
0 to -10kHz  
61  
40  
dB  
dB  
-10 kHz to -42 kHz  
45  
Zarlink Semiconductor Inc.  
ZL20250  
Data Sheet  
Value  
Characteristics  
- 42 kHz to -78 kHz  
Min  
Max  
Units  
Comments  
Typ  
30  
40  
61  
36  
61  
40  
dB  
dB  
dB  
dB  
dB  
- 78 kHz to -105 kHz  
-105 kHz to -1.36 MHz  
-1.36 MHz to -1.52 MHz  
-1.52 MHz to -10 MHz  
48  
Gain Ripple  
1.0  
1.5  
dB  
60kHz +/- 12.5kHz  
Receiver - GSM  
All parameters are measured at  
an IF frequency of 135.0 MHz,  
Rx VCO = 270 MHz unless  
stated otherwise. TCXO =  
13.0MHz.  
IF Frequency  
Input impedance  
Max Voltage Gain  
Min Voltage Gain  
Gain slope  
70  
500  
80  
215  
MHz  
1500  
91  
-13  
56  
8
dB  
AGC = 2.4 V  
AGC = 0.3 V  
AGC = 0.3 to 2V  
Rs =800Ω  
+5  
62  
dB  
50  
dB/V  
dB  
NF Gainmax  
Input V1dB Gainmin  
IIP3 Gainmax  
Baseband filter attenuation  
100kHz  
100  
104  
73  
dBµV  
dBµV  
Minimum gain  
Max Gain  
1
dB  
dB  
dB  
dB  
dB  
mV  
315kHz  
15  
30  
60  
600kHz  
10MHz  
Filter Ripple  
1
0 to 100kHz  
Output dc Offset  
10  
20  
After offset calibration. Maximum  
Base band gain  
I/Q Amplitude Matching  
I/Q Quadrature Accuracy  
Output 1dB Compression  
+/- 0.5  
+/- 2  
dB  
°
3
V p-p  
46  
Zarlink Semiconductor Inc.  
ZL20250  
Data Sheet  
Value  
Typ  
Characteristics  
Min  
Max  
Units  
Comments  
Baseband Gain Adjust  
-21  
0
dB  
dB  
3dB steps  
Baseband Gain Step Resolution  
3
Transmitter  
All parameters are measured at  
an IF frequency of 180.0 MHz,  
Tx VCO = 360 MHz unless  
stated otherwise  
I & Q modulator  
I/Q Input Buffer Gain  
I/Q Input Buffer Gain  
I/Q Input Buffer Gain  
I/Q Input Buffer Gain  
I/Q Input Buffer Gain  
I & Q differential input resistance  
-1  
0
3
+1  
dB  
dB  
dB  
dB  
dB  
kΩ  
6
9
12  
80  
I & Q Baseband Filter  
Attenuation (IS136/AMPS)  
dc - 12.5 kHz  
85 - 180 kHz  
> 180 kHz  
0.5  
dB  
dB  
dB  
12  
25  
17  
33  
I & Q Baseband Filter  
Attenuation (GSM/EDGE)  
dc to 100kHz  
1
dB  
dB  
dB  
dB  
> 4MHz  
55dB  
30  
Carrier Suppression  
Sideband Suppression  
40  
40  
30  
IF Variable gain amplifiers  
Gain control range  
45  
60  
38  
dB  
V
Control voltage for minimum  
gain  
0.10  
Control voltage for maximum  
gain  
2.4  
43  
V
AGC control voltage slope  
33  
dB/V  
VGA = 0.5 to 1.2V  
47  
Zarlink Semiconductor Inc.  
ZL20250  
Data Sheet  
Value  
Typ  
Characteristics  
Min  
Max  
Units  
Comments  
IF Output Filter (option)  
IF output impedance  
IF input impedance  
IF output level  
500  
1.5  
To external filter  
From external filter  
kΩ  
mV  
100  
800MHz RF output stage  
Specifications assume 50 ohm  
load driven via a matching  
network.  
Output Frequency = 836 MHz,  
UHF LO = -10 dBm at 1016  
MHz.  
RF amplifier operating  
frequency range  
824  
+8  
849  
MHz  
Output power  
ACPR (TDMA)  
+10  
-36  
dBm  
dBc  
dBc  
dBm  
Pout = +8dBm, Offset = 30kHz  
Pout = +8dBm, Offset = 60kHz  
-56  
Output power AMPS  
+10  
+14  
-124  
Receive band noise (869 - 894  
MHz)  
