LE7920-1JCT [ZARLINK]

Analog Transmission Interface;
LE7920-1JCT
型号: LE7920-1JCT
厂家: ZARLINK SEMICONDUCTOR INC    ZARLINK SEMICONDUCTOR INC
描述:

Analog Transmission Interface

文件: 总19页 (文件大小:630K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Le7920  
Subscriber Line Interface Circuit  
VE580 Series  
The Le7920 Subscriber Line Interface Circuit implements the  
basic telephone line interface functions, and enables the  
design of low cost, high performance, POTS line interface  
cards.  
DISTINCTIVE CHARACTERISTICS  
„ Control states: Active, Ringing, Standby,  
„ Programmable loop-detect threshold  
„ Programmable ring-trip detect threshold  
„ No –5 V supply required  
„ Current Gain = 500  
„ On-chip Thermal Management (TMG) feature  
and Disconnect  
„ Low standby power (35 mW)  
„ –19 V to –58 V battery operation  
„ On-hook transmission  
„ Two-wire impedance set by single external  
„ Four on-chip relay drivers and relay snubbers, 1  
impedance  
ringing and 3 general purpose (32 PLCC)  
„ Programmable constant-current feed  
BLOCK DIAGRAM  
TMG  
Relay  
RYOUT3  
Driver  
Relay  
RYOUT2  
Driver  
Relay  
RYOUT1  
Driver  
Ring Relay  
Driver  
RINGOUT  
A(TIP)  
D1  
D2  
D3  
C1  
C2  
HPA  
Input Decoder  
and Control  
Two-Wire  
DET  
Interface  
HPB  
VTX  
RSN  
Signal  
B(RING)  
Transmission  
Off-Hook  
Detector  
RD  
RDC  
CAS  
Power-Feed  
Controller  
DA  
DB  
Ring-Trip  
Detector  
VBAT  
BGND  
VCC VBREF AGND/DGND  
Document ID# 080146 Date:  
Sep 19, 2007  
2
Rev:  
J
Version:  
Distribution:  
Public Document  
Le7920  
Data Sheet  
TABLE OF CONTENTS  
Ordering Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3  
Standard Products. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3  
Connection Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4  
Top View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4  
Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6  
Operating Ranges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8  
Electrical Characteristics (continued). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9  
Electrical Characteristics (continued). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10  
Relay Driver Schematics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10  
DC Feed Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12  
Test Circuits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14  
Test Circuits (continued) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15  
Test Circuits (continued) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16  
Physical Dimensions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17  
32-Pin PLCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17  
Revision Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18  
Revision C to Revision D. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18  
Revision D to Revision E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18  
Revision E to Revision F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18  
Revision F to Revision G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18  
Revision G to Revision H. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18  
Revision H to Revision I. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18  
Revision I1 to Revision J1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18  
Revision J1 to Revision J2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18  
2
Zarlink Semiconductor Inc.  
Le7920  
Data Sheet  
ORDERING INFORMATION  
Standard Products  
Zarlink standard products are available in several packages and operating ranges. The order number (Valid Combination) is  
formed by a combination of the elements below.  
Le7920  
J
C
C = Commercial (0°C to 70°C)*  
PLCC package  
PACKAGING MATERIAL  
Blank= Standard package  
D= Green package (see note)  
PERFORMANCE GRADE  
Blank = Standard specification  
–1 = 53 dB Longitudinal Balance  
–2 = 63 dB Longitudinal Balance  
DEVICE NUMBER/DESCRIPTION  
Le7920  
Subscriber Line Interface Circuit  
