MT8963ASR [ZARLINK]

Integrated PCM Filter Codec; 综合PCM编解码器过滤
MT8963ASR
型号: MT8963ASR
厂家: ZARLINK SEMICONDUCTOR INC    ZARLINK SEMICONDUCTOR INC
描述:

Integrated PCM Filter Codec
综合PCM编解码器过滤

解码器 编解码器 PC
文件: 总32页 (文件大小:609K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ISO2-CMOS MT8960/61/62/63/64/65/66/67  
Integrated PCM Filter Codec  
Data Sheet  
February 2005  
Features  
ST-BUScompatible  
Ordering Information  
MT8960/61/64/65AE  
MT8962/63AE  
MT8962/63/66/67AS  
MT8963ASR  
18 Pin PDIP  
20 Pin PDIP  
20 Pin SOIC  
20 Pin SOIC  
18 Pin PDIP*  
20 Pin PDIP*  
20 Pin SOIC*  
20 Pin SOIC*  
Tubes  
Transmit/Receive filters & PCM Codec in one I.C  
Meets AT&T D3/D4 and CCITT G711 and G712  
µ-Law: MT8960/62/64/67  
Tubes  
Tubes  
Tape & Reel  
Tubes  
MT8960AE1  
MT8962/63AE1  
MT8962AS1  
Tubes  
Tubes  
A-Law: MT8961/63/65/67  
MT8963AS1  
Tubes  
Low power consumption:  
*Pb Free Matte Tin  
-40°C to +85°C  
Op.: 30 mW typ.  
Stby.: 2.5 mW typ.  
Digital Coding Options:  
Description  
MT8964/65/66/67 CCITT Code  
Manufactured in ISO2-CMOS, these integrated  
filter/codecs are designed to meet the demanding  
performance needs of the digital telecommunications  
industry, e.g., PABX, Central Office, Digital telephones.  
MT8960/61/62/63 Alternative Code  
Digitally controlled gain adjust of both filters  
Analog and digital loopback  
Filters and codec independently user accessible  
for testing  
Powerdown mode available  
2.048 MHz master clock input  
Up to six uncommitted control outputs  
±5 V ±5% power supply  
ANUL  
Analog to  
Transmit  
Output  
V
X
Digital PCM  
Encoder  
DSTo  
Register  
Filter  
SD0  
SD1  
SD2  
SD3  
SD4  
SD5  
CSTi  
CA  
F1i  
C2i  
A Register  
8-Bits  
Output  
Control  
Logic  
Register  
B-Register  
8-Bits  
PCM Digital  
to Analog  
Decoder  
Input  
Receive  
Filter  
DSTi  
V
R
Register  
V
GNDA GNDD  
V
V
EE  
Ref  
DD  
Figure 1 - Functional Block Diagram  
1
Zarlink Semiconductor Inc.  
Zarlink, ZL and the Zarlink Semiconductor logo are trademarks of Zarlink Semiconductor Inc.  
Copyright 2003-2005, Zarlink Semiconductor Inc. All Rights Reserved.  
MT8960/61/62/63/64/65/66/67  
Data Sheet  
MT8962/63/66/67  
MT8960/61/64/65  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
1
2
CSTi  
DSTi  
C2i  
GNDD  
VRef  
GNDA  
VR  
18  
17  
16  
15  
14  
13  
12  
11  
10  
1
2
3
4
5
6
7
8
9
CSTi  
DSTi  
C2i  
GNDD  
VRef  
GNDA  
VR  
3
4
5
DSTo  
VDD  
SD5  
SD4  
F1i  
DSTo  
VDD  
F1i  
ANUL  
VX  
ANUL  
VX  
6
7
VEE  
SD0  
SD1  
SD2  
CA  
VEE  
SD0  
8
SD3  
SD2  
CA  
9
SD1  
SD3  
10  
18 PIN PDIP  
20 PIN PDIP/SOIC  
Figure 2 - Pin Connections  
Pin Description  
Pin Name  
Description  
CSTi  
Control ST-BUS In is a TTL-compatible digital input used to control the function of the filter/codec.  
Three modes of operation may be effected by applying to this input a logic high (VDD), logic low  
(GNDD), or an 8-bit serial word, depending on the logic states of CA and F1i.  
Functions controlled are: powerdown, filter gain adjust, loopback, chip testing, SD outputs.  
DSTi  
C2i  
Data ST-BUS In accepts the incoming 8-bit PCM word. Input is TTL-compatible.  
Clock Input is a TTL-compatible 2.048 MHz clock.  
DSTo Data ST-BUS Out is a three-state digital output driving the PCM bus with the outgoing 8-bit PCM  
word.  
VDD  
F1i  
Positive power Supply (+5 V).  
Synchronization Input is an active low digital input enabling (in conjunction with CA) the PCM input,  
PCM output and digital control input. It is internally sampled on every positive edge of the clock, C2i,  
and provides frame and channel synchronization.  
CA  
Control Address is a three-level digital input which enables PCM input and output and determines  
into which control register (A or B) the serial data, presented to CSTi, is stored.  
SD3  
System Drive Output is an open drain output of an N-channel transistor which has its source tied to  
GNDA. Inactive state is open circuit.  
SD4-5 System Drive Outputs are open drain outputs of N-channel transistors which have their source tied  
to GNDD. Inactive state is open circuit.  
SD0-2 System Drive Outputs are “Totempole“ CMOS outputs switching between GNDD and VDD. Inactive  
state is logic low.  
VEE  
VX  
Negative power supply (-5 V).  
Voice Transmit is the analog input to the transmit filter.  
ANUL Auto Null is used to integrate an internal auto-null signal. A 0.1 µF capacitor must be connected  
between this pin and GNDA.  
VR  
Voice Receive is the analog output of the receive filter.  
GNDA Analog ground (0 V).  
VRef  
Voltage Reference input to D to A converter.  
GNDD Digital ground (0 V).  
2
Zarlink Semiconductor Inc.  
MT8960/61/62/63/64/65/66/67  
Data Sheet  
MT8960/62  
MT8964/66  
Digital Output  
Digital Output  
11111111  
11110000  
11100000  
11010000  
11000000  
10110000  
10100000  
10000000  
10001111  
10011111  
10101111  
10111111  
11001111  
11011111  
10010000  
10000000  
00000000  
00010000  
11101111  
11111111  
01111111  
01101111  
00100000  
00110000  
01000000  
01010000  
01100000  
01110000  
01111111  
01011111  
01001111  
00111111  
00101111  
00011111  
00001111  
00000000  
-2.415V -1.207V  
0V  
+1.207V +2.415V  
Analog Input Voltage (V  
)
Bit 7...  
MSB  
0
IN  
LSB  
Figure 3 - µ-Law Encoder Transfer Characteristic  
3
Zarlink Semiconductor Inc.  
MT8960/61/62/63/64/65/66/67  
Data Sheet  
MT8961/63  
MT8965/67  
Digital Output  
Digital Output  
11111111  
11110000  
11100000  
11010000  
11000000  
10110000  
10100000  
10101010  
10100101  
10110101  
10000101  
10010101  
11100101  
11110101  
10010000  
10000000  
00000000  
00010000  
11000101  
11010101  
01010101  
01000101  
00100000  
00110000  
01000000  
01010000  