dBm/Hz ftx = 849 MHz Pout = +8dBm  
With external IF filter  
Spurious Outputs  
LO Leakage  
-25  
-27  
-21  
-21  
-20  
dBc  
dBc  
dBm  
Pout = +8dBm  
Pout = +8dBm  
Image Rejection  
Other Spurii  
1900MHz RF output stage  
(PCS)  
Specifications assume 50 ohm  
load driven via a matching  
network  
Output Frequency = 1880 MHz,  
UHF LO = -10 dBm at 2060  
MHz.  
RF amplifier operating  
frequency range  
1.88  
+8  
1.91  
GHz  
Output power  
ACPR (TDMA)  
+10  
-36  
-56  
dBm  
dBc  
dBc  
Pout = +8dBm, Offset = 30kHz  
Pout = +8dBm, Offset = 60kHz  
48  
Zarlink Semiconductor Inc.  
ZL20250  
Data Sheet  
Value  
Typ  
Characteristics  
Min  
Max  
Units  
Comments  
Receive band noise (1930-1990  
MHz)  
-128  
dBm/Hz ftx = 1910 MHz, Pout = +8dBm  
With external IF filter  
Spurious Outputs  
LO Leakage  
-30  
-30  
-25  
-25  
-20  
dBc  
dBc  
dBm  
Pout = +8dBm  
Pout = +8dBm  
Image Rejection  
Other Spurii  
UHF Synthesiser  
Input Frequency  
800  
0.9  
2200  
1.1  
MHz  
mA  
mA  
mA  
mA  
V
Charge Pump Current  
1
0.45  
0.22  
0.11  
0.4  
0.5  
0.55  
0.28  
0.14  
0.25  
0.125  
Charge Pump Output  
Compliance  
Vdd -  
0.4  
Less than +/-10 % variation in  
Iout  
Charge Pump sink/source  
mismatch  
15  
%
Charge Pump off-state current  
Fractional Compensation  
5
nA  
µA  
88  
98  
108  
Full Scale  
UHF Buffers  
Load Impedance  
200  
-11  
-40  
Output Level (900 and 1900)  
Harmonic Level  
dBm  
dBc  
Load = 200 ohms  
LO1900 Output  
Rx and Tx IF Synthesisers  
Input Frequency  
100  
0.9  
430  
1.1  
MHz  
mA  
mA  
mA  
mA  
Charge Pump Current  
1
0.45  
0.22  
0.11  
0.5  
0.55  
0.28  
0.14  
0.25  
0.125  
49  
Zarlink Semiconductor Inc.  
ZL20250  
Data Sheet  
Value  
Typ  
Characteristics  
Min  
Max  
Units  
Comments  
Charge Pump Output  
Compliance  
0.4  
Vcc -  
0.4  
V
Less than +/-10 % variation in  
Iout  
Charge Pump sink/source  
mismatch  
15  
%
Charge Pump off-state current  
5
nA  
Rx LO Oscillator  
Frequency  
140  
260  
430  
430  
MHz  
Phase Noise  
-99  
-99  
dBc/Hz  
Freq = 270 MHz, Offset = 30  
kHz  
Tx LO Oscillator  
Frequency  
MHz  
Phase Noise  
dBc/Hz  
Freq = 360 MHz, Offset = 30  
kHz  
Note 1: All receive currents include all receiver sections plus Rx VHF and UHF PLL's, and UHF LO input buffer circuits. The LO output  
buffer and frequency doubler are not included.  
Note 2: All transmit currents include all transmit sections plus Tx VHF and UHF PLL's, and UHF LO input buffer circuits. The LO  
output buffer and frequency doubler are not included.  
Note 3: Includes UHF LO input buffer  
Note 4: This is only applicable in 1900 MHz band  
Note 5: The UHF LO output buffer need only be powered up if required to drive an external circuit, for example, a receive front end  
mixer.  
Note 6: Input signal FM modulated with 8 kHz deviation by 1 kHz modulating signal. Specification is minimum input level to obtain 12  
dB SINAD at FM Output (pin 45) using CCITT filter.  