Note: Green package meets RoHS Directive 2002/95/EC of the European  
Council to minimize the environmental impact of electrical equipment.  
Valid Combinations  
Valid Combinations list configurations planned to  
be supported in volume for this device. Consult  
the local Zarlink sales office to confirm availabil-  
ity of specific valid combinations, to check on  
newly released combinations, and to obtain addi-  
tional data on Zarlink’s standard military–grade  
products.  
Valid Combinations  
–1  
JC  
Le7920*  
–2  
DJC  
*Zarlink reserves the right to fulfill all orders for this device with parts marked with the "Am" part number prefix, until such time  
as all inventory bearing this mark has been depleted. It should be noted that parts marked with either the "Am" or the "Le" part  
number prefix are equivalent devices in terms of form, fit, and function. The only difference between the two is in the part number  
prefix appearing on the topside mark.  
3
Zarlink Semiconductor Inc.  
Le7920  
Data Sheet  
CONNECTION DIAGRAM  
Top View  
4
3
2
1
32 31 30  
RYOUT2  
RYOUT3  
TMG  
VBAT  
D2  
DA  
29  
28  
27  
26  
25  
24  
23  
22  
21  
5
6
RD  
32-Pin  
PLCC  
HPB  
HPA  
NC  
7
8
9
VTX  
VBREF  
RSN  
AGND  
D1  
10  
11  
12  
13  
NC  
NC  
DET  
14 15 16 17 18 19 20  
Notes:  
1. Pin 1 is marked for orientation.  
2. NC = No Connect  
4
Zarlink Semiconductor Inc.  
Le7920  
Data Sheet  
PIN DESCRIPTIONS  
Pin Name  
AGND/DGND  
A(TIP)  
Type  
Description  
Ground  
Output  
Ground  
Output  
Inputs  
Analog and Digital ground.  
Output of A(TIP) power amplifier.  
Battery (power) ground.  
BGND  
B(RING)  
C2–C1  
Output of B(RING) power amplifier.  
Decoder. TTL compatible. C2 is MSB and C1 is LSB.  
Anti-Saturation pin for capacitor to filter reference voltage when operating in anti-  
saturation region.  
CAS  
Capacitor  
Relay Driver Control. D3–D1 control the relay drivers RYOUT1, RYOUT2, and RYOUT3.  
Logic Low on D1 activates the RYOUT1 relay driver. Logic Low on D2 activates the  
RYOUT2 relay driver. Logic Low on D3 activates the RYOUT3 relay driver. TTL  
compatible.  
D3–D1  
Input  
DA  
DB  
Input  
Input  
Ring-trip negative. Negative input to ring-trip comparator.  
Ring-trip positive. Positive input to ring-trip comparator.  
Switchhook detector. Logic Low indicates that selected detector is tripped. Logic inputs  
C2–C1, E1, and E0 select the detector. Open-collector with a built-in 15 kpull-up  
resistor.  
DET  
Output  
HPA  
HPB  
NC  
Capacitor  
Capacitor  
High-Pass Filter Capacitor. A(TIP) side of high-pass filter capacitor.  
High-Pass Filter Capacitor. B(RING) side of high-pass filter capacitor.  
No Connect. Pin not internally connected.  
RD  
Resistor  
Detect resistor. Detector threshold set and filter pin.  
DC feed resistor. Connection point for the DC feed current programming network. The  
other end of the network connects to the receiver summing node (RSN).  
RDC  
Resistor  
Output  
RINGOUT  
Ring Relay Driver. Open-collector driver with emitter internally connected to BGND.  
Receive Summing Node. The metallic current (both AC and DC) between A(TIP) and  
B(RING) is equal to 500 times the current into this pin. The networks that program  
receive gain, two-wire impedance, and feed resistance all connect to this node.  
RSN  
Input  
RYOUT1  
RYOUT2  
Output  
Output  
Relay/Switch Driver. Open-collector driver with emitter internally connected to BGND.  
Relay/Switch Driver. Open-collector driver with emitter internally connected to BGND  
(PLCC only).  
Relay/Switch Driver. Open-collector driver with emitter internally connected to BGND  
(PLCC only).  
RYOUT3  
TMG  
Output  
Thermal Management. External resistor connects between this pin and VBAT to offload  
power from SLIC.  
VBAT  
VBREF  
VCC  
Battery  
Battery supply and connection to substrate.  
This is an Zarlink reserved pin and must always be connected to the VBAT pin.  
+5 V power supply.  
Power  
Transmit Audio. This output is a 0.50 gain version of the A(TIP) and B(RING) metallic  