01100000  
01110000  
01111111  
01110101  
01100101  
00010101  
00000101  
00110101  
00100101  
00101010  
-2.5V  
-1.25V  
0V  
+2.5V  
+1.25V  
Analog Input Voltage (V  
)
Bit 7...  
MSB  
0
IN  
LSB  
Figure 4 - A-Law Encoder Transfer Characteristic  
Functional Description  
Figure 1 shows the functional block diagram of the MT8960-67. These devices provide the conversion interface  
between the voiceband analog signals of a telephone subscriber loop and the digital signals required in a digital  
PCM (pulse code modulation) switching system. Analog (voiceband) signals in the transmit path enter the chip at  
VX, are sampled at 8 kHz, and the samples quantized and assigned 8-bit digital values defined by logarithmic PCM  
encoding laws. Analog signals in the receive path leave the chip at VR after reconstruction from digital 8-bit words.  
Separate switched capacitor filter sections are used for bandlimiting prior to digital encoding in the transmit path  
and after digital decoding in the receive path. All filter clocks are derived from the 2.048 MHz master clock input,  
C2i. Chip size is minimized by the use of common circuitry performing the A to D and D to A conversion. A  
successive approximation technique is used with capacitor arrays to define the 16 steps and 8 chords in the signal  
conversion process. Eight-bit PCM encoded digital data enters and leaves the chip serially on DSTi and DSTo  
pins, respectively.  
Transmit Path  
Analog signals at the input (Vx) are firstly bandlimited to 508 kHz by an RC lowpass filter section. This performs the  
necessary anti-aliasing for the following first-order sampled data lowpass pre-filter which is clocked at 512 kHz.  
This further bandlimits the signal to 124 kHz before a fifth-order elliptic lowpass filter, clocked at 128 kHz, provides  
the 3.4 kHz bandwidth required by the encoder section. A 50/60 Hz third-order highpass notch filter clocked at  
8 kHz completes the transmit filter path. Accumulated DC offset is cancelled in this last section by a switched-  
capacitor auto-zero loop which integrates the sign bit of the encoded PCM word, fed back from the codec and  
4
Zarlink Semiconductor Inc.  
MT8960/61/62/63/64/65/66/67  
Data Sheet  
injects this voltage level into the non-inverting input of the comparator. An integrating capacitor (of value between  
0.1 and 1 µF) must be externally connected from this point (ANUL) to the Analog Ground (GNDA).  
The absolute gain of the transmit filter (nominally 0 dB at 1 kHz) can be adjusted from 0 dB to 7 dB in 1 dB steps by  
means of three binary controlled gain pads.  
The resulting bandpass characteristics with the limits shown in Figure 10 meet the CCITT and AT&T recommended  
specifications. Typical attenuations are 30 dB for 0-60 Hz and 35 dB for 4.6 kHz and above.  
The filter output signal is an 8 kHz staircase waveform which is fed into the codec capacitor array, or alternatively,  
into an external capacitive load of 250 pF when the chip is in the test mode. The digital encoder generates an eight-  
bit digital word representation of the 8 kHz sampled analog signal. The first bit of serial data stream is bit 7 (MSB)  
and represents the sign of the analog signal. Bits 4-6 represent the chord which contains the analog sample value.  
Bits 0-3 represent the step value of the analog sample within the selected chord. The MT8960-63 provide a sign  
plus magnitude PCM output code format. The MT8964/66 PCM output code conforms to the AT &T D3  
specification, i.e., true sign bit and inverted magnitude bits. The MT8965/67 PCM output code conforms to the  
CCITT specifications with alternate digit inversion (even bits inverted). See Figs. 3 and 4 for the digital output code  
corresponding to the analog voltage, VIN, at VX input.  
The eight-bit digital word is output at DSTo at a nominal rate of 2.048 MHz, via the output buffer as the first 8-bits of  
the 125 µs sampling frame.  
Receive Path  
An eight-bit PCM encoded digital word is received on DSTi input once during the 125 µs period and is loaded into  
the input register. A charge proportional to the received PCM word appears on the capacitor array and an 8 kHz  
sample and hold circuit integrates this charge and holds it for the rest of the sampling period.  
The receive (D/A) filter provides interpolation filtering on the 8 kHz sample and hold signal from the codec. The filter  
consists of a 3.4 kHz lowpass fifth-order elliptic section clocked at 128 kHz and performs bandlimiting and  
smoothing of the 8 kHz "staircase" waveform. In addition, sinx/x gain correction is applied to the signal to  
compensate for the attenuation of higher frequencies caused by the capacitive sample and hold circuit. The  
absolute gain of the receive filter can be adjusted from 0 dB to -7 dB in 1 dB steps by means of three binary  
controlled gain pads. The resulting lowpass characteristics, with the limits shown in Figure 11, meet the CCITT and  
AT & T recommended specifications.  
Typical attenuation at 4.6 kHz and above is 30 dB. The filter is followed by a buffer amplifier which will drive 5V  
peak/peak into a 10k ohm load, suitable for driving electronic 2-4 wire circuits.  
VRef  
An external voltage must be supplied to the VRef pin which provides the reference voltage for the digital encoding  
and decoding of the analog signal. For VRef = 2.5 V, the digital encode decision value for overload (maximum  
analog signal detect level) is equal to an analog input VIN = 2.415 V (µ-Law version) or 2.5 V (A-Law version) and is  
equivalent to a signal level of 3.17 dBm0 or 3.14 dBm0 respectively, at the codec.  
The analog output voltage from the decoder at VR is defined as:  
µ-Law:  
-0.5  
2C  