Note 7: Input modulation: 1kHz modulating signal with 8 kHz deviation. Output level at FM out (pin 45) is set by external components.  
See application section for details.  
50  
Zarlink Semiconductor Inc.  
ZL20250  
Data Sheet  
6.0 Typical Performance Curves  
6.1 Receive  
AMPS Rx. - Icc v Temperature  
IS136 Rx. - Icc v Temperature  
35  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
34  
33  
32  
31  
30  
Vcc = 2.7V  
Vcc = 2.7V  
Vcc = 3.0V  
Vcc = 3.3V  
29  
Vcc = 3.0V  
Vcc = 3.3V  
28  
27  
-40  
25  
85  
-40  
25  
85  
Temperature °C  
Temperature °C  
Rx. Gain v AGC (Vcc)  
Rx. Gain v AGC (Temperature)  
120  
100  
80  
60  
40  
20  
0
120  
100  
80  
60  
40  
20  
0
T = -40°C  
T = 25°C  
T = 85°C  
Vcc = 2.7V  
Vcc = 3.0V  
Vcc = 3.3V  
-20  
-20  
0
1
2
3
0
1
2
3
AGC Volts  
AGC Volts  
51  
Zarlink Semiconductor Inc.  
ZL20250  
Data Sheet  
Rx. RSSI  
1.6  
1.4  
1.2  
1
0.8  
0.6  
0.4  
0.2  
0
-40°C  
25°C  
85°C  
-150  
-100  
-50  
0
Input Level dBm  
6.2 Transmit  
IS136 Tx. 900 MHz - Icc v AGC (Vcc)  
IS136 Tx. 900 MHz - Icc v AGC (Temperature)  
180  
160  
140  
120  
100  
80  
180  
160  
140  
120  
100  
80  
Vcc = 2.7V  
60  
Vcc = 3.0V  
Vcc = 3.3V  
60  
-40°C  
25°C  
85°C  
40  
40  
20  
20  
0
0
0
1
2
3
0
1
2
3
AGC Volts  
AGC Volts  
52  
Zarlink Semiconductor Inc.  
ZL20250  
Data Sheet  
IS136 Tx.1900 MHz - Icc v AGC (Temperature)  
160  
IS136 Tx. 1900 MHz - Icc v AGC (Vcc)  
160  
140  
120  
100  
80  
140  
120  
100  
80  
-40°C  
25°C  
85°C  
Vcc = 2.7V  
Vcc = 3.0V  
Vcc = 3.3V  
60  
60  
40  
40  
20  
20  
0
0
0
1
2
3
0
1
2
3
AGC Volts  
AGC Volts  
IS136 Tx. 900 MHz - Power Out v AGC (Vcc)  
20  
IS136 Tx. 900 MHz - Power Out v AGC (Temp.)  
20  
10  
0
10  
0
-10  
-20  
-30  
-40  
-50  
-60  
-10  
-20  
-40°C  
25°C  
85°C  
Vcc = 2.7V  
Vcc = 3.0V  
Vcc = 3.3V  
-30  
-40  
-50  
-60  
0
1
2
3
0
1
2
3
AGC Volts  
AGC Volts  
53  
Zarlink Semiconductor Inc.  
ZL20250  
Data Sheet  
IS136 Tx. 1900 MHz - Power Out v AGC (Vcc)  
IS136 Tx 1900MHz - Power Out v AGC (Temp.)  
20  
10  
20  
10  
0
0
-10  
-20  
-30  
-40  
-50  
-60  
-10  
-20  
-30  
-40  
-50  
-60  
-40°C  
25°C  
85°C  
Vcc = 2.7V  
Vcc = 3.0V  
Vcc = 3.3V  
0
1
2
3
0
1
2
3
AGC Volts  
AGC Volts  
54  
Zarlink Semiconductor Inc.  
L
Package Code  
c
Zarlink Semiconductor 2002 All rights reserved.  
Previous package codes  
ISSUE  
ACN  
1
2
211130  
213841  
16Jun01  
12Dec02  
DATE  
APPRD.  
For more information about all Zarlink products  
visit our Web Site at  
www.zarlink.com  
Information relating to products and services furnished herein by Zarlink Semiconductor Inc. or its subsidiaries (collectively “Zarlink”) is believed to be reliable.  
However, Zarlink assumes no liability for errors that may appear in this publication, or for liability otherwise arising from the application or use of any such  
information, product or service or for any infringement of patents or other intellectual property rights owned by third parties which may result from such application or  