voltage. VTX also sources the two-wire input impedance programming network.  
VTX  
Output  
5
Zarlink Semiconductor Inc.  
Le7920  
Data Sheet  
ABSOLUTE MAXIMUM RATINGS  
Storage temperature......................... –55°C to +150°C  
V
with respect to AGND/DGND ..... –0.4 V to +7.0 V  
CC  
V
with respect to AGND/DGND:  
BAT  
Continuous..................................... +0.4 V to –70 V  
10 ms ............................................. +0.4 V to –75 V  
BGND with respect to AGND/DGND........ +3 V to –3 V  
A(TIP) or B(RING) to BGND:  
Continuous ........................................ V  
to +1 V  
BAT  
10 ms (f = 0.1 Hz) ............................. –70 V to +5 V  
1 µs (f = 0.1 Hz) ................................ –80 V to +8 V  
250 ns (f = 0.1 Hz) .......................... –90 V to +12 V  
Current from A(TIP) or B(RING).....................±150 mA  
RINGOUT/RYOUT1,2,3 current.........................50 mA  
RINGOUT/RYOUT1,2,3 voltage ........... BGND to +7 V  
RINGOUT/RYOUT1,2,3 transient....... BGND to +10 V  
DA and DB inputs  
Voltage on ring-trip inputs.....................V  
to 0 V  
BAT  
Current into ring-trip inputs .........................±10 mA  
C2–C1 and D3–D1  
Input voltage .........................–0.4 V to V + 0.4 V  
CC  
Maximum power dissipation, continuous,  
T = 70°C, No heat sink (See note)  
A
In 32-pin PLCC package................................1.7 W  
Thermal Data:................................................................θ  
JA  
In 32-pin PLCC package.......................43°C/W typ  
ESD immunity/pin (HBM) ..................................1500 V  
Note: Thermal limiting circuitry on chip will shut down the circuit at a junction temperature of about 165°C. Continuous operation  
above 145°C junction temperature may degrade device reliability.  
Stresses above those listed under "Absolute Maximum Ratings" can cause permanent device failure. Functionality at or above  
these limits is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability.  
6
Zarlink Semiconductor Inc.  
Le7920  
Data Sheet  
OPERATING RANGES  
The operating ranges define those limits between which the functionality of the device is guaranteed.  
Commercial (C) Devices  
Ambient temperature .............................0°C to +70°C*  
V
..................................................... 4.75 V to 5.25 V  
CC  
V
..................................................... –19 V to –58 V  
BAT  
AGND/DGND ..........................................................0 V  
BGND with respect to  
AGND/DGND ....................... –100 mV to +100 mV  
Load resistance on VTX to ground ..............20 kmin  
* Zarlink guarantees the performance of this device over commercial (0 to 70º C) and industrial (-40 to 85ºC) temperature ranges  
by conducting electrical characterization over each range and by conducting a production test with single insertion coupled to  
periodic sampling. These characterization and test procedures comply with section 4.6.2 of Bellcore GR-357-CORE Component  
Reliability Assurance Requirements for Telecommunications Equipment.  
Package Assembly  
The standard (non-green) package devices are assembled with industry-standard mold compounds, and the leads possess a tin/  
lead (Sn/Pb) plating. These packages are compatible with conventional SnPb eutectic solder board assembly processes. The  
peak soldering temperature should not exceed 225°C during printed circuit board assembly.  
The green package devices are assembled with enhanced environmental compatible lead (Pb), halogen, and antimony-free  
materials. The leads possess a matte-tin plating which is compatible with conventional board assembly processes or newer lead-  
free board assembly processes. The peak soldering temperature should not exceed 245°C during printed circuit board assembly.  
Refer to IPC/JEDEC J-Std-020B Table 5-2 for the recommended solder reflow temperature profile  
7
Zarlink Semiconductor Inc.  
Le7920  
Data Sheet  
ELECTRICAL CHARACTERISTICS  
Description  
Transmission Performance  
