MT9041BP1 [ZARLINK]

Telecom Circuit, 1-Func, CMOS, PQCC28, LEAD FREE, PLASTIC, MS-018AB, LCC-28;
MT9041BP1
型号: MT9041BP1
厂家: ZARLINK SEMICONDUCTOR INC    ZARLINK SEMICONDUCTOR INC
描述:

Telecom Circuit, 1-Func, CMOS, PQCC28, LEAD FREE, PLASTIC, MS-018AB, LCC-28

电信 电信集成电路
文件: 总21页 (文件大小:484K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MT9041B  
T1/E1 System Synchronizer  
DS5059  
ISSUE 4  
June 2000  
Features  
Ordering Information  
Supports AT&T TR62411 and Bellcore  
GR-1244-CORE Stratum 4 Enhanced and  
Stratum 4 timing for DS1 Interfaces  
MT9041BP  
28 Pin PLCC  
-40 to +85 °C  
Supports ETSI ETS 300 011, TBR 4, TBR 12  
and TBR 13 timing for E1 Interfaces  
Description  
Selectable 1.544MHz, 2.048MHz or 8kHz input  
reference signals  
The MT9041B T1/E1 System Synchronizer contains  
a digital phase-locked loop (DPLL), which provides  
timing and synchronization signals for multitrunk T1  
and E1 primary rate transmission links.  
Provides C1.5, C2, C3, C4, C8 and C16 output  
clock signals  
Provides 3 different styles of 8 KHz framing  
pulses  
Attenuates wander from 1.9 Hz  
The MT9041B generates ST-BUS clock and framing  
signals that are phase locked to either a 2.048MHz,  
1.544MHz, or 8kHz input reference.  
Applications  
The MT9041B is compliant with AT&T TR62411 and  
Bellcore GR-1244-CORE Stratum 4 Enhanced,  
Stratum 4, and ETSI ETS 300 011. It will meet the  
jitter tolerance, jitter transfer, intrinsic jitter, frequency  
accuracy, capture range and phase change slope  
requirements for these specifications.  
Synchronization and timing control for  
multitrunk T1 and E1 systems  
ST-BUS clock and frame pulse sources  
VDD  
VSS  
OSCi  
OSCo  
C1.5o  
C3o  
C2o  
C4o  
C8o  
Loop  
Filter  
Phase  
Detector  
REF  
DCO  
Output  
Interface  
Circuit  
C16o  
F0o  
F8o  
F16o  
Mode Select  
Divider  
MS  
RST  
FS1 FS2  
Figure 1 - Functional Block Diagram  
1
MT9041B  
4
3 2 1 28 27 26  
VDD  
OSCo  
OSCi  
F16o  
F0o  
5
6
7
25  
24  
23  
22  
21  
IC0  
IC0  
MS  
IC0  
IC0  
MT9041B  
8
9
10  
11  
F8o  
C1.5o  
20  
19  
IC1  
IC0  
12 13 14 15 16 17 18  
Figure 2 - Pin Connections  
Description  
Pin Description  
Pin #  
Name  
1
2
3
4
5
6
VSS  
IC0  
NC  
Ground. 0 Volts.  
Internal Connect. Connect to Vss  
No Connect. Connect to Vss  
REF  
VDD  
Reference (TTL Input). PLL reference clock.  
Positive Supply Voltage. +5V nominal.  
DC  
OSCo Oscillator Master Clock (CMOS Output). For crystal operation, a 20MHz crystal is  
connected from this pin to OSCi, see Figure 6. For clock oscillator operation, this pin is left  
unconnected, see Figure 5.  
7
8
OSCi  
F16o  
F0o  
Oscillator Master Clock (CMOS Input). For crystal operation, a 20MHz crystal is connected  
from this pin to OSCo, see Figure 6. For clock oscillator operation, this pin is connected to a  
clock source, see Figure 5.  
Frame Pulse ST-BUS 16.384Mb/s (CMOS Output). This is an 8kHz 61ns active low framing  
pulse, which marks the beginning of an ST-BUS frame. This is typically used for ST-BUS  
operation at 16.384Mb/s. See Figure 11.  
9
Frame Pulse ST-BUS 2.048Mb/s (CMOS Output). This is an 8kHz 244ns active low framing  
pulse, which marks the beginning of an ST-BUS frame. This is typically used for ST-BUS  
operation at 2.048Mb/s and 4.096Mb/s. See Figure 11.  
10  
F8o  
Frame Pulse ST-BUS 8.192Mb/s (CMOS Output).This is an 8kHz 122ns active high framing  
pulse, which marks the beginning of an ST-BUS frame. This is used for ST-BUS operation at  
8.192Mb/s. See Figure 11.  
11  
12  
13  
14  
C1.5o Clock 1.544MHz (CMOS Output). This output is used in T1 applications.  
C3o  
C2o  
C4o  
Clock 3.088MHz (CMOS Output). This optional output is used in T1 applications.  
Clock 2.048MHz (CMOS Output). This output is used for ST-BUS operation at 2.048Mb/s.  
Clock 4.096MHz (CMOS Output).This output is used for ST-BUS operation at 2.048Mb/s and  
4.096Mb/s.  
15  
16  
17  
18  
VSS  
C8o  
C16o  
VDD  
Ground. 0 Volts.  
Clock 8.192MHz (CMOS Output). This output is used for ST-BUS operation at 8.192Mb/s.  
Clock 16.384MHz (CMOS Output). This output is used for ST-BUS operation at 16.384Mb/s.  
Positive Supply Voltage. +5V nominal.  
DC  
2
MT9041B  
Pin Description (continued)  
Pin #  
Name  
Description  
19  
20  
21  
22  
23  
IC0  
IC1  
IC0  
IC0  
MS  
Internal Connect. Connect to Vss  
Internal Connect. Leave open Circuit  
Internal Connect. Connect to Vss  
Internal Connect. Connect to Vss  
Mode/Control Select (TTL Input). This pin, determines the device’s state (Normal, or  
Freerun) of operation. The logic level at this input is gated in by the rising edge of F8o. See  
Table 3.  
24  
25  
26  
IC0  
IC0  
FS2  
Internal Connect. Connect to Vss  
Internal Connect. Connect to Vss  
Frequency Select 2 (TTL Input). This input, in conjunction with FS1, selects which of three  
possible frequencies (8kHz, 1.544MHz, or 2.048MHz) may be input to the REF input. See  
Table 1.  
27  
28  
FS1  
RST  
Frequency Select 1 (TTL Input). See pin description for FS2.  