use. Neither the supply of such information or purchase of product or service conveys any license, either express or implied, under patents or other intellectual  
property rights owned by Zarlink or licensed from third parties by Zarlink, whatsoever. Purchasers of products are also hereby notified that the use of product in  
certain ways or in combination with Zarlink, or non-Zarlink furnished goods or services may infringe patents or other intellectual property rights owned by Zarlink.  
This publication is issued to provide information only and (unless agreed by Zarlink in writing) may not be used, applied or reproduced for any purpose nor form part  
of any order or contract nor to be regarded as a representation relating to the products or services concerned. The products, their specifications, services and other  
information appearing in this publication are subject to change by Zarlink without notice. No warranty or guarantee express or implied is made regarding the  
capability, performance or suitability of any product or service. Information concerning possible methods of use is provided as a guide only and does not constitute  
any guarantee that such methods of use will be satisfactory in a specific piece of equipment. It is the user’s responsibility to fully determine the performance and  
suitability of any equipment using such information and to ensure that any publication or data used is up to date and has not been superseded. Manufacturing does  
not necessarily include testing of all functions or parameters. These products are not suitable for use in any medical products whose failure to perform may result in  
significant injury or death to the user. All products and materials are sold and services provided subject to Zarlink’s conditions of sale which are available on request.  
Purchase of Zarlink’s I2C components conveys a licence under the Philips I2C Patent rights to use these components in and I2C System, provided that the system  
conforms to the I2C Standard Specification as defined by Philips.  
Zarlink, ZL and the Zarlink Semiconductor logo are trademarks of Zarlink Semiconductor Inc.  
Copyright Zarlink Semiconductor Inc. All Rights Reserved.  
TECHNICAL DOCUMENTATION - NOT FOR RESALE  

相关型号:

ZL20250/LCF

RF and Baseband Circuit, PQCC56, 8 X 8 MM, QFN-56
ZARLINK

ZL20250LCE

2.5G Multimode Transceiver
ZARLINK

ZL20250LCF

2.5G Multimode Transceiver
ZARLINK

ZL20B

500 mW DO-35 Hermetically Sealed Glass Zener Voltage Regulators
YEASHIN

ZL2101

Integrated MOSFET Switches
INTERSIL

ZL2101

6A Digital Synchronous Step-Down DC/DC Converter with Auto Compensation
RENESAS

ZL2101ALAF

Integrated MOSFET Switches
INTERSIL

ZL2101ALAF

6A Digital Synchronous Step-Down DC/DC Converter with Auto Compensation
RENESAS

ZL2101ALAFT

Integrated MOSFET Switches
INTERSIL

ZL2101ALAFT

6A Digital Synchronous Step-Down DC/DC Converter with Auto Compensation
RENESAS

ZL2101ALAFTK

Integrated MOSFET Switches
INTERSIL

ZL2101ALAFTK

6A Digital Synchronous Step-Down DC/DC Converter with Auto Compensation
RENESAS