16.5 + S  
VRef  
X
V
±
+
[( 128 ) (128 )( 33 )]  
OFFSET  
A-Law:  
VRef  
2C+1  
0.5 + S  
X
V
[(128 )( 32 )]  
±
OFFSETC=0  
5
Zarlink Semiconductor Inc.  
MT8960/61/62/63/64/65/66/67  
Data Sheet  
2C  
16.5 + S  
VRef  
X
V
[(128 )( 32 )]  
±
OFFSETC0  
where C = chord number (0-7)  
S = step number (0-15)  
VRef is a high impedance input with a varying capacitive load of up to 40 pF.  
The recommended reference voltage for the MT8960 series of codecs is 2.5 V ±0.5%. The output voltage from the  
reference source should have a maximum temperature coefficient of 100 ppm/C°. This voltage should have a total  
regulation tolerance of ±0.5% both for changes in the input voltage and output loading of the voltage reference  
source. A voltage reference circuit capable of meeting these specifications is shown in Figure 5. Analog  
Devices’AD1403A voltage reference circuit is capable of driving a large number of codecs due to the high input  
impedance of the VRef input. Normal precautions should be taken in PCB layout design to minimize noise coupling  
to this pin. A 0.1 µF capacitor connected from VRef to ground and located as close as possible to the codec is  
recommended to minimize noise entering through VRef. This capacitor should have good high frequency  
characteristics.  
NC  
8
NC  
7
NC  
6
NC  
5
V
Ref  
0.1 µF  
AD1403A  
MT8960-67  
FILTER/CODEC  
1
2
3
4
NC  
+5 V  
2.5 V  
Figure 5 - Typical Voltage Reference Circuit  
Timing  
The codec operates in a synchronous manner (see Figure 9a). The codec is activated on the first positive edge of  
C2i after F1i has gone low. The digital output at DSTo (which is a three-state output driver) will then change from  
a high impedance state to the sign bit of the encoded PCM word to be output. This will remain valid until the next  
positive edge, when the next most significant bit will be output.  
On the first negative clock edge (after F1i signal has been internally synchronized and CA is at GNDD or VEE) the  
logic signal present at DSTi will be clocked into the input shift register as the sign bit of the incoming PCM word.  
The eight-bit word is thus input at DSTi on negative edges of C2i and output at DSTo on positive edges of C2i.  
F1i must return to a high level after the eighth clock pulse causing DSTo to enter high impedance and  
preventing further input data to DSTi. F1i will continue to be sampled on every positive edge of C2i. (Note: F1i may  
subsequently be taken low during the same sampling frame to enable entry of serial data into CSTi. This occurs  
usually mid-frame, in conjunction with CA=VDD, in order to enter an 8-bit control word into Register B. In this case,  
PCM input and output are inhibited by CA at VDD.)  
Internally the codec will then perform a decode cycle on the newly input PCM word. The sampled and held analog  
signal thus decoded will be updated 25 µs from the start of the cycle. After this the analog input from the filter is  
sampled for 18 µs, after which digital conversion takes place during the remaining 82 µs of the sampling cycle.  
6
Zarlink Semiconductor Inc.  
MT8960/61/62/63/64/65/66/67  
Data Sheet  
Since a single clock frequency of 2.048 MHz is required, all digital data is input and output at this rate. DSTo,  
therefore, assumes a high impedance state for all but 3.9 µs of the 125 µs frame. Similarly, DSTi input data is valid  
for only 3.9 µs.  
Digital Control Functions  
CSTi is a digital input (levels GNDD to VDD) which is used to control the function of the filter/codec. It operates in  
three different modes depending on the logic levels applied to the Control Address input (CA) and chip enable input  
(F1i) (see Table 1).  
Mode 1  
CA=-5V (VEE); CSTi=0V (GNDD)  
The filter/codec is in normal operation with nominal transmit and receive gain of 0dB. The SD outputs are in their  
active states and the test modes cannot be entered.  
CA = -5V (VEE); CSTi = +5V (VDD  
)
A state of powerdown is forced upon the chip whereby DSTo becomes high impedance, VR is connected to GNDA  
and all analog sections have power removed.  
Mode 2  
CA= -5V (VEE); CSTi receives an eight-bit control word  
CSTi accepts a serial data stream synchronously with DSTi (i.e., it accepts an eight-bit serial word in a 3.9 µs  
timeslot, updated every 125 µs, and is specified identically to DSTi for timing considerations). This eight-bit control  
word is entered into Control Register A and enables programming of the following functions: transmit and receive  
gain, powerdown, loopback. Register B is reset to zero and the SD outputs assume their inactive state. Test modes  
cannot be entered.  
Mode 3  
CA=0V (GNDD); CSTi receives an eight-bit control word  
As in Mode 2, the control word enters Register A and the aforementioned functions are controlled. In this mode,  
however, Register B is not reset, thus not affecting the states of the SD outputs.  
CA=+5V (VDD); CSTi receives an 8-bit control word  
In this case the control word is transferred into Register B. Register A is unaffected. The input and output of PCM  
data is inhibited.  
The contents of Register B controls the six uncommitted outputs SD0-SD5 (four outputs, SD0-SD3, on  
MT8960/61/64/65 versions of chip) and also provide entry into one of the three test modes of the chip.  
Note: For Modes 1 and 2, F1i must be at logic low for one period of 3.9 µs, in each 125 µs cycle, when PCM data  
is being input and output, and the control word at CSTi enters Register A. For Mode 3, F1i must be at a logic low for  
two periods of 3.9 µs, in each 125 µs cycle. In the first period, CA must be at GNDD or VEE, and in the second  
period CA must be high (VDD)  
.
7
Zarlink Semiconductor Inc.  
MT8960/61/62/63/64/65/66/67  