Reset (Schmitt Input). A logic low at this input resets the MT9041B. To ensure proper  
operation, the device must be reset after reference signal frequency changes and power-up.  
The RST pin should be held low for a minimum of 300ns. While the RST pin is low, all frame  
and clock outputs are at logic high. Following a reset, the input reference source and output  
clocks and frame pulses are phase aligned as shown in Figure 10.  
Functional Description  
FS2  
FS1  
Input Frequency  
0
0
1
1
0
1
0
1
Reserved  
8kHz  
The MT9041B is a System Synchronizer, providing  
timing (clock) and synchronization (frame) signals to  
interface circuits for T1 and E1 Primary Rate Digital  
Transmission links.  
1.544MHz  
2.048MHz  
Figure 1 is a functional block diagram which is  
described in the following sections.  
Table 1 - Input Frequency Selection  
Digital Phase Lock Loop (DPLL)  
Frequency Select MUX Circuit  
The DPLL of the MT9041B consists of a Phase  
Detector, Limiter, Loop Filter, Digitally Controlled  
Oscillator, and a Control Circuit (see Figure 3).  
The MT9041B operates on the falling edges of one  
of three possible input reference frequencies (8kHz,  
1.544MHz or 2.048MHz). The frequency select  
inputs (FS1 and FS2) determine which of the three  
frequencies may be used at the reference input  
(REF). A reset (RST) must be performed after every  
frequency select input change. Operation with FS1  
and FS2 both at logic low is reserved and must not  
be used. See Table 1.  
Phase Detector - the Phase Detector compares the  
primary reference signal (REF) with the feedback  
signal from the Frequency Select MUX circuit, and  
provides an error signal corresponding to the phase  
difference between the two. This error signal is  
passed to the Limiter circuit. The Frequency Select  
MUX allows the proper feedback signal to be  
externally selected (e.g., 8kHz, 1.544MHz or  
2.048MHz).  
Limiter - the Limiter receives the error signal from  
the Phase Detector and ensures that the DPLL  
responds to all input transient conditions with a  
maximum output phase slope of 5ns per 125us. This  
3
MT9041B  
REF Reference  
DPLL Reference  
to  
Output Interface Circuit  
Phase  
Detector  
Digitally  
Controlled  
Oscillator  
Limiter  
Loop Filter  
Control  
Circuit  
Feedback Signal  
from  
Frequency Select MUX  
Figure 3 - DPLL Block Diagram  
is well within the maximum phase slope of 7.6ns per  
125us or 81ns per 1.326ms specified by Bellcore  
GR-1244-CORE Stratum 4E.  
outputs. The C8o, C4o and C2o clocks are generated  
by simply dividing the C16o clock by two, four and  
eight respectively. These outputs have a nominal  
50% duty cycle.  
Loop Filter - the Loop Filter is similar to a first order  
low pass filter with a 1.9 Hz cutoff frequency for all  
three reference frequency selections (8kHz,  
1.544MHz or 2.048MHz). This filter ensures that the  
jitter transfer requirements in ETS 300 011 and AT&T  
TR62411 are met.  
The T1 Divider Circuit uses the 12.384MHz signal to  
generate two clock outputs. C1.5o and C3o are  
generated by dividing the internal C12 clock by four  
and eight respectively. These outputs have a nominal  
50% duty cycle.  
Control Circuit - the Control Circuit sets the mode of  
the DPLL. The two possible modes are Normal and  
Freerun.  
C1.5o  
T1 Divider  
12MHz  
Tapped  
Delay  
Line  
Digitally Controlled Oscillator (DCO) - the DCO  
C3o  
receives the limited and filtered signal from the Loop  
FIlter, and based on its value, generates  
a
corresponding digital output signal. The  
synchronization method of the DCO is dependent on  
the state of the MT9041B.  
From  
DPLL  
In Normal Mode, the DCO provides an output signal  
which is frequency and phase locked to the selected  
input reference signal.  
C2o  
C4o  
C8o  
C16o  
F0o  
F8o  
E1 Divider  
16MHz  
Tapped  
Delay  
Line  
In Freerun Mode, the DCO is free running with an  
accuracy equal to the accuracy of the OSCi 20MHz  
source.  
F16o  
Figure 4 - Output Interface Circuit Block  
Diagram  
Output Interface Circuit  
The output of the DCO (DPLL) is used by the Output  
Interface Circuit to provide the output signals shown  
in Figure 4. The Output Interface Circuit uses two  
Tapped Delay Lines followed by a T1 Divider Circuit  
and an E1 Divider Circuit to generate the required  
output signals.  
The frame pulse outputs (F0o, F8o, F16o) are  
generated directly from the C16 clock.  
The T1 and E1 signals are generated from a  
common DPLL signal. Consequently, the clock  
outputs C1.5o, C3o, C2o, C4o, C8o, C16o, F0o and  
F16o are locked to one another for all operating  
states, and are also locked to the selected input  
reference in Normal Mode. See Figures 11 and 12.  
Two tapped delay lines are used to generate a  
16.384MHz and a 12.352MHz signals.  
The E1 Divider Circuit uses the 16.384MHz signal to  
generate four clock outputs and three frame pulse  
4
MT9041B  
All frame pulse and clock outputs have limited driving  
capability, and should be buffered when driving high  
capacitance (e.g. 30pF) loads.  
Freerun Mode  
Freerun Mode is typically used when a master clock  
source is required, or immediately following system  
power-up before network synchronization is  
achieved.  
Master Clock  
The MT9041B can use either a clock or crystal as  
the master timing source. For recommended master  
timing circuits, see the Applications - Master Clock  
section.  
In Freerun Mode, the MT9041B provides timing and  
synchronization signals which are based on the  
master clock frequency (OSCi) only, and are not  
synchronized to the reference signal (REF).  
Control and Modes of Operation  
The accuracy of the output clock is equal to the  
accuracy of the master clock (OSCi). So if a 32ppm  
output clock is required, the master clock must also  
be 32ppm. See Applications - Crystal and Clock  
Oscillator sections.  
The MT9041B can operate either in Normal or  
Freerun modes.  
As shown in Table 2, pin MS selects between  
NORMAL and FREERUN modes.  
MT9041B Measures of Performance  
The following are some synchronizer performance  
indicators and their corresponding definitions.  
MS  
Description of Operation  
0
1
NORMAL  
FREERUN  
Intrinsic Jitter  
Table 2 - Operating Modes  
Intrinsic jitter is the jitter produced by the  
synchronizing circuit and is measured at its output. It  
is measured by applying a reference signal with no  
jitter to the input of the device, and measuring its  
output jitter. Intrinsic jitter may also be measured  
when the device is in a non-synchronizing mode, i.e.  
free running mode, by measuring the output jitter of  
the device. Intrinsic jitter is usually measured with  
various bandlimiting filters depending on the  
applicable standards.  