2-wire return loss  
Analog output (VTX) impedance  
Analog (VTX) output offset voltage  
Overload level, 2-wire and 4-wire  
Overload level  
Test Conditions (See Note 1)  
Min  
Typ  
Max  
Unit  
Note  
200 Hz to 3.4 kHz  
26  
dB  
1, 4  
4
3
20  
+50  
–50  
2.5  
0.77  
mV  
Vpk  
Vrms  
Active state  
On hook, RLAC = 600 Ω  
2a  
2b  
THD, Total Harmonic Distortion  
0 dBm  
+7 dBm  
–64  
–55  
–50  
–40  
dB  
5
THD, On hook  
0 dBm, RLAC = 600 Ω  
–36  
Longitudinal Capability (See Test Circuit D)  
Longitudinal to  
metallic L-T, L-4  
balance  
200 Hz to 1 kHz  
0°C to +70°C  
0°C to +70°C  
–40°C to +85°C  
–40°C to +85°C  
–1*  
–2  
–1  
–2  
52  
63  
50  
58  
4
4
dB  
1 kHz to 3.4 kHz  
0°C to +70°C  
0°C to +70°C  
–40°C to +85°C  
–40°C to +85°C  
–1*  
–2  
–1  
–2  
52  
58  
50  
53  
4
4
Longitudinal signal generation 4-L  
Longitudinal current per pin (A or B)  
Longitudinal impedance at A or B  
Idle Channel Noise  
200 Hz to 3.4 kHz  
Active state  
0 to 100 Hz  
40  
20  
27  
25  
35  
mArms  
/pin  
8
C-message weighted noise  
RL = 600 Ω  
0°C to +70°C  
7
+10  
+12  
–80  
–78  
dBrnc  
dBmp  
RL = 600 Ω  
–40°C to +85°C  
4
Psophometric weighted noise  
RL = 600 Ω  
RL = 600 Ω  
0°C to +70°C  
–40°C to +85°C  
–83  
Insertion Loss and Balance Return Signal (See Test Circuits A and B)  
Gain accuracy  
4- to 2-wire  
Gain accuracy  
2- to 4-wire, 4- to 4-wire  
Gain accuracy, 4- to 2-wire  
Gain accuracy, 2- to 4-wire, 4- to 4-wire On hook  
Gain accuracy over frequency  
0 dBm, 1 kHz  
0 dBm, 1 kHz  
On hook  
–0.20  
–6.22  
0
+0.20  
–5.82  
–6.02  
–0.35  
–6.37  
–0.15  
+0.35  
–5.67  
+0.15  
4
–6.02  
dB  
µs  
300 to 3.4 kHz  
relative to 1 kHz  
Gain tracking  
+3 dBm to –55 dBm  
relative to 0 dBm  
0 dBm to –37 dBm  
+3 dBm to 0 dBm  
–0.15  
+0.15  
Gain tracking  
On hook  
–0.15  
–0.35  
+0.15  
+0.35  
Group delay  
0 dBm, 1 kHz  
4
4, 7  
Note:  
* Performance Grade  
8
Zarlink Semiconductor Inc.  
Le7920  
Data Sheet  
ELECTRICAL CHARACTERISTICS (continued)  
Description  
Line Characteristics  
Test Conditions (See Note 1)  
Min  
Typ  
Max  
Unit  
Note  
IL, Short Loops, Active state  
IL, Long Loops, Active state  
RLDC = 600 Ω  
RLDC = 1930 , BAT = –42.75 V,  
TA = 25°C  
20  
18  
23  
19  
26  
mA  
IL, Accuracy, Standby state  
0.7IL  
18  
IL  
1.3IL  
BAT – 3 V  
------------------------------  
RL + 400  
IL=  
TA= 25°C  
Constant-current region  
RL = 0  
Active, A and B to ground  
VBAT = –52 V  
30  
IL, Loop current, Disconnect state  
ILLIM  
VAB, Open Circuit voltage  
100  
120  
µA  
mA  
V
85  
–44  
–42.75  
Power Supply Rejection Ratio (VRIPPLE = 100 mVrms), Active Normal State  
VCC  
VBAT  
50 Hz to 3.4 kHz  
50 Hz to 3.4 kHz  
CAS pin to VBAT  
30  
28  
85  
40  
50  
170  
dB  
5
4
Effective internal resistance  
Power Dissipation  
On hook, Disconnect state  
On hook, Standby state  
On hook, Active state  
Off hook, Standby state  
Off hook, Active state  
Supply Currents, Battery = –48V  
255  
kΩ  
25  
35  
125  
860  
450  
70  
100  
270  
1200  
800  
mW  
RL = 600 Ω  
RL = 300 , RTMG = 2350 Ω  
ICC  
,
Disconnect state  
1.7  
2.2  
6.3  
4.0  
4.0  
8.5  
On-hook VCC supply current  
Standby state  
Active state, BAT = –48 V  
mA  
IBAT  
,
Disconnect state  
0.25  
0.55  
2.8  
1.0  
1.5  
4.8  
On-hook VBAT supply current  
Standby state  
Active state, BAT = –48 V  
RFI Rejection  
RFI rejection  
Receive Summing Node (RSN)  
RSN DC voltage  
100 kHz to 30 MHz, (See Figure F)  
1.0  
20  
mVrms  
4
4
IRSN = 0 mA  
200 Hz to 3.4 kHz  
0
10  
V
RSN impedance  
Logic Inputs (C2–C1 and D3–D1)  
VIH, Input High voltage  
VIL, Input Low voltage  
IIH, Input High current  
IIL, Input Low current  
Logic Output (DET)  
VOL, Output Low voltage  
VOH, Output High voltage  
Ring-Trip Detector Input (DA, DB)  
Bias current  
2.0  
V
0.8  
40  
–75  
–400  
µA  
IOUT = 0.3 mA, 15 kto VCC  
IOUT = –0.1 mA, 15 kto VCC  
0.40  
+50  
V
2.4  
–500  
–50  
–50  
0
nA  
mV  
Offset voltage  
Source resistance = 2 MΩ  
6
9