Data Sheet  
Mode  
CA  
CSTi  
Function  
1
VEE  
GNDD  
VDD  
Normal chip operation.  
Powerdown.  
(Note 1)  
2
VEE  
GNDD  
VDD  
Serial  
Data  
Eight-bit control word into Register A. Register B is reset.  
Eight-bit control word into register A. Register B is unaffected.  
Eight-bit control word into register A. Register B is unaffected.  
3
Serial  
Data  
(Note 2)  
Serial  
Data  
Note 1:  
Note 2:  
When operating in Mode 1, there should be only one frame pulse (F1i) per 125 µs frame  
When operating in Mode 3, PCM input and output is inhibited by CA=VDD  
.
Table 1 - Digital Control Modes  
TRANSMIT (A/D)  
BIT 2  
BIT 1  
BIT 0  
FILTER GAIN (dB)  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
+ 1  
+ 2  
+ 3  
+ 4  
+ 5  
+ 6  
+ 7  
RECEIVE (D/A)  
BIT 5  
BIT 4  
BIT 3  
FILTER GAIN (dB)  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
- 1  
- 2  
- 3  
- 4  
- 5  
- 6  
- 7  
8
Zarlink Semiconductor Inc.  
MT8960/61/62/63/64/65/66/67  
Data Sheet  
TRANSMIT (A/D)  
BIT 2  
BIT 7  
BIT 1  
BIT 6  
BIT 0  
FILTER GAIN (dB)  
FUNCTION CONTROL  
0
0
1
1
0
1
0
1
Normal operation  
Digital Loopback  
Analog Loopback  
Powerdown  
Table 2 - Control States - Register A  
Control Registers A, B  
The contents of these registers control the filter/codec functions as described in Tables 2 and 3.  
Bit 7 of the registers is the MSB and is defined as the first bit of the serial data stream input (corresponding to the  
sign bit of the PCM word).  
On initial power-up these registers are set to the powerdown condition for a maximum of 25 clock cycles. During  
this time it is impossible to change the data in these registers.  
Chip Testing  
By enabling Register B with valid data (eight-bit control word input to CSTi when F1i=GNDD and CA= VCC) the chip  
testing mode can be entered. Bits 6 and 7 (most sign bits) define states for testing the transmit filter, receive filter  
and the codec function. The input in each case is VX input and the output in each case is VR output. (See Table 3 for  
details.)  
Loopback  
Loopback of the filter/codec is controlled by the control word entered into Register A. Bits 6 and 7 (most sign bits)  
provide either a digital or analog loopback condition. Digital loopback is defined as follows:  
PCM input data at DSTi is latched into the PCM input register and the output of this register is connected to  
the input of the 3-state PCM output register.  
The digital input to the PCM digital-to-analog decoder is disconnected, forced to zero (0).  
The output of the PCM encoder is disabled and thus the encoded data is lost. The PCM output at DSTo is  
determined by the PCM input data.  
Analog loopback is defined as follows:  
PCM input data is latched, decoded and filtered as normal but not output at VR.  
Analog output buffer at VR has its input shorted to GNDA and disconnected from the receive filter output.  
Analog input at VX is disconnected from the transmit filter input.  
The receive filter output is connected to the transmit filter input. Thus the decode signal is fed back through  
the receive path and encoded in the normal way. The analog output buffer at VR is not tested by this  
configuration.  
In both cases of loopback, DSTi is the input and DSTo is the output.  
9
Zarlink Semiconductor Inc.  
MT8960/61/62/63/64/65/66/67  
Data Sheet  
Logic Control Outputs SD0-5  
These outputs are directly controlled by the logic states of bits 0-5 in Register B. A logic low (GNDD) in Register B  
causes the SD outputs to assume an inactive state. A logic high (VDD) in Register B causes the SD outputs to  
assume an active state (see Table 3). SD0-2 switch between GNDD and VDD and may be used to control  
external logic or transistor circuitry, for example, that employed on the line card for performing such functions  
as relay drive for application of ringing to line, message waiting indication, etc.  
SD3-5 are used primarily to drive external analog circuitry. Examples may include the switching in or out of gain  
sections or filter sections (e.g., ring trip filter) (Figure 7).  
MT8962/63/66/67 provides all six SD outputs.  
MT8960/61/64/65 each packaged in an 18-pin DIP provide only four control outputs, SD0-3.  
Telephone Set  
2 Wire  
Analog  
PCM Highway  
Supervision  
Protection  
MT8960/61  
Battery  
Feed  
MT8962/63  
2W/4W  
Converter  
MT8964/65  
MT8966/67  
Ringing  
Figure 6 - Typical Line Termination  
LOGIC CONTROL OUTPUTS SD0-SD2  
BITS 0-2  
0
1
Inactive state - logic low (GNDD).  
Active state - logic high (VDD).  
BIT 3  
LOGIC CONTROL OUTPUT SD3  
0
1
Inactive state - High Impedance.  
Active state - GNDA.  
BITS 4,5  
LOGIC CONTROL OUTPUTS SD4, SD5  
0
1
Inactive state - High Impedance.  
Active state - GNDD.  
BIT 7 BIT 6  
CHIP TESTING CONTROLS  
0
0
Normal operation.  
10  
Zarlink Semiconductor Inc.  
MT8960/61/62/63/64/65/66/67  
Data Sheet  
BITS 0-2  
LOGIC CONTROL OUTPUTS SD0-SD2  
0
1
1
1
0
1
Transmit filter testing, i.e.:  
Transmit filter input connected to VX input  
Receive filter and Buffer disconnected from VR  
Receive filter testing, i.e.:  
Receive filter input connected to VX input  
Receive filter input disconnected from codec  
Codec testing i.e.:  
Codec analog input connected to VX  
Codec analog input disconnected from transmit filter output  
Codec analog output connected to VR  
VR disconnected from receive filter output  
Table 3 - Control States - Register B  
Powerdown  
Powerdown of the chip is achieved in several ways:  
Internal Control:  
1)  
2)  
Initial Power-up. Initial application of VDD and VEE causes powerdown for a period of 25 clock cycles and  
during this period the chip will accept input only from C2i. The B-register is reset to zero forcing SD0-5 to  