Normal Mode  
Normal Mode is typically used when a slave clock  
source synchronized to the network is required.  
In Normal Mode, the MT9041B provides timing  
(C1.5o, C2o, C3o, C4o, C8o and C16o) and frame  
synchronization (F0o, F8o, F16o) signals, which are  
synchronized to reference input (REF). The input  
reference signal may have a nominal frequency of  
8kHz, 1.544MHz or 2.048MHz.  
Jitter Tolerance  
Jitter tolerance is a measure of the ability of a PLL to  
operate properly (i.e., remain in lock and or regain  
lock), in the presence of large jitter magnitudes at  
various jitter frequencies applied to its reference. The  
applied jitter magnitude and jitter frequency depends  
on the applicable standards.  
From a reset condition, the MT9041B will take up to  
25 seconds for the output signal to be phase locked  
to the reference.  
The reference frequencies are selected by the  
frequency control pins FS2 and FS1 as shown in  
Table 1.  
Jitter Transfer  
Jitter transfer or jitter attenuation refers to the  
magnitude of jitter at the output of a device for a  
given amount of jitter at the input of the device. Input  
jitter is applied at various amplitudes and  
frequencies, and output jitter is measured with  
various filters depending on the applicable  
standards.  
5
MT9041B  
For the MT9041B, two internal elements determine  
the jitter attenuation. This includes the internal 1.9Hz  
low pass loop filter and the phase slope limiter. The  
phase slope limiter limits the output phase slope to  
5ns/125us. Therefore, if the input signal exceeds this  
rate, such as for very large amplitude low frequency  
input jitter, the maximum output phase slope will be  
limited (i.e., attenuated) to 5ns/125us.  
usually made with large input jitter signals (e.g. 75%  
of the specified maximum jitter tolerance).  
Frequency Accuracy  
Frequency accuracy is defined as the absolute  
tolerance of an output clock signal when it is not  
locked to an external reference, but is operating in a  
free running mode. For the MT9041B, the Freerun  
accuracy is equal to the Master Clock (OSCi)  
accuracy.  
The MT9041B has nine outputs with three possible  
input frequencies for a total of 27 possible jitter  
transfer functions. However, the data sheet section  
on AC Electrical Characteristics - Jitter Transfer  
specifies transfer values for only three cases, 8kHz  
to 8kHz, 1.544MHz to 1.544MHz and 2.048MHz to  
2.048MHz. Since all outputs are derived from the  
same signal, these transfer values apply to all  
outputs.  
Capture Range  
Also referred to as pull-in range. This is the input  
frequency range over which the synchronizer must  
be able to pull into synchronization. The MT9041B  
capture range is equal to 230ppm minus the  
accuracy of the master clock (OSCi). For example, a  
32ppm master clock results in a capture range of  
198ppm.  
It should be noted that 1UI at 1.544MHz is 644ns,  
which is not equal to 1UI at 2.048MHz, which is  
488ns. Consequently, a transfer value using different  
input and output frequencies must be calculated in  
common units (e.g. seconds) as shown in the  
following example.  
Lock Range  
This is the input frequency range over which the  
synchronizer  
must  
be  
able  
to  
maintain  
What is the T1 and E1 output jitter when the T1 input  
jitter is 20UI (T1 UI Units) and the T1 to T1 jitter  
attenuation is 18dB?  
synchronization. The lock range is equal to the  
capture range for the MT9041B.  
A  
20  
Phase Slope  
------  
OutputT1 = InputT1×10  
18  
Phase slope is measured in seconds per second and  
is the rate at which a given signal changes phase  
with respect to an ideal signal. The given signal is  
typically the output signal. The ideal signal is of  
constant frequency and is nominally equal to the  
value of the final output signal or final input signal.  
--------  
20  
OutputT1 = 20×10  
= 2.5UI(T1)  
(1UIT1)  
OutputE1 = OutputT1 ×  
OutputE1 = OutputT1 ×  
---------------------  
(1UIE1)  
(644ns)  
= 3.3UI(T1)  
-------------------  
(488ns)  
Phase Continuity  
Using the above method, the jitter attenuation can be  
calculated for all combinations of inputs and outputs  
based on the three jitter transfer functions provided.  
Phase continuity is the phase difference between a  
given timing signal and an ideal timing signal at the  
end of a particular observation period. Usually, the  
given timing signal and the ideal timing signal are of  
the same frequency. Phase continuity applies to the  
output of the synchronizer after a signal disturbance  
due to a reference switch or a mode change. The  
observation period is usually the time from the  
disturbance, to just after the synchronizer has settled  
to a steady state.  
Note that the resulting jitter transfer functions for all  
combinations of inputs (8kHz, 1.544MHz, 2.048MHz)  
and  
outputs  
(8kHz,  
1.544MHz,  
2.048MHz,  
4.096MHz, 8.192MHz, 16.384MHz) for a given input  
signal (jitter frequency and jitter amplitude) are the  
same.  
Since intrinsic jitter is always present, jitter  
attenuation will appear to be lower for small input  
jitter signals than for large ones. Consequently,  
accurate jitter transfer function measurements are  
In the case of the MT9041B, the output signal phase  
continuity is maintained to within 5ns at the  
instance (over one frame) of mode changes. The  
total phase shift may accumulate up to 200ns over  
6
MT9041B  
many frames. The rate of change of the 200ns  
phase shift is limited to a maximum phase slope of  
approximately 5ns/125us. This meets the Bellcore  
GR-1244-CORE maximum phase slope requirement  
of 7.6ns/125us (81ns/1.326ms).  
Applications  
This section contains MT9041B application specific  
details for clock and crystal operation, reset  
operation and power supply decoupling.  
Phase Lock Time  
Master Clock  
This is the time it takes the synchronizer to phase  
lock to the input signal. Phase lock occurs when the  
input signal and output signal are not changing in  
phase with respect to each other (not including jitter).  
The MT9041B can use either a clock or crystal as  
the master timing source.  