Zarlink Semiconductor Inc.  
Le7920  
Data Sheet  
ELECTRICAL CHARACTERISTICS (continued)  
Description  
Loop Detector  
Test Conditions (See Note 1)  
Min  
Typ  
Max  
Unit  
Note  
On threshold  
Off threshold  
Hysteresis  
RD = 35.4 kΩ  
RD = 35.4 kΩ  
RD = 35.4 kΩ  
11.5  
9.4  
0
17.3  
14.1  
4.4  
mA  
Relay Driver Output (RINGOUT, RYOUT1, RYOUT2, RYOUT3)  
On voltage  
Off leakage  
Zener breakover  
Zener On voltage  
IOL = 40 mA  
VOH = +5 V  
IZ = 100 µA  
IZ = 30 mA  
+0.3  
+0.7  
100  
V
µA  
6
7.2  
10  
V
RELAY DRIVER SCHEMATICS  
RINGOUT  
RYOUT1, RYOUT2, RYOUT3  
BGND  
BGND  
Notes:  
1. Unless otherwise noted, test conditions are BAT = –52 V, V  
= +5 V, R = 600 , R  
= R  
DC2  
= 27.17 k, R  
= 2350 ,  
CC  
= 0.1 µF, C = 0.33 µF, D1 = 1N400x, two-wire AC input impedance is a 600 Ω  
CAS  
L
DC1  
TMG  
R
= 35.4 k, no fuse resistors, C  
= 0.22 µF, C  
D
HP  
DC  
resistance synthesized by the programming network shown below.  
VTX  
RT1 = 75 kΩ  
CT1 = 120 pF  
RT2 = 75 kΩ  
RSN  
RRX = 150 kΩ  
VRX  
2. a. Overload level is defined when THD = 1%.  
b. Overload level is defined when THD = 1.5%.  
3. Balance return signal is the signal generated at V by V . This specification assumes that the two-wire, AC-load impedance matches  
TX RX  
the programmed impedance.  
4. Not tested in production. This parameter is guaranteed by characterization or correlation to other tests.  
5. This parameter is tested at 1 kHz in production. Performance at other frequencies is guaranteed by characterization.  
6. Tested with 0 source impedance. 2 Mis specified for system design only.  
7. Group delay can be greatly reduced by using a ZT network such as that shown in Note 1. The network reduces the group delay to less than  
2 µs and increases 2WRL. The effect of group delay on linecard performance also may be compensated for by synthesizing complex  
impedance with the QSLAC™ or DSLAC™ device.  
8. Minimum current level guaranteed not to cause a false loop detect.  
10  
Zarlink Semiconductor Inc.  
Le7920  
Data Sheet  
Table 1. SLIC Decoding  
State  
C2  
C1  
0
Two-Wire Status  
DET Output  
Ring trip  
0
1
2
3
0
0
1
1
Disconnect  
Ringing  
Active  
1
Ring trip  
0
Loop detector  
Loop detector  
1
Standby  
Table 2. User-Programmable Components  
ZT is connected between the VTX and RSN pins. The fuse  
ZT = 250(Z2WIN – 2RF)  
resistors are RF, and Z2WIN is the desired 2-wire AC input  
impedance. When computing ZT, the internal current amplifier  
pole and any external stray capacitance between VTX and RSN  
must be taken into account.  
ZL  
G42L  
500ZT  
ZT + 250(ZL + 2RF)  
ZRX is connected from VRX to RSN. ZT is defined above, and  
G42L is the desired receive gain.  
------------  
---------------------------------------------------  
ZRX  
=
1250  
R
DC1 + RDC2 = ---------------  
ILOOP  
RDC1, RDC2, and CDC form the network connected to the RDC  
pin. RDC1 and RDC2 are approximately equal. ILOOP is the  
desired loop current in the constant-current region.  
R
R
DC1 + RDC2  
DC1 RDC2  
----------------------------------  
CDC = 1.5 ms •  
RD and CD form the network connected from RD to AGND/  
DGND and IT is the threshold current between on hook and  
off hook.  
510  
415  
0.5 ms  
RD  
--------  
IT  
--------  
IT  
RDON  
=
, RDOFF  
=
, CD = ----------------  
1
CCAS = ------------------------------  
CCAS is the regulator filter capacitor and fc is the desired filter  
cut-off frequency.  
5
3.4 10 πfc  
VBAT – 3 V  
ISTANDBY = ---------------------------------  
Standby loop current (resistive region).  
400 + RL  
Thermal Management Equations (Normal Active and Tip Open States)  
VBAT – 6 V  
RTMG is connected from TMG to VBAT and saves power within  
the SLIC in Active and Disconnect state constant-currents only.  
RTMG --------------------------------- – 70 Ω  
ILOOP  
2
( VBAT – 6 V – (IL RL))  
------------------------------------------------------------------------  
PRTMG  
=
RTMG  
Power dissipated in the TMG resistor, RTMG, during Active and  
Disconnect states.  
2
(RTMG + 70 Ω)  
Power dissipated in the SLIC while in Active and Disconnect  
states.  
PSLIC = VBAT IL PRTMG RL(IL)2 + 0.12 W  
11  
Zarlink Semiconductor Inc.  
Le7920  
Data Sheet  
DC FEED CHARACTERISTICS  
60  
3
2
VAB  
(volts)  
1
0
30  
IL (mA)  
RDC = RDC1 + RDC2 = 54.34 kΩ  
BAT = –48 V  
Notes:  
1250  
-----------  
1. VAB = ILRL' =  
RL' , where RL' = RL + 2RF  
RDC  
RDC  
L----------  
300  
2. VAB = 0.857( VBAT + 3.3) I  
3. VAB = 0.857( VBAT + 1.2) I  
RDC  
L----------  
300  
a. Load Line (Typical)  
12  
Zarlink Semiconductor Inc.  
Le7920  
Data Sheet  
A
a
b
RSN  
RDC  
R
I
SLIC  
L
L
RDC1  
CDC  
RDC2  
B
Feed current programmed by RDC1 and RDC2  
b. Feed Programming  
Figure 1. DC Feed Characteristics  
13  
Zarlink Semiconductor Inc.  
Le7920  
Data Sheet  
TEST CIRCUITS  
A(TIP)  
VTX  
RL  
2
SLIC  
VAB  
VL  
RT  
RRX  
AGND  
RL  
2
RSN  
B(RING)  
I
L2-4 = 20 log (VTX / VAB  
)
A. Two- to Four-Wire Insertion Loss  
A(TIP)  
VTX  
SLIC  
RT  
RRX  
VAB  
RL  
AGND  
RSN  
B(RING)  
VRX  
IL4-2 = 20 log (VAB / VRX  
)
)
BRS = 20 log (VTX / VRX  
B. Four- to Two-Wire Insertion Loss and Balance Return Signal  
1
A(TIP)  
SLIC  
VTX  
<< RL  
S1  
ωC  
RL  
2
C
VL  
RT  
VAB  
AGND  
RL  
VL  
RRX  
S2  
2
RSN  
B(RING)  
VRX  
S2 Open, S1 Closed  
L-T Long. Bal. = 20 log (VAB / VL)  
L-4 Long. Bal. = 20 log (VTX / VL)  
S2 Closed, S1 Open  
4-L Long. Sig. Gen. = 20 log (VL / VRX  
)
C. Longitudinal Balance  
14  
Zarlink Semiconductor Inc.  
Le7920  
Data Sheet  
TEST CIRCUITS (continued)  
ZD  
A(TIP)  
VTX  
RT1  
R
SLIC  
VS  
VM  
AGND  
RSN  
R
ZIN  
CT1  
RT2  
B(RING)  
Z : The desired impedance;  
D
RRX  
e.g., the characteristic impedance of the line  
Return loss = –20 log (2 V / V )  
M
S
D. Two-Wire Return Loss Test Circuit  
VCC  
6.2 kΩ  
A(TIP)  
DET  
15 pF  
RL = 600 Ω  
B(RING)  
E1  
E. Loop-Detector Switching  
C1  
L1  
200 Ω  
200 Ω  
50 Ω  
A
B
RF1  
CAX  
33 nF  
RF2  
HF  
50 Ω  
CBX  
33 nF  
GEN  
VTX  
C2  
L2  
50 Ω  
SLIC  
under test  
1.5 Vrms  
80% Amplitude  
Modulated  
100 kHz to 30 MHz  
F. RFI Test Circuit  
15  
Zarlink Semiconductor Inc.  
Le7920  
Data Sheet  
TEST CIRCUITS (continued)  
+5 V  
VCC  
DA  
DB  
RD  
CD  
RD  
2.2 nF  
A(TIP)  
VTX  
VTX  
A(TIP)  
HPA  
RRX  
RT  
CHP  
VRX  
RSN  
RDC  
HPB  
B(RING)  
B(RING)  
2.2 nF  
RDC2  
RDC1  
CDC  
RINGOUT  
RYOUT1  
RYOUT3  
RYOUT3  
AGND/  
DGND  
D3  
D2  
D1  
BATTERY  
GROUND  
BGND  
C2  
C1  
VBREF  
VBAT  
BAT  
ANALOG  
GROUND  
D1  
DET  
CAS  
TMG  
RTMG  
DIGITAL  
GROUND  
CCAS  
G. Le7920 Test Circuit  
16  
Zarlink Semiconductor Inc.  
Le7920  
Data Sheet  
PHYSICAL DIMENSIONS  
32-Pin PLCC  
NOTES:  
1
2
3
Dimensioning and tolerancing conform to ASME Y14,5M-1994.  
32-Pin PLCC  
JEDEC # MS-016  
To be measured at seating plan - C - contact point.  
Min  
Nom  
--  
Max  
0.140  
0.095  
0.495  
0.453  
Symbol  
A
0.125  
0.075  
0.485  
0.447  
Dimensions “D1” and “E1” do not include mold protrusion.  
Allowable mold protrusion is 0.010 inch per side. Dimensions  
“D” and “E” include mold mismatch and determined at the  
parting line; that is “D1” and “E1” are measured at the extreme  
material condition at the upper or lower parting line.  
A1  
D
0.090  
0.490  
0.450  
0.205 REF  
0.590  
0.550  
0.255 REF  
--  
D1  
D2  
E
0.585  
0.547  
0.595  
0.553  
4
5
Exact shape of this feature is optional.  
E1  
E2  
Ԧ
Details of pin 1 identifier are optional but must be located  
within the zone indicated.  
0 deg  
10 deg  
6
7
8
Sum of DAM bar protrusions to be 0.007 max per lead.  
Controlling dimension : Inch.  
Reference document : JEDEC MS-016  
32-Pin PLCC  
Note:  
Packages may have mold tooling markings on the surface. These markings have no impact on the form, fit or function of the  
device. Markings will vary with the mold tool used in manufacturing.  
17  
Zarlink Semiconductor Inc.  
Le7920  
Data Sheet  
REVISION SUMMARY  
Revision C to Revision D  
Minor changes were made to the datasheet style and format to conform to Zarlink standards.  
Revision D to Revision E  
Absolute Maximum Ratings: Added ESD immunity specification.  
Revision E to Revision F  
Added the 28-pin SOIC connection diagram and the SC option to the ordering information.  
Revision F to Revision G  
The physical dimension (PL032) was added to the Physical Dimension section.  
Revision G to Revision H  
Deleted the plastic DIP package and references to it.  
Updated the Pin Description table to correct inconsistencies.  
Revision H to Revision I  
Updated device name from "Am7920" to "Le7920" throughout document.  
Absolute Maximum Ratings: Notes updated to standard.  
Operating Ranges: Temperature statement updated to standard.  
Updated "Sales Office Listing."  
Updated physical dimension drawings.  
Revision I1 to Revision J1  
Added green package OPN to Ordering Information, on page 3  
Added Package Assembly, on page 7  
Updated 32-pin PLCC drawing in Physical Dimensions, on page 17  
Removed SOIC package information  
Revision J1 to Revision J2  
Enhanced format of package drawing in Physical Dimensions, on page 17  
Added new headers/footers due to Zarlink purchase of Legerity on August 3, 2007  
18  
Zarlink Semiconductor Inc.  
For more information about all Zarlink products  
visit our Web Site at  
www.zarlink.com  
Information relating to products and services furnished herein by Zarlink Semiconductor Inc. or its subsidiaries (collectively “Zarlink”) is believed to be reliable.  
However, Zarlink assumes no liability for errors that may appear in this publication, or for liability otherwise arising from the application or use of any such  
information, product or service or for any infringement of patents or other intellectual property rights owned by third parties which may result from such application or  
use. Neither the supply of such information or purchase of product or service conveys any license, either express or implied, under patents or other intellectual  
property rights owned by Zarlink or licensed from third parties by Zarlink, whatsoever. Purchasers of products are also hereby notified that the use of product in  
certain ways or in combination with Zarlink, or non-Zarlink furnished goods or services may infringe patents or other intellectual property rights owned by Zarlink.  
This publication is issued to provide information only and (unless agreed by Zarlink in writing) may not be used, applied or reproduced for any purpose nor form part  
of any order or contract nor to be regarded as a representation relating to the products or services concerned. The products, their specifications, services and other  
information appearing in this publication are subject to change by Zarlink without notice. No warranty or guarantee express or implied is made regarding the  
capability, performance or suitability of any product or service. Information concerning possible methods of use is provided as a guide only and does not constitute  
any guarantee that such methods of use will be satisfactory in a specific piece of equipment. It is the user’s responsibility to fully determine the performance and  
suitability of any equipment using such information and to ensure that any publication or data used is up to date and has not been superseded. Manufacturing does  
not necessarily include testing of all functions or parameters. These products are not suitable for use in any medical products whose failure to perform may result in  
significant injury or death to the user. All products and materials are sold and services provided subject to Zarlink’s conditions of sale which are available on request.  
Purchase of Zarlink’s I2C components conveys a license under the Philips I2C Patent rights to use these components in an I2C System, provided that the system  
conforms to the I2C Standard Specification as defined by Philips.  
Zarlink, ZL, the Zarlink Semiconductor logo and the Legerity logo and combinations thereof, VoiceEdge, VoicePort, SLAC, ISLIC, ISLAC and VoicePath are  
trademarks of Zarlink Semiconductor Inc.  
TECHNICAL DOCUMENTATION - NOT FOR RESALE  

相关型号:

LE7920-2DJC

SLIC, 2-4 Conversion, PQCC32, GREEN, PLASTIC, MS-016, LCC-32
ZARLINK

LE7920-2DJC

暂无描述
MICROSEMI

LE7920-2JC

SLIC, 2-4 Conversion, PQCC32, PLASTIC, MS-016, LCC-32
ZARLINK

LE7920-2JC

SLIC, 2-4 Conversion, PQCC32, PLASTIC, MS-016, LCC-32
MICROSEMI

LE792288DGC

PCM Codec, A/MU-Law, 1-Func, CMOS, PBGA144, 13 X 13 MM, 1.60 HEIGHT, 1 MM PITCH, GREEN, LFBGA-144
ZARLINK

LE792288DGC

PCM Codec, A/MU-Law, 1-Func, CMOS, PBGA144, 13 X 13 MM, 1.60 HEIGHT, 1 MM PITCH, GREEN, LFBGA-144
MICROSEMI

LE79231DJCT

SLIC, PQCC32,
ZARLINK

LE79231FQC

SLIC, Bipolar, 8 X 8 MM, GREEN, MO-220, QFN-32
ZARLINK

LE79231JC

SLIC, Bipolar, PQCC32, PLASTIC, MS-016, LCC-32
MICROSEMI

LE79231QC

SLIC, Bipolar, 8 X 8 MM, MO-220, QFN-32
MICROSEMI

LE79234GDG

Digital Signal Processor, CMOS, PBGA144
MICROCHIP

LE79234GDG2

暂无描述
MICROCHIP