be inactive. Bits 0-5 of Register A (gain adjust bits) are forced to zero and bits 6 and 7 of Register A  
become logic high thus reinforcing the powerdown.  
Loss of C2i. Powerdown is entered 10 to 40 µs after C2i has assumed a continuous logic high (VDD). In  
this condition the chip will be in the same state as in (1) above.  
Note: If C2i stops at a continuous logic low (GNDD), the digital data and status is indeterminate.  
External Control:  
1)  
Register A. Powerdown is controlled by bits 6 and 7 (when both at logic high) of Register A which in turn  
receives its control word input via CSTi, when F1i is low and CA input is either at VEE or GNDD. Power is  
removed from the filters and analog sections of the chip. The analog output buffer at VR will be connected  
to GNDA. DSTo becomes high impedance and the clocks to the majority of the logic are stopped. SD  
outputs are unaffected and may be updated as normal.  
2)  
CSTi Input. With CA at VEE and CSTi held at continuous logic high the chip assumes the same state as  
described in External Control (1) above.  
11  
Zarlink Semiconductor Inc.  
MT8960/61/62/63/64/65/66/67  
Data Sheet  
Message  
Waiting  
-100 V DC  
MT8960/61/64/65  
(With Relay  
Drive)  
From ST-BUS  
From ST-BUS  
Master Clock  
to ST-BUS  
5 V  
CSTi  
DSTi  
C2i  
GNDD  
V
2.5 V  
Ref  
GNDA  
DSTo  
V
R
2/4 Wire  
Telephone  
Line  
0.1µF  
Ring Trip  
Filter  
Converter  
V
F1i  
ANUL  
DD  
Gain  
Section  
Alignment  
V
X
(With Relay  
Drive)  
Register Select  
CA  
SD3  
SD2  
V
SD0  
-5 V  
EE  
SD1  
Ring Feed  
-48 V DC  
-48 V DC  
(With Relay  
Drive)  
90 V  
RMS  
Figure 7 - Typical Use of the Special Drive Outputs  
12  
Zarlink Semiconductor Inc.  
MT8960/61/62/63/64/65/66/67  
Data Sheet  
DSTi  
DSTo  
CDTi  
V
V
SD0  
X
R
Line  
Interface  
&
.
.
.
Monitoring  
Circuitry  
SDn  
Line 1  
Speech  
Switch  
-
MT8960-67  
8980  
8
8
Repeated for Lines  
2 to 255  
Repeated for Lines  
2 to 255  
Controlling  
Micro-  
Processor  
8
8
Control &  
Signalling  
-
8980  
DSTi  
DSTo  
CDTi  
V
V
SD0  
X
R
Line  
Interface  
&
.
.
.
Monitoring  
Circuitry  
SDn  
Line 256  
MT8960-67  
Figure 8 - Example Architecture of a Simple Digital Switching System using the MT8960-67  
13  
Zarlink Semiconductor Inc.  
MT8960/61/62/63/64/65/66/67  
Data Sheet  
Absolute Maximum Ratings*  
Parameter  
Symbol  
Min.  
Max.  
Units  
1
DC Supply Voltages  
V
DD-GNDD  
-0.3  
-6.0  
+6.0  
+0.3  
VDD  
VDD  
V
V
V
V
V
EE-GNDD  
VRef  
2
3
4
Reference Voltage  
Analog Input  
GNDA  
VEE  
VX  
Digital Inputs  
Except CA  
CA  
GNDD-0.3  
V
DD+0.3  
V
V
V
V
EE-0.3  
GNDD-0.3  
VEE-0.3  
VDD+0.3  
VDD+0.3  
VDD+0.3  
VDD+0.3  
20  
5
Output Voltage  
SD0-2  
SD3  
V
SD4-5  
II  
VEE-0.3  
V
6
7
8
Current On Any Pin  
mA  
°C  
mW  
Storage Temperature  
TS  
-55  
+125  
Power Dissipation at 25°C (Derate 16 mW/°C above 75°C)  
PDiss  
500  
* Exceeding these values may cause permanent damage. Functional operation under these conditions is not implied.  
Recommended Operating Conditions - Voltages are with respect to GNDD unless otherwise stated  
Characteristics  
Supply Voltage  
Sym.  
Min.  
Typ.* Max.  
Units  
Comments  
1
2
VDD  
VEE  
4.75  
5.0  
-5.0  
2.5  
0.0  
0.0  
5.25  
V
V
-5.25  
-4.75  
VRef  
VGNDD  
V
Vdc  
Vac  
See Note 1  
Ref. to GNDA  
Voltage On Digital Ground  
Operating Temperature  
-0.1  
-0.4  
+0.1  
+0.4  
Ref. to GNDA 400 ns max.  
duration in 125 µs cycle  
3
4
TO  
0
+70  
°C  
Operating Current  
VDD  
VEE  
IDD  
IEE  
3.0  
3.0  
4.0  
4.0  
mA  
mA  
All digital inputs at VDD  
or GNDD (or VEE for CA)  
VRef  
IRef  
2.0  
µA  
Mean current  
5
Standby Current  
VDD  
IDDO  
0.25  
1.0  
1.0  
mA  
mA  
All digital inputs at VDD  
or GNDD (or VEE for CA)  
VEE  
IEEO  
0.25  
Note 1: Temperature coefficient of VRef should be better than 100 ppm/°C.  
14  
Zarlink Semiconductor Inc.  
MT8960/61/62/63/64/65/66/67  
Data Sheet  
DC Electrical Characteristics - Voltages are with respect to GNDD unless otherwise stated.  
T =0 to 70°C, V =5V±5%, V =-5V±5%, V =2.5V±0.5%, GNDA=GNDD=0V,Clock Frequency =2.048MHz. Outputs unloaded unless  
A
DD  
EE  
Ref  
otherwise specified.  
Characteristics  
Sym. Min. Typ.*  
Max.  
Units  
Test Conditions  
1
2
Input Current  
Except CA  
CA  
II  
10.0  
10.0  
0.8  
µA  
µA  
V
VIN = GNDD to VDD  
VIN = VEE to VDD  
IIC  
D
I
Input Low  
Except CA  
CA  
VIL  
VILC  
VIH  
VIIC  
0.0  
VEE  
2.4  
0.0  
V
+1.2  
G Voltage  
I
V
EE  
3
4
Input High Voltage All Inputs  
5.0  
V
T
A
L
Input Intermediate CA  
Voltage  
0.8  
V
5
6
Output Leakage  
DSTo  
I0Z  
±0.1  
µA  
µA  
Output High Impedance  
Current (Tristate) SD3-5  
10.0  
0.4  
1.0  
Output Low  
Voltage  
DSTo  
VOL  
VOL  
VOH  
VOH  
ROUT  
COUT  
IIN  
V
V
IOUT =1.6 mA  
IOUT =1 mA  
D
I
SD0-2  
DSTo  
SD0-2  
SD3-5  
G
I
7
Output High  
Voltage  
Output Resistance  
4.0  
4.0  
V
IOUT =-100µA  
IOUT =-1mA  
VOUT =+1V  
V
T
A
L
8
9
1.0  
4.0  
2.0  
KΩ  
pF  
µA  
Output Capacitance DSTo  
Output High Impedance  
1
0
Input Current  
VX  
VX  
VX  
10.0  
VEE VIN VCC  
1
1
Input Resistance  
Input Capacitance  
RIN  
CIN  
10.0  
30.0  
+1.0  
MΩ  
pF  
A
N
A
L
1
2
fIN = 0 - 4 kHz  
See Note 2  
1
3
1
4
Input Offset Voltage VX  
VOSIN  
ROUT  
mV  
O
G
Output Resistance  
VR  
100  
100  
1
5
Output Offset Voltage VR  
VOSO  
UT  
mV  
Digital Input= +0  
* Typical figures are at 25°C with nominal ±5V supplies. For design aid only: not guaranteed and not subject to production testing.  
Note 2:  
V
OSIN specifies the DC component of the digitally encoded PCM word.  
15  
Zarlink Semiconductor Inc.  
MT8960/61/62/63/64/65/66/67  
Data Sheet  
AC Electrical Characteristics - Voltages are with respect to GNDD unless otherwise stated.  
TA=0 to 70°C, VDD=5V±5%, VEE=-5V±5%, VRef=2.5V±0.5%, GNDA=GNDD=0V, Clock Frequency=2.048 MHz. Outputs unloaded unless  
otherwise specified.  
Characteristics  
Clock Frequency  
Sym.  
Min.  
Typ.*  
Max  
Units  
Test Conditions  
1
2
C2i  
C2i  
C2i  
C2i  
fC  
2.046 2.048  
2.05  
50  
MHz  
ns  
ns  
%
See Note 3  
Clock Rise Time  
Clock Fall Time  
Clock Duty Cycle  
tCR  
tCF  
3
50  
4
40  
50  
60  
5
Chip Enable Rise Time F1i  
Chip Enable Fall Time F1i  
Chip Enable Setup Time F1i  
Chip Enable Hold Time F1i  
tER  
tEF  
tES  
tEH  
tOR  
tOF  
100  
100  
ns  
ns  
ns  
ns  
ns  
ns  
6
7
50  
25  
See Note 4  
See Note 4  
8
D
I
G
I
T
A
L
9
Output Rise Time  
Output Fall Time  
DSTo  
DSTo  
100  
100  
10  
11  
Propagation Delay Clock DSTo  
to Output Enable  
tPZL  
tPZH  
122  
122  
ns  
ns  
RL=10 Kto VCC  
12  
13  
14  
15  
16  
17  
Propagation Delay  
Clock to Output  
DSTo  
tPLH  
tPHL  
100  
100  
ns  
ns  
CL=100 pF  
Input Rise Time  
Input Fall Time  
Input Setup Time  
Input Hold Time  
CSTi  
DSTi  
tIR  
100  
100  
ns  
ns  
CSTi  
DSTi  
tIF  
100  
100  
ns  
ns  
CSTi  
DSTi  
tISH  
tISL  
25  
0
ns  
ns  
CSTi  
DSTi  
tIH  
60  
60  
ns  
ns  
Propagation Delay  
Clock to SD Output  
SD  
tPCS  
400  
ns  
CL = 100 pF  
CL = 20 pF  
D
I
G
I
18  
19  
20  
SD Output Fall Time  
SD Output Rise Time  
SD  
SD  
tSF  
tSR  
tDL  
200  
400  
122  
ns  
ns  
ns  
T
A
L
Digital Loopback  
Time DSTi to DSTo  
(See Figures 9a, 9b, 9c)  
* Typical figures are at 25°C with nominal ±5V supplies. For design aid only: not guaranteed and not subject to production testing.  
Note 3:  
Note 4:  
The filter characteristics are totally dependent upon the accuracy of the clock frequency providing F1i is synchronized to  
C2i. The A/D and D/A functions are unaffected by changes in clock frequency.  
This gives a 75 ns period, 50 ns before and 25 ns after the 50% point of C2i rising edge, when change in F1i will give an  
undetermined state to the internally synchronized enable signal.  
16  
Zarlink Semiconductor Inc.  
MT8960/61/62/63/64/65/66/67  
Data Sheet  
AC Electrical Characteristics - Transmit (A/D) Path - Voltages are with respect to GNDD unless otherwise stated.  
TA=0 to 70°C, VDD=5V±5%, VEE=-5V±5%, VRef=2.5V±0.5%, GNDA=GNDD=0V, Clock Frequency = 2.048MHz,  
Filter Gain Setting = 0dB. Outputs unloaded unless otherwise specified.  
Typ.  
Characteristics  
Sym.  
Min.  
Max.  
Units  
Test Conditions  
*
1
Analog Input at VX equivalent to  
the overload decision level at the  
codec  
VIN  
Level at codec:  
µ-Law: 3.17 dBm0  
A-Law: 3.14 dBm0  
See Note 6  
4.82  
9
VPP  
VPP  
5.00  
0
2
3
Absolute Gain (0dB setting)  
GAX  
-0.25  
-0.35  
+0.25  
+0.35  
dB  
dB  
0 dBm0 @ 1004 Hz  
Absolute Gain (+1dB to +7dB  
settings)  
from nominal,  
@ 1004 Hz  
4
5
Gain Variation  
With Temp  
GAXT  
GAXS  
GTX1  
0.01  
0.04  
dB  
TA=0°C to 70°C  
With Supplies  
dB/V  
A
N
A
L
Gain Tracking  
Sinusoidal Level:  
+3 to -20 dBm0  
Noise Signal Level:  
-10 to -55 dBm0  
-55 to -60 dBm0  
(See Figure 12) CCITT G712  
(Method 1)  
-0.25  
+0.25  
dB  
O
G
-0.25  
-0.50  
+0.25  
+0.50  
dB  
dB  
CCITT G712  
(Method 2)  
AT&T  
GTX2  
DQX1  
Sinusoidal Level:  
+3 to -40 dBm0  
-40 to -50 dBm0  
-50 to -55 dBm0  
-0.25  
-0.50  
-1.50  
+0.25  
+0.50  
+1.50  
dB  
dB  
dB  
6
Quantization  
Noise Signal Level:  
-3 dBm0  
Distortion  
28.00  
35.60  
33.90  
29.30  
14.20  
dB  
dB  
dB  
dB  
dB  
(See Figure 13) CCITT G712  
(Method 1)  
-6 to -27 dBm0  
-34 dBm0  
-40 dBm0  
-55 dBm0  
CCITT G712  
(Method 2)  
AT&T  
DQX2  
Sinusoidal Input Level:  
0 to -30 dBm0  
-40 dBm0  
35.30  
29.30  
24.30  
dB  
dB  
dB  
-45 dBm0  
7
Idle Channel  
Noise  
C-message  
NCX  
NPX  
NSFX  
18  
-67  
-56  
-46  
dBrnC0 µ-Law Only  
Psophometric  
dBm0p CCITT G712  
8
9
Single Frequency Noise  
dBm0  
dB  
CCITT G712  
Harmonic Distortion  
Input Signal:  
(2nd or 3rd Harmonic)  
0 dBm0 @ 1.02 kHz  
10  
11  
Envelope Delay  
DAX  
DDX  
270  
µs  
@ 1004 Hz  
Envelope Delay 1000-2600 Hz  
60  
µs  
µs  
µs  
Input Signal:  
400-3200 Hz  
Sinewave  
Variation With  
Frequency  
600-3000 Hz  
400-3200 Hz  
150  
250  
at 0 dBm0  
17  
Zarlink Semiconductor Inc.  
MT8960/61/62/63/64/65/66/67  
Data Sheet  
AC Electrical Characteristics - Transmit (A/D) Path - Voltages are with respect to GNDD unless otherwise stated.  
TA=0 to 70°C, VDD=5V±5%, VEE=-5V±5%, VRef=2.5V±0.5%, GNDA=GNDD=0V, Clock Frequency = 2.048MHz,  
Filter Gain Setting = 0dB. Outputs unloaded unless otherwise specified.  
A
N
A
L
Quantization  
Distortion  
CCITT G712  
(Method 2)  
AT&T  
DQX2  
Sinusoidal Input Level:  
0 to -30 dBm0  
-40 dBm0  
35.30  
29.30  
24.30  
dB  
dB  
dB  
(cont’d)  
(See Figure 13)  
-45 dBm0  
O
G
12  
Intermodulation CCITT G712  
IMDX  
1
-55  
-41  
dB  
dB  
50/60 Hz @ -23 dBm0  
and any signal within  
300-3400 Hz at -9  
dBm0  
Distortion  
50/60 Hz  
CCITT G712  
2 tone  
IMDX  
2
740 Hz and 1255 Hz  
@ -4 to -21 dBm0.  
Equal Input Levels  
AT&T  
IMDX  
3
-47  
-49  
dB  
dB  
2nd order products  
3rd order products  
0 dBm0 Input Signal  
4 tone  
IMDX  
4
13  
Gain Relative to 50 Hz  
Gain @ 1004 Hz 60 Hz  
(See Figure 10) 200 Hz  
GRX  
-25  
-30  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
-1.8  
-
0.00  
0.125  
0.125  
0.030  
-
Transmit  
Filter  
300-3000 Hz  
3200 Hz  
3300 Hz  
3400 Hz  
4000 Hz  
4600 Hz  
0.125  
-
Response  
0.275  
-
0.100  
-14  
0.350  
-0.80  
-32  
14  
15  
Crosstalk D/A to A/D  
CTRT  
-70  
dB  
0 dBm0 @ 1.02 kHz  
in D/A  
Power Supply  
Rejection  
VDD  
VEE  
PSS  
R1  
33  
35  
dB  
dB  
Input 50 mVRMS at  
1.02 kHz  
PSS  