In Freerun Mode, the frequency tolerance at the  
clock outputs is identical to the frequency tolerance  
of the source at the OSCi pin. For applications not  
requiring an accurate Freerun Mode, tolerance of the  
Lock time is very difficult to determine because it is  
affected by many factors which include:  
i) initial input to output phase difference  
ii) initial input to output frequency difference  
iii) synchronizer loop filter  
master timing source may be  
100ppm. For  
applications requiring an accurate Freerun Mode,  
such as Bellcore GR-1244-CORE, the tolerance of  
the master timing source must be no greater than  
32ppm.  
iv) synchronizer limiter  
Although a short lock time is desirable, it is not  
always possible to achieve due to other synchronizer  
requirements. For instance, better jitter transfer  
performance is achieved with a lower frequency loop  
filter which increases lock time. And better (smaller)  
phase slope performance (limiter) results in longer  
lock times. The MT9041B loop filter and limiter were  
optimized to meet the AT&T TR62411 jitter transfer  
and phase slope requirements. Consequently, phase  
lock time, which is not a standards requirement, may  
be longer than in other applications. See AC  
Another consideration in determining the accuracy of  
the master timing source is the desired capture  
range. The sum of the accuracy of the master timing  
source and the capture range of the MT9041B will  
always equal 230ppm. For example, if the master  
timing source is 100ppm, then the capture range  
will be 130ppm.  
Clock Oscillator - when selecting a Clock Oscillator,  
numerous parameters must be considered. These  
include absolute frequency, frequency change over  
temperature, output rise and fall times, output levels  
and duty cycle. See AC Electrical Characteristics.  
Electrical Characteristics  
maximum phase lock time.  
-
Performance for  
MT9041B and Network Specifications  
MT9041B  
+5V  
OSCi  
The MT9041B fully meets all applicable PLL  
requirements (intrinsic jitter, jitter tolerance, jitter  
transfer, frequency accuracy, capture range and  
phase change slope) for the following specifications.  
+5V  
20MHz OUT  
GND  
0.1uF  
1. Bellcore GR-1244-CORE Issue 1, June 1995 for  
Stratum 4 Enhanced and Stratum 4  
2. AT&T TR62411 (DS1) December 1990 for Stratum  
4 Enhanced and Stratum 4  
OSCo  
No Connection  
3. ANSI T1.101 (DS1) February 1994 for Stratum 4  
Enhanced and Stratum 4  
Figure 5 - Clock Oscillator Circuit  
4. ETSI 300 011 (E1) April 1992 for Single Access  
and Multi Access  
5. TBR 4 November 1995  
6. TBR 12 December 1993  
7. TBR 13 January 1996  
8. ITU-T I.431 March 1993  
7
MT9041B  
Frequency:  
20MHz  
As required  
Fundamental  
Parallel  
32pF  
For applications requiring 32ppm clock accuracy,  
the following clock oscillator module may be used.  
Tolerance:  
Oscillation Mode:  
Resonance Mode:  
CTS CXO-65-HG-5-C-20.0MHz  
Load Capacitance:  
Maximum Series Resistance:  
Approximate Drive Level:  
e.g., CTS R1027-2BB-20.0MHZ  
Frequency:  
20MHz  
35Ω  
Tolerance:  
25ppm 0C to 70C  
8ns (0.5V 4.5V 50pF)  
45% to 55%  
1mW  
Rise & Fall Time:  
Duty Cycle:  
( 20ppm absolute, 6ppm 0C to 50C, 32pF, 25)  
Reset Circuit  
The output clock should be connected directly (not  
AC coupled) to the OSCi input of the MT9041B, and  
the OSCo output should be left open as shown in  
Figure 5.  
A simple power up reset circuit with about a 50us  
reset low time is shown in Figure 7. Resistor R is for  
P
Crystal Oscillator  
-
Alternatively,  
a
Crystal  
protection only and limits current into the RST pin  
during power down conditions. The reset low time is  
not critical but should be greater than 300ns.  
Oscillator may be used. A complete oscillator circuit  
made up of a crystal, resistor and capacitors is  
shown in Figure 6.  
MT9041B  
MT9041B  
OSCi  
+5V  
R
10kΩ  
20MHz  
1MΩ  
RST  
56pF  
39pF  
3-50pF  
R
P
1kΩ  
OSCo  
C
10nF  
100Ω  
1uH  
1uH inductor: may improve stability and is optional  
Figure 7 - Power-Up Reset Circuit  
Power Supply Decoupling  
Figure 6 - Crystal Oscillator Circuit  
The accuracy of a crystal oscillator depends on the  
crystal tolerance as well as the load capacitance  
tolerance. Typically, for a 20MHz crystal specified  
with a 32pF load capacitance, each 1pF change in  
load capacitance contributes approximately 9ppm to  
the frequency deviation. Consequently, capacitor  
tolerances, and stray capacitances have a major  
effect on the accuracy of the oscillator frequency.  
The MT9041B has two VDD (+5V) pins and two VSS  
(GND) pins. Power and decoupling capacitors should  
be included as shown in Figure 8.  
C1  
0.1uF  
18  
15  
The trimmer capacitor shown in Figure 6 may be  
used to compensate for capacitive effects. If  
accuracy is not a concern, then the trimmer may be  
removed, the 39pF capacitor may be increased to  
56pF, and a wider tolerance crystal may be  
substituted.  
MT9041B  
5
1
C2  
0.1uF  
The crystal should be a fundamental mode type - not  
an overtone. The fundamental mode crystal permits  
a simpler oscillator circuit with no additional filter  
components and is less likely to generate spurious  
responses. The crystal specification is as follows.  
Figure 8 - Power Supply Decoupling  
8
MT9041B  
MT9041B  
CLOCK  
Out  
20MHz 32ppm  
20MHz  
MT9074  
OSCi  
F0o  
TTIP  
F0i  
+ 5V  
C4o  
C4b  
FS1  
FS2  
MS  
TRING  
REF  
RST  
OUT  
E1.5o  
IN0  
IN1  
IN2  
IN3  
IN4  
IN5  
IN6  
IN7  
RTIP  
RRING  
1kΩ  
To Controller  
Interrupt  
+ 5V  
10kΩ  
LOS  
10nF  
MT9074  
1 TO 8  
MUX  
TTIP  
F0i  
C4b  
TRING  
E1.5o  
LOS  
RTIP  
RRING  
To Controller  
Interrupt  
Figure 9 - Multiple E1 Reference Sources with MT9041B  
Multiple E1 Reference Sources with MT9041B  
In this example 8 E1 link framers (MT9074) are  
connected to a common system backplane clock  
using the MT9041B. Each of the extracted clocks  
E1.5o go to a mux which selects one of the eight  
input clocks as the reference to the MT9041B. The  
clock choice is made by a controller using the loss of  
signal pin LOS from the MT9074s to qualify potential  
references. In the event of loss of signal by one of  
the framers, an interrupt signals the controller to  
choose a different reference clock. Disturbances in  
the generated system backplane clocks C4b and F0b  
are minimized by the phase slope limitations of the  
MT9041B PLL. This ensures system integrity and  
minimizes the effect of clock switchover on  
downstream trunks.  
9
MT9041B  
Absolute Maximum Ratings* - Voltages are with respect to ground (V ) unless otherwise stated.  
SS  
Parameter  
Symbol  
Min  
Max  
Units  
1
2
3
4
5
Supply voltage  
VDD  
-0.3  
-0.3  
7.0  
VDD+0.3  
20  
V
V
Voltage on any pin  
Current on any pin  
Storage temperature  
V
PIN  
PIN  
I
mA  
°C  
TST  
-55  
125  
PLCC package power dissipation  
P
900  
mW  
PD  
* Exceeding these values may cause permanent damage. Functional operation under these conditions is not implied.  
Recommended Operating Conditions - Voltages are with respect to ground (VSS) unless otherwise stated  
Characteristics  
Supply voltage  
Operating temperature  
Sym  
Min  
Typ  
Max  
Units  
1
2
VDD  
TA  
4.5  
-40  
5.0  
25  
5.5  
85  
V
°C  
DC Electrical Characteristics* - Voltages are with respect to ground (VSS) unless otherwise stated.  
Characteristics  
Sym  
Min  
Max  
Units  
Conditions/Notes  
1
2
3
4
5
6
7
8
9
Supply current with:OSCi = 0V  
IDDS  
IDD  
0.5  
60  
mA  
mA  
V
Outputs unloaded  
Outputs unloaded  
OSCi = Clock  
TTL high-level input voltage  
TTL low-level input voltage  
CMOS high-level input voltage  
CMOS low-level input voltage  
Schmitt high-level input voltage  
Schmitt low-level input voltage  
Schmitt hysteresis voltage  
VIH  
2.0  
VIL  
0.8  
V
VCIH  
VCIL  
VSIH  
VSIL  
VHYS  
IIL  
0.7V  
V
OSCi  
OSCi  
RST  
RST  
RST  
DD  
0.3V  
V
DD  
2.3  
V
0.8  
+50  
0.4V  
V
0.4  
-50  
V
10 Input leakage current  
11 High-level output voltage  
12 Low-level output voltage  
µ A  
V
V =V or 0V  
I DD  
VOH  
VOL  
2.4V  
IOH=10mA  
IOL=10mA  
V
* Supply voltage and operating temperature are as per Recommended Operating Conditions.  
10  
MT9041B  
AC Electrical Characteristics - Performance  
Characteristics  
Sym  
Min  
Max  
Units Conditions/Notes†  
1
Freerun Mode accuracy with OSCi at: 0ppm  
32ppm  
-0  
+0  
ppm  
ppm  
ppm  
ppm  
ppm  
ppm  
s
2-5  
2
-32  
+32  
2-5  
3
100ppm  
0ppm  
-100  
-230  
-198  
-130  
+100  
+230  
+198  
+130  
30  
2-5  
4
Capture range with OSCi at:  
1,3-5,37  
1,3-5, 37  
1,3-5,37  
1, 3-11  
5
32ppm  
100ppm  
6
7
Phase lock time  
8
Output phase continuity with:  
9
mode switch to Normal  
mode switch to Freerun  
200  
200  
45  
ns  
ns  
1-11  
10  
1, 3-11  
1-11, 24  
11 Output phase slope  
us/s  
† See "Notes" following AC Electrical Characteristics tables.  
AC Electrical Characteristics - Timing Parameter Measurement Voltage Levels* - Voltages are  
with respect to ground (VSS) unless otherwise stated  
Characteristics  
Threshold Voltage  
Sym  
Schmitt  
TTL  
CMOS  
Units  
1
2
3
V
1.5  
2.3  
0.8  
1.5  
2.0  
0.8  
0.5V  
0.7V  
0.3V  
V
V
V
T
DD  
DD  
DD  
Rise and Fall Threshold Voltage High  
Rise and Fall Threshold Voltage Low  
V
HM  
V
LM  
* Supply voltage and operating temperature are as per Recommended Operating Conditions.  
* Timing for input and output signals is based on the worst Chislehurst of the combination of TTL and CMOS thresholds.  
* See Figure 10.  
Timing Reference Points  
V
HM  
T
LM  
V
ALL SIGNALS  
V
t
t
t
t
IRF, ORF  
IRF, ORF  
Figure 10 - Timing Parameter Measurement Voltage Levels  
11  
MT9041B  
AC Electrical Characteristics - Input/Output Timing  
Characteristics  
Sym  
Min  
Max  
Units  
1
Reference input pulse width high or low  
Reference input rise or fall time  
8kHz reference input to F8o delay  
1.544MHz reference input to F8o delay  
2.048MHz reference input to F8o delay  
F8o to F0o delay  
t
t
100  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
RW  
2
10  
6
IRF  
3
t
-21  
337  
222  
110  
11  
R8D  
4
t
363  
238  
134  
35  
R15D  
5
t
R2D  
6
t
F0D  
7
F16o setup to C16o falling  
F16o hold from C16o rising  
F8o to C1.5o delay  
t
F16S  
F16H  
C15D  
8
t
0
20  
9
t
-51  
-51  
-13  
-13  
-13  
-13  
309  
149  
230  
111  
52  
-37  
-37  
2
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
F8o to C3o delay  
t
t
t
t
C3D  
C2D  
C4D  
C8D  
F8o to C2o delay  
F8o to C4o delay  
2
F8o to C8o delay  
2
F8o to C16o delay  
t
2
C16D  
C15W  
C1.5o pulse width high or low  
C3o pulse width high or low  
C2o pulse width high or low  
C4o pulse width high or low  
C8o pulse width high or low  
C16o pulse width high or low  
F0o pulse width low  
t
339  
175  
258  
133  
70  
t
t
t
t
C3W  
C2W  
C4W  
C8W  
t
24  
35  
C16WL  
t
230  
111  
52  
258  
133  
70  
F0WL  
F8WH  
F8o pulse width high  
t
F16o pulse width low  
t
F16WL  
Output clock and frame pulse rise or fall time  
Input Controls Setup Time  
Input Controls Hold Time  
t
9
ORF  
t
100  
100  
S
H
t
† See "Notes" following AC Electrical Characteristics tables.  