R2  
16  
Overload  
Fig.15)  
Distortion  
(See  
Input  
frequency=1.02kHz  
* Typical figures are at 25°C with nominal ±5V supplies. For design aid only: not guaranteed and not subject to production testing  
Note 6:  
0dBm0=1.185 VRMS for the µ-Law codec.  
0dBm0=1.231 VRMS for the A-Law codec.  
18  
Zarlink Semiconductor Inc.  
MT8960/61/62/63/64/65/66/67  
Data Sheet  
AC Electrical Characteristics - Receive (D/A) Path - Voltages are with respect to GNDD unless otherwise stated.  
TA=0 to 70°C, VDD=5V±5%, VEE=-5V±5%, VRef=2.5V±0.5%, GNDA=GNDD=0V, Clock Frequency = 2.048MHz,  
Filter Gain Setting = 0dB. Outputs unloaded unless otherwise specified.  
Characteristics  
Sym.  
Min.  
Typ.* Max.  
Units  
Test Conditions  
1
Analog output at VR  
VOUT  
Level at codec:  
µ-Law: 3.17 dBm0  
A-Law: 3.14 dBm0  
RL=10 KΩ  
equivalent to the overload  
decision level at codec  
4.829  
5.000  
Vpp  
Vpp  
See Note 7  
2
3
Absolute Gain (0dB setting)  
GAR  
-0.25  
-0.35  
+0.25  
+0.35  
dB  
dB  
0 dBm0 @ 1004Hz  
Absolute Attenuation (-1dB  
to -7dB settings)  
From nominal,  
@ 1004Hz  
4
5
Gain Variation  
With Temp.  
GART  
GARS  
GTR1  
0.01  
0.04  
dB  
TA=0°C to 70°C  
With Supplies  
CCITT G712  
dB/V  
Gain Tracking  
Sinusoidal Level:  
+3 to -10 dBm0  
Noise Signal Level:  
-10 to -55 dBm0  
-55 to -60 dBm0  
(See Figure 12) (Method 1)  
-0.25  
+0.25  
dB  
-0.25  
-0.50  
+0.25  
+0.50  
dB  
dB  
CCITT G712  
(Method 2)  
AT & T  
GTR2  
DQR1  
Sinusoidal Level:  
+3 to -40 dBm0  
-40 to -50 dBm0  
-50 to -55 dBm0  
-0.25  
-0.50  
-1.50  
+0.25  
+0.50  
+1.50  
dB  
dB  
dB  
A
N
A
L
6
Quantization  
Distortion  
CCITT G712  
(Method 1)  
Noise Signal Level:  
-3 dBm0  
28.00  
35.60  
33.90  
29.30  
14.30  
dB  
dB  
dB  
dB  
dB  
O
G
(See Fig. 13)  
-6 to -27 dBm0  
-34 dBm0  
-40 dBm0  
-55 dBm0  
DQR2  
Sinusoidal Input Level:  
0 to -30 dBm0  
-40 dBm0  
CCITT G712  
(Method 2)  
AT & T  
36.40  
30.40  
25.40  
dB  
dB  
dB  
-45 dBm0  
7
Idle Channel  
Noise  
C-message  
NCR  
NPR  
12  
-75  
-56  
-46  
dBrnC0 µ-Law Only  
dBm0p CCITT G712  
dBm0 CCITT G712  
Psophometric  
8
9
Single Frequency Noise  
NSFR  
Harmonic Distortion  
dB  
Input Signal 0 dBm0  
(2nd or 3rd Harmonic)  
at 1.02 kHz  
10  
Intermodulation CCITT G712  
IMDR2  
-41  
dB  
Distortion  
2 tone  
AT & T  
4 tone  
IMDR3  
IMDR4  
-47  
-49  
dB  
dB  
2nd order products  
3rd order products  
19  
Zarlink Semiconductor Inc.  
MT8960/61/62/63/64/65/66/67  
Data Sheet  
AC Electrical Characteristics - Receive (D/A) Path - Voltages are with respect to GNDD unless otherwise stated.  
TA=0 to 70°C, VDD=5V±5%, VEE=-5V±5%, VRef=2.5V±0.5%, GNDA=GNDD=0V, Clock Frequency = 2.048MHz,  
Filter Gain Setting = 0dB. Outputs unloaded unless otherwise specified.  
11  
12  
Envelope Delay  
DAR  
DDR  
210  
µs  
@ 1004 Hz  
Envelope Delay 1000-2600 Hz  
Variation with 600-3000 Hz  
90  
µs  
µs  
µs  
Input Signal:  
170  
265  
400 - 3200 Hz digital  
sinewave at 0 dBm0  
Frequency  
400-3200 Hz  
13  
Gain Relative to <200 Hz  
GRR  
0.125  
0.125  
0.125  
0.030  
-0.100  
-14.0  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
0 dBm0 Input Signal  
Gain @ 1004 Hz 200 Hz  
-0.5  
A
N
A
L
(See Figure 11)  
300-3000 Hz  
-0.125  
-0.350  
-0.80  
Receive  
Filter  
3300 Hz  
3400 Hz  
4000 Hz  
4600 Hz  
Response  
O
G
-28.0  
14  
15  
16  
Crosstalk A/D to D/A  
CTTR  
-70  
dB  
0 dBm0 @ 1.02 kHz  
in A/D  
Power Supply  
Rejection  
VDD  
VEE  
PSRR3  
PSRR4  
33  
35  
dB  
dB  
Input 50 mVRMS at  
1.02 kHz  
Overload Distortion  
(See Fig. 15)  
Input frequency=1.02  
kHz  
* Typical figures are at 25°C with nominal ±5V supplies. For design aid only: not guaranteed and not subject to production testing.  
Note 7: 0dBm0=1.185 VRMS for µ-Law codec and 0dBm0=1.231 VRMS for A-Law codec.  
20  
Zarlink Semiconductor Inc.  
MT8960/61/62/63/64/65/66/67  
Data Sheet  
125 µs  
C2i  
INPUT  
F1i  
INTERNAL  
ENABLE  
DSTo  
HIGH IMPEDANCE  
7
7
6
6
5
5
4
4
3
3
2
2
1
1
0
0
7
OUTPUT  
DSTi  
INPUT  
7
7
6
6
5 V  
CA  
(Mode 3)  
0 V  
CSTi  
INPUT  
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
LOAD  
A-REGISTER  
LOAD  
B-REGISTER  
Figure 9a - Timing Diagram - 125 µs Frame Period  
21  
Zarlink Semiconductor Inc.  
MT8960/61/62/63/64/65/66/67  
Data Sheet  
8 CLOCK CYCLES  
(See Note)  
90%  
50%  
10%  
C2i  
Input  
t
t
CF  
CR  
t
t
EF  
ER  
90%  
10%  
F1i  
Input  
t
t
t
t
t
t
EH  
ES  
EH  
ES  
EH  
ES  
DSTo  
high  
impedance  
high-Z  
Output  
t
t
PZL  
PZH  
t
PZL  
PZH  
t
Figure 9b - Timing Diagram - Output Enable  
Note:  
In typical applications, F1i will remain low for 8 cycles of C2i. However, the device will function normally as long as t  
and  
ES  
t
are met at each positive edge of C2i.  
EH  
90%  
C2i  
50%  
10%  
Input  
t
t
CF  
CR  
90%  
50%  
10%  
DSTo  
Output  
t
OR  
t
OF  
t
PLH  
t
PLH  
90%  
50%  
10%  
DSTi, CSTi  
Input  
t
IF  
t
IR  
t
IH  
t
ISL  
t
ISH  
Figure 9c - Timing Diagram - Input/Output  
22  
Zarlink Semiconductor Inc.  
MT8960/61/62/63/64/65/66/67  
Data Sheet  
SCALE B  
SCALE A  
PASSBAND ATTENUATION  
SCALE A SCALE B  
-0.125  
STOPBAND ATTENUATION  
0
-0.125  
0.35  
0.125  
0.35  
(4000-F)  
SIN  
-14  
- 1  
1200  
1
10  
14  
10  
1
(4000-F)  
-18 SIN  
Attenuation  
Relative To  
Attenuation  
At 1 kHz (dB)  
-7/9  
1200  
20  
Note: Above function  
crossover occurs  
at 4000Hz.  
20  
25  
30  
2
2
3
4
30  
32  
3
4
40  
40  
0
5060100  
200  
300  
3000  
3200 3300 3400  
4000  
4600  
5000  
10000  
FREQUENCY (Hz)  
Figure 10 - Attenuation vs Frequency for Transmit (A/D) Filter  
23  
Zarlink Semiconductor Inc.  
MT8960/61/62/63/64/65/66/67  
Data Sheet  
SCALE A  
-0.125  
SCALE B  
SCALE A  
PASSBAND ATTENUATION  
STOPBAND ATTENUATION  
0
1
0.125  
0.35  
(4000-F)  
SIN  
-14  
- 1  
1200  
10  
14  
1
2
3
4
Attenuation  
Relative To  
Attenuation  
At 1 kHz (dB)  
20  
2
3
4
28  
30  
40  
0
100  
200  
300  
3000  
3200 3300 3400  
4000  
4600  
5000 10000  
FREQUENCY (Hz)  
Figure 11 - Attenuation vs Frequency for Receive (D/A) Filter  
24  
Zarlink Semiconductor Inc.  
MT8960/61/62/63/64/65/66/67  
Data Sheet  
5a. CCITT Method 1  
CCITT End-To-End Spec  
+1.0  
+1.0  
+0.5  
+0.25  
0
+0.5  
+0.25  
0
1
2
Channel Spec  
Input Level  
(dBm0)  
-60 -55 -50  
-40  
-30  
-20  
-10  
-10  
0 -3  
-0.25  
-0.5  
-0.25  
-0.5  
-1.0  
-1.0  
Bandlimited White Noise Test Signal  
5b. CCITT Method 2  
Sinusiodal Test Signal  
+1.5  
+1.0  
+0.5  
CCITT End-To-End Spec  
1
Channel Spec  
2
+0.25  
0
Input Level  
(dBm0)  
-60  
-50  
-40  
-30  
-20  
-10  
0 +3  
-0.25  
-0.5  
-1.0  
-1.5  
Sinusoidal Test Signal  
Figure 12 - Variation of Gain With Input Level  
25  
Zarlink Semiconductor Inc.  
MT8960/61/62/63/64/65/66/67  
Data Sheet  
6a. CCITT Method 1  
40  
30  
20  
10  
1
2
Channel Spec  
35.6  
33.9  
33.9  
32.2  
29.3  
28.0  
27.6  
26.3  
CCITT End-To-End  
Spec  
14.3  
12.6  
0
-20  
-10  
-6  
-3  
0
+3  
-60  
-55  
-50  
-40  
-34  
-30 -27  
Input Level (dBm0)  
6b. CCITT Method 2  
40  
1
2
Channel Spec  
D/A  
36.4  
36.4  
35.3  
33.0  
1
Channel Spec  
2
35.3  
A/D  
33.0  
30.4  
30  
20  
10  
0
CCITT  
29.3  
27.0  
End-To-End  
Spec  
25.4  
24.3  
22.0  
-60  
-50  
-40  
-30  
-20  
-10  
0
Input Level (dBm0)  
Figure 13 - Signal to Total Distortion Ratio vs Input Level  
26  
Zarlink Semiconductor Inc.  
MT8960/61/62/63/64/65/66/67  
Data Sheet  
1000  
750  
CCITT  
½
Channel Spec  
(2800Hz)  
500  
370  
250  
125  
0
(600Hz)  
(2600Hz)  
2500  
500  
1000  
1500  
2000  
3000  
Figure 14 - Envelope Delay Variation Frequency  
27  
Zarlink Semiconductor Inc.  
MT8960/61/62/63/64/65/66/67  
Data Sheet  
5
4.5  
4
3
3
4
5
6
7
8
9
Input Level (dBm0)  
*Relative to Fundamental Output power level with +3 dBm0 input signal level at a frequency of 1.02 kHz.  
Figure 15 - Overload Distortion (End-to-End)  
28  
Zarlink Semiconductor Inc.  
For more information about all Zarlink products  
visit our Web Site at  
www.zarlink.com  
Information relating to products and services furnished herein by Zarlink Semiconductor Inc. or its subsidiaries (collectively “Zarlink”) is believed to be reliable.  
However, Zarlink assumes no liability for errors that may appear in this publication, or for liability otherwise arising from the application or use of any such  
information, product or service or for any infringement of patents or other intellectual property rights owned by third parties which may result from such application or  
use. Neither the supply of such information or purchase of product or service conveys any license, either express or implied, under patents or other intellectual  
property rights owned by Zarlink or licensed from third parties by Zarlink, whatsoever. Purchasers of products are also hereby notified that the use of product in  
certain ways or in combination with Zarlink, or non-Zarlink furnished goods or services may infringe patents or other intellectual property rights owned by Zarlink.  
This publication is issued to provide information only and (unless agreed by Zarlink in writing) may not be used, applied or reproduced for any purpose nor form part  
of any order or contract nor to be regarded as a representation relating to the products or services concerned. The products, their specifications, services and other  
information appearing in this publication are subject to change by Zarlink without notice. No warranty or guarantee express or implied is made regarding the  
capability, performance or suitability of any product or service. Information concerning possible methods of use is provided as a guide only and does not constitute  
any guarantee that such methods of use will be satisfactory in a specific piece of equipment. It is the user’s responsibility to fully determine the performance and  
suitability of any equipment using such information and to ensure that any publication or data used is up to date and has not been superseded. Manufacturing does  
not necessarily include testing of all functions or parameters. These products are not suitable for use in any medical products whose failure to perform may result in  
significant injury or death to the user. All products and materials are sold and services provided subject to Zarlink’s conditions of sale which are available on request.  
Purchase of Zarlink’s I2C components conveys a licence under the Philips I2C Patent rights to use these components in and I2C System, provided that the system  
conforms to the I2C Standard Specification as defined by Philips.  
Zarlink, ZL and the Zarlink Semiconductor logo are trademarks of Zarlink Semiconductor Inc.  
Copyright Zarlink Semiconductor Inc. All Rights Reserved.  
TECHNICAL DOCUMENTATION - NOT FOR RESALE  

相关型号:

MT8963ASR1

PCM Codec, A-Law, 1-Func, CMOS, PDSO20, 0.300 INCH, LEAD FREE, MS-013AC, SOIC-20
MICROSEMI

MT8963AY

PCM Codec, A-Law, 1-Func, CMOS, PQCC24,
ZARLINK

MT8963AY

IC,PCM CODEC,SINGLE,CMOS,LLCC,24PIN,PLASTIC
MICROSEMI

MT8964

Integrated PCM Filter Codec
ZARLINK

MT8964

Integrated PCM Filter Codec
MITEL

MT8964AC

Integrated PCM Filter Codec
MITEL

MT8964AE

Integrated PCM Filter Codec
MITEL

MT8964AE1

PCM Codec, MU-Law, 1-Func, CMOS, PDIP18, LEAD FREE, PLASTIC, MS-001AC, DIP-18
MICROSEMI

MT8965

Integrated PCM Filter Codec
ZARLINK

MT8965

Integrated PCM Filter Codec
MITEL

MT8965AC

Integrated PCM Filter Codec
MITEL

MT8965AE

Integrated PCM Filter Codec
ZARLINK