12  
MT9041B  
t
R8D  
REF  
8kHz  
V
V
V
V
T
T
T
T
t
t
RW  
t
t
R15D  
REF  
1.544MHz  
RW  
R2D  
t
REF  
2.048MHz  
RW  
F8o  
NOTES:  
1. Input to output delay values  
are valid after a TRST or RST  
with no further state changes  
Figure 11 - Input to Output Timing (Normal Mode)  
t
F8WH  
F0D  
V
V
V
T
T
T
F8o  
t
t
F0WL  
F0o  
t
F16WL  
F16o  
t
t
F16S  
F16H  
C16D  
t
t
C16WL  
V
V
V
V
T
T
T
T
C16o  
C8o  
t
t
C8W  
C8W  
t
C8D  
C4D  
C2D  
t
t
C4W  
C4W  
t
t
C4o  
C2o  
t
C2W  
t
C3W  
t
t
C3W  
C3D  
V
T
C3o  
t
t
C15W  
C15D  
V
T
C1.5o  
Figure 12 - Output Timing 1  
13  
MT9041B  
V
V
F8o  
MS  
T
T
t
t
H
S
Figure 13 - Input Controls Setup and Hold Timing  
AC Electrical Characteristics - Intrinsic Jitter Unfiltered  
Characteristics  
Sym  
Min  
Max  
Units  
Conditions/Notes†  
1
2
3
4
5
6
7
8
9
Intrinsic jitter at F8o (8kHz)  
0.0002 UIpp 1-11,18-21,25  
0.0002 UIpp 1-11,18-21,25  
0.0002 UIpp 1-11,18-21,25  
Intrinsic jitter at F0o (8kHz)  
Intrinsic jitter at F16o (8kHz)  
Intrinsic jitter at C1.5o (1.544MHz)  
Intrinsic jitter at C2o (2.048MHz)  
Intrinsic jitter at C3o (3.088MHz)  
Intrinsic jitter at C4o (4.096MHz)  
Intrinsic jitter at C8o (8.192MHz)  
Intrinsic jitter at C16o (16.384MHz)  
0.030  
0.040  
0.060  
0.080  
0.160  
0.320  
UIpp 1-11,18-21,26  
UIpp 1-11,18-21,27  
UIpp 1-11,18-21,28  
UIpp 1-11,18-21,29  
UIpp 1-11,18-21,30  
UIpp 1-11,18-21,33  
† See "Notes" following AC Electrical Characteristics tables.  
AC Electrical Characteristics - C1.5o (1.544MHz) Intrinsic Jitter Filtered  
Characteristics  
Sym  
Min  
Max  
Units  
Conditions/Notes†  
1
2
3
4
Intrinsic jitter (4Hz to 100kHz filter)  
Intrinsic jitter (10Hz to 40kHz filter)  
Intrinsic jitter (8kHz to 40kHz filter)  
Intrinsic jitter (10Hz to 8kHz filter)  
0.015  
0.010  
0.010  
0.005  
UIpp  
UIpp  
UIpp  
UIpp  
1-11,18-21,26  
1-11,18-21,26  
1-11,18-21,26  
1-11,18-21,26  
† See "Notes" following AC Electrical Characteristics tables.  
AC Electrical Characteristics - C2o (2.048MHz) Intrinsic Jitter Filtered  
Characteristics  
Sym  
Min  
Max  
Units  
Conditions/Notes†  
1
2
3
4
Intrinsic jitter (4Hz to 100kHz filter)  
Intrinsic jitter (10Hz to 40kHz filter)  
Intrinsic jitter (8kHz to 40kHz filter)  
Intrinsic jitter (10Hz to 8kHz filter)  
0.015  
0.010  
0.010  
0.005  
UIpp  
UIpp  
UIpp  
UIpp  
1-11, 18-21, 27  
1-11, 18-21, 27  
1-11, 18-21, 27  
1-11, 18-21, 27  
† See "Notes" following AC Electrical Characteristics tables.  
14  
MT9041B  
AC Electrical Characteristics - 8kHz Input to 8kHz Output Jitter Transfer  
Characteristics  
Sym  
Min  
Max  
Units  
Conditions/Notes†  
1
2
3
Jitter attenuation for 1Hz@0.01UIpp input  
Jitter attenuation for 1Hz@0.54UIpp input  
0
6
6
dB  
dB  
dB  
1,3,6-11,18-19,21,25,32  
1,3,6-11,18-19,21,25,32  
1,3,6-11,18-19,21,25,32  
16  
22  
Jitter attenuation for 10Hz@0.10UIpp  
input  
12  
4
5
6
Jitter attenuation for 60Hz@0.10UIpp  
input  
28  
42  
45  
38  
dB  
dB  
dB  
1,3,6-11,18-19,21,25,32  
1,3,6-11,18-19,21,25,32  
1,3,6-11,18-19,21,25,32  
Jitter attenuation for 300Hz@0.10UIpp  
input  
Jitter attenuation for 3600Hz@0.005UIpp  
input  
† See "Notes" following AC Electrical Characteristics tables.  
AC Electrical Characteristics - 1.544MHz Input to 1.544MHz Output Jitter Transfer  
Characteristics  
Sym Min Max Units  
Conditions/Notes†  
1
2
3
4
5
6
7
Jitter attenuation for 1Hz@20UIpp input  
Jitter attenuation for 1Hz@104UIpp input  
Jitter attenuation for 10Hz@20UIpp input  
Jitter attenuation for 60Hz@20UIpp input  
Jitter attenuation for 300Hz@20UIpp input  
Jitter attenuation for 10kHz@0.3UIpp input  
0
6
dB  
dB  
dB  
dB  
dB  
dB  
dB  
1,4,6-11,18-19,21,26,32  
1,4,6-11,18-19,21,26,32  
1,4,6-11,18-19,21,26,32  
1,4,6-11,18-19,21,26,32  
1,4,6-11,18-19,21,26,32  
1,4,6-11,18-19,21,26,32  
1,4,6-11,18-19,21,26,32  
6
16  
22  
38  
12  
28  
42  
45  
45  
Jitter attenuation for 100kHz@0.3UIpp  
input  
† See "Notes" following AC Electrical Characteristics tables.  
15  
MT9041B  
AC Electrical Characteristics - 2.048MHz Input to 2.048MHz Output Jitter Transfer  
Characteristics  
Sym Min  
Max  
Units  
Conditions/Notes†  
1
2
3
4
5
6
7
8
9
Jitter at output for 1Hz@3.00UIpp input  
with 40Hz to 100kHz filter  
2.9  
UIpp 1,5,6-11,18-19,21,27,32  
UIpp 1-5,6-11,18-19, 21,27,33  
UIpp 1,5,6-11,18-19,21,27,32  
UIpp 1-5,6-11,18-19,21,2733  
UIpp 1,5,6-11,18-19,21,27,32  
UIpp 1-5,6-11,18-19, 21,27,33  
UIpp 1,5,6-11,18-19,21,27,32  
UIpp 1-5,6-11,18-19, 21,27,33  
UIpp 1,5,6-11,18-19,21,27,32  
UIpp 1-5,6-11,18-19, 21,27,33  
UIpp 1,5,6-11,18-19,21,27,32  
UIpp 1-5,6-11,18-19,21,27,33  
UIpp 1,5,6-11,18-19,21,27,32  
UIpp 1-5,6-11,18-19,21,27,33  
0.09  
1.3  
Jitter at output for 3Hz@2.33UIpp input  
with 40Hz to 100kHz filter  
0.10  
0.80  
0.10  
0.40  
0.10  
0.06  
0.05  
0.04  
0.03  
0.04  
0.02  
Jitter at output for 5Hz@2.07UIpp input  
with 40Hz to 100kHz filter  
Jitter at output for 10Hz@1.76UIpp input  
with 40Hz to 100kHz filter  
Jitter at output for 100Hz@1.50UIpp input  
10 with 40Hz to 100kHz filter  
11 Jitter at output for 2400Hz@1.50UIpp input  
12 with 40Hz to 100kHz filter  
13 Jitter at output for 100kHz@0.20UIpp input  
14 with 40Hz to 100kHz filter  
† See "Notes" following AC Electrical Characteristics tables.  
AC Electrical Characteristics - 8kHz Input Jitter Tolerance  
Characteristics  
Sym  
Min  
Max  
Units  
Conditions/Notes†  
1
2
3
4
5
6
7
8
Jitter tolerance for 1Hz input  
Jitter tolerance for 5Hz input  
Jitter tolerance for 20Hz input  
Jitter tolerance for 300Hz input  
Jitter tolerance for 400Hz input  
Jitter tolerance for 700Hz input  
Jitter tolerance for 2400Hz input  
Jitter tolerance for 3600Hz input  
0.80  
0.70  
0.60  
0.20  
0.15  
0.08  
0.02  
0.01  
UIpp  
UIpp  
UIpp  
UIpp  
UIpp  
UIpp  
UIpp  
UIpp  
1,3,6-11,18-19,21-23,25  
1,3,6-11,18-19,21-23,25  
1,3,6-11,18-19,21-23,25  
1,3,6-11,18-19,21-23,25  
1,3,6-11,18-19,21-23,25  
1,3,6-11,18-19,21-23,25  
1,3,6-11,18-19,21-23,25  
1,3,6-11,18-19,21-23,25  
† See "Notes" following AC Electrical Characteristics tables.  
16  
MT9041B  
AC Electrical Characteristics - 1.544MHz Input Jitter Tolerance  
Characteristics  
Sym  
Min  
Max  
Units  
Conditions/Notes†  
1
2
3
4
5
6
7
8
9
Jitter tolerance for 1Hz input  
Jitter tolerance for 5Hz input  
Jitter tolerance for 20Hz input  
Jitter tolerance for 300Hz input  
Jitter tolerance for 400Hz input  
Jitter tolerance for 700Hz input  
Jitter tolerance for 2400Hz input  
Jitter tolerance for 10kHz input  
Jitter tolerance for 100kHz input  
150  
140  
130  
35  
25  
15  
4
UIpp  
UIpp  
UIpp  
UIpp  
UIpp  
UIpp  
UIpp  
UIpp  
UIpp  
1,4,6-11,18-19,21-23,26  
1,4,6-11,18-19,21-23,26  
1,4,6-11,18-19,21-23,26  
1,4,6-11,18-19,21-23,26  
1,4,6-11,18-19,21-23,26  
1,4,6-11,18-19,21-23,26  
1,4,6-11,18-19,21-23,26  
1,4,6-11,18-19,21-23,26  
1,4,6-11,18-19,21-23,26  
1
0.5  
† See "Notes" following AC Electrical Characteristics tables.  
AC Electrical Characteristics - 2.048MHz Input Jitter Tolerance  
Characteristics  
Sym  
Min  
Max  
Units  
Conditions/Notes†  
1
2
3
4
5
6
7
8
9
Jitter tolerance for 1Hz input  
Jitter tolerance for 5Hz input  
Jitter tolerance for 20Hz input  
Jitter tolerance for 300Hz input  
Jitter tolerance for 400Hz input  
Jitter tolerance for 700Hz input  
Jitter tolerance for 2400Hz input  
Jitter tolerance for 10kHz input  
Jitter tolerance for 100kHz input  
150  
140  
130  
50  
40  
20  
5
UIpp  
UIpp  
UIpp  
UIpp  
UIpp  
UIpp  
UIpp  
UIpp  
UIpp  
1,5,6-11,18-19,21-23,27  
1,5,6-11,18-19,21-23,27  
1,5,6-11,18-19,21-23,27  
1,5,6-11,18-19,21-23,27  
1,5,6-11,18-19,21-23,27  
1,5,6-11,18-19,21-23,27  
1,5,6-11,18-19,21-23,27  
1,5,6-11,18-19,21-23,27  
1,5,6-11,18-19,21-23,27  
1
1
† See "Notes" following AC Electrical Characteristics tables.  
AC Electrical Characteristics - OSCi 20MHz Master Clock Input  
Characteristics  
Sym  
Min  
Typ  
Max  
Units  
Conditions/Notes†  
1
2
3
4
5
6
Frequency accuracy  
(20 MHz nominal)  
-0  
-32  
-100  
40  
0
0
+0  
+32  
+100  
60  
ppm  
ppm  
ppm  
%
15,18  
16,19  
17,20  
0
Duty cycle  
Rise time  
Fall time  
50  
10  
ns  
10  
ns  
† See "Notes" following AC Electrical Characteristics tables.  
17  
MT9041B  
† Notes:  
Voltages are with respect to ground (V ) unless otherwise stated.  
SS  
Supply voltage and operating temperature are as per Recommended Operating Conditions.  
Timing parameters are as per AC Electrical Characteristics - Timing Parameter Measurement Voltage Levels  
1. Normal Mode selected.  
2. Freerun Mode selected.  
3. 8kHz Frequency Mode selected.  
4. 1.544MHz Frequency Mode selected.  
5. 2.048MHz Frequency Mode selected.  
6. Master clock input OSCi at 20MHz 0ppm.  
7. Master clock input OSCi at 20MHz 32ppm.  
8. Master clock input OSCi at 20MHz 100ppm.  
9. Selected reference input at 0ppm.  
10. Selected reference input at 32ppm.  
11. Selected reference input at 100ppm.  
12. For Freerun Mode of 0ppm.  
13. For Freerun Mode of 32ppm.  
14. For Freerun Mode of 100ppm.  
15. For capture range of 230ppm.  
16. For capture range of 198ppm.  
17. For capture range of 130ppm.  
18. 25pF capacitive load.  
19. OSCi Master Clock jitter is less than 2nspp, or 0.04UIpp  
where1UIpp=1/20MHz.  
20. Jitter on reference input is less than 7nspp.  
21. Applied jitter is sinusoidal.  
22. Minimum applied input jitter magnitude to regain synchronization.  
23. Loss of synchronization is obtained at slightly higher input  
jitter amplitudes.  
24. Within 10ms of the state, reference or input change.  
25. 1UIpp = 125us for 8kHz signals.  
26. 1UIpp = 648ns for 1.544MHz signals.  
27. 1UIpp = 488ns for 2.048MHz signals.  
28. 1UIpp = 323ns for 3.088MHz signals.  
29. 1UIpp = 244ns for 4.096MHz signals.  
30. 1UIpp = 122ns for 8.192MHz signals.  
31. 1UIpp = 61ns for 16.384MHz signals.  
32. No filter.  
33. 40Hz to 100kHz bandpass filter.  
34. With respect to reference input signal frequency.  
35. After a RST or TRST.  
36. Master clock duty cycle 40% to 60%.  
18  
Package Outlines  
F
A
G
D
1
D
2
D
H
E
E
1
e: (lead coplanarity)  
A
Notes:  
1
1) Not to scale  
2) Dimensions in inches  
3) (Dimensions in millimeters)  
I
E
2
4) For D & E add for allowable Mold Protrusion 0.010"  
20-Pin  
28-Pin  
44-Pin  
68-Pin  
84-Pin  
Dim  
Min  
Max  
Min  
Max  
Min  
Max  
Min  
Max  
Min  
Max  
0.165  
(4.20)  
0.180  
(4.57)  
0.165  
(4.20)  
0.180  
(4.57)  
0.165  
(4.20)  
0.180  
(4.57)  
0.165  
(4.20)  
0.200  
(5.08)  
0.165  
(4.20)  
0.200  
(5.08)  
A
0.090  
(2.29)  
0.120  
(3.04)  
0.090  
(2.29)  
0.120  
(3.04)  
0.090  
(2.29)  
0.120  
(3.04)  
0.090  
(2.29)  
0.130  
(3.30)  
0.090  
(2.29)  
0.130  
(3.30)  
A1  
0.385  
0.395  
0.485  
0.495  
0.685  
0.695  
0.985  
0.995  
1.185  
1.195  
D/E  
(9.78) (10.03) (12.32) (12.57) (17.40) (17.65) (25.02) (25.27) (30.10) (30.35)  
0.350 0.356 0.450 0.456 0.650 0.656 0.950 0.958 1.150 1.158  
(8.890) (9.042) (11.430) (11.582) (16.510) (16.662) (24.130) (24.333) (29.210) (29.413)  
D1/E1  
D2/E2  
0.290  
(7.37)  
0.330  
(8.38)  
0.390  
0.430  
0.590  
0.630  
0.890  
0.930  
1.090  
1.130  
(9.91) (10.92) (14.99) (16.00) (22.61) (23.62) (27.69) (28.70)  
0
0.004  
0
0.004  
0.032  
0
0.004  
0.032  
0
0.004  
0.032  
0
0.004  
0.032  
e
F
0.026  
0.032  
0.026  
0.026  
0.026  
0.026  
(0.661) (0.812) (0.661) (0.812) (0.661) (0.812) (0.661) (0.812) (0.661) (0.812)  
0.013 0.021 0.013 0.021 0.013 0.021 0.013 0.021 0.013 0.021  
(0.331) (0.533) (0.331) (0.533) (0.331) (0.533) (0.331) (0.533) (0.331) (0.533)  
G
H
I
0.050 BSC  
(1.27 BSC)  
0.050 BSC  
(1.27 BSC)  
0.050 BSC  
(1.27 BSC)  
0.050 BSC  
(1.27 BSC)  
0.050 BSC  
(1.27 BSC)  
0.020  
(0.51)  
0.020  
(0.51)  
0.020  
(0.51)  
0.020  
(0.51)  
0.020  
(0.51)  
Plastic J-Lead Chip Carrier - P-Suffix  
General-10  
For more information about all Zarlink products  
visit our Web Site at  
www.zarlink.com  
Information relating to products and services furnished herein by Zarlink Semiconductor Inc. trading as Zarlink Semiconductor or its subsidiaries (collectively Zarlink)  
is believed to be reliable. However, Zarlink assumes no liability for errors that may appear in this publication, or for liability otherwise arising from the application or  
use of any such information, product or service or for any infringement of patents or other intellectual property rights owned by third parties which may result from  
such application or use. Neither the supply of such information or purchase of product or service conveys any license, either express or implied, under patents or  
other intellectual property rights owned by Zarlink or licensed from third parties by Zarlink, whatsoever. Purchasers of products are also hereby notified that the use  
of product in certain ways or in combination with Zarlink, or non-Zarlink furnished goods or services may infringe patents or other intellectual property rights owned  
by Zarlink.  
This publication is issued to provide information only and (unless agreed by Zarlink in writing) may not be used, applied or reproduced for any purpose nor form part  
of any order or contract nor to be regarded as a representation relating to the products or services concerned. The products, their specifications, services and other  
information appearing in this publication are subject to change by Zarlink without notice. No warranty or guarantee express or implied is made regarding the capability,  
performance or suitability of any product or service. Information concerning possible methods of use is provided as a guide only and does not constitute any guarantee  
that such methods of use will be satisfactory in a specific piece of equipment. It is the users responsibility to fully determine the performance and suitability of any  
equipment using such information and to ensure that any publication or data used is up to date and has not been superseded. Manufacturing does not necessarily  
include testing of all functions or parameters. These products are not suitable for use in any medical products whose failure to perform may result in significant injury  
or death to the user. All products and materials are sold and services provided subject to Zarlinks conditions of sale which are available on request.  
2
2
2
Purchase of Zarlink s I C components conveys a licence under the Philips I C Patent rights to use these components in and I C System, provided  
2
that the system conforms to the I C Standard Specification as defined by Philips.  
Zarlink and the Zarlink Semiconductor logo are trademarks of Zarlink Semiconductor Inc.  
Copyright 2001, Zarlink Semiconductor Inc. All Rights Reserved.  
TECHNICAL DOCUMENTATION - NOT FOR RESALE  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY