XC3S5000-4FG320I [XILINX]

Spartan-3 FPGA Family : Complete Data Sheet; Spartan-3系列FPGA系列:完整的数据手册
XC3S5000-4FG320I
型号: XC3S5000-4FG320I
厂家: XILINX, INC    XILINX, INC
描述:

Spartan-3 FPGA Family : Complete Data Sheet
Spartan-3系列FPGA系列:完整的数据手册

文件: 总192页 (文件大小:1695K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
0
R
Spartan-3 FPGA Family:  
Complete Data Sheet  
0
0
DS099 July 13, 2004  
Advance Product Specification  
This document includes all four modules of the Spartan™-3 FPGA data sheet.  
Module 1:  
Introduction and Ordering Information  
Module 3:  
DC and Switching Characteristics  
DS099-1 (v1.2) December 24, 2003  
6 pages  
DS099-3 (v1.3) March 4, 2004  
40 pages  
Introduction  
DC Electrical Characteristics  
-
-
-
-
Absolute Maximum Ratings  
Supply Voltage Specifications  
Recommended Operating Conditions  
DC Characteristics  
Features  
Architectural Overview  
Product Availability  
User I/O Chart  
Switching Characteristics  
Ordering Information  
-
-
-
-
I/O Timing  
Core Logic Timing  
DCM Timing  
Module 2:  
Functional Description  
DS099-2 (v1.2) July 11, 2003  
40 pages  
Configuration and JTAG Timing  
Module 4:  
Pinout Descriptions  
DS099-4 (v1.5) July 13, 2004  
106 pages  
IOBs  
-
-
IOB Overview  
SelectIO™ Signal Standards  
CLB Overview  
Pin Descriptions  
Pin Behavior During Configuration  
Block RAM  
Dedicated Multipliers  
Digital Clock Manager (DCM)  
-
Package Overview  
Pinout Tables  
-
Clock Network  
-
Footprints  
Configuration  
IMPORTANT NOTE: The Spartan-3 FPGA data sheet is created and published in separate modules. This complete version  
is provided for easy downloading and searching of the complete document. Page, figure, and table numbers begin at 1 for  
each module, and each module has its own Revision History at the end. Use the PDF "Bookmarks" for easy navigation in  
this volume.  
© 2003-2004 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and disclaimers are as listed at http://www.xilinx.com/legal.htm.  
All other trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.  
DS099 July 13, 2004  
www.xilinx.com  
Advance Product Specification  
1-800-255-7778  
06  
Spartan-3 FPGA Family:  
Introduction and Ordering  
Information  
R
0
0
DS099-1 (v1.2) December 24, 2003  
Advance Product Specification  
-
-
-
Densities as high as 74,880 logic cells  
326 MHz system clock rate  
Three power rails: for core (1.2V), I/Os (1.2V to  
3.3V), and auxiliary purposes (2.5V)  
Introduction  
The Spartan™-3 family of Field-Programmable Gate Arrays  
is specifically designed to meet the needs of high volume,  
cost-sensitive consumer electronic applications. The  
eight-member family offers densities ranging from 50,000 to  
five million system gates, as shown in Table 1.  
SelectIO™ signaling  
-
-
-
-
-
-
-
Up to 784 I/O pins  
622 Mb/s data transfer rate per I/O  
Seventeen single-ended signal standards  
Seven differential signal standards including LVDS  
Termination by Digitally Controlled Impedance  
Signal swing ranging from 1.14V to 3.45V  
Double Data Rate (DDR) support  
The Spartan-3 family builds on the success of the earlier  
Spartan-IIE family by increasing the amount of logic  
resources, the capacity of internal RAM, the total number of  
I/Os, and the overall level of performance as well as by  
improving clock management functions. Numerous  
enhancements derive from state-of-the-art Virtex™-II tech-  
nology. These Spartan-3 enhancements, combined with  
advanced process technology, deliver more functionality  
and bandwidth per dollar than was previously possible, set-  
ting new standards in the programmable logic industry.  
Logic resources  
-
-
-
-
-
Abundant logic cells with shift register capability  
Wide multiplexers  
Fast look-ahead carry logic  
Dedicated 18 x 18 multipliers  
JTAG logic compatible with IEEE 1149.1/1532  
specifications  
Because of their exceptionally low cost, Spartan-3 FPGAs  
are ideally suited to a wide range of consumer electronics  
applications, including broadband access, home network-  
ing, display/projection and digital television equipment.  
SelectRAM™ hierarchical memory  
-
-
The Spartan-3 family is a superior alternative to mask pro-  
grammed ASICs. FPGAs avoid the high initial cost, the  
lengthy development cycles, and the inherent inflexibility of  
conventional ASICs. Also, FPGA programmability permits  
design upgrades in the field with no hardware replacement  
necessary, an impossibility with ASICs.  
Up to 1,872 Kbits of total block RAM  
Up to 520 Kbits of total distributed RAM  
Digital Clock Manager (up to four DCMs)  
-
-
-
Clock skew elimination  
Frequency synthesis  
High resolution phase shifting  
Eight global clock lines and abundant routing  
Fully supported by Xilinx ISE development system  
Features  
Revolutionary 90-nanometer process technology  
-
Synthesis, mapping, placement and routing  
Very low cost, high-performance logic solution for  
high-volume, consumer-oriented applications  
MicroBlaze processor, PCI, and other cores  
Table 1: Summary of Spartan-3 FPGA Attributes  
CLB Array  
(One CLB = Four Slices)  
Maximum  
Maximum Differential  
System  
Gates  
Logic  
Cells  
Distributed BlockRAM  
Dedicated  
Multipliers  
1
1
Device  
XC3S50  
Rows Columns Total CLBs RAM (bits )  
(bits )  
DCMs  
User I/O  
I/O Pairs  
50K  
200K  
400K  
1M  
1,728  
4,320  
16  
24  
32  
48  
64  
80  
96  
104  
12  
20  
28  
40  
52  
64  
72  
80  
192  
480  
12K  
30K  
72K  
216K  
288K  
432K  
576K  
720K  
1,728K  
1,872K  
4
12  
16  
24  
32  
40  
96  
104  
2
4
4
4
4
4
4
4
124  
56  
XC3S200  
XC3S400  
XC3S1000  
XC3S1500  
XC3S2000  
XC3S4000  
XC3S5000  
Notes:  
173  
76  
8,064  
896  
56K  
264  
116  
175  
221  
270  
312  
344  
17,280  
29,952  
46,080  
62,208  
74,880  
1,920  
3,328  
5,120  
6,912  
8,320  
120K  
208K  
320K  
432K  
520K  
391  
1.5M  
2M  
487  
565  
4M  
712  
5M  
784  
1. By convention, one Kb is equivalent to 1,024 bits.  
© 2003 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and disclaimers are as listed at http://www.xilinx.com/legal.htm.  
All other trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.  
DS099-1 (v1.2) December 24, 2003  
www.xilinx.com  
1
Advance Product Specification  
1-800-255-7778  
R
Spartan-3 FPGA Family: Introduction and Ordering Information  
Architectural Overview  
The Spartan-3 family architecture consists of five funda-  
mental programmable functional elements:  
Multiplier blocks accept two 18-bit binary numbers as  
inputs and calculate the product.  
Digital Clock Manager (DCM) blocks provide  
self-calibrating, fully digital solutions for distributing,  
delaying, multiplying, dividing, and phase shifting clock  
signals.  
Configurable Logic Blocks (CLBs) contain RAM-based  
Look-Up Tables (LUTs) to implement logic and storage  
elements that can be used as flip-flops or latches.  
CLBs can be programmed to perform a wide variety of  
logical functions as well as to store data.  
These elements are organized as shown in Figure 1. A ring  
of IOBs surrounds a regular array of CLBs. The XC3S50  
has a single column of block RAM embedded in the array.  
Those devices ranging from the XC3S200 to the XC3S2000  
have two columns of block RAM. The XC3S4000 and  
XC3S5000 devices have four RAM columns. Each column  
is made up of several 18K-bit RAM blocks; each block is  
associated with a dedicated multiplier. The DCMs are posi-  
tioned at the ends of the outer block RAM columns.  
Input/Output Blocks (IOBs) control the flow of data  
between the I/O pins and the internal logic of the  
device. Each IOB supports bidirectional data flow plus  
3-state operation. Twenty-four different signal  
standards,  
including  
seven  
high-performance  
differential standards, are available as shown in  
Table 2. Double Data-Rate (DDR) registers are  
included. The Digitally Controlled Impedance (DCI)  
feature provides automatic on-chip terminations,  
simplifying board designs.  
The Spartan-3 family features a rich network of traces and  
switches that interconnect all five functional elements,  
transmitting signals among them. Each functional element  
has an associated switch matrix that permits multiple con-  
nections to the routing.  
Block RAM provides data storage in the form of 18-Kbit  
dual-port blocks.  
DS099-1_01_032703  
Notes:  
1. The two additional block RAM columns of the XC3S4000 and XC3S5000  
devices are shown with dashed lines. The XC3S50 has only the block RAM  
column on the far left.  
Figure 1: Spartan-3 Family Architecture  
2
6
www.xilinx.com  
1-800-255-7778  
DS099-1 (v1.2) December 24, 2003  
Advance Product Specification  
R
Spartan-3 FPGA Family: Introduction and Ordering Information  
which includes the XCF00S PROMs for serial configuration  
and the higher density XCF00P PROMs for parallel or serial  
configuration.  
Configuration  
Spartan-3 FPGAs are programmed by loading configuration  
data into robust static memory cells that collectively control  
all functional elements and routing resources. Before pow-  
ering on the FPGA, configuration data is stored externally in  
a PROM or some other nonvolatile medium either on or off  
the board. After applying power, the configuration data is  
written to the FPGA using any of five different modes: Mas-  
ter Parallel, Slave Parallel, Master Serial, Slave Serial and  
Boundary Scan (JTAG). The Master and Slave Parallel  
modes use an 8-bit wide SelectMAP™ port.  
I/O Capabilities  
The SelectIO feature of Spartan-3 devices supports 17 sin-  
gle-ended standards and seven differential standards as  
listed in Table 2. Many standards support the DCI feature,  
which uses integrated terminations to eliminate unwanted  
signal reflections. Table 3 shows the number of user I/Os as  
well as the number of differential I/O pairs available for each  
device/package combination.  
The recommended memory for storing the configuration  
data is the low-cost Xilinx Platform Flash PROM family,  
Table 2: Signal Standards Supported by the Spartan-3 Family  
Standard  
Category  
VCCO  
(V)  
DCI  
Option  
Description  
Gunning Transceiver Logic  
High-Speed Transceiver Logic  
Class  
Symbol  
Single-Ended  
GTL  
N/A  
1.5  
1.8  
Terminated  
GTL  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
No  
Plus  
GTLP  
HSTL  
I
III  
HSTL_I  
HSTL_III  
HSTL_I_18  
HSTL_II_18  
HSTL_III_18  
LVCMOS12  
LVCMOS15  
LVCMOS18  
LVCMOS25  
LVCMOS33  
LVTTL  
I
II  
III  
LVCMOS  
Low-Voltage CMOS  
1.2  
1.5  
1.8  
2.5  
3.3  
3.3  
3.0  
1.8  
2.5  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
33 MHz  
N/A  
I
Yes  
Yes  
Yes  
Yes  
No  
LVTTL  
PCI  
Low-Voltage Transistor-Transistor Logic  
Peripheral Component Interconnect  
Stub Series Terminated Logic  
PCI33_3  
No  
SSTL  
SSTL18_I  
SSTL2_I  
Yes  
Yes  
Yes  
II  
SSTL2_II  
Differential  
LDT  
Lightning Data Transport  
(HyperTransport™)  
2.5  
N/A  
LDT_25  
No  
LVDS  
Low-Voltage Differential Signaling  
Standard  
Bus  
LVDS_25  
Yes  
No  
Yes  
No  
No  
BLVDS_25  
LVDSEXT_25  
ULVDS_25  
LVPECL_25  
Extended Mode  
Ultra  
LVPECL  
RSDS  
Low-Voltage Positive Emitter-Coupled  
Logic  
2.5  
2.5  
N/A  
Reduced-Swing Differential Signaling  
N/A  
RSDS_25  
No  
DS099-1 (v1.2) December 24, 2003  
www.xilinx.com  
3
Advance Product Specification  
1-800-255-7778  
R
Spartan-3 FPGA Family: Introduction and Ordering Information  
Table 3: Spartan-3 I/O Chart  
Available User I/Os and Differential (Diff) I/O Pairs  
PQ208 FT256 FG320 FG456 FG676  
User Diff User Diff User Diff User Diff User Diff User Diff User Diff User Diff User Diff  
VQ100  
TQ144  
FG900  
FG1156  
Device  
XC3S50  
63  
63  
-
29  
29  
-
97  
97  
97  
-
46  
46  
46  
-
124  
56  
62  
62  
-
-
-
76  
76  
76  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
XC3S200  
XC3S400  
XC3S1000  
XC3S1500  
XC3S2000  
XC3S4000  
XC3S5000  
Notes:  
141  
173  
141  
173  
221 100 264 116  
-
-
-
-
-
-
-
173  
221 100 333 149 391 175  
221 100 333 149 487 221  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
489 221 565 270  
-
-
-
-
-
-
-
-
-
-
633 300 712 312  
633 300 784 344  
-
-
-
-
-
-
1. All device options listed in a given package column are pin-compatible.  
Product Ordering and Availability  
Table 4 shows all valid device ordering combinations of  
device density, speed grade, package, and temperature  
range parameters for the Spartan-3 family as well as the  
availability status of those combinations.  
Table 4: Spartan-3 Device Availability  
Package Type(1)  
:
VQFP  
TQFP  
PQFP  
FTBGA  
FBGA  
FG676  
Code: VQ100  
TQ144  
PQ208  
FT256  
FG320  
FG456  
FG900  
FG1156  
Device  
XC3S50  
(C, I)  
(C, I)  
(C, I)  
-
-
-
-
-
-
XC3S200  
XC3S400  
XC3S1000  
XC3S1500  
XC3S2000  
XC3S4000  
XC3S5000  
Notes:  
(C, I)  
(C, I)  
(C, I)  
(C, I)  
-
-
-
-
-
-
-
-
-
-
-
(C, I)  
(C, I)  
(C, I)  
(C, I)  
(C, I)  
-
-
-
-
-
-
-
-
-
-
-
-
-
(C, I)  
(C, I)  
(C, I)  
(C, I)  
(C, I)  
(C, I)  
-
-
-
-
-
-
-
(C, I)  
(C, I)  
-
-
-
-
-
-
-
-
(C, I)  
(C, I)  
(C, I)  
-
(C, I)  
(C, I)  
-
1. Package types are explained in Ordering Information, page 5.  
2. Commercial devices are offered in the -4 and -5 speed grades; industrial devices are only in the -4 speed grade.  
3. C = Commercial, TJ = 0° to +85°C; I = Industrial, TJ = –40°C to +100°C.  
4. Parentheses indicate that a given device is not yet released to production. Contact your local sales office for availability information.  
4
6
www.xilinx.com  
1-800-255-7778  
DS099-1 (v1.2) December 24, 2003  
Advance Product Specification  
R
Spartan-3 FPGA Family: Introduction and Ordering Information  
Ordering Information  
Example:  
XC3S50 -4 PQ208 C  
Device Type  
Temperature Range  
Package Type / Number of Pins  
Speed Grade  
Device  
XC3S50  
Speed Grade  
Package Type / Number of Pins  
Temperature Range (TJ)  
-4 Standard Performance VQ100 100-pin Very Thin Quad Flat Pack (VQFP)  
C Commercial (0°C to 85°C)  
XC3S200  
XC3S400  
XC3S1000  
XC3S1500  
XC3S2000  
XC3S4000  
XC3S5000  
-5 High Performance  
TQ144 144-pin Thin Quad Flat Pack (TQFP)  
I
Industrial (–40°C to 100°C)  
PQ208 208-pin Plastic Quad Flat Pack (PQFP)  
FT256 256-ball Fine-Pitch Thin Ball Grid Array (FTBGA)  
FG320 320-ball Fine-Pitch Ball Grid Array (FBGA)  
FG456 456-ball Fine-Pitch Ball Grid Array (FBGA)  
FG676 676-ball Fine-Pitch Ball Grid Array (FBGA)  
FG900 900-ball Fine-Pitch Ball Grid Array (FBGA)  
FG1156 1156-ball Fine-Pitch Ball Grid Array (FBGA)  
Package Marking  
R
R
SPARTAN  
Device Type  
XC3S50TM  
PQ208xxx0350  
xxxxxxxxx  
4C  
Date Code  
Lot Code  
Package  
Speed Grade  
Operating Range  
ds099-1_02_122403  
Revision History  
Date  
Version No.  
Description  
04/11/03  
04/24/03  
12/24/03  
1.0  
1.1  
1.2  
Initial Xilinx release.  
Updated block RAM, DCM, and multiplier counts for the XC3S50.  
Added the FG320 package.  
The Spartan-3 Family Data Sheet  
DS099-1, Spartan-3 FPGA Family: Introduction and Ordering Information (Module 1)  
DS099-2, Spartan-3 FPGA Family: Functional Description (Module 2)  
DS099-3, Spartan-3 FPGA Family: DC and Switching Characteristics (Module 3)  
DS099-4, Spartan-3 FPGA Family: Pinout Descriptions (Module 4)  
DS099-1 (v1.2) December 24, 2003  
www.xilinx.com  
5
Advance Product Specification  
1-800-255-7778  
R
Spartan-3 FPGA Family: Introduction and Ordering Information  
6
6
www.xilinx.com  
1-800-255-7778  
DS099-1 (v1.2) December 24, 2003  
Advance Product Specification  
040  
R
Spartan-3 1.2V FPGA Family:  
Functional Description  
0
0
DS099-2 (v1.2) July 11, 2003  
Advance Product Specification  
IOBs  
the FPGA’s internal logic through a multiplexer to the  
output driver. In addition to this direct path, the  
multiplexer provides the option to insert a pair of  
storage elements.  
IOB Overview  
The Input/Output Block (IOB) provides a programmable,  
bidirectional interface between an I/O pin and the FPGA’s  
internal logic.  
All signal paths entering the IOB, including those  
associated with the storage elements, have an inverter  
option. Any inverter placed on these paths is  
automatically absorbed into the IOB.  
A simplified diagram of the IOB’s internal structure appears  
in Figure 1. There are three main signal paths within the  
IOB: the output path, input path, and 3-state path. Each  
path has its own pair of storage elements that can act as  
either registers or latches. For more information, see the  
Storage Element Functions section. The three main signal  
paths are as follows:  
Storage Element Functions  
There are three pairs of storage elements in each IOB, one  
pair for each of the three paths. It is possible to configure  
each of these storage elements as an edge-triggered  
D-type flip-flop (FD) or a level-sensitive latch (LD).  
The input path carries data from the pad, which is  
bonded to a package pin, through an optional  
programmable delay element directly to the I line. After  
the delay element, there are alternate routes through a  
pair of storage elements to the IQ1 and IQ2 lines. The  
IOB outputs I, IQ1, and IQ2 all lead to the FPGA’s  
internal logic. The delay element can be set to ensure a  
hold time of zero.  
The storage-element-pair on either the Output path or the  
Three-State path can be used together with a special multi-  
plexer to produce Double-Data-Rate (DDR) transmission.  
This is accomplished by taking data synchronized to the  
clock signal’s rising edge and converting them to bits syn-  
chronized on both the rising and the falling edge. The com-  
bination of two registers and a multiplexer is referred to as a  
Double-Data-Rate D-type flip-flop (FDDR).  
The output path, starting with the O1 and O2 lines,  
carries data from the FPGA’s internal logic through a  
multiplexer and then a three-state driver to the IOB  
pad. In addition to this direct path, the multiplexer  
provides the option to insert a pair of storage elements.  
See Double-Data-Rate Transmission, page 3 for more  
information.  
The 3-state path determines when the output driver is  
high impedance. The T1 and T2 lines carry data from  
The signal paths associated with the storage element are  
described in Table 1.  
Table 1: Storage Element Signal Description  
Storage  
Element  
Signal  
Description  
Data input  
Function  
D
Data at this input is stored on the active edge of CK enabled by CE. For latch operation when the  
input is enabled, data passes directly to the output Q.  
Q
Data output  
The data on this output reflects the state of the storage element. For operation as a latch in  
transparent mode, Q will mirror the data at D.  
CK  
CE  
SR  
Clock input  
A signal’s active edge on this input with CE asserted, loads data into the storage element.  
When asserted, this input enables CK. If not connected, CE defaults to the asserted state.  
Clock Enable input  
Set/Reset  
Forces storage element into the state specified by the SRHIGH/SRLOW attributes. The  
SYNC/ASYNC attribute setting determines if the SR input is synchronized to the clock or not.  
REV  
Reverse  
Used together with SR. Forces storage element into the state opposite from what SR does.  
© 2003 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and disclaimers are as listed at http://www.xilinx.com/legal.htm.  
All other trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.  
DS099-2 (v1.2) July 11, 2003  
www.xilinx.com  
1
Advance Product Specification  
1-800-255-7778  
R
Spartan-3 1.2V FPGA Family: Functional Description  
T
TFF1  
T1  
D
Q
CE  
CK  
SR  
REV  
Q
DDR  
MUX  
TCE  
T2  
D
TFF2  
CE  
CK  
SR  
REV  
Three-state Path  
V
CCO  
OFF1  
O1  
D
Q
CE  
CK  
Weak  
ESD  
ESD  
OTCLK1  
Pull-Up  
SR  
REV  
Q
DDR  
MUX  
I/O  
Pin  
OCE  
O2  
Weak  
Pull-  
Down  
Program-  
mable  
Output  
Driver  
D
DCI  
OFF2  
CE  
OTCLK2  
CK  
SR  
REV  
Weak  
Keeper  
Latch  
Output Path  
LVCMOS, LVTTL, PCI  
Single-ended Standards  
IQ1  
I
Fixed  
Delay  
D
Q
IFF1  
using V  
REF  
CE  
CK  
V
REF  
Pin  
ICLK1  
ICE  
SR  
REV  
Q
Differential Standards  
IQ2  
I/O Pin  
from  
D
Adjacent  
IOB  
IFF2  
CE  
CK  
ICLK2  
SR  
REV  
SR  
REV  
Input Path  
Note: All IOB signals communicating with the FPGA's internal logic have the option of inverting polarity.  
DS099_01_040703  
Figure 1: Simplified IOB Diagram  
2
www.xilinx.com  
1-800-255-7778  
DS099-2 (v1.2) July 11, 2003  
Advance Product Specification  
40  
R
Spartan-3 1.2V FPGA Family: Functional Description  
According to Figure 1, the clock line OTCLK1 connects the  
CK inputs of the upper registers on the output and  
three-state paths. Similarly, OTCLK2 connects the CK  
inputs for the lower registers on the output and three-state  
paths. The upper and lower registers on the input path have  
independent clock lines: ICLK1 and ICLK2.  
path and ICE does the same for the register pair on the  
input path.  
The Set/Reset (SR) line entering the IOB is common to all  
six registers, as is the Reverse (REV) line.  
Each storage element supports numerous options in addi-  
tion to the control over signal polarity described in the IOB  
Overview section. These are described in Table 2.  
The enable line OCE connects the CE inputs of the upper  
and lower registers on the output path. Similarly, TCE con-  
nects the CE inputs for the register pair on the three-state  
Table 2: Storage Element Options  
Option Switch  
Function  
Specificity  
FF/Latch  
Chooses between an edge-sensitive flip-flop or Independent for each storage element.  
a level-sensitive latch  
SYNC/ASYNC  
Determines whether SR is synchronous or  
asynchronous  
Independent for each storage element.  
SRHIGH/SRLOW Determines whether SR acts as a Set, which  
forces the storage element to a logic “1"  
Independent for each storage element, except  
when using FDDR. In the latter case, the selection  
(SRHIGH) or a Reset, which forces a logic “0” for the upper element (OFF1 or TFF2) will apply to  
(SRLOW).  
both elements.  
INIT1/INIT0  
In the event of a Global Set/Reset, after  
Independent for each storage element, except  
configuration or upon activation of the GTS net, when using FDDR. In the latter case, selecting  
this switch decides whether to set or reset a INIT0 for one element applies to both elements  
storage element. By default, choosing SRLOW (even though INIT1 is selected for the other).  
also selects INIT0; choosing SRHIGH also  
selects INIT1.  
The storage-element-pair on the Three-State path (TFF1  
Double-Data-Rate Transmission  
and TFF2) can also be combined with a local multiplexer to  
form an FDDR primitive. This permits synchronizing the out-  
put enable to both the rising and falling edges of a clock.  
This DDR operation is realized in the same way as for the  
output path.  
Double-Data-Rate (DDR) transmission describes the tech-  
nique of synchronizing signals to both the rising and falling  
edges of the clock signal. Spartan-3 devices use regis-  
ter-pairs in all three IOB paths to perform DDR operations.  
The pair of storage elements on the IOB’s Output path  
(OFF1 and OFF2), used as registers, combine with a spe-  
cial multiplexer to form a DDR D-type flip-flop (FDDR). This  
primitive permits DDR transmission where output data bits  
are synchronized to both the rising and falling edges of a  
clock. It is possible to access this function by placing either  
an FDDRRSE or an FDDRCPE component or symbol into  
the design. DDR operation requires two clock signals (50%  
duty cycle), one the inverted form of the other. These sig-  
nals trigger the two registers in alternating fashion, as  
shown in Figure 2. Commonly, the Digital Clock Manager  
(DCM) generates the two clock signals by mirroring an  
incoming signal, then shifting it 180 degrees. This approach  
ensures minimal skew between the two signals.  
The storage-element-pair on the input path (IFF1 and IFF2)  
allows an I/O to receive a DDR signal. An incoming DDR  
clock signal triggers one register and the inverted clock sig-  
nal triggers the other register. In this way, the registers take  
turns capturing bits of the incoming DDR data signal.  
Aside from high bandwidth data transfers, DDR can also be  
used to reproduce, or “mirror”, a clock signal on the output.  
This approach is used to transmit clock and data signals  
together. A similar approach is used to reproduce a clock  
signal at multiple outputs. The advantage for both  
approaches is that skew across the outputs will be minimal.  
DS099-2 (v1.2) July 11, 2003  
Advance Product Specification  
www.xilinx.com  
1-800-255-7778  
3
R
Spartan-3 1.2V FPGA Family: Functional Description  
clamp diodes are always connected to the pad, regardless  
of the signal standard selected. The presence of diodes lim-  
its the ability of Spartan-3 I/Os to tolerate high signal volt-  
ages. The VIN absolute maximum rating in Table 1 in  
Module 3: DC and Switching Characteristics specifies the  
voltage range that I/Os can tolerate.  
DCM  
180˚ 0˚  
FDDR  
D1  
Slew Rate Control and Drive Strength  
Q1  
Two options, FAST and SLOW, control the output slew rate.  
The FAST option supports output switching at a high rate.  
The SLOW option reduces bus transients. These options are  
only available when using one of the LVCMOS or LVTTL  
standards, which also provide up to seven different levels of  
current drive strength: 2, 4, 6, 8, 12, 16, and 24 mA. Choos-  
ing the appropriate drive strength level is yet another means  
to minimize bus transients.  
CLK1  
DDR MUX  
Q
D2  
Table 3 shows the drive strengths that the LVCMOS and  
LVTTL standards support. The Fast option is indicated by  
appending an "F" attribute after the output buffer symbol  
OBUF or the bidirectional buffer symbol IOBUF. The Slow  
option appends an "S" attribute. The drive strength in milliam-  
peres follows the slew rate attribute. For example,  
OBUF_LVCMOS18_S_6 or IOBUF_LVCMOS25_F_16.  
Q2  
CLK2  
DS099-2_02_070303  
Figure 2: Clocking the DDR Register  
Table 3: Programmable Output Drive Current  
Current Drive (mA)  
Signal  
Pull-Up and Pull-Down Resistors  
Standard  
LVCMOS12  
LVCMOS15  
LVCMOS18  
LVCMOS25  
LVCMOS33  
LVTTL  
2
4
6
8
12  
16  
-
24  
-
The optional pull-up and pull-down resistors are intended to  
establish High and Low levels, respectively, at unused I/Os.  
The weak pull-up resistor optionally connects each IOB pad  
to VCCO. A weak pull-down resistor optionally connects  
each pad to GND. These resistors are placed in a design  
using the PULLUP and PULLDOWN symbols in a sche-  
matic, respectively. They can also be instantiated as com-  
ponents, set as constraints or passed as attributes in HDL  
code. These resistors can also be selected for all unused  
I/O using the Bitstream Generator (BitGen) option Unused-  
Pin. A Low logic level on HSWAP_EN activates the pull-up  
resistors on all I/Os during configuration.  
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
-
-
3
3
3
3
3
3
3
3
3
3
-
-
3
3
3
3
-
3
3
3
Boundary-Scan Capability  
All Spartan-3 IOBs support boundary-scan testing compat-  
ible with IEEE 1149.1 standards. See Boundary-Scan  
(JTAG) Mode, page 36 for more information.  
Weak-Keeper Circuit  
SelectIO Signal Standards  
Each I/O has an optional weak-keeper circuit that retains  
the last logic level on a line after all drivers have been turned  
off. This is useful to keep bus lines from floating when all  
connected drivers are in a high-impedance state. This func-  
tion is placed in a design using the KEEPER symbol.  
Pull-up and pull-down resistors override the weak-keeper  
circuit.  
The IOBs support 17 different single-ended signal stan-  
dards, as listed in Table 4. Furthermore, the majority of  
IOBs can be used in specific pairs supporting any of six dif-  
ferential signal standards, as shown in Table 5. The desired  
standard is selected by placing the appropriate I/O library  
symbol or component into the FPGA design. For example,  
the symbol named IOBUF_LVCMOS15_F_8 represents a  
bidirectional I/O to which the 1.5V LVCMOS signal standard  
has been assigned. The slew rate and current drive are set  
to Fast and 8 mA, respectively.  
ESD Protection  
Clamp diodes protect all device pads against damage from  
Electro-Static Discharge (ESD) as well as excessive voltage  
transients. Each I/O has two clamp diodes: One diode  
extends P-to-N from the pad to VCCO and a second diode  
extends N-to-P from the pad to GND. During operation,  
these diodes are normally biased in the off state. These  
Together with placing the appropriate I/O symbol, two exter-  
nally applied voltage levels, VCCO and VREF select the  
desired signal standard. The VCCO lines provide current to  
the output driver. The voltage on these lines determines the  
4
www.xilinx.com  
1-800-255-7778  
DS099-2 (v1.2) July 11, 2003  
Advance Product Specification  
40  
R
Spartan-3 1.2V FPGA Family: Functional Description  
output voltage swing for all standards except GTL and  
GTLP.  
Table 4: Single-Ended I/O Standards (Values in Volts)  
VCCO  
Board  
All single-ended standards except the LVCMOS modes  
require a Reference Voltage (VREF) to bias the input-switch-  
ing threshold. Once a configuration data file is loaded into  
the FPGA that calls for the I/Os of a given bank to use such  
a signal standard, a few specifically reserved I/O pins on the  
same bank automatically convert to VREF inputs. When  
using one of the LVCMOS standards, these pins remain  
I/Os because the VCCO voltage biases the input-switching  
threshold, so there is no need for VREF. Select the VCCO and  
VREF levels to suit the desired single-ended standard  
according to Table 4.  
Signal  
Standard  
For  
For  
VREF for  
Termination  
Outputs Inputs Inputs(1) Voltage(VTT  
)
PCI33_3  
SSTL18_I  
SSTL2_I  
SSTL2_II  
Notes:  
3.0  
1.8  
2.5  
2.5  
3.0  
-
-
-
-
-
0.9  
0.9  
1.25  
1.25  
1.25  
1.25  
1. Banks 4 and 5 of any Spartan-3 device in a VQ100 package  
do not support signal standards using VREF  
.
2. The VCCO level used for the GTL and GTLP standards must  
be no lower than the termination voltage (VTT), nor can it be  
lower than the voltage at the I/O pad.  
Differential standards employ a pair of signals, one the  
opposite polarity of the other. The noise canceling (e.g.,  
Common-Mode Rejection) properties of these standards  
permit exceptionally high data transfer rates. This section  
introduces the differential signaling capabilities of Spartan-3  
devices.  
3. See Table 6 for a listing of the single-ended DCI standards.  
Table 5: Differential I/O Standards  
VCCO (Volts)  
For For  
Outputs Inputs  
VOD(1) (mV)  
VREF for  
Inputs  
(Volts)  
Signal  
Standard  
Min.  
430  
250  
250  
330  
430  
100  
Max.  
670  
400  
450  
700  
670  
400  
Each device-package combination designates specific I/O  
pairs that are specially optimized to support differential  
standards. A unique “L-number”, part of the pin name, iden-  
tifies the line-pairs associated with each bank (see Module  
4: Pinout Descriptions). For each pair, the letters “P” and  
“N” designate the true and inverted lines, respectively. For  
example, the pin names IO_L43P_7 and IO_L43N_7 indi-  
cate the true and inverted lines comprising the line pair L43  
on Bank 7. The differential Output Voltage (VOD) parameter  
measures the voltage difference the High and Low logic lev-  
els that a pair of differential outputs drive. The VOD range for  
each of the differential standards is listed in Table 5. The  
VCCO lines provide current to the outputs. The VREF lines  
are not used. Select the VCCO level to suit the desired differ-  
ential standard according to Table 5.  
LDT_25  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
-
-
-
-
-
-
-
-
-
-
-
-
LVDS_25  
BLVDS_25  
LVDSEXT_25  
ULVDS_25  
RSDS_25  
Notes:  
1. Measured with a termination resistor value (RT) of 100  
Ohms.  
2. See Table 6 for a listing of the differential DCI standards.  
The need to supply VREF and VCCO imposes constraints on  
which standards can be used in the same bank. See The  
Organization of IOBs into Banks section for additional  
guidelines concerning the use of the VCCO and VREF lines.  
Table 4: Single-Ended I/O Standards (Values in Volts)  
VCCO  
Board  
Termination  
Digitally Controlled Impedance (DCI)  
Signal  
Standard  
For  
For  
VREF for  
When the round-trip delay of an output signal — i.e., from  
output to input and back again — exceeds rise and fall  
times, it is common practice to add termination resistors to  
the line carrying the signal. These resistors effectively  
match the impedance of a device’s I/O to the characteristic  
impedance of the transmission line, thereby preventing  
reflections that adversely affect signal integrity. However,  
with the high I/O counts supported by modern devices, add-  
ing resistors requires significantly more components and  
board area. Furthermore, for some packages — e.g., ball  
grid arrays — it may not always be possible to place resis-  
tors close to pins.  
Outputs Inputs Inputs(1) Voltage (VTT  
)
GTL  
Note 2  
Note 2  
1.5  
Note 2  
0.8  
1.2  
1.5  
0.75  
1.5  
0.9  
0.9  
1.8  
-
GTLP  
Note 2  
1
HSTL_I  
-
0.75  
HSTL_III  
1.5  
-
0.9  
HSTL_I_18  
HSTL_II_18  
HSTL_III_18  
LVCMOS12  
LVCMOS15  
LVCMOS18  
LVCMOS25  
LVCMOS33  
LVTTL  
1.8  
-
0.9  
1.8  
-
0.9  
1.8  
-
1.1  
1.2  
1.2  
1.5  
1.8  
2.5  
3.3  
3.3  
-
-
-
-
-
-
1.5  
-
DCI answers these concerns by providing two kinds of  
on-chip terminations: Parallel terminations make use of an  
integrated resistor network. Series terminations result from  
controlling the impedance of output drivers. DCI actively  
adjusts both parallel and series terminations to accurately  
1.8  
-
2.5  
-
3.3  
-
3.3  
-
DS099-2 (v1.2) July 11, 2003  
Advance Product Specification  
www.xilinx.com  
1-800-255-7778  
5
R
Spartan-3 1.2V FPGA Family: Functional Description  
match the characteristic impedance of the transmission line.  
This adjustment process compensates for differences in I/O  
impedance that can result from normal variation in the  
ambient temperature, the supply voltage and the manufac-  
turing process. When the output driver turns off, the series  
termination, by definition, approaches a very high imped-  
ance; in contrast, parallel termination resistors remain at the  
targeted values.  
DCI is available only for certain I/O standards, as listed in  
Table 6. DCI is selected by applying the appropriate I/O  
standard extensions to symbols or components. There are  
five basic ways to configure terminations, as shown in  
Table 7. The DCI I/O standard determines which of these  
terminations is put into effect.  
Table 6: DCI I/O Standards  
V
CCO (V)  
Termination Type  
Category of Signal  
Standard  
For  
Outputs  
For  
Inputs  
VREF for  
Inputs (V)  
Signal Standard  
At Output  
At Input  
Single-Ended  
Gunning  
Transceiver Logic  
GTL_DCI  
1.2  
1.5  
1.5  
1.5  
1.8  
1.8  
1.8  
1.5  
1.8  
2.5  
3.3  
1.5  
1.8  
2.5  
3.3  
1.8  
2.5  
2.5  
1.2  
1.5  
1.5  
1.5  
1.8  
1.8  
1.8  
1.5  
1.8  
2.5  
3.3  
1.5  
1.8  
2.5  
3.3  
1.8  
2.5  
2.5  
0.8  
1.0  
0.75  
0.9  
0.9  
0.9  
1.1  
-
Single  
Single  
GTLP_DCI  
High-Speed  
Transceiver Logic  
HSTL_I_DCI  
None  
None  
None  
Split  
Split  
Single  
Split  
HSTL_III_DCI  
HSTL_I_DCI_18  
HSTL_II_DCI_18  
HSTL_III_DCI_18  
None  
Single  
None  
Low-Voltage CMOS LVDCI_15  
LVDCI_18  
Controlled impedance  
driver  
-
LVDCI_25  
-
LVDCI_33  
-
LVDCI_DV2_15  
-
Controlled driver with  
half-impedance  
LVDCI_DV2_18  
LVDCI_DV2_25  
LVDCI_DV2_33  
SSTL18_I_DCI  
SSTL2_I_DCI  
SSTL2_II_DCI  
-
-
-
Stub Series  
Terminated Logic  
0.9  
1.25  
1.25  
25-Ohm driver  
25-Ohm driver  
Split  
Split with 25-Ohm driver  
Differential  
Low-Voltage  
Differential  
Signalling  
LVDS_25_DCI  
2.5  
2.5  
2.5  
2.5  
-
-
None  
Split on  
each line  
of pair  
LVDSEXT_25_DCI  
Notes:  
1. Bank 5 of any Spartan-3 device in a VQ100 or TQ144 package does not support DCI signal standards.  
6
www.xilinx.com  
DS099-2 (v1.2) July 11, 2003  
1-800-255-7778  
Advance Product Specification  
40  
R
Spartan-3 1.2V FPGA Family: Functional Description  
Table 7: DCI Terminations  
Termination  
Schematic(1)  
I/O Standards  
LVDCI_15  
Controlled impedance output driver  
IOB  
LVDCI_18  
LVDCI_25  
LVDCI_33  
R
Z
0
Controlled output driver with half impedance  
LVDCI_DV2_15  
LVDCI_DV2_18  
LVDCI_DV2_25  
LVDCI_DV2_33  
IOB  
R/2  
Z
0
Single resistor  
GTL_DCI  
V
CCO  
IOB  
GTLP_DCI  
HSTL_III_DCI(2)  
HSTL_III_DCI_18(2)  
R
Z
0
Split resistors  
HSTL_I_DCI(2)  
V
CCO  
IOB  
HSTL_I_DCI_18(2)  
HSTL_II_DCI_18  
LVDS_25_DCI  
2R  
Z
0
LVDSEXT_25_DCI  
2R  
Split resistors with output driver impedance  
fixed to 25  
SSTL18_I_DCI(3)  
SSTL2_I_DCI(3)  
SSTL2_II_DCI  
V
CCO  
IOB  
25  
2R  
2R  
Z
0
Notes:  
1. The value of R is equivalent to the characteristic impedance of the line connected to the I/O. It is also equal to half the value of RREF  
for the DV2 standards and RREF for all other DCI standards.  
2. For DCI using HSTL Classes I and III, terminations only go into effect at inputs (not at outputs).  
3. For DCI using SSTL Class I, the split termination only goes into effect at inputs (not at outputs).  
DS099-2 (v1.2) July 11, 2003  
www.xilinx.com  
7
Advance Product Specification  
1-800-255-7778  
R
Spartan-3 1.2V FPGA Family: Functional Description  
The DCI feature operates independently for each of the  
device’s eight banks. Each bank has an "N" reference pin  
(VRN) and a "P" reference pin, (VRP), to calibrate driver  
and termination resistance. Only when using a DCI stan-  
dard on a given bank do these two pins function as VRN  
and VRP. When not using a DCI standard, the two pins func-  
tion as user I/Os. As shown in Figure 3, add an external ref-  
erence resistor to pull the VRN pin up to VCCO and another  
reference resistor to pull the VRP pin down to GND. Both  
resistors have the same value — commonly 50 Ohms —  
with one-percent tolerance, which is either the characteristic  
impedance of the line or twice that, depending on the DCI  
standard in use. Standards having a symbol name that con-  
tains the letters “DV2” use a reference resistor value that is  
twice the line impedance. DCI adjusts the output driver  
impedance to match the reference resistors’ value or half  
that, according to the standard. DCI always adjusts the  
on-chip termination resistors to directly match the reference  
resistors’ value.  
Spartan-3 devices in these packages support eight inde-  
pendent VCCO supplies.  
Bank 0  
Bank 1  
Bank 5  
Bank 4  
DS099-2_03_060102  
Figure 4: Spartan-3 I/O Banks (top view)  
In contrast, the 144-pin Thin Quad Flat Pack (TQ144) pack-  
age ties VCCO together internally for the pair of banks on  
each side of the device. For example, the VCCO Bank 0 and  
the VCCO Bank 1 lines are tied together. The interconnected  
bank-pairs are 0/1, 2/3, 4/5, and 6/7. As a result, Spartan-3  
devices in the TQ144 package support four independent  
One of eight  
I/O Banks  
V
CCO  
R
(1%)  
(1%)  
REF  
VRN  
VRP  
V
CCO supplies.  
R
REF  
Spartan-3 Compatibility  
Within the Spartan-3 family, all devices are pin-compatible  
by package. When the need for future logic resources out-  
grows the capacity of the Spartan-3 device in current use, a  
larger device in the same package can serve as a direct  
replacement. Larger devices may add extra VREF and VCCO  
lines to support a greater number of I/Os. In the larger  
device, more pins can convert from user I/Os to VREF lines.  
Also, additional VCCO lines are bonded out to pins that were  
“not connected” in the smaller device. Thus, it is important  
to plan for future upgrades at the time of the board’s initial  
design by laying out connections to the extra pins.  
DS099-2_04_091602  
Figure 3: Connection of Reference Resistors (RREF  
)
The rules guiding the use of DCI standards on banks are as  
follows:  
1. No more than one DCI I/O standard with a Single  
Termination is allowed per bank.  
2. No more than one DCI I/O standard with a Split  
Termination is allowed per bank.  
3. Single Termination, Split Termination, Controlled-  
Impedance Driver, and Controlled-Impedance Driver  
with Half Impedance can co-exist in the same bank.  
The Spartan-3 family is not pin-compatible with any previ-  
ous Xilinx FPGA family.  
See also The Organization of IOBs into Banks, page 8.  
Rules Concerning Banks  
When assigning I/Os to banks, it is important to follow the  
following VCCO rules:  
The Organization of IOBs into Banks  
IOBs are allocated among eight banks, so that each side of  
the device has two banks, as shown in Figure 4. For all  
packages, each bank has independent VREF lines. For  
example, VREF Bank 3 lines are separate from the VREF  
lines going to all other banks.  
1. Leave no VCCO pins unconnected on the FPGA.  
2. Set all VCCO lines associated with the (interconnected)  
bank to the same voltage level.  
3. The VCCO levels used by all standards assigned to the  
I/Os of the (interconnected) bank(s) must agree. The  
Xilinx development software checks for this. Tables 4, 5,  
and 6 describe how different standards use the VCCO  
supply.  
For the Very Thin Quad Flat Pack (VQ), Plastic Quad Flat  
Pack (PQ), Fine Pitch Thin Ball Grid Array (FT), and Fine  
Pitch Ball Grid Array (FG) packages, each bank has dedi-  
cated VCCO lines. For example, the VCCO Bank 7 lines are  
separate from the VCCO lines going to all other banks. Thus,  
8
www.xilinx.com  
1-800-255-7778  
DS099-2 (v1.2) July 11, 2003  
Advance Product Specification  
40  
R
Spartan-3 1.2V FPGA Family: Functional Description  
4. If none of the standards assigned to the I/Os of the  
(interconnected) bank(s) use VCCO, tie all associated  
The I/Os During Power-On, Configuration, and  
User Mode  
VCCO lines to 2.5V.  
With no power applied to the FPGA, all I/Os are in a  
high-impedance state. The VCCINT (1.2V), VCCAUX (2.5V),  
and VCCO supplies may be applied in any order. Before  
power-on can finish, VCCINT, VCCO Bank 4, and VCCAUX  
must have reached their respective minimum recom-  
mended operating levels (see Table 2 in Module 3: DC and  
Switching Characteristics). At this time, all I/O drivers  
also will be in a high-impedance state. VCCO Bank 4,  
5. In general, apply 2.5V to VCCO Bank 4 from power-on to  
the end of configuration. Apply the same voltage to  
VCCO Bank 5 during parallel configuration or a  
Readback operation. For information on how to  
program the FPGA using 3.3V signals and power, see  
the 3.3V-Tolerant Configuration Interface section.  
If any of the standards assigned to the Inputs of the bank  
use VREF, then observe the following additional rules:  
V
CCINT, and VCCAUX serve as inputs to the internal  
Power-On Reset circuit (POR).  
1. Leave no VREF pins unconnected on any bank.  
A Low level applied to HSWAP_EN input enables weak  
pull-up resistors on User I/Os from power-on throughout  
configuration. A High level on HSWAP_EN disables the  
pull-up resistors, allowing the I/Os to float. As soon as  
power is applied, the FPGA begins initializing its configura-  
tion memory. At the same time, the FPGA internally asserts  
the Global Set-Reset (GSR), which asynchronously resets  
all IOB storage elements to a Low state.  
2. Set all VREF lines associated with the bank to the same  
voltage level.  
3. The VREF levels used by all standards assigned to the  
Inputs of the bank must agree. The Xilinx development  
software checks for this. Tables 4 and 6 describe how  
different standards use the VREF supply.  
If none of the standards assigned to the Inputs of a bank  
use VREF for biasing input switching thresholds, all associ-  
ated VREF pins function as User I/Os.  
Upon the completion of initialization, INIT_B goes High,  
sampling the M0, M1, and M2 inputs to determine the con-  
figuration mode. At this point, the configuration data is  
loaded into the FPGA. The I/O drivers remain in a  
high-impedance state (with or without pull-up resistors, as  
determined by the HSWAP_EN input) throughout configura-  
tion.  
Exceptions to Banks Supporting I/O  
Standards  
Bank 5 of any Spartan-3 device in a VQ100 or TQ144 pack-  
age does not support DCI signal standards. In this case,  
bank 5 has neither VRN nor VRP pins.  
The Global Three State (GTS) net is released during  
Start-Up, marking the end of configuration and the begin-  
ning of design operation in the User mode. At this point,  
those I/Os to which signals have been assigned go active  
while all unused I/Os remain in a high-impedance state. The  
release of the GSR net, also part of Start-up, leaves the IOB  
registers in a Low state by default, unless the loaded design  
reverses the polarity of their respective RS inputs.  
Furthermore, banks 4 and 5 of any Spartan-3 device in a  
VQ100 package do not support signal standards using  
VREF (see Table 4). In this case, the two banks do not have  
any VREF pins.  
Supply Voltages for the IOBs  
Three different supplies power the IOBs:  
In User mode, all weak, internal pull-up resistors on the I/Os  
are disabled and HSWAP_EN becomes a “don’t care” input.  
If it is desirable to have weak pull-up or pull-down resistors  
on I/Os carrying signals, the appropriate symbol — e.g.,  
PULLUP, PULLDOWN — must be placed at the appropriate  
pads in the design. The Bitstream Generator (Bitgen) option  
UnusedPin available in the Xilinx development software  
determines whether unused I/Os collectively have pull-up  
resistors, pull-down resistors, or no resistors in User mode.  
1. The VCCO supplies, one for each of the FPGA’s I/O  
banks, power the output drivers, except when using the  
GTL and GTLP signal standards. The voltage on the  
V
CCO pins determines the voltage swing of the output  
signal.  
CCINT is the main power supply for the FPGA’s internal  
logic.  
2.  
V
3. The VCCAUX is an auxiliary source of power, primarily to  
optimize the performance of various FPGA functions  
such as I/O switching.  
DS099-2 (v1.2) July 11, 2003  
Advance Product Specification  
www.xilinx.com  
1-800-255-7778  
9
R
Spartan-3 1.2V FPGA Family: Functional Description  
.
Left-Hand SLICEM  
(Logic or Distributed RAM  
or Shift Register)  
Right-Hand SLICEL  
(Logic Only)  
COUT  
CLB  
SLICE  
X1Y1  
SLICE  
X1Y0  
COUT  
Switch  
Interconnect  
to Neighbors  
Matrix  
SLICE  
X0Y1  
CIN  
SHIFTOUT  
SHIFTIN  
SLICE  
X0Y0  
CIN  
DS099-2_05_040703  
Figure 5: Arrangement of Slices within the CLB  
ROM functions. Besides these, the left-hand pair supports  
two additional functions: storing data using Distributed RAM  
and shifting data with 16-bit registers. Figure 6 is a diagram  
of the left-hand slice; therefore, it represents a superset of  
the elements and connections to be found in all slices. See  
Function Generator, page 12 for more information.  
CLB Overview  
The Configurable Logic Blocks (CLBs) constitute the main  
logic resource for implementing synchronous as well as  
combinatorial circuits. Each CLB comprises four intercon-  
nected slices, as shown in Figure 5. These slices are  
grouped in pairs. Each pair is organized as a column with an  
independent carry chain.  
The RAM-based function generator — also known as a  
Look-Up Table or LUT — is the main resource for imple-  
menting logic functions. Furthermore, the LUTs in each  
left-hand slice pair can be configured as Distributed RAM or  
a 16-bit shift register. For information on the former, see  
XAPP464: Using Look-Up Tables as Distributed RAM in  
Spartan-3 FPGAs; for information on the latter, refer to  
XAPP465: Using Look-Up Tables as Shift Registers (SRL16)  
in Spartan-3 FPGAs. The function generators located in the  
upper and lower portions of the slice are referred to as the  
"G" and "F", respectively.  
The nomenclature that the FPGA Editor — part of the Xilinx  
development software — uses to designate slices is as fol-  
lows: The letter "X" followed by a number identifies columns  
of slices. The "X" number counts up in sequence from the  
left side of the die to the right. The letter "Y" followed by a  
number identifies the position of each slice in a pair as well  
as indicating the CLB row. The "Y" number counts slices  
starting from the bottom of the die according to the  
sequence: 0, 1, 0, 1 (the first CLB row); 2, 3, 2, 3 (the sec-  
ond CLB row); etc. Figure 5 shows the CLB located in the  
lower left-hand corner of the die. Slices X0Y0 and X0Y1  
make up the column-pair on the left where as slices X1Y0  
and X1Y1 make up the column-pair on the right. For each  
CLB, the term “left-hand” (or SLICEM) is used to indicated  
the pair of slices labeled with an even "X" number, such as  
X0, and the term “right-hand” (or SLICEL) designates the  
pair of slices with an odd "X" number, e.g., X1.  
The storage element, which is programmable as either a  
D-type flip-flop or a level-sensitive latch, provides a means  
for synchronizing data to a clock signal, among other uses.  
The storage elements in the upper and lower portions of the  
slice are called FFY and FFX, respectively.  
Wide-function multiplexers effectively combine LUTs in  
order to permit more complex logic operations. Each slice  
has two of these multiplexers with F5MUX in the lower por-  
tion of the slice and FXMUX in the upper portion. Depend-  
ing on the slice, FXMUX takes on the name F6MUX,  
F7MUX, or F8MUX. For more details on the multiplexers,  
see XAPP466: Using Dedicated Multiplexers in Spartan-3  
FPGAs.  
Elements Within a Slice  
All four slices have the following elements in common: two  
logic function generators, two storage elements, wide-func-  
tion multiplexers, carry logic, and arithmetic gates, as  
shown in Figure 6. Both the left-hand and right-hand slice  
pairs use these elements to provide logic, arithmetic, and  
10  
www.xilinx.com  
1-800-255-7778  
DS099-2 (v1.2) July 11, 2003  
Advance Product Specification  
40  
R
Spartan-3 1.2V FPGA Family: Functional Description  
Notes:  
1. Options to invert signal polarity as well as other options that enable lines for various functions are not shown.  
2. The index i can be 6, 7, or 8, depending on the slice. In this position, the upper right-hand slice has an F8MUX,  
and the upper left-hand slice has an F7MUX. The lower right-hand and left-hand slices both have an F6MUX.  
Figure 6: Simplified Diagram of the Left-Hand SLICEM  
DS099-2 (v1.2) July 11, 2003  
Advance Product Specification  
www.xilinx.com  
1-800-255-7778  
11  
R
Spartan-3 1.2V FPGA Family: Functional Description  
The carry chain, together with various dedicated arithmetic  
logic gates, support fast and efficient implementations of  
math operations. The carry chain enters the slice as CIN  
and exits as COUT. Five multiplexers control the chain:  
CYINIT, CY0F, and CYMUXF in the lower portion as well as  
CY0G and CYMUXG in the upper portion. The dedicated  
arithmetic logic includes the exclusive-OR gates XORF and  
XORG (upper and lower portions of the slice, respectively)  
as well as the AND gates GAND and FAND (upper and  
lower portions, respectively).  
5. Drives the DI input of the LUT. See Distributed RAM  
section.  
6. BY can control the REV inputs of both the FFY and FFX  
storage elements. See Storage Element Section.  
7. Finally, the DIG_MUX multiplexer can switch BY onto to  
the DIG line, which exits the slice.  
Other slice signals shown in Figure 6, page 11 are dis-  
cussed in the sections that follow.  
Function Generator  
Main Logic Paths  
Each of the two LUTs (F and G) in a slice have four logic  
inputs (A1-A4) and a single output (D). This permits any  
four-variable Boolean logic operation to be programmed  
into them. Furthermore, wide function multiplexers can be  
used to effectively combine LUTs within the same CLB or  
across different CLBs, making logic functions with still more  
input variables possible.  
Central to the operation of each slice are two nearly identi-  
cal data paths, distinguished using the terms top and bot-  
tom. The description that follows uses names associated  
with the bottom path. (The top path names appear in paren-  
theses.) The basic path originates at an interconnect-switch  
matrix outside the CLB. Four lines, F1 through F4 (or G1  
through G4 on the upper path), enter the slice and connect  
directly to the LUT. Once inside the slice, the lower 4-bit  
path passes through a function generator "F" (or "G") that  
performs logic operations. The function generator’s Data  
output, "D", offers five possible paths:  
The LUTs in both the right-hand and left-hand slice-pairs  
not only support the logic functions described above, but  
also can function as ROM that is initialized with data at the  
time of configuration.  
The LUTs in the left-hand slice-pair (even-numbered col-  
umns such as X0 in Figure 5) of each CLB support two  
additional functions that the right-hand slice-pair (odd-num-  
bered columns such as X1) do not.  
1. Exit the slice via line "X" (or "Y") and return to  
interconnect.  
2. Inside the slice, "X" (or "Y") serves as an input to the  
DXMUX (DYMUX) which feeds the data input, "D", of  
the FFY (FFX) storage element. The "Q" output of the  
storage element drives the line XQ (or YQ) which exits  
the slice.  
First, it is possible to program the “left-hand LUTs” as dis-  
tributed RAM. This type of memory affords moderate  
amounts of data buffering anywhere along a data path. One  
left-hand LUT stores 16 bits. Multiple left-hand LUTs can be  
combined in various ways to store larger amounts of data. A  
dual port option combines two LUTs so that memory access  
is possible from two independent data lines. A Distributed  
ROM option permits pre-loading the memory with data dur-  
ing FPGA configuration For more information, see the Dis-  
tributed RAM section.  
3. Control the CYMUXF (or CYMUXG) multiplexer on the  
carry chain.  
4. With the carry chain, serve as an input to the XORF (or  
XORG) exclusive-OR gate that performs arithmetic  
operations, producing a result on "X" (or "Y").  
5. Drive the multiplexer F5MUX to implement logic  
functions wider than four bits. The "D" outputs of both  
the F-LUT and G-LUT serve as data inputs to this  
multiplexer.  
Second, it is possible to program each left-hand LUT as a  
16-bit shift register. Used in this way, each LUT can delay  
serial data anywhere from one to 16 clock cycles. The four  
left-hand LUTs of a single CLB can be combined to produce  
delays up to 64 clock cycles. The SHIFTIN and SHIFTOUT  
lines cascade LUTs to form larger shift registers. It is also  
possible to combine shift registers across more than one  
CLB. The resulting programmable delays can be used to  
balance the timing of data pipelines.  
In addition to the main logic paths described above, there  
are two bypass paths that enter the slice as BX and BY.  
Once inside the FPGA, BX in the bottom half of the slice (or  
BY in the top half) can take any of several possible  
branches:  
1. Bypass both the LUT and the storage element, then exit  
the slice as BXOUT (or BYOUT) and return to  
interconnect.  
Block RAM Overview  
All Spartan-3 devices support block RAM, which is orga-  
nized as configurable, synchronous 18Kbit blocks. Block  
RAM stores relatively large amounts of data more efficiently  
than the distributed RAM feature described earlier. (The lat-  
ter is better suited for buffering small amounts of data any-  
where along signal paths.) This section describes basic  
Block RAM functions. For more information, see XAPP463:  
Using Block RAM in Spartan-3 FPGAs.  
2. Bypass the LUT, then pass through a storage element  
via the D input before exiting as XQ (or YQ).  
3. Control the wide function multiplexer F5MUX (or  
F6MUX).  
4. Via multiplexers, serve as an input to the carry chain.  
12  
40  
www.xilinx.com  
1-800-255-7778  
DS099-2 (v1.2) July 11, 2003  
Advance Product Specification  
R
Spartan-3 1.2V FPGA Family: Functional Description  
The aspect ratio — i.e., width vs. depth — of each block  
RAM is configurable. Furthermore, multiple blocks can be  
cascaded to create still wider and/or deeper memories.  
The Internal Structure of the Block RAM  
The block RAM has a dual port structure. The two identical  
data ports called A and B permit independent access to the  
common RAM block, which has a maximum capacity of  
18,432 bits — or 16,384 bits when no parity lines are used.  
Each port has its own dedicated set of data, control and  
clock lines for synchronous read and write operations.  
There are four basic data paths, as shown in Figure 7: (1)  
write to and read from Port A, (2) write to and read from Port  
B, (3) data transfer from Port A to Port B, and (4) data trans-  
fer from Port B to Port A.  
A choice among primitives determines whether the block  
RAM functions as dual- or single-port memory. A name of  
the form RAM16_S[wA]_S[wB] calls out the dual-port primi-  
tive, where the integers wA and wB specify the total data  
path width at ports wA and wB, respectively. Thus, a  
RAM16_S9_S18 is a dual-port RAM with a 9-bit-wide Port A  
and an 18-bit-wide Port B. A name of the form RAM16_S[w]  
identifies the single-port primitive, where the integer w  
specifies the total data path width of the lone port. A  
RAM16_S18 is a single-port RAM with an 18-bit-wide port.  
Other memory functions — e.g., FIFOs, data path width  
conversion, ROM, etc. — are readily available using the  
CORE Generator™ system, part of the Xilinx development  
software.  
3
Write  
Read  
Read  
Write  
4
Spartan-3  
Dual Port  
Block RAM  
Arrangement of RAM Blocks on Die  
Write  
Write  
The XC3S50 has one column of block RAM. The Spartan-3  
devices ranging from the XC3S200 to XC3S2000 have two  
columns of block RAM. The XC3S4000 and XC3S5000  
have four columns. The position of the columns on the die is  
shown in Figure 1 in Module 1: Introduction and Ordering  
Information. For a given device, the total available RAM  
blocks are distributed equally among the columns. Table 8  
shows the number of RAM blocks, the data storage capac-  
ity, and the number of columns for each device.  
2
1
Read  
Read  
DS099-2_12_030703  
Figure 7: Block RAM Data Paths  
Block RAM Port Signal Definitions  
Representations  
of  
the  
dual-port  
primitive  
RAM16_S[wA]_S[wB] and the single-port primitive  
RAM16_S[w] with their associated signals are shown in  
Figure 8a and Figure 8b, respectively. These signals are  
defined in Table 9.  
Table 8: Number of RAM Blocks by Device  
Total  
Number  
of  
Columns  
Total Number  
of RAM Blocks  
Addressable  
Locations (bits)  
Device  
XC3S50  
4
12  
16  
24  
32  
40  
96  
104  
73,728  
221,184  
294,912  
442,368  
589,824  
737,280  
1,769,472  
1,916,928  
1
2
2
2
2
2
4
4
XC3S200  
XC3S400  
XC3S1000  
XC3S1500  
XC3S2000  
XC3S4000  
XC3S5000  
DS099-2 (v1.2) July 11, 2003  
Advance Product Specification  
www.xilinx.com  
1-800-255-7778  
13  
R
Spartan-3 1.2V FPGA Family: Functional Description  
RAM16_wA_wB  
WEA  
ENA  
SSRA  
DOPA[pA 1:0]  
DOA[wA 1:0]  
CLKA  
ADDRA[rA 1:0]  
DIA[wA 1:0]  
DIPA[3:0]  
RAM16_Sw  
WEB  
ENB  
WE  
EN  
SSRB  
SSR  
DOPB[pB 1:0]  
DOB[wB 1:0]  
DOP[p 1:0]  
DO[w 1:0]  
CLKB  
CLK  
ADDRB[rB 1:0]  
DIB[wB 1:0]  
DIPB[3:0]  
ADDR[r 1:0]  
DI[w 1:0]  
DIP[p 1:0]  
(a) Dual-Port  
(b) Single-Port  
DS099-2_13_091302  
Notes:  
1. wA and wB are integers representing the total data path width (i.e., data bits plus parity bits) at ports A and B, respectively.  
2. pA and pB are integers that indicate the number of data path lines serving as parity bits.  
3. rA and rB are integers representing the address bus width at ports A and B, respectively.  
4. The control signals CLK, WE, EN, and SSR on both ports have the option of inverted polarity.  
Figure 8: Block RAM Primitives  
Table 9: Block RAM Port Signals  
Port A  
Signal  
Name  
Port B  
Signal  
Name  
Signal  
Description  
Direction  
Function  
ADDRA  
ADDRB  
Input  
Address Bus  
The Address Bus selects a memory location for read or write  
operations. The width (w) of the port’s associated data path  
determines the number of available address lines (r).  
DIA  
DIB  
Input  
Data Input Bus  
Data at the DI input bus is written to the addressed memory  
location addressed on an enabled active CLK edge.  
It is possible to configure a port’s total data path width (w) to be  
1, 2, 4, 9, 18, or 36 bits. This selection applies to both the DI and  
DO paths of a given port. Each port is independent. For a port  
assigned a width (w), the number of addressable locations will  
be 16,384/(w-p) where "p" is the number of parity bits. Each  
memory location will have a width of "w" (including parity bits).  
See the DIP signal description for more information of parity.  
DIPA  
DIPB  
Input  
Parity Data  
Input(s)  
Parity inputs represent additional bits included in the data input  
path to support error detection. The number of parity bits "p"  
included in the DI (same as for the DO bus) depends on a port’s  
total data path width (w). See Table 10.  
14  
40  
www.xilinx.com  
1-800-255-7778  
DS099-2 (v1.2) July 11, 2003  
Advance Product Specification  
R
Spartan-3 1.2V FPGA Family: Functional Description  
Table 9: Block RAM Port Signals (Continued)  
Port A  
Signal  
Name  
Port B  
Signal  
Name  
Signal  
Description  
Direction  
Function  
DOA  
DOB  
Output  
Data Output  
Bus  
Basic data access occurs whenever WE is inactive. The DO  
outputs mirror the data stored in the addressed memory  
location.  
Data access with WE asserted is also possible if one of the  
following two attributes is chosen: WRITE_FIRST accesses  
data before the write takes place. READ_FIRST accesses data  
after the write occurs.  
A third attribute, NO_CHANGE, latches the DO outputs upon  
the assertion of WE.  
It is possible to configure a port’s total data path width (w) to be  
1, 2, 4, 9, 18, or 36 bits. This selection applies to both the DI and  
DO paths. See the DI signal description.  
DOPA  
WEA  
DOPB  
WEB  
Output  
Input  
Parity Data  
Output(s)  
Parity inputs represent additional bits included in the data input  
path to support error detection. The number of parity bits "p"  
included in the DI (same as for the DO bus) depends on a port’s  
total data path width (w). See Table 10.  
Write Enable  
When asserted together with EN, this input enables the writing  
of data to the RAM. In this case, the data access attributes  
WRITE_FIRST, READ_FIRST or NO_CHANGE determines if  
and how data is updated on the DO outputs. See the DO signal  
description.  
When WE is inactive with EN asserted, read operations are still  
possible. In this case, a transparent latch passes data from the  
addressed memory location to the DO outputs.  
ENA  
ENB  
Input  
Clock Enable  
When asserted, this input enables the CLK signal to  
synchronize Block RAM functions as follows: the writing of data  
to the DI inputs (when WE is also asserted), the updating of data  
at the DO outputs as well as the setting/resetting of the DO  
output latches.  
When de-asserted, the above functions are disabled.  
SSRA  
CLKA  
SSRB  
CLKB  
Input  
Input  
Set/Reset  
Clock  
When asserted, this pin forces the DO output latch to the value  
that the SRVAL attribute is set to. A Set/Reset operation on one  
port has no effect on the other ports functioning, nor does it  
disturb the memory’s data contents. It is synchronized to the  
CLK signal.  
This input accepts the clock signal to which read and write  
operations are synchronized. All associated port inputs are  
required to meet setup times with respect to the clock signal’s  
active edge. The data output bus responds after a clock-to-out  
delay referenced to the clock signal’s active edge.  
Block RAM automatically performs a bus-matching function.  
When data are written to a port with a narrow bus, then read  
from a port with a wide bus, the latter port will effectively  
combine “narrow” words to form “wide” words. Similarly,  
when data are written into a port with a wide bus, then read  
from a port with a narrow bus, the latter port will divide  
Port Aspect Ratios  
On a given port, it is possible to select a number of different  
possible widths (w – p) for the DI/DO buses as shown in  
Table 10. These two buses always have the same width.  
This data bus width selection is independent for each port. If  
the data bus width of Port A differs from that of Port B, the  
DS099-2 (v1.2) July 11, 2003  
Advance Product Specification  
www.xilinx.com  
1-800-255-7778  
15  
R
Spartan-3 1.2V FPGA Family: Functional Description  
“wide” words to form “narrow” words. When the data bus  
width is eight bits or greater, extra parity bits become avail-  
able. The width of the total data path (w) is the sum of the  
DI/DO bus width and any parity bits (p).  
n = 2r  
(2)  
The product of w and n yields the total block RAM capacity.  
Equations (1) and (2) show that as the data bus width  
increases, the number of address lines along with the num-  
ber of addressable memory locations decreases. Using the  
permissible DI/DO bus widths as inputs to these equations  
provides the bus width and memory capacity measures  
shown in Table 10.  
The width selection made for the DI/DO bus determines the  
number of address lines according to the relationship  
expressed below:  
r = 14 – [log(w–p)/log(2)]  
(1)  
In turn, the number of address lines delimits the total num-  
ber (n) of addressable locations or depth according to the  
following equation:  
Table 10: Port Aspect Ratios for Port A or B  
No. of  
Addressable  
Locations (n)  
Block RAM  
Capacity  
(bits)  
DI/DO Bus Width  
(w – p bits)  
DIP/DOP  
Bus Width (p bits)  
Total Data Path  
Width (w bits)  
ADDR Bus  
Width (r bits)  
1
2
0
0
0
1
2
4
1
2
14  
13  
12  
11  
10  
9
16,384  
8,192  
4,096  
2,048  
1,024  
512  
16,384  
16,384  
16,384  
18,432  
18,432  
18,432  
4
4
8
9
16  
32  
18  
36  
condition, data stored in the memory location addressed by  
the ADDR lines passes through a transparent output latch  
to the DO outputs. The timing for basic data access is  
shown in the portions of Figure 9, Figure 10, and Figure 11  
during which WE is Low.  
Block RAM Data Operations  
Writing data to and accessing data from the block RAM are  
synchronous operations that take place independently on  
each of the two ports.  
The waveforms for the write operation are shown in the top  
half of the Figure 9, Figure 10, and Figure 11. When the WE  
and EN signals enable the active edge of CLK, data at the  
DI input bus is written to the block RAM location addressed  
by the ADDR lines.  
Data can also be accessed on the DO outputs when assert-  
ing the WE input. This is accomplished using two different  
attributes:  
Choosing the WRITE_FIRST attribute, data is written to the  
addressed memory location on an enabled active CLK edge  
and is also passed to the DO outputs. WRITE_FIRST timing  
is shown in the portion of Figure 9 during which WE is High.  
There are a number of different conditions under which data  
can be accessed at the DO outputs. Basic data access  
always occurs when the WE input is inactive. Under this  
16  
www.xilinx.com  
1-800-255-7778  
DS099-2 (v1.2) July 11, 2003  
Advance Product Specification  
40  
R
Spartan-3 1.2V FPGA Family: Functional Description  
CLK  
WE  
DI  
XXXX  
aa  
1111  
bb  
2222  
cc  
XXXX  
ADDR  
DO  
dd  
0000  
MEM(aa)  
1111  
2222  
MEM(dd)  
EN  
DISABLED  
READ  
WRITE  
MEM(bb)=1111  
WRITE  
MEM(cc)=2222  
READ  
DS099-2_14_030403  
Figure 9: Waveforms of Block RAM Data Operations with WRITE_FIRST Selected  
Choosing the READ_FIRST attribute, data already stored in  
the addressed location pass to the DO outputs before that  
location is over-written with new data from the DI inputs on  
an enabled active CLK edge. READ_FIRST timing is shown  
in the portion of Figure 10 during which WE is High.  
CLK  
WE  
XXXX  
aa  
1111  
2222  
cc  
XXXX  
DI  
ADDR  
DO  
bb  
dd  
0000  
MEM(aa)  
old MEM(bb)  
old MEM(cc)  
MEM(dd)  
EN  
DISABLED  
READ  
WRITE  
MEM(bb)=1111  
WRITE  
MEM(cc)=2222  
READ  
DS099-2_15_030403  
Figure 10: Waveforms of Block RAM Data Operations with READ_FIRST Selected  
Choosing a third attribute called NO_CHANGE puts the DO  
outputs in a latched state when asserting WE. Under this  
condition, the DO outputs will retain the data driven just  
before WE was asserted. NO_CHANGE timing is shown in  
the portion of Figure 11 during which WE is High.  
DS099-2 (v1.2) July 11, 2003  
Advance Product Specification  
www.xilinx.com  
1-800-255-7778  
17  
R
Spartan-3 1.2V FPGA Family: Functional Description  
CLK  
WE  
XXXX  
1111  
bb  
2222  
cc  
XXXX  
DI  
ADDR  
DO  
aa  
dd  
0000  
MEM(aa)  
MEM(dd)  
EN  
DISABLED  
READ  
WRITE  
MEM(bb)=1111  
WRITE  
MEM(cc)=2222  
READ  
DS099-2_16_030403  
Figure 11: Waveforms of Block RAM Data Operations with NO_CHANGE Selected  
data handling. Cascading multipliers permits multiplicands  
more than three in number as well as wider than 18-bits.  
The multiplier is placed in a design using one of two primi-  
tives: an asynchronous version called MULT18X18 and a  
version with a register at the outputs called MULT18X18S,  
as shown in Figure 12a and Figure 12b, respectively. The  
signals for these primitives are defined in Table 11.  
Dedicated Multipliers  
All Spartan-3 devices provide embedded multipliers that  
accept two 18-bit words as inputs to produce a 36-bit prod-  
uct. This section provides an introduction to multipliers. For  
further details, see XAPP467: Using Embedded Multipliers  
in Spartan-3 FPGAs.  
The input buses to the multiplier accept data in two’s-com-  
plement form (either 18-bit signed or 17-bit unsigned). One  
such multiplier is matched to each block RAM on the die.  
The close physical proximity of the two ensures efficient  
The CORE Generator system produces multipliers based  
on these primitives that can be configured to suit a wide  
range of requirements.  
MULT18X18S  
A[17:0]  
B[17:0]  
CLK  
P[35:0]  
MULT18X18  
A[17:0]  
B[17:0]  
P[35:0]  
CE  
RST  
(a) Asynchronous 18-bit Multiplier  
(b) 18-bit Multiplier with Register at Outputs  
DS099-2_17_091302  
Figure 12: Embedded Multiplier Primitives  
18  
40  
www.xilinx.com  
1-800-255-7778  
DS099-2 (v1.2) July 11, 2003  
Advance Product Specification  
R
Spartan-3 1.2V FPGA Family: Functional Description  
Table 11: Embedded Multiplier Primitives Descriptions  
Signal  
Name  
Direction  
Function  
A[17:0]  
Input  
Apply one 18-bit multiplicand to these inputs. The MULT18X18S primitive requires a setup time  
before the enabled rising edge of CLK.  
B[17:0]  
P[35:0]  
CLK  
Input  
Output  
Input  
Apply the other 18-bit multiplicand to these inputs. The MULT18X18S primitive requires a setup  
time before the enabled rising edge of CLK.  
The output on the P bus is a 36-bit product of the multiplicands A and B. In the case of the  
MULT18X18S primitive, an enabled rising CLK edge updates the P bus.  
CLK is only an input to the MULT18X18S primitive. The clock signal applied to this input when  
enabled by CE, updates the output register that drives the P bus.  
CE  
Input  
CE is only an input to the MULT18X18S primitive. Enable for the CLK signal. Asserting this input  
enables the CLK signal to update the P bus.  
RST  
Input  
RST is only an input to the MULT18X18S primitive. Asserting this input resets the output register  
on an enabled, rising CLK edge, forcing the P bus to all zeroes.  
Notes:  
1. The control signals CLK, CE and RST have the option of inverted polarity.  
Digital Clock Manager (DCM)  
Spartan-3 devices provide flexible, complete control over  
clock frequency, phase shift and skew through the use of  
the DCM feature. To accomplish this, the DCM employs a  
Delay-Locked Loop (DLL), a fully digital control system that  
uses feedback to maintain clock signal characteristics with a  
high degree of precision despite normal variations in oper-  
ating temperature and voltage. This section provides a fun-  
damental description of the DCM. For further information,  
see XAPP462: Using Digital Clock Managers (DCMs) in  
Spartan-3 FPGAs.  
clock signal to arrive at different points on the die at  
different times. This clock skew can increase set-up  
and hold time requirements as well as clock-to-out  
time, which may be undesirable in applications  
operating at a high frequency, when timing is critical.  
The DCM eliminates clock skew by aligning the output  
clock signal it generates with another version of the  
clock signal that is fed back. As a result, the two clock  
signals establish a zero-phase relationship. This  
effectively cancels out clock distribution delays that  
may lie in the signal path leading from the clock output  
of the DCM to its feedback input.  
Frequency Synthesis: Provided with an input clock  
signal, the DCM can generate a wide range of different  
output clock frequencies. This is accomplished by  
either multiplying and/or dividing the frequency of the  
input clock signal by any of several different factors.  
Each member of the Spartan-3 family has four DCMs,  
except the smallest, the XC3S50, which has two DCMs.  
The DCMs are located at the ends of the outermost Block  
RAM column(s). See Figure 1 in Module 1: Introduction  
and Ordering Information. The Digital Clock Manager is  
placed in a design as the “DCM” primitive.  
The DCM supports three major functions:  
Phase Shifting: The DCM provides the ability to shift  
the phase of all its output clock signals with respect to  
its input clock signal.  
Clock-skew Elimination: Clock skew describes the  
extent to which clock signals may, under normal  
circumstances, deviate from zero-phase alignment. It  
occurs when slight differences in path delays cause the  
DS099-2 (v1.2) July 11, 2003  
www.xilinx.com  
19  
Advance Product Specification  
1-800-255-7778  
R
Spartan-3 1.2V FPGA Family: Functional Description  
DCM  
PSINCDEC  
Phase  
Shifter  
PSEN  
PSCLK  
PSDONE  
CLK0  
Clock  
Distribution  
Delay  
CLKIN  
CLKFB  
CLK90  
CLK180  
CLK270  
CLK2X  
CLK2X180  
CLKDV  
CLKFX  
DFS  
CLKFX180  
DLL  
LOCKED  
Status  
Logic  
RST  
8
STATUS [7:0]  
DS099-2_07_040103  
Figure 13: DCM Functional Blocks and Associated Signals  
The DCM has four functional components: the  
Delay-Locked Loop (DLL), the Digital Frequency Synthe-  
sizer (DFS), the Phase Shifter (PS), and the Status Logic.  
Each component has its associated signals, as shown in  
Figure 13.  
Delay-Locked Loop (DLL)  
The most basic function of the DLL component is to elimi-  
nate clock skew. The main signal path of the DLL consists of  
an input stage, followed by a series of discrete delay ele-  
ments or taps, which in turn leads to an output stage. This  
path together with logic for phase detection and control  
forms a system complete with feedback as shown in  
Figure 14.  
CLK0  
CLK90  
CLK180  
CLK270  
CLK2X  
Delay  
1
Delay  
2
Delay  
n-1  
Delay  
n
CLKIN  
CLK2X180  
CLKDV  
Control  
LOCKED  
Phase  
Detection  
CLKFB  
RST  
DS099-2_08_041103  
Figure 14: Simplified Functional Diagram of DLL  
20  
40  
www.xilinx.com  
1-800-255-7778  
DS099-2 (v1.2) July 11, 2003  
Advance Product Specification  
R
Spartan-3 1.2V FPGA Family: Functional Description  
The DLL component has two clock inputs, CLKIN and  
CLKFB, as well as seven clock outputs, CLK0, CLK90,  
CLK180, CLK270, CLK2X, CLK2X180, and CLKDV as  
described in Table 12. The clock outputs drive simulta-  
neously; however, the High Frequency mode only supports  
a subset of the outputs available in the Low Frequency  
mode. See DLL Frequency Modes, page 23. Signals that  
initialize and report the state of the DLL are discussed in  
The Status Logic Component, page 28.  
Table 12: DLL Signals  
Mode Support  
Low  
High  
Signal  
CLKIN  
Direction  
Input  
Description  
Accepts original clock signal.  
Frequency Frequency  
Yes  
Yes  
Yes  
Yes  
CLKFB  
Input  
Accepts either CLK0 or CLK2X as feed back signal. (Set  
CLK_FEEDBACK attribute accordingly).  
CLK0  
Output  
Output  
Generates clock signal with same frequency and phase as CLKIN.  
Yes  
Yes  
Yes  
No  
CLK90  
Generates clock signal with same frequency as CLKIN, only  
phase-shifted 90°.  
CLK180  
CLK270  
CLK2X  
Output  
Output  
Output  
Output  
Output  
Generates clock signal with same frequency as CLKIN, only  
phase-shifted 180°.  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
No  
No  
No  
Yes  
Generates clock signal with same frequency as CLKIN, only  
phase-shifted 270°.  
Generates clock signal with same phase as CLKIN, only twice the  
frequency.  
CLK2X180  
CLKDV  
Generates clock signal with twice the frequency of CLKIN,  
phase-shifted 180° with respect to CLKIN.  
Divides the CLKIN frequency by CLKDV_DIVIDE value to generate  
lower frequency clock signal that is phase-aligned to CLKIN.  
The clock signal supplied to the CLKIN input serves as a  
reference waveform, with which the DLL seeks to align the  
feedback signal at the CLKFB input. When eliminating clock  
skew, the common approach to using the DLL is as follows:  
The CLK0 signal is passed through the clock distribution  
network to all the registers it synchronizes. These registers  
are either internal or external to the FPGA. After passing  
through the clock distribution network, the clock signal  
returns to the DLL via a feedback line called CLKFB. The  
control block inside the DLL measures the phase error  
between CLKFB and CLKIN. This phase error is a measure  
of the clock skew that the clock distribution network intro-  
duces. The control block activates the appropriate number  
of delay elements to cancel out the clock skew. Once the  
DLL has brought the CLK0 signal in phase with the CLKIN  
signal, it asserts the LOCKED output, indicating a “lock” on  
to the CLKIN signal.  
DLL Attributes and Related Functions  
A number of different functional options can be set for the  
DLL component through the use of the attributes described  
in Table 13. Each attribute is described in detail in the sec-  
tions that follow:  
DS099-2 (v1.2) July 11, 2003  
Advance Product Specification  
www.xilinx.com  
1-800-255-7778  
21  
R
Spartan-3 1.2V FPGA Family: Functional Description  
Table 13: DLL Attributes  
Attribute  
Description  
Values  
NONE, 1X, 2X  
CLK_FEEDBACK  
Chooses either the CLK0 or CLK2X output to drive the  
CLKFB input  
DLL_FREQUENCY_MODE  
CLKIN_DIVIDE_BY_2  
CLKDV_DIVIDE  
Chooses between High Frequency and Low  
Frequency modes  
LOW, HIGH  
Halves the frequency of the CLKIN signal just as it  
enters the DCM  
TRUE, FALSE  
Selects constant used to divide the CLKIN input  
frequency to generate the CLKDV output frequency  
1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5,  
6.0, 6.5, 7.0, 7.5, 8, 9, 10, 11,  
12, 13, 14, 15, and 16.  
DUTY_CYCLE_CORRECTION  
Enables 50% duty cycle correction for the CLK0,  
CLK90, CLK180, and CLK270 outputs  
TRUE, FALSE  
The feedback loop is essential for DLL operation and is  
established by driving the CLKFB input with either the CLK0  
or the CLK2X signal so that any undesirable clock distribu-  
tion delay is included in the loop. It is possible to use either  
of these two signals for synchronizing any of the seven DLL  
outputs: CLK0, CLK90, CLK180, CLK270, CLKDV, CLK2X,  
or CLK2X180. The value assigned to the CLK_FEEDBACK  
attribute must agree with the physical feedback connection:  
a value of 1X for the CLK0 case, 2X for the CLK2X case. If  
the DCM is used in an application that does not require the  
DLL — i.e., only the DFS is used — then there is no feed-  
back loop so CLK_FEEDBACK is set to NONE.  
DLL Clock Input Connections  
An external clock source enters the FPGA using a Global  
Clock Input Buffer (IBUFG), which directly accesses the glo-  
bal clock network or an Input Buffer (IBUF). Clock signals  
within the FPGA drive a global clock net using a Global  
Clock Multiplexer Buffer (BUFGMUX). The global clock net  
connects directly to the CLKIN input. The internal and exter-  
nal connections are shown in Figure 15a and Figure 15c,  
respectively. A differential clock (e.g., LVDS) can serve as  
an input to CLKIN.  
DLL Clock Output and Feedback Connections  
As many as four of the nine DCM clock outputs can simulta-  
neously drive the four BUFGMUX buffers on the same die  
edge (top or bottom). All DCM clock outputs can simulta-  
neously drive general routing resources, including intercon-  
nect leading to OBUF buffers.  
There are two basic cases that determine how to connect  
the DLL clock outputs and feedback connections: on-chip  
synchronization and off-chip synchronization, which are  
illustrated in Figure 15a through Figure 15d.  
22  
40  
www.xilinx.com  
1-800-255-7778  
DS099-2 (v1.2) July 11, 2003  
Advance Product Specification  
R
Spartan-3 1.2V FPGA Family: Functional Description  
FPGA  
FPGA  
BUFGMUX  
BUFGMUX  
CLK0  
CLK90  
CLK180  
CLK270  
CLKDV  
CLK90  
CLK180  
CLK270  
CLKDV  
CLK2X  
CLK2X180  
BUFG  
BUFG  
CLKIN  
CLKIN  
Clock  
Net Delay  
Clock  
Net Delay  
DCM  
DCM  
CLK2X180  
CLK2X  
CLKFB  
CLKFB  
CLK0  
BUFGMUX  
BUFGMUX  
CLK0  
CLK2X  
(a) On-Chip with CLK0 Feedback  
FPGA  
(b) On-Chip with CLK2X Feedback  
FPGA  
OBUFG  
CLK0  
CLK90  
CLK180  
CLK270  
CLKDV  
CLK90  
CLK180  
CLK270  
CLKDV  
CLK2X  
CLK2X180  
OBUFG  
IBUFG  
IBUFG  
CLKIN  
CLKIN  
Clock  
Net Delay  
Clock  
Net Delay  
DCM  
DCM  
CLK2X180  
CLKFB  
CLK0  
CLKFB  
CLK2X  
OBUFG  
IBUFG  
IBUFG  
OBUFG  
CLK0  
CLK2X  
(c) Off-Chip with CLK0 Feedback  
(d) Off-Chip with CLK2X Feedback  
DS099-2_09_071003  
Notes:  
1. In the Low Frequency mode, all seven DLL outputs are available. In the High Frequency mode, only the CLK0, CLK180,  
and CLKDV outputs are available.  
Figure 15: Input Clock, Output Clock, and Feedback Connections for the DLL  
In the on-chip synchronization case (Figure 15a and  
Figure 15b), it is possible to connect any of the DLLs seven  
output clock signals through general routing resources to  
the FPGA’s internal registers. Either a Global Clock Buffer  
(BUFG) or a BUFGMUX affords access to the global clock  
network. As shown in Figure 15a, the feedback loop is cre-  
ated by routing CLK0 (or CLK2X, in Figure 15b) to a global  
clock net, which in turn drives the CLKFB input.  
attribute chooses between the two modes. When the  
attribute is set to LOW, the Low Frequency mode permits all  
seven DLL clock outputs to operate over a low-to-moderate  
frequency range. When the attribute is set to HIGH, the High  
Frequency mode allows the CLK0, CLK180 and CLKDV out-  
puts to operate at the highest possible frequencies. The  
remaining DLL clock outputs are not available for use in High  
Frequency mode.  
In the off-chip synchronization case (Figure 15c and  
Figure 15d), CLK0 (or CLK2X) plus any of the DLLs other  
output clock signals exit the FPGA using output buffers  
(OBUF) to drive an external clock network plus registers on  
the board. As shown in Figure 15c, the feedback loop is  
formed by feeding CLK0 (or CLK2X, in Figure 15d) back  
into the FPGA using an IBUFG, which directly accesses the  
global clock network, or an IBUF. Then, the global clock net  
is connected directly to the CLKFB input.  
Accommodating High Input Frequencies  
If the frequency of the CLKIN signal is high such that it  
exceeds the maximum permitted, divide it down to an  
acceptable value using the CLKIN_DIVIDE_BY_2 attribute.  
When this attribute is set to TRUE, the CLKIN frequency is  
divided by a factor of two just as it enters the DCM.  
Coarse Phase Shift Outputs of the DLL Compo-  
nent  
DLL Frequency Modes  
In addition to CLK0 for zero-phase alignment to the CLKIN  
signal, the DLL also provides the CLK90, CLK180 and  
CLK270 outputs for 90°, 180° and 270° phase-shifted sig-  
nals, respectively. These signals are described in Table 12.  
The DLL supports two distinct operating modes, High Fre-  
quency and Low Frequency, with each specified over a differ-  
ent clock frequency range. The DLL_FREQUENCY_MODE  
DS099-2 (v1.2) July 11, 2003  
Advance Product Specification  
www.xilinx.com  
1-800-255-7778  
23  
R
Spartan-3 1.2V FPGA Family: Functional Description  
Their relative timing in the Low Frequency Mode is shown in  
Figure 16. The CLK90, CLK180 and CLK270 outputs are  
not available when operating in the High Frequency mode.  
(See the description of the DLL_FREQUENCY_MODE  
attribute in Table 13.) For control in finer increments than  
90°, see the Phase Shifter (PS), page 26 section.  
0o 90o 180o 270o 0o 90o 180o 270o 0o  
Phase:  
Input Signal (30% Duty Cycle)  
t
CLKIN  
Basic Frequency Synthesis Outputs of the DLL  
Component  
The DLL component provides basic options for frequency  
multiplication and division in addition to the more flexible  
synthesis capability of the DFS component, described in a  
later section. These operations result in output clock signals  
with frequencies that are either a fraction (for division) or a  
multiple (for multiplication) of the incoming clock frequency.  
The CLK2X output produces an in-phase signal that is twice  
the frequency of CLKIN. The CLK2X180 output also dou-  
bles the frequency, but is 180° out-of-phase with respect to  
CLKIN. The CLKDIV output generates a clock frequency  
that is a predetermined fraction of the CLKIN frequency.  
The CLKDV_DIVIDE attribute determines the factor used to  
divide the CLKIN frequency. The attribute can be set to var-  
ious values as described in Table 13. The basic frequency  
synthesis outputs are described in Table 12. Their relative  
timing in the Low Frequency Mode is shown in Figure 16.  
Output Signal - Duty Cycle is Always Corrected  
CLK2X  
CLK2X180  
(1)  
CLKDV  
Output Signal - Attribute Corrects Duty Cycle  
DUTY_CYCLE_CORRECTION = FALSE  
CLK0  
CLK90  
CLK180  
CLK270  
The CLK2X and CLK2X180 outputs are not available when  
operating in the High Frequency mode. (See the description  
of the DLL_FREQUENCY_MODE attribute in Table 14.)  
Duty Cycle Correction of DLL Clock Outputs  
The CLK2X(1), CLK2X180, and CLKDV(2) output signals  
ordinarily exhibit a 50% duty cycle – even if the incoming  
CLKIN signal has a different duty cycle. Fifty-percent duty  
cycle means that the High and Low times of each clock  
cycle are equal. The DUTY_CYCLE_CORRECTION  
attribute determines whether or not duty cycle correction is  
applied to the CLK0, CLK90, CLK180 and CLK270 outputs.  
If DUTY_CYCLE_CORRECTION is set to TRUE, then the  
duty cycle of these four outputs is corrected to 50%. If  
DUTY_CYCLE_CORRECTION is set to FALSE, then these  
outputs exhibit the same duty cycle as the CLKIN signal.  
Figure 16 compares the characteristics of the DLLs output  
signals to those of the CLKIN signal.  
DUTY_CYCLE_CORRECTION = TRUE  
CLK0  
CLK90  
CLK180  
CLK270  
DS099-2_10_031303  
Notes:  
1. The DLL attribute CLKDV_DIVIDE is set to 2.  
Figure 16: Characteristics of the DLL Clock Outputs  
1. The CLK2X output generates a 25% duty cycle clock at the same frequency as the CLKIN signal until the DLL has achieved lock.  
2. The duty cycle of the CLKDV outputs may differ somewhat from 50% (i.e., the signal will be High for less than 50% of the period) when  
the CLKDV_DIVIDE attribute is set to a non-integer value and the DLL is operating in the High Frequency mode.  
24  
40  
www.xilinx.com  
1-800-255-7778  
DS099-2 (v1.2) July 11, 2003  
Advance Product Specification  
R
Spartan-3 1.2V FPGA Family: Functional Description  
the two DFS outputs to operate over a low-to-moderate fre-  
quency range. When the attribute is set to HIGH, the High  
Frequency mode allows both these outputs to operate at the  
highest possible frequencies.  
Digital Frequency Synthesizer (DFS)  
The DFS component generates clock signals the frequency  
of which is a product of the clock frequency at the CLKIN  
input and a ratio of two user-determined integers. Because  
of the wide range of possible output frequencies such a ratio  
permits, the DFS feature provides still further flexibility than  
the DLLs basic synthesis options as described in the pre-  
ceding section. The DFS component’s two dedicated out-  
puts, CLKFX and CLKFX180, are defined in Table 15.  
DFS With or Without the DLL  
The DFS component can be used with or without the DLL  
component:  
Without the DLL, the DFS component multiplies or divides  
the CLKIN signal frequency according to the respective  
CLKFX_MULTIPLY and CLKFX_DIVIDE values, generating  
a clock with the new target frequency on the CLKFX and  
CLKFX180 outputs. Though classified as belonging to the  
DLL component, the CLKIN input is shared with the DFS  
component. This case does not employ feedback loop;  
therefore, it cannot correct for clock distribution delay.  
The signal at the CLKFX180 output is essentially an inver-  
sion of the CLKFX signal. These two outputs always exhibit  
a 50% duty cycle. This is true even when the CLKIN signal  
does not. These DFS clock outputs are driven at the same  
time as the DLLs seven clock outputs.  
The numerator of the ratio is the integer value assigned to  
the attribute CLKFX_MULTIPLY and the denominator is the  
integer value assigned to the attribute CLKFX_DIVIDE.  
These attributes are described in Table 14.  
With the DLL, the DFS operates as described in the preced-  
ing case, only with the additional benefit of eliminating the  
clock distribution delay. In this case, a feedback loop from  
the CLK0 output to the CLKFB input must be present.  
The output frequency (fCLKFX) can be expressed as a func-  
tion of the incoming clock frequency (fCLKIN) as follows:  
The DLL and DFS components work together to achieve  
this phase correction as follows: Given values for the  
CLKFX_MULTIPLY and CLKFX_DIVIDE attributes, the DLL  
selects the delay element for which the output clock edge  
coincides with the input clock edge whenever mathemati-  
cally possible. For example, when CLKFX_MULTIPLY = 5  
and CLKFX_DIVIDE = 3, the input and output clock edges  
will coincide every three input periods, which is equivalent in  
time to five output periods.  
fCLKFX = fCLKIN*(CLKFX_MULTIPLY/CLKFX_DIVIDE) (3)  
Regarding the two attributes, it is possible to assign any  
combination of integer values, provided that two conditions  
are met:  
1. The two values fall within their corresponding ranges,  
as specified in Table 14.  
2. The fCLKFX frequency calculated from the above  
expression accords with the DCM’s operating frequency  
specifications.  
Smaller CLKFX_MULTIPLY and CLKFX_DIVIDE values  
achieve faster lock times. With no factors common to the  
two attributes, alignment will occur once with every number  
of cycles equal to the CLKFX_DIVIDE value. Therefore, it is  
recommended that the user reduce these values by factor-  
For example, if CLKFX_MULTIPLY = 5 and CLKFX_DIVIDE  
= 3, then the frequency of the output clock signal would be  
5/3 that of the input clock signal.  
ing  
wherever  
possible.  
For  
example,  
given  
DFS Frequency Modes  
CLKFX_MULTIPLY = 9 and CLKFX_DIVIDE = 6, removing  
a factor of three yields CLKFX_MULTIPLY = 3 and  
CLKFX_DIVIDE = 2. While both value-pairs will result in the  
multiplication of clock frequency by 3/2, the latter value-pair  
will enable the DLL to lock more quickly.  
The DFS supports two operating modes, High Frequency  
and Low Frequency, with each specified over a different  
clock frequency range. The DFS_FREQUENCY_MODE  
attribute chooses between the two modes. When the  
attribute is set to LOW, the Low Frequency mode permits  
Table 14: DFS Attributes  
Attribute  
Description  
Values  
DFS_FREQUENCY_MODE Chooses between High Frequency and Low Frequency modes  
Low, High  
CLKFX_MULTIPLY  
CLKFX_DIVIDE  
Frequency multiplier constant  
Frequency divisor constant  
Integer from 2 to 32  
Integer from 1 to 32  
Table 15: DFS Signals  
Signal  
CLKFX  
Direction  
Description  
Multiplies the CLKIN frequency by the attribute-value ratio  
Output  
(CLKFX_MULTIPLY/CLKFX_DIVIDE) to generate a clock signal with a new target frequency.  
CLKFX180  
Output  
Generates a clock signal with same frequency as CLKFX, only shifted 180° out-of-phase.  
DS099-2 (v1.2) July 11, 2003  
Advance Product Specification  
www.xilinx.com  
1-800-255-7778  
25  
R
Spartan-3 1.2V FPGA Family: Functional Description  
DFS Clock Output Connections  
PS Component Enabling and Mode Selection  
There are two basic cases that determine how to connect  
the DFS clock outputs: on-chip and off-chip, which are illus-  
trated in Figure 15a and Figure 15c, respectively. This is  
similar to what has already been described for the DLL com-  
ponent. See the DLL Clock Output and Feedback Con-  
nections, page 22 section.  
The CLKOUT_PHASE_SHIFT attribute enables the PS  
component for use in addition to selecting between two  
operating modes. As described in Table 16, this attribute  
has three possible values: NONE, FIXED and VARIABLE.  
When CLKOUT_PHASE_SHIFT is set to NONE, the PS  
component is disabled and its inputs, PSEN, PSCLK, and  
PSINCDEC, must be tied to GND. The set of waveforms in  
Figure 17a shows the disabled case, where the DLL main-  
tains a zero-phase alignment of signals CLKFB and CLKIN  
upon which the PS component has no effect. The PS com-  
ponent is enabled by setting the attribute to either the  
FIXED or VARIABLE values, which select the Fixed Phase  
mode and the Variable Phase mode, respectively. These  
two modes are described in the sections that follow  
In the on-chip case, it is possible to connect either of the  
DFS’s two output clock signals through general routing  
resources to the FPGA’s internal registers. Either a Global  
Clock Buffer (BUFG) or a BUFGMUX affords access to the  
global clock network. The optional feedback loop is formed  
in this way, routing CLK0 to a global clock net, which in turn  
drives the CLKFB input.  
In the off-chip case, the DFS’s two output clock signals, plus  
CLK0 for an optional feedback loop, can exit the FPGA  
using output buffers (OBUF) to drive a clock network plus  
registers on the board. The feedback loop is formed by  
feeding the CLK0 signal back into the FPGA using an  
IBUFG, which directly accesses the global clock network, or  
an IBUF. Then, the global clock net is connected directly to  
the CLKFB input.  
Determining the Fine Phase Shift  
The user controls the phase shift of CLKFB relative to  
CLKIN by setting and/or adjusting the value of the  
PHASE_SHIFT attribute. This value must be an integer  
ranging from –255 to +255. The PS component uses this  
value to calculate the desired fine phase shift (TPS) as a  
fraction of the CLKIN period (TCLKIN). Given values for  
PHASE-SHIFT and TCLKIN, it is possible to calculate TPS as  
follows:  
Phase Shifter (PS)  
The DCM provides two approaches to controlling the phase  
of a DCM clock output signal relative to the CLKIN signal:  
First, there are nine clock outputs that employ the DLL to  
achieve a desired phase relationship: CLK0, CLK90,  
CLK180, CLK270, CLK2X, CLK2X180, CLKDV CLKFX, and  
CLKFX180. These outputs afford “coarse” phase control.  
T
PS = (PHASE_SHIFT/256)*TCLKIN  
(4)  
Both the Fixed Phase and Variable Phase operating modes  
employ this calculation. If the PHASE_SHIFT value is zero,  
then CLKFB and CLKIN will be in phase, the same as when  
the PS component is disabled. When the PHASE_SHIFT  
value is positive, the CLKFB signal will be shifted later in  
time with respect to CLKIN. If the attribute value is negative,  
the CLKFB signal will be shifted earlier in time with respect  
to CLKIN.  
The second approach uses the PS component described in  
this section to provide a still finer degree of control. The PS  
component accomplishes this by introducing a "fine phase  
shift" (TPS) between the CLKFB and CLKIN signals inside  
the DLL component. The user can control this fine phase  
shift down to a resolution of 1/256 of a CLKIN cycle or one  
tap delay (DCM_TAP), whichever is greater. When in use,  
the PS component shifts the phase of all nine DCM clock  
output signals together. If the PS component is used  
together with a DCM clock output such as the CLK90,  
CLK180, CLK270, CLK2X180 and CLKFX180, then the fine  
phase shift of the former gets added to the coarse phase  
shift of the latter.  
The Fixed Phase Mode  
This mode fixes the desired fine phase shift to a fraction of  
the TCLKIN, as determined by Equation (4) and its  
user-selected PHASE_SHIFT value P. The set of wave-  
forms in Figure 17b illustrates the relationship between  
CLKFB and CLKIN in the Fixed Phase mode. In the Fixed  
Phase mode, the PSEN, PSCLK and PSINCDEC inputs are  
not used and must be tied to GND.  
Table 16: PS Attributes  
Attribute  
Description  
Values  
CLKOUT_PHASE_SHIFT  
Disables PS component or chooses between Fixed Phase NONE, FIXED, VARIABLE  
and Variable Phase modes.  
PHASE_SHIFT  
Determines size and direction of initial fine phase shift.  
Integers from –255 to +255(1)  
Notes:  
1. The practical range of values will be less when TCLKIN > FINE_SHIFT_RANGE in the Fixed Phase mode, also when TCLKIN  
>
(FINE_SHIFT_RANGE)/2 in the Variable Phase mode. the FINE_SHIFT_RANGE represents the sum total delay of all taps.  
26  
40  
www.xilinx.com  
1-800-255-7778  
DS099-2 (v1.2) July 11, 2003  
Advance Product Specification  
R
Spartan-3 1.2V FPGA Family: Functional Description  
a. CLKOUT_PHASE_SHIFT = NONE  
CLKIN  
CLKFB  
b. CLKOUT_PHASE_SHIFT = FIXED  
CLKIN  
0
–255  
+255  
Shift Range over all P Values:  
P
256  
* T  
CLKIN  
CLKFB  
c. CLKOUT_PHASE_SHIFT = VARIABLE  
CLKIN  
–255  
+255  
0
Shift Range over all P Values:  
P
256  
* T  
CLKIN  
CLKFB before  
Decrement  
–255  
0
+255  
Shift Range over all N Values:  
N
256  
* T  
CLKIN  
CLKFB after  
Decrement  
DS099-2_11_031303  
Notes:  
1. P represents the integer value ranging from –255 to +255 to which the PHASE_SHIFT attribute is assigned.  
2. N is an integer value ranging from –255 to +255 that represents the net phase shift effect from a series of increment and/or  
decrement operations.  
N = {Total number of increments} – {Total number of decrements}  
A positive value for N indicates a net increment; a negative value indicates a net decrement.  
Figure 17: Phase Shifter Waveforms  
DS099-2 (v1.2) July 11, 2003  
www.xilinx.com  
27  
Advance Product Specification  
1-800-255-7778  
R
Spartan-3 1.2V FPGA Family: Functional Description  
Table 17: Signals for Variable Phase Mode  
Signal  
PSEN(1)  
Direction  
Input  
Description  
Enables PSCLK for variable phase adjustment.  
PSCLK(1)  
Input  
Clock to synchronize phase shift adjustment.  
PSINCDEC(1)  
Input  
Chooses between increment and decrement for phase adjustment. It is synchronized to the  
PSCLK signal.  
PSDONE  
Output  
Goes High to indicate that present phase adjustment is complete and PS component is  
ready for next phase adjustment request. It is synchronized to the PSCLK signal.  
Notes:  
1. It is possible to program this input for either a true or inverted polarity  
point the output PSDONE goes High for one PSCLK cycle.  
This pulse indicates that the PS component has finished the  
present adjustment and is now ready for the next request.  
Asserting the Reset (RST) input, returns TPS to its original  
shift time, as determined by the PHASE_SHIFT attribute  
value. The set of waveforms in Figure 17c illustrates the  
relationship between CLKFB and CLKIN in the Variable  
Phase mode.  
The Variable Phase Mode  
The “Variable Phase” mode dynamically adjusts the fine  
phase shift over time using three inputs to the PS compo-  
nent, namely PSEN, PSCLK and PSINCDEC, as defined in  
Table 17.  
Just following device configuration, the PS component ini-  
tially determines TPS by evaluating Equation (4) for the  
value assigned to the PHASE_SHIFT attribute. Then to  
dynamically adjust that phase shift, use the three PS inputs  
to increase or decrease the fine phase shift.  
The Status Logic Component  
The Status Logic component not only reports on the state of  
the DCM but also provides a means of resetting the DCM to  
an initial known state. The signals associated with the Sta-  
tus Logic component are described in Table 18.  
PSINCDEC is synchronized to the PSCLK clock signal,  
which is enabled by asserting PSEN. It is possible to drive  
the PSCLK input with the CLKIN signal or any other clock  
signal. A request for phase adjustment is entered as follows:  
For each PSCLK cycle that PSINCDEC is High, the PS  
component adds 1/256 of a CLKIN cycle to TPS. Similarly,  
for each enabled PSCLK cycle that PSINCDEC is Low, the  
PS component subtracts 1/256 of a CLKIN cycle from TPS  
The phase adjustment may require as many as 100 CLKIN  
cycles plus three PSCLK cycles to take effect, at which  
As a rule, the Reset (RST) input is asserted only upon con-  
figuring the device or changing the CLKIN frequency. A  
DCM reset does not affect attribute values (e.g.,  
CLKFX_MULTIPLY and CLKFX_DIVIDE). If not used, RST  
must be tied to GND.  
.
The eight bits of the STATUS bus are defined in Table 19.  
Table 18: Status Logic Signals  
Signal  
RST  
Direction  
Description  
Input  
A High resets the entire DCM to its initial power-on state. Initializes the DLL taps for a delay  
of zero. Sets the LOCKED output Low. This input is asynchronous.  
STATUS[7:0]  
LOCKED  
Output  
Output  
The bit values on the STATUS bus provide information regarding the state of DLL and PS  
operation  
Indicates that the CLKIN and CLKFB signals are in phase by going High. The two signals  
are out-of-phase when Low.  
28  
40  
www.xilinx.com  
1-800-255-7778  
DS099-2 (v1.2) July 11, 2003  
Advance Product Specification  
R
Spartan-3 1.2V FPGA Family: Functional Description  
Description  
Table 19: DCM STATUS Bus  
Bit  
Name  
0
Phase Shift  
Overflow  
A value of 1 indicates a phase shift overflow when one of two conditions occur:  
Incrementing (or decrementing) TPS beyond 255/256 of a CLKIN cycle.  
The DLL is producing its maximum possible phase shift (i.e., all delay taps are active).(1)  
1
CLKIN Activity  
A value of 1 indicates that the CLKIN signal is not toggling. A value of 0 indicates toggling. This  
bit functions only when the CLKFB input is connected.(2)  
2
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
-
-
-
-
-
-
3
4
5
6
7
Notes:  
1. The DLL phase shift with all delay taps active is specified as the parameter FINE_SHIFT_RANGE.  
2. If only the DFS clock outputs are used, but none of the DLL clock outputs, this bit will not go High when the CLKIN signal stops.  
Table 20: Status Attributes  
Attribute  
Description  
Values  
STARTUP_WAIT  
Delays transition from configuration to user mode until lock condition is achieved. TRUE, FALSE  
as DCMs. Four BUFGMUX elements are placed at the cen-  
ter of the die’s bottom edge, just above the GCLK0 - GCLK4  
inputs. The remaining four BUFGMUX elements are placed  
at the center of the die’s top edge, just below the GCLK4 -  
GCLK7 inputs.  
Stabilizing DCM Clocks Before User Mode  
It is possible to delay the completion of device configuration  
until after the DLL has achieved a lock condition using the  
STARTUP_WAIT attribute described in Table 20. This  
option ensures that the FPGA does not enter user mode —  
i.e., begin functional operation — until all system clocks  
generated by the DCM are stable. In order to achieve the  
delay, it is necessary to set the attribute to TRUE as well as  
set the BitGen option LCK_cycle to one of the six cycles  
making up the Startup phase of configuration. The selected  
cycle defines the point at which configuration will halt until  
the LOCKED output goes High.  
Each BUFGMUX element is a 2-to-1 multiplexer that can  
receive signals from any of the four following sources:  
1. One of the four Global Clock inputs on the same side of  
the die — top or bottom — as the BUFGMUX element in  
use.  
2. Any of four nearby horizontal Double lines.  
3. Any of four outputs from the DCM in the right-hand  
quadrant that is on the same side of the die as the  
BUFGMUX element in use.  
Global Clock Network  
Spartan-3 devices have eight Global Clock inputs called  
GCLK0 - GCLK7. These inputs provide access to a  
low-capacitance, low-skew network that is well-suited to  
carrying high-frequency signals. The Spartan-3 clock net-  
work is shown in Figure 18. GCLK0 through GCLK3 are  
placed at the center of the die’s bottom edge. GCLK4  
through GCLK7 are placed at the center of the die’s top  
edge. It is possible to route each of the eight Global Clock  
inputs to any CLB on the die.  
4. Any of four outputs from the DCM in the left-hand  
quadrant that is on the same side of the die as the  
BUFGMUX element in use.  
Sources 3 and 4 are not available on the XC3S50 die that  
lacks DCMs.  
Each BUFGMUX can switch incoming clock signals to two  
possible destinations:  
1. The vertical spine belonging to the same side of the die  
— top or bottom — as the BUFGMUX element in use.  
The two spines — top and bottom — each comprise  
four vertical clock lines, each running from one of the  
Eight Global Clock Multiplexers (also called BUFGMUX ele-  
ments) are provided that accept signals from Global Clock  
inputs and route them to the internal clock network as well  
DS099-2 (v1.2) July 11, 2003  
Advance Product Specification  
www.xilinx.com  
1-800-255-7778  
29  
R
Spartan-3 1.2V FPGA Family: Functional Description  
BUFGMUX elements on the same side towards the  
center of the die. At the center of the die, clock signals  
reach the eight-line horizontal spine, which spans the  
width of the die. In turn, the horizontal spine branches  
out into a subsidiary clock interconnect that accesses  
the CLBs.  
A Global clock input is placed in a design using either a  
BUFGMUX element or the BUFG (Global Clock Buffer) ele-  
ment. For the purpose of minimizing the dynamic power dis-  
sipation of the clock network, the Xilinx development  
software automatically disables all clock line segments that  
a design does not use.  
2. The clock input of either DCM on the same side of the  
die — top or bottom — as the BUFGMUX element in  
use.  
GCLK7  
GCLK6  
GCLK5  
GCLK4  
4
4
4 BUFGMUX  
4
4
DCM  
DCM  
4
8
Array Dependent  
8
8
8
Horizontal Spine  
Array Dependent  
4
4
4
4
4
DCM  
DCM  
4 BUFGMUX  
GCLK2  
GCLK0  
GCLK3  
GCLK1  
DS099-2_18_070203  
Figure 18: Spartan-3 Clock Network (Top View)  
30  
40  
www.xilinx.com  
1-800-255-7778  
DS099-2 (v1.2) July 11, 2003  
Advance Product Specification  
R
Spartan-3 1.2V FPGA Family: Functional Description  
ble lines in terms of capability: Hex lines approach the  
high-frequency characteristics of Long lines at the same  
time, offering greater connectivity.  
Interconnect  
Interconnect (or routing) passes signals among the various  
functional elements of Spartan-3 devices. There are four  
kinds of interconnect: Long lines, Hex lines, Double lines,  
and Direct lines.  
Double lines connect to every other CLB (see Figure 19c).  
Compared to the types of lines already discussed, Double  
lines provide a higher degree of flexibility when making con-  
nections.  
Long lines connect to one out of every six CLBs (see  
Figure 19a). Because of their low capacitance, these lines  
are well-suited for carrying high-frequency signals with min-  
imal loading effects (e.g. skew). If all eight Global Clock  
Inputs are already committed and there remain additional  
clock signals to be assigned, Long lines serve as a good  
alternative.  
Direct lines afford any CLB direct access to neighboring  
CLBs (see Figure 19d). These lines are most often used to  
conduct a signal from a "source" CLB to a Double, Hex, or  
Long line and then from the longer interconnect back to a  
Direct line accessing a "destination" CLB.  
Hex lines connect one out of every three CLBs (see  
Figure 19b). These lines fall between Long lines and Dou-  
CLB  
CLB  
CLB  
CLB  
CLB  
CLB  
CLB  
CLB  
CLB  
CLB  
6
6
6
6
6
DS099-2_19_040103  
(a) Long Line  
8
CLB  
CLB  
CLB  
CLB  
CLB  
CLB  
CLB  
DS099-2_20_040103  
(b) Hex Line  
CLB  
CLB  
CLB  
CLB  
CLB  
CLB  
CLB  
CLB  
2
CLB  
CLB  
CLB  
DS099-2_21_040103  
CLB  
(c) Double Line  
DS099-2_22_040103  
(d) Direct Lines  
Figure 19: Types of Interconnect  
DS099-2 (v1.2) July 11, 2003  
www.xilinx.com  
31  
Advance Product Specification  
1-800-255-7778  
R
Spartan-3 1.2V FPGA Family: Functional Description  
can be re-used as general-purpose User I/Os once configu-  
ration is complete.  
Configuration  
Spartan-3 devices are configured by loading application  
specific configuration data into the internal configuration  
memory. Configuration is carried out using a subset of the  
device pins, some of which are "Dedicated" to one function  
only, while others, indicated by the term "Dual-Purpose",  
Depending on the system design, several configuration  
modes are supported, selectable via mode pins. The mode  
pins M0, M1, and M2 are Dedicated pins. The mode pin set-  
tings are shown in Table 21.  
Table 21: Spartan-3 Configuration Mode Pin Settings  
Configuration Mode(1)  
Master Serial  
Slave Serial  
Master Parallel  
Slave Parallel  
JTAG  
M0  
0
M1  
0
M2  
0
Synchronizing Clock  
CCLK Output  
CCLK Input  
Data Width  
Serial DOUT(2)  
1
1
8
8
1
Yes  
Yes  
No  
No  
No  
1
1
1
1
1
0
CCLK Output  
CCLK Input  
0
1
1
1
0
1
TCK Input  
Notes:  
1. The voltage levels on the M0, M1, and M2 pins select the configuration mode.  
2. The daisy chain is possible only in the Serial modes when DOUT is used.  
An additional pin, HSWAP_EN, is used in conjunction with  
the mode pins to select whether user I/O pins have pull-ups  
during configuration. By default, HSWAP_EN is tied High  
(internal pull-up) which shuts off the pull-ups on the user I/O  
pins during configuration. When HSWAP_EN is tied Low,  
user I/Os have pull-ups during configuration. Other Dedi-  
cated pins are CCLK (the configuration clock pin), DONE,  
PROG_B, and the boundary-scan pins: TDI, TDO, TMS,  
and TCK. Depending on the configuration mode chosen,  
CCLK can be an output generated by the FPGA, or an input  
accepting an externally generated clock.  
Table 22: Spartan-3 Configuration Data  
Xilinx Platform Flash PROM  
Serial Parallel  
Configuration Configuration  
Device  
File Sizes  
439,264  
XC3S50  
XCF01S  
XCF01S  
XCF02S  
XCF04S  
XCF08P  
XCF08P  
XCF16P  
XCF16P  
XCF08P  
XCF08P  
XCF08P  
XCF08P  
XCF08P  
XCF08P  
XCF16P  
XCF16P  
XC3S200  
XC3S400  
XC3S1000  
XC3S1500  
XC3S2000  
XC3S4000  
XC3S5000  
1,047,616  
1,699,136  
3,223,488  
5,214,784  
7,673,024  
11,316,864  
13,271,936  
A persist option is available which can be used to force the  
configuration pins to retain their configuration function even  
after device configuration is complete. If the persist option is  
not selected then the configuration pins with the exception  
of CCLK, PROG_B, and DONE can be used as user I/O in  
normal operation. The persist option does not apply to the  
boundary-scan related pins. The persist feature is valuable  
in applications that readback configuration data after enter-  
ing the User mode.  
The Dual-Purpose configuration pins comprise INIT_B,  
DOUT, BUSY, RDWR_B, CS_B, and DIN/D0-D7. Each of  
these pins, according to its bank placement, uses the VCCO  
lines for either Bank 4 (VCCO_4) or Bank 5 (VCCO_5). All  
the signals used in the serial configuration modes rely on  
VCCO_4 power. Signals used in the parallel configuration  
modes and Readback require from VCCO_5 as well as from  
VCCO_4.  
Table 22 lists the total number of bits required to configure  
each FPGA as well as the PROMs suitable for storing those  
bits. See DS123: Platform Flash In-System Programmable  
Configuration PROMs data sheet for more information.  
The Standard Configuration Interface  
Both the Dedicated and Dual-Purpose signals described  
above constitute the configuration interface. In the standard  
case, this interface is 2.5V-LVCMOS-compatible. This  
means that 2.5V is applied to the VCCAUX, VCCO_4, and  
VCCO_5 lines (this last in the parallel or Readback case  
only). One need only apply 2.5 Volts to these VCCO lines  
from power-on to the end of configuration. Upon entering  
the User mode, it is possible to switch to supply voltage per-  
mitting signal swings other than 2.5V.  
Configuration signals belong to one of two different catego-  
ries: Dedicated or Dual-Purpose. Which category deter-  
mines which of the FPGA’s power rails supplies the signal’s  
driver and, thus, helps describe the electrical at the pin.  
The Dedicated configuration pins include PROG_B,  
HSWAP_EN, TDI, TMS, TCK, TDO, CCLK, DONE, and  
M0-M2. These pins use the VCCAUX lines for power.  
32  
40  
www.xilinx.com  
1-800-255-7778  
DS099-2 (v1.2) July 11, 2003  
Advance Product Specification  
R
Spartan-3 1.2V FPGA Family: Functional Description  
3.3V-Tolerant Configuration Interface  
Configuration Modes  
It is possible to achieve 3.3V-tolerance at the configuration  
interface simply by adding a few external resistors. This  
approach may prove useful when it is undesirable to switch  
the VCCO_4 and VCCO_5 voltages from 2.5V to 3.3V after  
configuration.  
Spartan-3 supports the following five configuration modes:  
Slave Serial mode  
Master Serial mode  
Slave Parallel mode  
Master Parallel mode  
Boundary-Scan (JTAG) mode (IEEE 1532/IEEE  
1149.1)  
The 3.3V-tolerance is implemented as follows (a similar  
approach can be used for other supply voltage levels):  
First, to power the Dual-Purpose configuration pins, apply  
3.3V to the VCCO_4 and (as needed) the VCCO_5 lines.  
This scales the output voltages and input thresholds associ-  
ated with these pins so that they become 3.3V-compatible.  
Slave Serial Mode  
In Slave Serial mode, the FPGA receives configuration data  
in bit-serial form from a serial PROM or other serial source  
of configuration data. The FPGA on the far right of Figure 20  
is set for the Slave Serial mode. The CCLK pin on the FPGA  
is an input in this mode. The serial bitstream must be setup  
at the DIN input pin a short time before each rising edge of  
the externally generated CCLK.  
Second, to power the Dedicated configuration pins, apply  
2.5V to the VCCAUX lines (the same as for the standard  
interface). In order to achieve 3.3V-tolerance, the Dedicated  
inputs will require series resistors that limit the incoming  
current to 10mA or less. The Dedicated outputs will need  
pull-up resistors to ensure adequate noise margin when the  
FPGA is driving a High logic level into another device’s 3.3V  
receiver. Choose a power regulator or supply that can toler-  
ate reverse current on the VCCAUX lines.  
Multiple FPGAs can be daisy-chained for configuration from  
a single source. After a particular FPGA has been config-  
ured, the data for the next device is routed internally to the  
DOUT pin. The data on the DOUT pin changes on the rising  
edge of CCLK.  
2.5V  
2.5V  
3.3V  
2.5V  
1.2V  
1.2V  
V
Bank 4  
V
Bank 4  
CCO  
CCO  
V
CCO  
V
V
V
V
CCINT  
CCAUX  
CCINT  
CCAUX  
V
V
CC  
CCJ  
D0  
DIN  
DOUT  
DIN  
Spartan-3  
FPGA  
Spartan-3  
FPGA  
Platform  
Flash PROM  
2.5V  
2.5V  
Master  
Slave  
M0  
M1  
M2  
M0  
M1  
M2  
XCF0xS  
or  
All  
4.7K  
XCFxxP  
CE  
DONE  
DONE  
OE/RESET  
CF  
INIT_B  
PROG_B  
CCLK  
INIT_B  
PROG_B  
CCLK  
CLK  
GND  
GND  
GND  
DS099_23_041103  
Notes:  
1. There are two ways to use the DONE line. First, one may set the BitGen option DriveDone to "Yes" only for the  
last FPGA to be configured in the chain shown above (or for the single FPGA as may be the case). This enables  
the DONE pin to drive High; thus, no pull-up resistor is necessary. DriveDone is set to "No" for the remaining  
FPGAs in the chain. Second, DriveDone can be set to "No" for all FPGAs. Then all DONE lines are open-drain  
and require the pull-up resistor shown in grey. In most cases, a value between 3.3Kto 4.7Kis sufficient.  
However, when using DONE synchronously with a long chain of FPGAs, cumulative capacitance may  
necessitate lower resistor values (e.g. down to 330) in order to ensure a rise time within one clock cycle.  
2. For information on how to program the FPGA using 3.3V signals and power, see 3.3V-Tolerant Configuration  
Interface.  
Figure 20: Connection Diagram for Master and Slave Serial Configuration  
DS099-2 (v1.2) July 11, 2003  
Advance Product Specification  
www.xilinx.com  
1-800-255-7778  
33  
R
Spartan-3 1.2V FPGA Family: Functional Description  
Slave Serial mode is selected by applying <111> to the  
mode pins (M0, M1, and M2). A weak pull-up on the mode  
pins makes slave serial the default mode if the pins are left  
unconnected.  
controlling the flow of data. An external source provides  
8-bit-wide data, CCLK, an active-Low Chip Select (CS_B)  
signal and an active-Low Write signal (RDWR_B). If BUSY  
is asserted (High) by the FPGA, the data must be held until  
BUSY goes Low. Data can also be read using the Slave  
Parallel mode. If RDWR_B is asserted, configuration data is  
read out of the FPGA as part of a readback operation.  
Master Serial Mode  
In Master Serial mode, the CCLK pin is an output pin. The  
FPGA just to the right of the PROM in Figure 20 is set for  
Master Serial mode. It is the FPGA that drives the configu-  
ration clock on the CCLK pin to a Xilinx Serial PROM which  
in turn feeds bit-serial data to the DIN input. The FPGA  
accepts this data on each rising CCLK edge. After the  
FPGA has been loaded, the data for the next device in a  
daisy-chain is presented on the DOUT pin after the rising  
CCLK edge.  
After configuration, it is possible to use any of the Multipur-  
pose pins (DIN/D0-D7, DOUT/BUSY, INITB, CS_B, and  
RDWR_B) as User I/Os. To do this, simply set the BitGen  
option Persist to No and assign the desired signals to multi-  
purpose configuration pins using the Xilinx development  
software. Alternatively, it is possible to continue using the  
configuration port (e.g. all configuration pins taken together)  
when operating in the User mode. This is accomplished by  
setting the Persist option to Yes.  
The interface is identical to slave serial except that an inter-  
nal oscillator is used to generate the configuration clock  
(CCLK). A wide range of frequencies can be selected for  
CCLK which always starts at a default frequency of 6 MHz.  
Configuration bits then switch CCLK to a higher frequency  
for the remainder of the configuration.  
Multiple FPGAs can be configured using the Slave Parallel  
mode and can be made to start-up simultaneously.  
Figure 21 shows the device connections. To configure mul-  
tiple devices in this way, wire the individual CCLK, Data,  
RDWR_B, and BUSY pins of all the devices in parallel. The  
individual devices are loaded separately by deasserting the  
CS_B pin of each device in turn and writing the appropriate  
data.  
Slave Parallel Mode  
The Parallel modes support the fastest configuration.  
Byte-wide data is written into the FPGA with a BUSY flag  
34  
www.xilinx.com  
1-800-255-7778  
DS099-2 (v1.2) July 11, 2003  
Advance Product Specification  
40  
R
Spartan-3 1.2V FPGA Family: Functional Description  
D[0:7]  
CCLK  
RDWR_B  
BUSY  
2.5V  
2.5V  
1.2V  
1.2V  
V
Banks 4 & 5  
V
Banks 4 & 5  
CCO  
CCO  
V
V
V
V
CCINT  
CCAUX  
CCINT  
CCAUX  
Spartan-3  
Slave  
Spartan-3  
Slave  
D[0:7]  
D[0:7]  
CCLK  
CCLK  
RDWR_B  
BUSY  
RDWR_B  
BUSY  
2.5V  
2.5V  
CS_B  
CS_B  
CS_B  
CS_B  
M1  
M2  
M0  
M1  
M2  
M0  
PROG_B  
DONE  
PROG_B  
DONE  
2.5V  
INIT_B  
INIT_B  
GND  
GND  
4.7KΩ  
4.7KΩ  
DONE  
INIT_B  
PROG_B  
DS099_24_041103  
Notes:  
1. There are two ways to use the DONE line. First, one may set the BitGen option DriveDone to "Yes" only for the last FPGA  
to be configured in the chain shown above (or for the single FPGA as may be the case). This enables the DONE pin to drive  
High; thus, no pull-up resistor is necessary. DriveDone is set to "No" for the remaining FPGAs in the chain. Second,  
DriveDone can be set to "No" for all FPGAs. Then all DONE lines are open-drain and require the pull-up resistor shown in  
grey. In most cases, a value between 3.3Kto 4.7Kis sufficient. However, when using DONE synchronously with a long  
chain of FPGAs, cumulative capacitance may necessitate lower resistor values (e.g. down to 330) in order to ensure a rise  
time within one clock cycle.  
2. If the FPGAs use different configuration data files, configure them in sequence by first asserting the CS_B of one FPGA then  
asserting the CS_B of the other FPGA.  
3. For information on how to program the FPGA using 3.3V signals and power, see 3.3V-Tolerant Configuration Interface.  
Figure 21: Connection Diagram for Slave Parallel Configuration  
DS099-2 (v1.2) July 11, 2003  
www.xilinx.com  
35  
Advance Product Specification  
1-800-255-7778  
R
Spartan-3 1.2V FPGA Family: Functional Description  
2.5V  
3.3V  
2.5V  
1.2V  
V
Banks 4 & 5  
CCO  
V
V
CCINT  
CCAUX  
V
CCO  
Spartan-3  
Master  
V
CC  
V
CCJ  
DATA[0:7]  
CCLK  
D[0:7]  
CCLK  
2.5V  
Platform Flash  
PROM  
All  
4.7K  
XCFxxP  
CF  
PROG_B  
DONE  
CE  
OE/RESET  
INIT_B  
GND  
RDWR_B  
CS_B  
GND  
DS099_25_041103  
Notes:  
1. There are two ways to use the DONE line. First, one may set the BitGen option DriveDone to "Yes"  
only for the last FPGA to be configured in the chain shown above (or for the single FPGA as may be  
the case). This enables the DONE pin to drive High; thus, no pull-up resistor is necessary. DriveDone  
is set to "No" for the remaining FPGAs in the chain. Second, DriveDone can be set to "No" for all  
FPGAs. Then all DONE lines are open-drain and require the pull-up resistor shown in grey. In most  
cases, a value between 3.3Kto 4.7Kis sufficient. However, when using DONE synchronously  
with a long chain of FPGAs, cumulative capacitance may necessitate lower resistor values (e.g.  
down to 330) in order to ensure a rise time within one clock cycle.  
Figure 22: Connection Diagram for Master Parallel Configuration  
Master Parallel Mode  
Configuration Sequence  
In this mode, the device is configured byte-wide on a CCLK  
supplied by the FPGA. Timing is similar to the Slave Parallel  
mode except that CCLK is supplied by the FPGA. The  
device connections are shown in Figure 22.  
The configuration of Spartan-3 devices is a three-stage pro-  
cess that occurs after Power-On Reset or the assertion of  
PROG_B. POR occurs after the VCCINT, VCCAUX, and VCCO  
Bank 4 supplies have reached their respective maximum  
input threshold levels (see Table 7 in Module 3: DC and  
Switching Characteristics). After POR, the three-stage  
process begins.  
Boundary-Scan (JTAG) Mode  
In Boundary-Scan mode, dedicated pins are used for con-  
figuring the FPGA. The configuration is done entirely  
through the IEEE 1149.1 Test Access Port (TAP). FPGA  
configuration using the Boundary-Scan mode is compliant  
with the IEEE 1149.1-1993 standard and the new IEEE  
1532 standard for In-System Configurable (ISC) devices.  
First, the configuration memory is cleared. Next, con-  
figuration data is loaded into the memory, and finally, the  
logic is activated by a start-up process. A flow diagram for  
the configuration sequence of the Serial and Parallel modes  
is shown in Figure 23. The flow diagram for the Bound-  
ary-Scan configuration sequence appears in Figure 24.  
Configuration through the boundary-scan port is always  
available, independent of the mode selection. Selecting the  
Boundary-Scan mode simply turns off the other modes.  
36  
40  
www.xilinx.com  
1-800-255-7778  
DS099-2 (v1.2) July 11, 2003  
Advance Product Specification  
R
Spartan-3 1.2V FPGA Family: Functional Description  
Set PROG_B Low  
after Power-On  
Power-On  
VCCINT >1V  
and VCCAUX > 2V  
No  
and VCCO Bank 4 > 1V  
Yes  
Yes  
Clear configuration  
memory  
PROG_B = Low  
No  
No  
INIT_ B = High?  
Yes  
Sample mode pins  
Load configuration  
data frames  
No  
INIT_B goes Low.  
Abort Start-Up  
CRC  
correct?  
Yes  
Start-Up  
sequence  
User mode  
No  
Yes  
Reconfigure?  
DS099_26_041103  
Figure 23: Configuration Flow Diagram for the Serial and Parallel Modes  
DS099-2 (v1.2) July 11, 2003  
www.xilinx.com  
37  
Advance Product Specification  
1-800-255-7778  
R
Spartan-3 1.2V FPGA Family: Functional Description  
Set PROG_B Low  
after Power-On  
Power-On  
VCCINT >1V  
and VCCAUX > 2V  
No  
and VCCO Bank 4 > 1V  
Yes  
Clear  
configuration  
memory  
Yes  
PROG_B = Low  
No  
No  
INIT_B = High?  
Yes  
Sample  
mode pins  
(JTAG port becomes  
available)  
Load  
JShutdown  
instruction  
Shutdown  
sequence  
Load CFG_IN  
instruction  
Load configuration  
data frames  
No  
CRC  
correct?  
INIT_B goes Low.  
Abort Start-Up  
Yes  
Synchronous  
TAP reset  
(Clock five 1's  
on TMS)  
Load JSTART  
instruction  
Start-Up  
sequence  
User mode  
Yes  
No  
Reconfigure?  
DS099_27_041103  
Figure 24: Boundary-Scan Configuration Flow Diagram  
38  
40  
www.xilinx.com  
1-800-255-7778  
DS099-2 (v1.2) July 11, 2003  
Advance Product Specification  
R
Spartan-3 1.2V FPGA Family: Functional Description  
Configuration is automatically initiated after power-on  
unless it is delayed by the user. INIT_B is an open-drain line  
that the FPGA holds Low during the clearing of the configu-  
ration memory. Extending the time that the pin is Low  
causes the configuration sequencer to wait. Thus, configu-  
ration is delayed by preventing entry into the phase where  
data is loaded.  
The default start-up sequence, shown in Figure 25, serves  
as a transition to the User mode. The default start-up  
sequence is that one CCLK cycle after DONE goes High,  
the Global Three-State signal (GTS) is released. This per-  
mits device outputs to which signals have been assigned to  
become active. One CCLK cycle later, the Global Write  
Enable (GWE) signal is released. This permits the internal  
storage elements to begin changing state in response to the  
design logic and the user clock.  
The configuration process can also be initiated by asserting  
the PROG_B pin. The end of the memory-clearing phase is  
signaled by the INIT_B pin going High. At this point, the con-  
figuration data is written to the FPGA. The FPGA holds the  
Global Set/Reset (GSR) signal active throughout configura-  
tion, keeping all flip-flops on the device in a reset state. The  
completion of the entire process is signaled by the DONE  
pin going High.  
The relative timing of configuration events can be changed  
via the BitGen options in the Xilinx development software. In  
addition, the GTS and GWE events can be made depen-  
dent on the DONE pins of multiple devices all going High,  
forcing the devices to start synchronously. The sequence  
can also be paused at any stage, until lock has been  
achieved on any DCM.  
Default Cycles  
Readback  
Start-Up Clock  
Using Slave Parallel mode, configuration data from the  
FPGA can be read back. Readback is supported only in the  
Slave Parallel and Boundary-Scan modes.  
Phase  
0
1
2
3
4
5
6 7  
Along with the configuration data, it is possible to read back  
the contents of all registers, distributed SelectRAM, and  
block RAM resources. This capability is used for real-time  
debugging.  
DONE  
GTS  
GSR  
GWE  
Sync-to-DONE  
Start-Up Clock  
Phase  
0
1
2
3
4
5
6 7  
DONE High  
DONE  
GTS  
GSR  
GWE  
DS099_028_040803  
Notes:  
1. The BitGen option StartupClk in the Xilinx  
development software selects the CCLK input,  
TCK input, or a user-designated global clock input  
(the GCLK0 - GCLK7 pins) for receiving the clock  
signal that synchronizes Start-Up.  
Figure 25: Default Start-Up Sequence  
DS099-2 (v1.2) July 11, 2003  
Advance Product Specification  
www.xilinx.com  
1-800-255-7778  
39  
R
Spartan-3 1.2V FPGA Family: Functional Description  
Revision History  
Date  
Version No.  
Description  
04/11/03  
05/19/03  
07/11/03  
1.0  
1.1  
1.2  
Initial Xilinx release  
Added Block RAM column, DCMs, and multipliers to XC3S50 descriptions.  
Explained the configuration port Persist option in Slave Parallel Mode section. Updated  
Figure 2 and Double-Data-Rate Transmission section to indicate that DDR clocking for the  
XCS350 is the same as that for all other Spartan-3 devices. Updated description of I/O voltage  
tolerance in ESD Protection section. In Table 6, changed input termination type for DCI  
version of the LVCMOS standard to None. Added additional flexibility for making DLL  
connections in Figure 15 and accompanying text. In the Configuration section, inserted an  
explanation of how to choose power supplies for the configuration interface, including  
guidelines for achieving 3.3V-tolerance.  
The Spartan-3 Family Data Sheet  
DS099-1, Spartan-3 1.2V FPGA Family: Introduction and Ordering Information (Module 1)  
DS099-2, Spartan-3 1.2V FPGA Family: Functional Description (Module 2)  
DS099-3, Spartan-3 1.2V FPGA Family: DC and Switching Characteristics (Module 3)  
DS099-4, Spartan-3 1.2V FPGA Family: Pinout Descriptions (Module 4)  
40  
40  
www.xilinx.com  
1-800-255-7778  
DS099-2 (v1.2) July 11, 2003  
Advance Product Specification  
040  
R
Spartan-3 FPGA Family:  
DCand Switching Characteristics  
0
0
DS099-3 (v1.3) March 4, 2004  
Advance Product Specification  
DC Electrical Characteristics  
In this section, some specifications may be designated as  
Advance or Preliminary. These terms are defined as fol-  
lows:  
All parameter limits are representative of worst-case supply  
voltage and junction temperature conditions. The following  
applies unless otherwise noted: The parameter values pub-  
lished in this module apply to all Spartan-3 devices. AC and  
DC characteristics are specified using the same numbers  
for both commercial and industrial grades. All parameters  
representing voltages are measured with respect to GND.  
Advance: Initial estimates based on simulation, early char-  
acterization, and/or extrapolation from the characteristics of  
other families. Values are subject to change. Use as esti-  
mates, not for production.  
Some specifications list different values for one or more die  
revisions. All presently available Spartan-3 devices are  
classified as revision 0. Future updates to this module will  
introduce further die revisions as needed.  
Preliminary: Based on characterization. Further changes  
are not expected.  
Table 1: Absolute Maximum Ratings  
Symbol  
VCCINT  
VCCAUX  
VCCO  
Description  
Internal supply voltage  
Auxiliary supply voltage  
Output driver supply voltage  
Input reference voltage  
Conditions  
Min  
–0.5  
–0.5  
–0.5  
–0.5  
–0.5  
Max  
1.32  
Units  
V
V
V
V
V
3.00  
3.75  
(2)  
VREF  
VCCO + 0.5  
VCCO + 0.5  
(2)  
VIN  
Voltage applied to all User I/O pins Driver in a  
and Dual-Purpose pins(3)  
high-impedance state  
Voltage applied to all Dedicated  
pins(4)  
–0.5  
VCCAUX+ 0.5  
V
TJ  
Junction temperature  
VCCO < 3.0V  
CCO > 3.0V  
-
125  
105  
220  
150  
°C  
°C  
°C  
°C  
V
-
-
(5)  
TSOL  
Soldering temperature  
Storage temperature  
TSTG  
–65  
Notes:  
1. Stresses beyond those listed under Absolute Maximum Ratings will cause permanent damage to the device. These are stress  
ratings only; functional operation of the device at these or any other conditions beyond those listed under the Recommended  
Operating Conditions is not implied. Exposure to Absolute Maximum Ratings conditions for extended periods of time adversely  
affects device reliability.  
2. Table 5 specifies the range of values for VCCO and VCCAUX, which are used to determine the limits of this parameter.  
3. All User I/O and Dual-Purpose pins (DIN/D0, D1–D7, CS_B, RDWR_B, BUSY/DOUT, AND INIT_B) draw power from the VCCO  
power rail of the associated bank.  
4. All Dedicated pins (M0–M2, CCLK, PROG_B, DONE, HSWAP_EN, TCK, TDI, TDO, and TMS) draw power from the VCCAUX rail  
(2.5V). For information concerning the use of 3.3V signals, see the 3.3V-Tolerant Configuration Interface section in Module 2:  
Functional Description.  
5. For soldering guidelines, see the information on "Packaging and Thermal Characteristics" at www.xilinx.com.  
© 2003-2004 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and disclaimers are as listed at http://www.xilinx.com/legal.htm.  
All other trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.  
DS099-3 (v1.3) March 4, 2004  
www.xilinx.com  
1
Advance Product Specification  
1-800-255-7778  
R
Spartan-3 FPGA Family: DC and Switching Characteristics  
Table 2: Supply Voltage Thresholds for Power-On Reset  
Symbol  
VCCINTT  
VCCAUXT  
VCCO4T  
Description  
Threshold for the VCCINT supply  
Threshold for the VCCAUX supply  
Threshold for the VCCO Bank 4 supply  
Min  
0.4  
0.8  
0.4  
Max  
1.0  
Units  
V
V
V
2.0  
1.0  
Notes:  
1. VCCINT, VCCAUX, and VCCO supplies may be applied in any order.  
2. To ensure successful power-on, VCCINT, VCCO Bank 4, and VCCAUX supplies must rise through their respective threshold-voltage  
ranges with no dips at any point.  
Table 3: Other Power-On Requirements  
Symbol  
Description  
Device Revision  
Min  
Max  
Units  
TCCO  
VCCO ramp time for all eight banks  
0
XC3S200, XC3S400,  
and XC3S1500 in the  
FT and FG packages(1)  
600  
-
µs  
All other devices  
2.0  
-
-
ms  
Future  
To be  
improved  
Notes:  
1. This specification is based on characterization.  
2. At present, there are no ramp requirements for the VCCINT and VCCAUX supplies.  
Table 4: Power Voltage Levels Necessary for Preserving RAM Contents  
Symbol  
VDRINT  
VDRAUX  
Description  
VCCINT level required to retain RAM data  
VCCAUX level required to retain RAM data  
Min  
Units  
1.0  
2.0  
V
V
Notes:  
1. RAM contents include configuration data.  
2. The level of the VCCO supply has no effect on data retention.  
2
www.xilinx.com  
1-800-255-7778  
DS099-3 (v1.3) March 4, 2004  
Advance Product Specification  
R
Spartan-3 FPGA Family: DC and Switching Characteristics  
Table 5: General Recommended Operating Conditions  
Symbol  
Description  
Junction temperature  
Min  
0
Nom  
Max  
85  
Units  
° C  
° C  
V
TJ  
Commercial  
Industrial  
-
–40  
-
100  
VCCINT  
Internal supply voltage  
Output driver supply voltage  
Auxiliary supply voltage  
1.140  
1.140  
2.375  
1.200  
-
1.260  
3.450  
2.625  
(1)  
VCCO  
V
VCCAUX  
2.500  
V
Notes:  
1. The VCCO range given here spans the lowest and highest operating voltages of all supported I/O standards. The recommended  
VCCO range specific to each of the single-ended I/O standards is given in Table 8, and that specific to the differential standards is  
given in Table 10.  
Table 6: General DC Characteristics of User I/O, Dual-Purpose, and Dedicated Pins  
Symbol  
Description  
Test Conditions  
Device Revision  
Min  
–25  
–10  
Typ  
Max  
+25  
+10  
Units  
µA  
IL  
Leakage current at User  
I/O, Dual-Purpose, and  
Dedicated pins  
Driver is in a  
high-impedance state,  
IN = 0V or VCCO max,  
sample-tested  
0
V
V
CCO > 3.0V  
CCO < 3.0V  
-
-
µA  
V
(2)  
IRPU  
Current through pull-up  
resistor at User I/O,  
Dual-Purpose, and  
Dedicated pins  
V
IN =0, VCCO = 3.3V  
0
–0.84  
–0.69  
–0.47  
–0.21  
–0.13  
–0.06  
0.37  
-
-
-
-
-
-
-
–2.35  
–1.99  
–1.41  
–0.69  
–0.43  
–0.22  
1.67  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
VIN =0, VCCO = 3.0V  
V
V
IN =0, VCCO = 2.5V  
IN =0, VCCO = 1.8V  
VIN =0, VCCO = 1.5V  
IN =0, VCCO = 1.2V  
IN = VCCO  
V
(2)  
IRPD  
Current through  
V
pull-down resistor at  
User I/O, Dual-Purpose,  
and Dedicated pins  
IREF  
VREF current per pin  
0
VCCO > 3.0V  
CCO < 3.0V  
All  
–25  
–10  
3
-
-
-
+25  
+10  
10  
µA  
µA  
pF  
V
CIN  
Input capacitance  
Notes:  
1. The numbers in this table are based on the conditions set forth in Table 5.  
2. This parameter is based on characterization.  
DS099-3 (v1.3) March 4, 2004  
Advance Product Specification  
40  
www.xilinx.com  
1-800-255-7778  
3
R
Spartan-3 FPGA Family: DC and Switching Characteristics  
Table 7: Quiescent Supply Current Characteristics  
Commercial  
Typ Max  
Industrial  
Typ Max  
Symbol  
Description  
Device  
XC3S50  
Units  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
ICCINTQ Quiescent VCCINT supply  
current  
10.0  
20.0  
35.0  
65.0  
XC3S200  
XC3S400  
XC3S1000  
XC3S1500  
XC3S2000  
XC3S4000  
XC3S5000  
ICCOQ  
Quiescent VCCO supply current XC3S50  
1.5  
1.5  
1.5  
1.5  
XC3S200  
XC3S400  
XC3S1000  
XC3S1500  
XC3S2000  
XC3S4000  
XC3S5000  
ICCAUXQ Quiescent VCCAUX supply  
current  
XC3S50  
7.0  
XC3S200  
XC3S400  
XC3S1000  
XC3S1500  
XC3S2000  
XC3S4000  
XC3S5000  
15.0  
20.0  
25.0  
Notes:  
1. The numbers in this table are based on the conditions set forth in Table 5. Quiescent supply current is measured with all I/O drivers  
in a high-impedance state and with all pull-up/pull-down resistors at the I/O pads disabled. For typical values, the ambient  
temperature (TA) is 25 °C with VCCINT = 1.2V, VCCO = 2.5V, and VCCAUX = 2.5V. The FPGA is programmed with a "blank"  
configuration data file (i.e., a design with no functional elements instantiated).  
2. There are two recommended ways to estimate the total power consumption (quiescent plus dynamic) for a specific design: a) The  
Spartan-3 Web Power Tool at http://www.xilinx.com/ise/power_tools provides quick, approximate, typical estimates, and does not  
require a netlist of the design. b) XPower, part of the Xilinx development software, takes a netlist as input to provide more accurate  
maximum and typical estimates.  
4
www.xilinx.com  
DS099-3 (v1.3) March 4, 2004  
1-800-255-7778  
Advance Product Specification  
R
Spartan-3 FPGA Family: DC and Switching Characteristics  
Table 8: Recommended Operating Conditions for User I/Os Using Single-Ended Standards  
VCCO  
VREF  
Nom (V)  
0.8  
VIL  
VIH  
Signal Standard  
GTL(2)  
Min (V)  
Nom (V)  
Max (V)  
Min (V)  
0.74  
Max (V)  
0.86  
0.86  
1.12  
1.12  
0.9  
Max (V)  
Min (V)  
-
-
-
-
VREF - 0.05  
VREF + 0.05  
VREF + 0.05  
VREF + 0.1  
VREF + 0.1  
VREF + 0.1  
GTL_DCI  
1.2  
-
-
-
0.74  
0.8  
VREF - 0.05  
GTLP(2)  
-
0.88  
1
VREF - 0.1  
VREF - 0.1  
GTLP_DCI  
-
1.5  
1.5  
-
0.88  
1
HSTL_I, HSTL_I_DCI  
1.4  
1.6  
0.68  
0.75  
V
REF - 0.1  
HSTL_III,  
HSTL_III_DCI  
1.4  
1.7  
1.7  
1.5  
1.8  
1.8  
1.6  
1.9  
1.9  
0.68  
0.9  
0.9  
0.9  
0.9  
V
REF - 0.1  
VREF + 0.1  
VREF + 0.1  
VREF + 0.1  
HSTL_I_18,  
HSTL_I_DCI_18  
-
-
-
-
VREF - 0.1  
VREF - 0.1  
HSTL_II_18,  
HSTL_II_DCI_18  
HSTL_III_18,  
HSTL_III_DCI_18  
LVCMOS12(3)  
1.7  
1.8  
1.2  
1.9  
1.3  
-
-
1.1  
-
-
-
V
REF - 0.1  
VREF + 0.1  
0.70VCCO  
1.14  
0.20VCCO  
0.20VCCO  
LVCMOS15,  
LVDCI_15,  
LVDCI_DV2_15(3)  
1.4  
1.7  
2.3  
3.0  
1.5  
1.8  
2.5  
3.3  
1.6  
1.9  
-
-
-
-
-
-
-
-
-
-
-
-
0.70VCCO  
0.70VCCO  
1.7  
LVCMOS18,  
LVDCI_18,  
LVDCI_DV2_18(3)  
LVCMOS25(4)  
LVDCI_25,  
LVDCI_DV2_25(3)  
0.20VCCO  
0.7  
,
2.7  
LVCMOS33,  
LVDCI_33,  
LVDCI_DV2_33(3)  
3.45  
0.8  
2.0  
LVTTL  
3.0  
-
3.3  
3.0  
3.45  
-
-
-
-
-
-
-
0.8  
2.0  
PCI33_3  
0.30VCCO  
0.50VCCO  
SSTL18_I,  
SSTL18_I_DCI  
1.65  
2.3  
1.8  
2.5  
2.5  
1.95  
2.7  
0.825  
1.15  
1.15  
0.9  
0.975  
1.35  
1.35  
VREF - 0.125  
VREF + 0.125  
VREF + 0.15  
VREF + 0.15  
SSTL2_I,  
SSTL2_I_DCI  
1.25  
1.25  
V
REF - 0.15  
SSTL2_II,  
SSTL2_II_DCI  
2.3  
2.7  
VREF - 0.15  
Notes:  
1. Descriptions of the symbols used in this table are as follows:  
VCCO -- the supply voltage for output drivers as well as LVCMOS, LVTTL, and PCI inputs  
VREF -- the reference voltage for setting the input switching threshold  
VIL -- the input voltage that indicates a Low logic level  
VIH -- the input voltage that indicates a High logic level  
2. Because the GTL and GTLP standards employ open-drain output buffers, VCCO lines do not supply current to the I/O circuit, rather  
this current is provided using an external pull-up resistor connected from the I/O pin to a termination voltage (VTT). Nevertheless, the  
voltage applied to the associated VCCO lines must always be at or above VTT and I/O pad voltages.  
3. There is approximately 100 mV of hysteresis on inputs using any LVCMOS standard.  
4. All Dedicated pins (M0-M2, CCLK, PROG_B, DONE, HSWAP_EN, TCK, TDI, TDO, and TMS) use the LVCMOS25 standard and draw  
power from the VCCAUX rail (2.5V). The Dual-Purpose configuration pins (DIN/D0, D1-D7, CS_B, RDWR_B, BUSY/DOUT, and  
INIT_B) use the LVCMOS25 standard before the User mode. For these pins, apply 2.5V to the VCCO Bank 4 and VCCO Bank 5 rails  
at power-on as well as throughout configuration. For information concerning the use of 3.3V signals, see the 3.3V-Tolerant  
Configuration Interface section in Module 2: Functional Description.  
5. The global clock inputs have the following bank associations: GCLK0 and GCLK1 with Bank 4, GCLK2 and GCLK3 with Bank 5,  
GCLK4 and GCLK5 with Bank 1, and GCLK6 and GCLK7 with Bank 0. The signal standards assigned to the Global Clock Lines (and  
I/Os) of a given bank determine the VCCO voltage for that bank.  
DS099-3 (v1.3) March 4, 2004  
Advance Product Specification  
40  
www.xilinx.com  
1-800-255-7778  
5
R
Spartan-3 FPGA Family: DC and Switching Characteristics  
Table 9: DC Characteristics of User I/Os Using Single-Ended Standards  
Test Conditions  
Logic Level Characteristics  
Signal Standard and  
Current Drive Attribute  
(mA)  
IOL  
(mA)  
32  
IOH  
(mA)  
-
VOL  
Max (V)  
0.4  
VOH  
Min (V)  
-
GTL  
GTL_DCI  
Note 3  
36  
Note 3  
-
GTLP  
0.6  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
-
GTLP_DCI  
Note 3  
8
Note 3  
–8  
HSTL_I  
V
V
V
CCO - 0.4  
CCO - 0.4  
CCO - 0.4  
HSTL_I_DCI  
HSTL_III  
Note 3  
24  
Note 3  
–8  
HSTL_III_DCI  
HSTL_I_18  
HSTL_I_DCI_18  
HSTL_II_18  
HSTL_II_DCI_18  
HSTL_III_18  
HSTL_III_DCI_18  
LVCMOS12(4)  
Note 3  
8
Note 3  
–8  
Note 3  
16  
Note 3  
–16  
Note 3  
–8  
VCCO - 0.4  
CCO - 0.4  
Note 3  
24  
V
Note 3  
2
Note 3  
–2  
2
4
VCCO - 0.4  
VCCO - 0.4  
4
–4  
6
6
–6  
LVCMOS15(4)  
2
2
–2  
0.4  
4
4
–4  
6
6
–6  
8
8
–8  
12  
12  
–12  
Note 3  
LVDCI_15,  
LVDCI_DV2_15  
Note 3  
LVCMOS18(4)  
2
4
2
–2  
–4  
0.4  
VCCO - 0.4  
4
6
6
–6  
8
8
–8  
12  
16  
12  
–12  
–16  
Note 3  
16  
LVDCI_18,  
LVDCI_DV2_18  
Note 3  
LVCMOS25(4,5)  
2
4
2
4
–2  
–4  
0.4  
VCCO - 0.4  
6
6
–6  
8
8
–8  
12  
16  
24  
12  
16  
24  
Note 3  
–12  
–16  
–24  
Note 3  
LVDCI_25,  
LVDCI_DV2_25  
6
www.xilinx.com  
DS099-3 (v1.3) March 4, 2004  
1-800-255-7778  
Advance Product Specification  
R
Spartan-3 FPGA Family: DC and Switching Characteristics  
Table 9: DC Characteristics of User I/Os Using Single-Ended Standards (Continued)  
Test Conditions  
Logic Level Characteristics  
Signal Standard and  
Current Drive Attribute  
(mA)  
IOL  
(mA)  
2
IOH  
(mA)  
–2  
VOL  
Max (V)  
0.4  
VOH  
Min (V)  
LVCMOS33(4)  
2
4
VCCO - 0.4  
4
–4  
6
6
–6  
8
8
–8  
12  
16  
24  
12  
16  
24  
–12  
–16  
–24  
Note 3  
LVDCI_33,  
LVDCI_DV2_33  
Note 3  
LVTTL(4)  
2
4
2
4
–2  
–4  
0.4  
2.4  
6
6
–6  
8
8
–8  
12  
16  
24  
12  
–12  
16  
–16  
24  
–24  
PCI33_3  
Note 6  
6.7  
Note 6  
–6.7  
Note 3  
–7.5  
Note 3  
–15  
0.10VCCO  
0.90VCCO  
SSTL18_I  
SSTL18_I_DCI  
SSTL2_I  
VTT - 0.475  
VTT + 0.475  
Note 3  
7.5  
V
TT - 0.61  
TT - 0.80  
VTT + 0.61  
VTT + 0.80  
SSTL2_I_DCI  
SSTL2_II  
Note 3  
15  
V
SSTL2_II_DCI  
Notes:  
Note 3  
Note 3  
1. The numbers in this table are based on the conditions set forth in Table 5 and Table 8.  
2. Descriptions of the symbols used in this table are as follows:  
IOL -- the output current condition under which VOL is tested  
IOH -- the output current condition under which VOH is tested  
VOL -- the output voltage that indicates a Low logic level  
VOH -- the output voltage that indicates a High logic level  
VIL -- the input voltage that indicates a Low logic level  
VIH -- the input voltage that indicates a High logic level  
VCCO -- the supply voltage for output drivers as well as LVCMOS, LVTTL, and PCI inputs  
VREF -- the reference voltage for setting the input switching threshold  
VTT -- the voltage applied to a resistor termination  
3. Tested according to the standard’s relevant specifications.  
4. For the LVCMOS and LVTTL standards: the same VOL and VOH limits apply for both the Fast and Slow slew attributes.  
5. All Dedicated output pins (CCLK, DONE, and TDO) as well as Dual-Purpose totem-pole output pins (D0-D7 and BUSY/DOUT)  
exhibit the characteristics of LVCMOS25 with 12 mA drive and Fast slew rate. For information concerning the use of 3.3V signals,  
see the 3.3V-Tolerant Configuration Interface section in Module 2: Functional Description.  
6. Tested according to the relevant PCI specifications.  
DS099-3 (v1.3) March 4, 2004  
Advance Product Specification  
40  
www.xilinx.com  
1-800-255-7778  
7
R
Spartan-3 FPGA Family: DC and Switching Characteristics  
VINP  
VINN  
Differential  
I/O Pair Pins  
P
N
Internal  
Logic  
VINN  
V
50%  
ID  
VINP  
V
ICM  
GND level  
VINP + VINN  
V
ICM = Input common mode voltage =  
2
V
VINP - VINN  
ID = Differential input voltage =  
DS099-3_01_012304  
Figure 1: Differential Input Voltages  
Table 10: Recommended Operating Conditions for User I/Os Using Differential Signal Standards  
(1)  
VCCO  
VID  
VICM  
VIH  
VIL  
Min  
(V)  
Nom  
(V)  
Max  
(V)  
Min  
(mV)  
Nom  
(mV)  
Max  
(mV)  
Min  
(V)  
Nom  
(V)  
Max  
(V)  
Min  
(V)  
Max  
(V)  
Min  
(V)  
Max  
(V)  
Signal Standard  
LDT_25  
2.375  
2.375  
2.50  
2.50  
2.625  
2.625  
200  
100  
600  
350  
1000  
600  
0.44  
0.30  
0.60  
1.25  
0.78  
2.20  
-
-
-
-
-
-
-
-
LVDS_25,  
LVDS_25_DCI  
BLVDS_25  
2.375  
2.375  
2.50  
2.50  
2.625  
2.625  
-
350  
540  
-
-
1.25  
1.20  
-
-
-
-
-
-
-
-
-
LVDSEXT_25,  
100  
1000  
0.30  
2.20  
LVDSEXT_25_DCI  
ULVDS_25  
LVPECL_25  
RSDS_25  
Notes:  
2.375  
2.375  
2.375  
2.50  
2.50  
2.50  
2.625  
2.625  
2.625  
200  
100  
100  
600  
-
1000  
0.44  
0.60  
-
0.78  
-
0.8  
-
-
2.0  
-
-
0.5  
-
-
1.7  
-
-
-
-
-
-
-
200  
1.20  
1.  
VCCO only supplies differential output drivers, not input circuits.  
2. VREF inputs are not used for any of the differential I/O standards.  
3. VID is a differential measurement.  
8
www.xilinx.com  
1-800-255-7778  
DS099-3 (v1.3) March 4, 2004  
Advance Product Specification  
R
Spartan-3 FPGA Family: DC and Switching Characteristics  
VOUTP  
Differential  
I/O Pair Pins  
P
N
Internal  
Logic  
VOUTN  
VOH  
VOUTN  
VOD  
50%  
VOUTP  
VOL  
VOCM  
GND level  
VOUTP + VOUTN  
V
OCM = Output common mode voltage =  
2
VOUTP - VOUTN  
= Output voltage indicating a High logic level  
= Output voltage indicating a Low logic level  
V
OD = Output differential voltage =  
VOH  
VOL  
DS099-3_02_012304  
Figure 2: Differential Output Voltages  
Table 11: DC Characteristics of User I/Os Using Differential Signal Standards  
V
V  
V
V  
V
V
OL  
OD  
OD  
OCM  
OCM  
OH  
Device  
Revision  
Min  
(mV)  
Typ  
Max  
Min  
Max  
Min  
(V)  
Typ  
(V)  
Max  
(V)  
Min  
(mV)  
Max  
(mV)  
Min  
(V)  
Max  
(V)  
Min  
(V)  
Max  
(V)  
Signal Standard  
LDT_25  
(mV) (mV) (mV) (mV)  
(3)  
(4)  
All  
430  
600  
670  
600  
400  
450  
600  
700  
670  
-
–15  
15  
-
0.495  
0.80  
1.125  
-
0.600 0.715  
–15  
15  
-
-
-
-
-
-
(3)  
LVDS_25  
0
100  
250  
250  
100  
330  
430  
-
-
-
-
-
-
-
-
-
-
-
-
1.6  
1.375  
-
-
-
-
-
-
-
-
-
-
-
-
-
Future  
All  
-
-
-
-
1.00  
1.475  
0.925  
1.38  
BLVDS_25  
350  
-
1.20  
-
-
-
-
-
-
-
-
(3)  
LVDSEXT_25  
0
-
-
0.80  
1.125  
0.495  
-
-
-
1.6  
-
-
-
-
0.705  
-
Future  
-
-
1.375  
-
-
1.700  
(3)  
ULVDS_25  
All  
600  
-
0.600 0.715  
-
-
-
(7)  
LVPECL_25  
All  
-
-
-
-
-
-
-
-
-
1.35  
1.745  
0.565 1.005  
(3)  
RSDS_25  
0
100  
100  
600  
400  
-
0.80  
1.1  
1.6  
1.4  
-
-
-
-
-
-
-
-
-
Future  
-
-
Notes:  
1. The numbers in this table are based on the conditions set forth in Table 5 and Table 10.  
2. , V , and V are differential measurements.  
V
OD  
OD  
OCM  
3. For this standard, to ensure that the FPGA’s output pair meets specifications, it is necessary to set the LVDSBIAS option in the BitGen utility, part of  
the Xilinx development software. See XAPP751. The option settings for LVDS_25, LVDSEXT_25, and RSDS_25 are different from those for LDT_25  
and ULVDS_25.  
4. This value must be compatible with the receiver to which the FPGA’s output pair is connected.  
5. Output voltage measurements for all differential standards are made with a termination resistor (R ) of 100across the N and P pins of the differential  
T
signal pair.  
6. At any given time, only one differential standard may be assigned to each bank.  
7. Each LVPECL output-pair requires three external resistors: a 70resistor in series with each output followed by a 240shunt resistor. These are in  
addition to the external 100termination resistor at the receiver side. See Figure 3.  
70Ω  
240Ω  
100Ω  
70Ω  
ds099-3_08_020304  
Figure 3: External Terminations for LVPECL  
DS099-3 (v1.3) March 4, 2004  
Advance Product Specification  
40  
www.xilinx.com  
1-800-255-7778  
9
R
Spartan-3 FPGA Family: DC and Switching Characteristics  
Switching Characteristics  
All Spartan-3 devices are available in two speed grades: –4  
and the higher performance –5. Switching characteristics in  
this document may be designated as Advance, Preliminary,  
or Production. Each category is defined as follows:  
between speed files and devices over numerous production  
lots. There is no under-reporting of delays, and customers  
receive formal notification of any subsequent changes. Typ-  
ically, the slowest speed grades transition to Production  
before faster speed grades.  
Advance: These specifications are based on simulations  
only and are typically available soon after establishing  
FPGA specifications. Although speed grades with this des-  
ignation are considered relatively stable and conservative,  
some under-reporting might still occur. All –5 grade num-  
bers are engineering targets: characterization is still in  
progress.  
All specified limits are representative of worst-case supply  
voltage and junction temperature conditions. Unless other-  
wise noted, the following applies: Parameter values apply to  
all Spartan-3 devices. All parameters representing voltages  
are measured with respect to GND.  
Timing parameters and their representative values are  
selected for inclusion below either because they are impor-  
tant as general design requirements or they indicate funda-  
mental device performance characteristics. The Spartan-3  
speed files (V1.29), part of the Xilinx Development Soft-  
ware, are the original source for many but not all of the val-  
ues. For more complete, more precise, and worst-case  
data, use the values reported by the Xilinx static timing ana-  
lyzer (TRACE in the Xilinx development software) and  
back-annotated to the simulation netlist.  
Preliminary: These specifications are based on complete  
early silicon characterization. Devices and speed grades  
with this designation are intended to give a better indication  
of the expected performance of production silicon. The  
probability of under-reporting preliminary delays is greatly  
reduced compared to Advance data.  
Production: These specifications are approved once  
enough production silicon of a particular device family mem-  
ber has been characterized to provide full correlation  
10  
www.xilinx.com  
1-800-255-7778  
DS099-3 (v1.3) March 4, 2004  
Advance Product Specification  
R
Spartan-3 FPGA Family: DC and Switching Characteristics  
I/O Timing  
Table 12: Pin-to-Pin Clock-to-Output Times for the IOB Output Path  
Speed Grade  
-5  
-4  
Symbol  
Description  
Conditions  
Device  
XC3S50  
Max  
Max  
Units  
Clock-to-Output Times  
TICKOFDCM  
When reading from the  
Output Flip-Flop (OFF), the  
time from the active  
transition on the Global  
Clock pin to data appearing  
at the Output pin. The DCM  
is in use.  
LVCMOS25(2), 12mA  
output drive, Fast slew  
rate, with DCM(3)  
2.59  
2.59  
2.59  
2.59  
2.60  
2.60  
2.60  
2.60  
5.37  
5.39  
5.42  
5.51  
5.65  
5.83  
5.95  
6.19  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
XC3S200  
XC3S400  
XC3S1000  
XC3S1500  
XC3S2000  
XC3S4000  
XC3S5000  
XC3S50  
TICKOF  
When reading from OFF, the LVCMOS25(2), 12mA  
time from the active  
transition on the Global  
Clock pin to data appearing  
at the Output pin. The DCM  
is not in use.  
output drive, Fast slew  
rate, without DCM  
XC3S200  
XC3S400  
XC3S1000  
XC3S1500  
XC3S2000  
XC3S4000  
XC3S5000  
Notes:  
1. The numbers in this table are tested using the methodology presented in Table 20 and are based on the operating conditions set  
forth in Table 5 and Table 8.  
2. This clock-to-output time requires adjustment whenever a signal standard other than LVCMOS25 is assigned to the Global Clock  
Input or a standard other than LVCMOS25 with 12 mA drive and Fast slew rate is assigned to the data Output. If the former is true,  
add the appropriate Input adjustment from Table 16. If the latter is true, add the appropriate Output adjustment from Table 19.  
3. DCM output jitter is included in all measurements.  
DS099-3 (v1.3) March 4, 2004  
Advance Product Specification  
40  
www.xilinx.com  
1-800-255-7778  
11  
R
Spartan-3 FPGA Family: DC and Switching Characteristics  
Table 13: Pin-to-Pin Setup and Hold Times for the IOB Input Path  
Speed Grade  
-5  
-4  
Symbol  
Setup Times  
TPSDCM  
Description  
Conditions  
Device  
XC3S50  
Min  
Min  
Units  
When writing to the Input LVCMOS25(2)  
,
2.72  
2.72  
2.74  
2.76  
2.86  
2.98  
3.06  
3.23  
2.43  
3.53  
3.52  
3.77  
4.15  
4.34  
4.53  
4.90  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Flip-Flop (IFF), the time IOBDELAY = NONE(4)  
from the setup of data at with DCM(5)  
the Input pin to the active  
,
XC3S200  
XC3S400  
XC3S1000  
XC3S1500  
XC3S2000  
XC3S4000  
XC3S5000  
XC3S50  
transition at a Global  
Clock pin. The DCM is in  
use.  
TPSFD  
When writing to IFF, the LVCMOS25(2)  
,
time from the setup of  
data at the Input pin to  
an active transition at the  
Global Clock pin. The  
DCM is not in use.  
IOBDELAY = NONE(4)  
without DCM  
,
XC3S200  
XC3S400  
XC3S1000  
XC3S1500  
XC3S2000  
XC3S4000  
XC3S5000  
Hold Times  
XC3S50  
TPHDCM  
When writing to IFF, the LVCMOS25(3)  
,
–1.81  
–1.81  
–1.81  
–1.81  
–1.81  
–1.81  
–1.80  
–1.80  
–1.03  
–1.89  
–1.87  
–2.01  
–2.20  
–2.20  
–2.24  
–2.32  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
time from the active  
transition at the Global  
Clock pin to the point  
when data must be held  
at the Input pin. The  
DCM is in use.  
IOBDELAY= NONE(4)  
with DCM(5)  
,
XC3S200  
XC3S400  
XC3S1000  
XC3S1500  
XC3S2000  
XC3S4000  
XC3S5000  
XC3S50  
TPHFD  
When writing to IFF, the LVCMOS25(3)  
,
time from the active  
transition at the Global  
Clock pin to the point  
when data must be held  
at the Input pin. The  
DCM is not in use.  
IOBDELAY = NONE(4)  
without DCM  
,
XC3S200  
XC3S400  
XC3S1000  
XC3S1500  
XC3S2000  
XC3S4000  
XC3S5000  
Notes:  
1. The numbers in this table are tested using the methodology presented in Table 20 and are based on the operating conditions set  
forth in Table 5 and Table 8.  
2. This setup time requires adjustment whenever a signal standard other than LVCMOS25 is assigned to the Global Clock Input or the  
data Input. If this is true of the Global Clock Input, subtract the appropriate adjustment from Table 16. If this is true of the data Input,  
add the appropriate input adjustment from the same table.  
3. This hold time requires adjustment whenever a signal standard other than LVCMOS25 is assigned to the Global Clock Input or the  
data Input. If this is true of the Global Clock Input, add the appropriate Input adjustment from Table 16. If this is true of the data Input,  
subtract the appropriate Input adjustment from the same table. When the hold time is negative, it is possible to change the data  
before the clock’s active edge.  
4. All numbers measured with no programmed input delay.  
5. DCM output jitter is included in all measurements.  
12  
www.xilinx.com  
DS099-3 (v1.3) March 4, 2004  
1-800-255-7778  
Advance Product Specification  
R
Spartan-3 FPGA Family: DC and Switching Characteristics  
Speed Grade  
Table 14: Setup and Hold Times for the IOB Input Path  
-5  
-4  
Symbol  
Setup Times  
TIOPICK  
Description  
Conditions  
Device  
Min  
Min  
Units  
Time from the setup of data LVCMOS25(2)  
,
1.15  
1.32  
ns  
All  
at the Input pin to the active IOBDELAY = NONE  
transition at the ICLK input  
of the Input Flip-Flop (IFF).  
No input delay is  
programmed.  
XC3S50  
TIOPICKD  
Time from the setup of data LVCMOS25(2)  
at the Input pin to the active IOBDELAY = IFD  
transition at the IFF’s ICLK  
input. The input delay is  
,
3.26  
3.89  
3.89  
4.15  
4.32  
4.50  
4.67  
5.02  
3.75  
4.47  
4.47  
4.77  
4.97  
5.17  
5.37  
5.77  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
XC3S200  
XC3S400  
XC3S1000  
XC3S1500  
XC3S2000  
XC3S4000  
XC3S5000  
programmed.  
Hold Times  
LVCMOS25(3)  
,
–0.66  
ns  
All  
TIOICKP  
Time from the active  
transition at the IFF’s ICLK IOBDELAY = NONE  
input to the point where  
data must be held at the  
Input pin. No input delay is  
programmed.  
LVCMOS25(3)  
,
–2.36  
–2.87  
–2.87  
–3.08  
–3.22  
–3.36  
–3.50  
–3.78  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
XC3S50  
TIOICKPD  
Time from the active  
transition at the IFF’s ICLK IOBDELAY = IFD  
input to the point where  
data must be held at the  
Input pin. The input delay is  
programmed.  
XC3S200  
XC3S400  
XC3S1000  
XC3S1500  
XC3S2000  
XC3S4000  
XC3S5000  
Notes:  
1. The numbers in this table are tested using the methodology presented in Table 20 and are based on the operating conditions set  
forth in Table 5 and Table 8.  
2. This setup time requires adjustment whenever a signal standard other than LVCMOS25 is assigned to the data Input. If this is true,  
add the appropriate Input adjustment from Table 16.  
3. These hold times require adjustment whenever a signal standard other than LVCMOS25 is assigned to the data Input. If this is true,  
subtract the appropriate Input adjustment from Table 16. When the hold time is negative, it is possible to change the data before the  
clock’s active edge.  
DS099-3 (v1.3) March 4, 2004  
Advance Product Specification  
40  
www.xilinx.com  
1-800-255-7778  
13  
R
Spartan-3 FPGA Family: DC and Switching Characteristics  
Table 15: Propagation Times for the IOB Input Path  
Speed Grade  
-5  
-4  
Symbol  
Description  
Conditions  
Device  
Max  
Max  
Units  
Propagation Times  
The time it takes for data LVCMOS25(2)  
,
1.05  
1.20  
ns  
All  
TIOPI  
to travel from the Input  
pin to the IOB’s I output  
with no input delay  
programmed  
IOBDELAY = NONE  
XC3S50  
TIOPID  
The time it takes for data LVCMOS25(2)  
,
3.16  
3.79  
3.79  
4.05  
4.22  
4.40  
4.57  
4.92  
1.55  
3.63  
4.35  
4.35  
4.65  
4.85  
5.05  
5.25  
5.65  
1.78  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
to travel from the Input  
pin to the I output with the  
Input delay programmed  
IOBDELAY = IFD  
XC3S200  
XC3S400  
XC3S1000  
XC3S1500  
XC3S2000  
XC3S4000  
XC3S5000  
All  
TIOPLI  
The time it takes for data LVCMOS25(2)  
,
to travel from the Input  
pin through the IFF latch  
to the I output with no  
input delay programmed  
IOBDELAY = NONE  
XC3S50  
TIOPLID  
The time it takes for data LVCMOS25(2)  
,
3.66  
4.29  
4.29  
4.55  
4.73  
4.90  
5.07  
5.42  
4.21  
4.93  
4.93  
5.23  
5.43  
5.63  
5.83  
6.23  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
to travel from the Input  
pin through the IFF latch  
to the I output with the  
input delay programmed  
IOBDELAY = IFD  
XC3S200  
XC3S400  
XC3S1000  
XC3S1500  
XC3S2000  
XC3S4000  
XC3S5000  
Notes:  
1. The numbers in this table are tested using the methodology presented in Table 20 and are based on the operating conditions set forth  
in Table 5 and Table 8.  
2. This propagation time requires adjustment whenever a signal standard other than LVCMOS25 is assigned to the data Input. When  
this is true, add the appropriate Input adjustment from Table 16.  
14  
www.xilinx.com  
DS099-3 (v1.3) March 4, 2004  
1-800-255-7778  
Advance Product Specification  
R
Spartan-3 FPGA Family: DC and Switching Characteristics  
Table 16: Input Timing Adjustments for IOB (Continued)  
Table 16: Input Timing Adjustments for IOB  
Add the  
Adjustment Below  
Add the  
Adjustment Below  
Convert Input Time from  
Convert Input Time from  
Speed Grade  
Speed Grade  
LVCMOS25 to the  
LVCMOS25 to the  
Following Signal Standard  
-5  
-4  
Units  
ns  
Following Signal Standard  
Single-Ended Standards  
GTL, GTL_DCI  
-5  
-4  
Units  
PCI33_3  
0.32  
0.32  
SSTL18_I, SSTL18_I_DCI  
SSTL2_I, SSTL2_I_DCI  
SSTL2_II, SSTL2_II_DCI  
Differential Standards  
LDT_25  
–0.17  
–0.19  
–0.21  
–0.17  
–0.19  
–0.21  
ns  
–0.37  
–0.37  
–0.18  
–0.19  
–0.26  
–0.37  
–0.37  
–0.18  
–0.19  
–0.26  
ns  
ns  
ns  
ns  
ns  
ns  
GTLP, GTLP_DCI  
ns  
HSTL_I, HSTL_I_DCI  
HSTL_III, HSTL_III_DCI  
0.04  
0.06  
0.04  
0.06  
ns  
ns  
ns  
ns  
HSTL_I_18,  
HSTL_I_DCI_18  
LVDS_25, LVDS_25_DCI  
BLVDS_25  
HSTL_II_18,  
HSTL_II_DCI_18  
–0.26  
–0.20  
–0.26  
–0.20  
ns  
ns  
LVDSEXT_25,  
LVDSEXT_25_DCI  
HSTL_III_18,  
HSTL_III_DCI_18  
ULVDS_25  
LVPECL_25  
RSDS_25  
Notes:  
–0.05  
–0.05  
ns  
ns  
ns  
LVCMOS12  
0.40  
0.47  
0.40  
0.47  
ns  
ns  
LVCMOS15, LVDCI_15,  
LVDCI_DV2_15  
LVCMOS18, LVDCI_18,  
LVDCI_DV2_18  
0.30  
0
0.30  
0
ns  
ns  
ns  
ns  
1. The numbers in this table are tested using the methodology  
presented in Table 20 and are based on the operating  
conditions set forth in Table 5, Table 8, and Table 10.  
2. These adjustments are used to convert input path times  
originally specified for the LVCMOS25 standard to times that  
correspond to other signal standards.  
LVCMOS25, LVDCI_25,  
LVDCI_DV2_25  
LVCMOS33, LVDCI_33,  
LVDCI_DV2_33  
0.09  
–0.31  
0.09  
–0.31  
LVTTL  
DS099-3 (v1.3) March 4, 2004  
Advance Product Specification  
40  
www.xilinx.com  
1-800-255-7778  
15  
R
Spartan-3 FPGA Family: DC and Switching Characteristics  
Table 17: Timing for the IOB Output Path  
Speed Grade  
-5  
-4  
Symbol  
Description  
Conditions  
Max  
Max  
Units  
Clock-to-Output Times  
TIOCKP  
When reading from the  
Output Flip-Flop (OFF), the  
LVCMOS25(2), 12mA  
output drive, Fast slew  
3.64  
4.18  
ns  
time from the active transition rate  
at the OTCLK input to data  
appearing at the Output pin  
Propagation Times  
TIOOP  
The time it takes for data to  
travel from the IOB’s O input output drive, Fast slew  
to the Output pin  
LVCMOS25(2), 12mA  
2.97  
3.41  
3.42  
3.92  
ns  
ns  
rate  
TIOOLP  
The time it takes for data to  
travel from the O input  
through the OFF latch to the  
Output pin  
Set/Reset Times  
TIOSRP  
Time from asserting the  
OFF’s SR input to  
setting/resetting data at the  
Output pin  
LVCMOS25(2), 12mA  
output drive, Fast slew  
rate  
4.44  
8.07  
5.10  
9.28  
ns  
ns  
TIOGSRQ  
Time from asserting the  
Global Set Reset (GSR) net  
to setting/resetting data at  
the Output pin  
Notes:  
1. The numbers in this table are tested using the methodology presented in Table 20 and are based on the operating conditions set  
forth in Table 5 and Table 8.  
2. This time requires adjustment whenever a signal standard other than LVCMOS25 with 12 mA drive and Fast slew rate is assigned  
to the data Output. When this is true, add the appropriate Output adjustment from Table 19.  
16  
www.xilinx.com  
DS099-3 (v1.3) March 4, 2004  
1-800-255-7778  
Advance Product Specification  
R
Spartan-3 FPGA Family: DC and Switching Characteristics  
Speed Grade  
Table 18: Timing for the IOB Three-State Path  
-5  
-4  
Symbol  
Synchronous Output Enable/Disable Times  
TIOCKHZ Time from the active transition at LVCMOS25, 12mA  
Description  
Conditions  
Max  
Max  
Units  
2.32  
2.66  
ns  
the OTCLK input of the  
output drive, Fast  
slew rate  
Three-state Flip-Flop (TFF) to  
when the Output pin enters the  
high-impedance state  
(2)  
TIOCKON  
Time from the active transition at  
TFF’s OTCLK input to when the  
Output pin drives valid data  
3.78  
7.03  
4.34  
8.08  
ns  
ns  
Asynchronous Output Enable/Disable Times  
TGTS  
Time from asserting the Global  
Three State net (GTS) net to  
when the Output pin enters the  
high-impedance state  
LVCMOS25, 12mA  
output drive, Fast  
slew rate  
Set/Reset Times  
TIOSRHZ  
Time from asserting TFF’s SR  
input to when the Output pin  
enters a high-impedance state  
LVCMOS25, 12mA  
output drive, Fast  
slew rate  
3.28  
4.75  
3.77  
5.45  
ns  
ns  
(2)  
TIOSRON  
Time from asserting TFF’s SR  
input at TFF to when the Output  
pin drives valid data  
Notes:  
1. The numbers in this table are tested using the methodology presented in Table 20 and are based on the operating conditions set  
forth in Table 5 and Table 8.  
2. This time requires adjustment whenever a signal standard other than LVCMOS25 with 12 mA drive and Fast slew rate is assigned  
to the data Output. When this is true, add the appropriate Output adjustment from Table 19.  
DS099-3 (v1.3) March 4, 2004  
Advance Product Specification  
40  
www.xilinx.com  
1-800-255-7778  
17  
R
Spartan-3 FPGA Family: DC and Switching Characteristics  
Table 19: Output Timing Adjustments for IOB (Continued)  
Table 19: Output Timing Adjustments for IOB  
Add the  
Adjustment  
Add the  
Adjustment  
Below  
Convert Output Time from  
LVCMOS25 with 12mA Drive and  
Fast Slew Rate to the Following  
Signal Standard  
Below  
Convert Output Time from  
LVCMOS25 with 12mA Drive and  
Fast Slew Rate to the Following  
Signal Standard  
Speed Grade  
Speed Grade  
-5  
-4  
Units  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
-5  
-4  
Units  
LVCMOS18  
Slow  
2 mA  
4 mA  
6 mA  
8 mA  
12 mA  
16 mA  
2 mA  
4 mA  
6 mA  
8 mA  
12 mA  
16 mA  
4.31  
2.69  
2.23  
1.83  
1.97  
1.62  
2.07  
0.90  
0.77  
0.61  
0.56  
0.50  
0.72  
0.58  
5.11  
3.17  
2.53  
2.21  
1.79  
1.77  
1.53  
2.30  
0.87  
0.30  
0.21  
0
4.31  
2.69  
2.23  
1.83  
1.97  
1.62  
2.07  
0.90  
0.77  
0.61  
0.56  
0.50  
0.72  
0.58  
5.11  
3.17  
2.53  
2.21  
1.79  
1.77  
1.53  
2.30  
0.87  
0.30  
0.21  
0
Single-Ended Standards  
GTL  
–0.18  
–0.15  
–0.15  
–0.13  
0.08  
0.07  
–0.05  
–0.05  
0.14  
0
–0.18  
–0.15  
–0.15  
–0.13  
0.08  
0.07  
–0.05  
–0.05  
0.14  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
GTL_DCI  
GTLP  
GTLP_DCI  
HSTL_I  
Fast  
HSTL_I_DCI  
HSTL_III  
HSTL_III_DCI  
HSTL_I_18  
HSTL_I_DCI_18  
HSTL_II_18  
HSTL_II_DCI_18  
HSTL_III_18  
HSTL_III_DCI_18  
–0.13  
0.31  
–0.02  
–0.03  
6.47  
6.70  
5.60  
3.04  
2.25  
2.10  
3.95  
3.49  
2.85  
3.44  
2.82  
2.29  
1.37  
1.15  
1.13  
1.00  
1.34  
1.14  
–0.13  
0.31  
–0.02  
–0.03  
6.47  
6.70  
5.60  
3.04  
2.25  
2.10  
3.95  
3.49  
2.85  
3.44  
2.82  
2.29  
1.37  
1.15  
1.13  
1.00  
1.34  
1.14  
LVDCI_18  
LVDCI_DV2_18  
LVCMOS25  
Slow  
2 mA  
4 mA  
LVCMOS12  
Slow  
Fast  
Slow  
2 mA  
4 mA  
6 mA  
2 mA  
4 mA  
6 mA  
2 mA  
4 mA  
6 mA  
8 mA  
12 mA  
2 mA  
4 mA  
6 mA  
8 mA  
12 mA  
6 mA  
8 mA  
12 mA  
16 mA  
24 mA  
2 mA  
Fast  
LVCMOS15  
4 mA  
6 mA  
8 mA  
12 mA  
16 mA  
24 mA  
0.11  
0.04  
0.19  
0.10  
0.11  
0.04  
0.19  
0.10  
Fast  
LVDCI_25  
LVDCI_DV2_25  
LVDCI_15  
LVDCI_DV2_15  
18  
www.xilinx.com  
1-800-255-7778  
DS099-3 (v1.3) March 4, 2004  
Advance Product Specification  
R
Spartan-3 FPGA Family: DC and Switching Characteristics  
Table 19: Output Timing Adjustments for IOB (Continued)  
Table 19: Output Timing Adjustments for IOB (Continued)  
Add the  
Add the  
Adjustment  
Adjustment  
Below  
Below  
Convert Output Time from  
LVCMOS25 with 12mA Drive and  
Fast Slew Rate to the Following  
Signal Standard  
Convert Output Time from  
LVCMOS25 with 12mA Drive and  
Fast Slew Rate to the Following  
Signal Standard  
Speed Grade  
Speed Grade  
-5  
6.22  
3.80  
3.02  
3.04  
2.18  
2.05  
1.82  
3.15  
1.30  
0.53  
0.54  
0.14  
0.08  
–0.03  
0
-4  
6.22  
3.80  
3.02  
3.04  
2.18  
2.05  
1.82  
3.15  
1.30  
0.53  
0.54  
0.14  
0.08  
–0.03  
0
Units  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
-5  
-4  
Units  
ns  
LVCMOS33  
Slow  
2 mA  
4 mA  
PCI33_3  
–0.26  
–0.05  
–0.01  
0.08  
–0.26  
–0.05  
–0.01  
0.08  
SSTL18_I  
ns  
6 mA  
SSTL18_I_DCI  
SSTL2_I  
ns  
8 mA  
ns  
12 mA  
16 mA  
24 mA  
2 mA  
SSTL2_I_DCI  
SSTL2_II  
0.01  
0.01  
ns  
–0.04  
–0.14  
–0.04  
–0.14  
ns  
SSTL2_II_DCI  
Differential Standards  
LDT_25  
ns  
Fast  
4 mA  
–0.52  
–0.50  
–0.52  
–0.50  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
6 mA  
LVDS_25  
8 mA  
LVDS_25_DCI  
BLVDS_25  
12 mA  
16 mA  
24 mA  
–0.01  
–0.50  
–0.01  
–0.50  
LVDSEXT_25  
LVDSEXT_25_DCI  
ULVDS_25  
LVDCI_33  
LVDCI_DV2_33  
LVTTL  
–0.48  
–0.48  
0
0
LVPECL_25  
RSDS_25  
Slow  
2 mA  
4 mA  
6.24  
3.81  
3.03  
3.02  
2.17  
2.05  
1.88  
3.14  
1.31  
0.50  
0.51  
0.12  
0.06  
0
6.24  
3.81  
3.03  
3.02  
2.17  
2.05  
1.88  
3.14  
1.31  
0.50  
0.51  
0.12  
0.06  
0
Notes:  
1. The numbers in this table are tested using the methodology  
presented in Table 20 and are based on the operating  
conditions set forth in Table 5, Table 8, and Table 10.  
2. These adjustments are used to convert output- and  
three-state-path times originally specified for the LVCMOS25  
standard with 12 mA drive and Fast slew rate to times that  
correspond to other signal standards. Do not adjust times  
that measure when outputs go into a high-impedance state.  
6 mA  
8 mA  
12 mA  
16 mA  
24 mA  
2 mA  
Fast  
4 mA  
6 mA  
8 mA  
12 mA  
16 mA  
24 mA  
DS099-3 (v1.3) March 4, 2004  
Advance Product Specification  
40  
www.xilinx.com  
1-800-255-7778  
19  
R
Spartan-3 FPGA Family: DC and Switching Characteristics  
LVTTL), then RT is set to 1Mto indicate an open connec-  
tion, and VT is set to zero. The same measurement point  
(VM) that was used at the Input is also used at the Output.  
Timing Measurement Methodology  
When measuring timing parameters at the programmable  
I/Os, different signal standards call for different test condi-  
tions. Table 20 presents the conditions to use for each stan-  
dard.  
V (V  
)
T
REF  
The method for measuring Input timing is as follows: A sig-  
nal that swings between a Low logic level of VL and a High  
logic level of VH is applied to the Input under test. Some  
standards also require the application of a bias voltage to  
the VREF pins of a given bank to properly set the  
input-switching threshold. The measurement point of the  
Input signal (VM) is commonly located halfway between VL  
and VH.  
FPGA Output  
R (R  
T
)
REF  
V
(V  
)
M
MEAS  
C (C  
)
L
REF  
ds099-3_07_012004  
Notes:  
The Output test setup is shown in Figure 4. A termination  
voltage VT is applied to the termination resistor RT, the other  
end of which is connected to the Output. For each standard,  
RT and VT generally take on the standard values recom-  
mended for minimizing signal reflections. If the standard  
does not ordinarily use terminations (e.g., LVCMOS,  
1. The names shown in parentheses are  
used in the IBIS file.  
Figure 4: Output Test Setup  
Table 20: Test Methods for Timing Measurement at I/Os  
Inputs and  
Inputs  
Outputs  
Outputs  
VREF  
(V)  
VL  
VH  
(V)  
RT  
VT  
VM  
Signal Standard  
Single-Ended  
GTL  
(V)  
()  
(V)  
(V)  
0.8  
1.0  
VREF - 0.2  
VREF + 0.2  
VREF + 0.2  
VREF + 0.5  
VREF + 0.5  
VREF + 0.5  
VREF + 0.5  
VREF + 0.5  
25  
50  
25  
50  
50  
50  
50  
50  
50  
50  
25  
50  
50  
50  
1M  
1M  
1M  
1M  
1.2  
1.2  
1.5  
1.5  
0.75  
0.75  
1.5  
1.5  
0.9  
0.9  
0.9  
0.9  
1.8  
1.8  
0
VREF  
VREF  
VREF  
VREF  
VREF  
VREF  
VREF  
GTL_DCI  
GTLP  
VREF - 0.2  
GTLP_DCI  
HSTL_I  
0.75  
0.90  
0.90  
0.90  
1.1  
VREF - 0.5  
HSTL_I_DCI  
HSTL_III  
V
V
REF - 0.5  
REF - 0.5  
HSTL_III_DCI  
HSTL_I_18  
HSTL_I_DCI_18  
HSTL_II_18  
HSTL_II_DCI_18  
HSTL_III_18  
HSTL_III_DCI_18  
LVCMOS12  
LVCMOS15  
LVDCI_15  
VREF - 0.5  
V
REF - 0.5  
-
-
0
0
1.2  
1.5  
0
0.75  
0
LVDCI_DV2_15  
0
20  
www.xilinx.com  
1-800-255-7778  
DS099-3 (v1.3) March 4, 2004  
Advance Product Specification  
R
Spartan-3 FPGA Family: DC and Switching Characteristics  
Table 20: Test Methods for Timing Measurement at I/Os (Continued)  
Inputs and  
Outputs  
Inputs  
Outputs  
VREF  
(V)  
-
VL  
(V)  
0
VH  
(V)  
1.8  
RT  
()  
1M  
1M  
1M  
1M  
1M  
1M  
1M  
1M  
1M  
1M  
25  
VT  
(V)  
0
VM  
(V)  
0.9  
Signal Standard  
LVCMOS18  
LVDCI_18  
0
LVDCI_DV2_18  
LVCMOS25  
LVDCI_25  
0
-
-
0
0
2.5  
3.3  
0
1.25  
1.65  
0
LVDCI_DV2_25  
LVCMOS33  
LVDCI_33  
0
0
0
LVDCI_DV2_33  
LVTTL  
0
-
-
0
3.3  
0
1.4  
0.94  
2.03  
VREF  
PCI33_3  
Rising  
Falling  
Note 2  
Note 2  
0
25  
3.3  
0.9  
0.9  
1.25  
1.25  
1.25  
1.25  
SSTL18_I  
0.9  
V
REF - 0.5  
VREF + 0.5  
VREF + 0.75  
VREF + 0.75  
50  
SSTL18_I_DCI  
SSTL2_I  
50  
1.25  
1.25  
V
V
REF - 0.75  
REF - 0.75  
50  
VREF  
SSTL2_I_DCI  
SSTL2_II  
50  
25  
VREF  
SSTL2_II_DCI  
Differential  
LDT_25  
50  
-
-
0.6 - 0.125  
1.2 - 0.125  
0.6 + 0.125  
1.2 + 0.125  
60  
50  
1M  
1M  
50  
-
0.6  
1.2  
0
0.6  
1.2  
LVDS_25  
LVDS_25_DCI  
BLVDS_25  
LVDSEXT_25  
LVDSEXT_25_DCI  
ULVDS_25  
LVPECL_25  
RSDS_25  
-
-
1.2 - 0.125  
1.2 - 0.125  
1.2 + 0.125  
1.2 + 0.125  
0
1.2  
1.2  
1.2  
-
-
-
-
0.6 - 0.125  
1.6 - 0.3  
0.6 + 0.125  
1.6 + 0.3  
1.3 + 0.1  
60  
1M  
50  
0.6  
0
0.6  
1.6  
1.2  
1.3 - 0.1  
1.2  
Notes:  
1. Descriptions of the relevant symbols are as follows:  
VREF -- The reference voltage for setting the input switching threshold  
M -- Voltage of measurement point on signal transition  
V
VL -- Low-level test voltage at Input pin  
VH -- High-level test voltage at Input pin  
RT -- Effective termination resistance, which takes on a value of 1Mwhen no parallel termination is required  
VT -- Termination voltage  
CL -- Load capacitance at Output pin, which is 0 pF for all standards  
2. According to the PCI specification.  
DS099-3 (v1.3) March 4, 2004  
Advance Product Specification  
40  
www.xilinx.com  
1-800-255-7778  
21  
R
Spartan-3 FPGA Family: DC and Switching Characteristics  
The capacitive load (CL) is connected between the output  
and GND. The Output timing for all standards, as published  
in the speed files and the data sheet, is always based on a  
CL value of zero unless otherwise specified. High-imped-  
ance probes (less than 1 pF) are used for all measure-  
ments. Any delay that the test fixture might contribute to test  
measurements is subtracted from those measurements to  
produce the final timing numbers as published in the speed  
files and data sheet.  
IBIS models are found at the following link:  
http://www.xilinx.com/support/sw_ibis.htm  
Simulate delays for a given application according to its spe-  
cific load conditions as follows:  
1. Simulate the desired signal standard with the output  
driver connected to the test setup shown in Figure 4.  
Use parameter values VT, RT, CL, and VM from  
Table 20.  
2. Record the time to VM.  
Using IBIS Models to Simulate Load  
Conditions in Application  
3. Simulate the same signal standard with the output  
driver connected to the PCB trace with load. Use the  
IBIS Models permit the most accurate prediction of timing  
delays for a given application. The parameters found in the  
IBIS model (VREF, RREF, CREF, and VMEAS) correspond  
directly with the parameters used in Table 20, VT, RT, CL,  
and VM. Do not confuse VREF (the termination voltage) from  
the IBIS model with VREF (the input-switching threshold)  
from the table! The four parameters describe all relevant  
output test conditions.  
appropriate IBIS model (including VREF, RREF, CREF  
and VMEAS values) or capacitive value to represent the  
load.  
,
4. Record the time to VMEAS  
.
5. Compare the results of steps 2 and 4. The increase (or  
decrease) in delay should be added to (or subtracted  
from) the appropriate Output standard adjustment  
(Table 19) to yield the worst-case delay of the PCB  
trace.  
Simultaneously Switching Output Guidelines  
Table 21: Equivalent VCCO/GND Pairs per Bank  
Device  
XC3S50  
VQ100  
TQ144  
PQ208  
FT256  
FG320  
FG456  
FG676  
FG900  
FG1156  
1
1
-
1
1
1
-
2
2
2
2
-
-
3
3
3
-
-
-
-
-
-
-
-
-
-
-
XC3S200  
XC3S400  
XC3S1000  
XC3S1500  
XC3S2000  
XC3S4000  
XC3S5000  
3
3
3
-
5
5
5
-
-
-
-
-
5
6
6
-
-
-
-
-
-
-
-
-
-
-
9
10  
10  
-
-
-
-
-
-
-
12  
12  
-
-
-
-
-
-
-
22  
www.xilinx.com  
DS099-3 (v1.3) March 4, 2004  
1-800-255-7778  
Advance Product Specification  
R
Spartan-3 FPGA Family: DC and Switching Characteristics  
Table 22: Maximum Number of Simultaneously  
Switching Outputs per VCCO-GND Pair (Continued)  
Table 22: Maximum Number of Simultaneously  
Switching Outputs per VCCO-GND Pair  
Package  
Package  
FT256,  
FG320,  
FG456,  
FG676,  
FG900,  
FG1156  
FT256,  
FG320,  
FG456,  
FG676,  
FG900,  
FG1156  
VQ100,  
TQ144,  
PQ208  
VQ100,  
TQ144,  
PQ208  
Signal Standard  
Signal Standard  
Single-Ended Standards  
GTL  
LVCMOS18  
Slow  
2
4
64  
34  
22  
18  
13  
10  
36  
21  
13  
10  
9
4
3
6
GTLP_DCI  
8
GTLP  
4
12  
16  
2
GTLP_DCI  
3
HSTL_I  
17  
17  
7
Fast  
HSTL_I_DCI  
HSTL_III  
4
6
HSTL_III_DCI  
HSTL_I_18  
7
8
17  
12  
16  
HSTL_I_DCI_18  
HSTL_II_18  
HSTL_II_DCI_18  
HSTL_III_18  
HSTL_III_DCI_18  
6
9
8
LVDCI_18  
11  
6
LVDCI_DV2_18  
LVCMOS25  
Slow  
2
4
76  
46  
33  
24  
18  
11  
7
LVCMOS12  
Slow  
Fast  
Slow  
2
4
55  
32  
18  
31  
13  
9
6
8
6
12  
16  
24  
2
2
4
6
Fast  
42  
20  
15  
13  
11  
8
LVCMOS15  
2
55  
31  
18  
15  
10  
25  
16  
13  
11  
7
4
4
6
6
8
8
12  
16  
24  
12  
2
Fast  
5
4
LVDCI_25  
13  
7
6
LVDCI_DV2_25  
8
12  
LVDCI_15  
10  
5
LVDCI_DV2_15  
DS099-3 (v1.3) March 4, 2004  
Advance Product Specification  
40  
www.xilinx.com  
1-800-255-7778  
23  
R
Spartan-3 FPGA Family: DC and Switching Characteristics  
Table 22: Maximum Number of Simultaneously  
Switching Outputs per VCCO-GND Pair (Continued)  
Table 22: Maximum Number of Simultaneously  
Switching Outputs per VCCO-GND Pair (Continued)  
Package  
Package  
FT256,  
FG320,  
FG456,  
FT256,  
FG320,  
FG456,  
VQ100,  
TQ144,  
PQ208  
FG676,  
FG900,  
FG1156  
VQ100,  
TQ144,  
PQ208  
FG676,  
FG900,  
FG1156  
Signal Standard  
LVCMOS33(1) Slow  
Signal Standard  
PCI33_3(1)  
2
4
76  
46  
27  
20  
13  
10  
9
SSTL18_I  
17  
6
SSTL18_I_DCI  
SSTL2_I  
8
13  
15  
9
12  
16  
24  
2
SSTL2_I_DCI  
SSTL2_II  
SSTL2_II_DCI  
Differential Standards  
LDT_25  
5
Fast  
44  
26  
16  
12  
10  
7
4
LVDS_25  
6
LVDS_25_DCI  
BLVDS_25  
8
12  
16  
24  
LVDSEXT_25  
LVDSEXT_25_DCI  
ULVDS_25  
3
LVDCI_33(1)  
LVDCI_DV2_33(1)  
13  
7
LVPECL_25  
RSDS_25  
LVTTL(1)  
Slow  
2
4
60  
41  
29  
22  
13  
11  
9
Notes:  
1. The numbers in this table are recommendations that assume  
sound board layout practice. For cases that exceed these  
maximum numbers, perform IBIS simulations to confirm  
signal integrity.  
6
8
12  
16  
24  
2
Fast  
34  
20  
15  
12  
10  
9
4
6
8
12  
16  
24  
5
24  
www.xilinx.com  
1-800-255-7778  
DS099-3 (v1.3) March 4, 2004  
Advance Product Specification  
R
Spartan-3 FPGA Family: DC and Switching Characteristics  
Core Logic Timing  
Table 23: CLB Timing  
Speed Grade  
-5  
-4  
Symbol  
Description  
Min  
Max  
Min  
Max  
Units  
Clock-to-Output Times  
TCKO  
When reading from the FFX (FFY) Flip-Flop,  
the time from the active transition at the CLK  
input to data appearing at the XQ (YQ) output  
-
0.67  
-
0.77  
ns  
Setup Times  
TDYCK  
Time from the setup of data at the D input to  
the active transition at the CLK input of FFX  
0.08  
0.08  
-
-
0.09  
0.09  
-
-
ns  
ns  
TDXCK  
Time from the setup of data at the D input to  
the active transition at the CLK input of FFY  
Hold Times  
TCKDY  
Time from the active transition at FFY’s CLK  
input to the point where data is last held at the  
D input  
0.01  
0.01  
-
-
0.01  
0.01  
-
-
ns  
ns  
TCKDX  
Time from the active transition at FFX’s CLK  
input to the point where data is last held at the  
D input  
Clock Timing  
TCH  
The High pulse width of the CLB’s CLK signal  
The Low pulse width of the CLK signal  
0.76  
0.76  
-
-
-
0.87  
0.87  
-
-
-
ns  
ns  
TCL  
FTOG  
Maximum toggle frequency (for export control)  
500  
500  
MHz  
Propagation Times  
TILO  
The time it takes for data to travel from the  
CLB’s F (G) input to input to the X (Y) output  
-
0.65  
-
0.75  
ns  
Notes:  
1. The numbers in this table are based on the operating conditions set forth in Table 5.  
DS099-3 (v1.3) March 4, 2004  
Advance Product Specification  
40  
www.xilinx.com  
1-800-255-7778  
25  
R
Spartan-3 FPGA Family: DC and Switching Characteristics  
Table 24: Synchronous 18 x 18 Multiplier Timing  
Speed Grade  
-5  
-4  
Symbol  
Description  
P Outputs  
Min  
Max  
Min  
Max  
Units  
Clock-to-Output Times  
TMULTCK  
When reading from the  
Multiplier, the time from the  
active transition at the C  
clock input to data  
P[0]  
-
-
-
-
-
-
-
0.76  
0.97  
1.17  
1.37  
1.78  
2.59  
3.00  
-
-
-
-
-
-
-
0.88  
1.11  
1.34  
1.58  
2.04  
2.97  
3.44  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
P[15]  
P[17]  
P[19]  
P[23]  
P[31]  
P[35]  
appearing at the P outputs  
Setup Times  
TMULIDCK  
Time from the setup of data  
at the A and B inputs to the  
active transition at the C  
input of the Multiplier  
-
2.18  
-
2.50  
-
ns  
Hold Times  
TMULCKID  
Time from the active  
transition at the Multiplier’s  
C input to the point where  
data is last held at the A  
and B inputs  
-
0
-
0
-
ns  
Notes:  
1. The numbers in this table are based on the operating conditions set forth in Table 5.  
Table 25: Asynchronous 18 x 18 Multiplier Timing  
Speed Grade  
-5 -4  
Symbol  
Description  
P Outputs  
Max  
Max  
Units  
Propagation Times  
TMULT  
The time it takes for data to travel  
from the A and B inputs to the P  
outputs  
P[0]  
1.25  
2.88  
3.10  
3.32  
3.75  
4.62  
5.06  
1.44  
3.31  
3.56  
3.81  
4.31  
5.31  
5.81  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
P[15]  
P[17]  
P[19]  
P[23]  
P[31]  
P[35]  
Notes:  
1. The numbers in this table are based on the operating conditions set forth in Table 5.  
26  
www.xilinx.com  
DS099-3 (v1.3) March 4, 2004  
1-800-255-7778  
Advance Product Specification  
R
Spartan-3 FPGA Family: DC and Switching Characteristics  
Speed Grade  
Table 26: Block RAM Timing  
-5  
-4  
Symbol  
Description  
Min  
Max  
Min  
Max  
Units  
Clock-to-Output Times  
TBCKO  
When reading from the Block  
-
2.10  
-
2.41  
ns  
RAM, the time from the active  
transition at the CLK input to  
data appearing at the DOUT  
output  
Setup Times  
TBDCK  
Time from the setup of data at  
the DIN inputs to the active  
transition at the CLK input of the  
Block RAM  
0.43  
-
-
0.49  
-
-
ns  
ns  
Hold Times  
TBCKD  
Time from the active transition  
at the Block RAM’s CLK input to  
the point where data is last held  
at the DIN inputs  
0
0
Clock Timing  
TBPWH  
The High pulse width of the  
Block RAM’s CLK signal  
1.26  
1.26  
-
-
1.44  
1.44  
-
-
ns  
ns  
TBPWL  
The Low pulse width of the CLK  
signal  
Notes:  
1. The numbers in this table are based on the operating conditions set forth in Table 5.  
DS099-3 (v1.3) March 4, 2004  
Advance Product Specification  
40  
www.xilinx.com  
1-800-255-7778  
27  
R
Spartan-3 FPGA Family: DC and Switching Characteristics  
Digital Clock Manager (DCM) Timing  
For specification purposes, the DCM consists of three key  
components: the Delay-Locked Loop (DLL), the Digital Fre-  
quency Synthesizer (DFS), and the Phase Shifter (PS).  
only employs the DLL component. When the DFS and/or  
the PS components are used together with the DLL, then  
the specifications listed in the DFS and PS tables (Table 29  
through Table 32) supersede any corresponding ones in the  
DLL tables. DLL specifications that do not change with the  
addition of DFS or PS functions are presented in Table 27  
and Table 28.  
Aspects of DLL operation play a role in all DCM applica-  
tions. All such applications inevitably use the CLKIN and the  
CLKFB inputs connected to either the CLK0 or the CLK2X  
feedback, respectively. Thus, specifications in the DLL  
tables (Table 27 and Table 28) apply to any application that  
Table 27: Recommended Operating Conditions for the DLL  
Speed Grade  
Frequency  
Mode/  
-5  
-4  
Device  
Symbol  
Input Frequency Ranges  
FCLKIN  
Description  
FCLKIN Range  
Revision  
Min  
Max  
Min  
Max Units  
(2)  
24  
Frequency for the  
CLKIN input  
Low  
All  
0
165(3)  
280(3)  
326  
24  
48  
48  
165(3) MHz  
280(3) MHz  
CLKIN_FREQ_DLL_LF  
High  
48  
48  
CLKIN_FREQ_DLL_HF  
Future  
TBD  
MHz  
Input Pulse Requirements  
CLKIN_PULSE  
CLKIN pulse width as  
a percentage of the  
CLKIN period  
All  
0
45%  
40%  
45%  
55%  
60%  
55%  
45%  
40%  
45%  
55%  
60%  
55%  
-
-
-
FCLKIN < 200 MHz  
Future  
F
CLKIN > 200 MHz  
Input Clock Jitter and Delay Path Variation  
Cycle-to-cycle jitter at  
the CLKIN input  
Low  
High  
Low  
High  
All  
All  
-300  
-150  
-1  
+300  
+150  
+1  
-300  
-150  
-1  
+300  
+150  
+1  
ps  
ps  
ns  
ns  
ns  
CLKIN_CYC_JITT_DLL_LF  
CLKIN_CYC_JITT_DLL_HF  
CLKIN_CYC_PER_DLL_LF  
CLKIN_CYC_PER_DLL_HF  
CLKFB_DELAY_VAR_EXT  
Period jitter at the  
CLKIN input  
-1  
+1  
-1  
+1  
Allowable variation of  
off-chipfeedbackdelay  
from the DCM output  
to the CLKFB input  
-1  
+1  
-1  
+1  
Notes:  
1. DLL specifications apply when any of the DLL outputs (CLK0, CLK90, CLK180, CLK270, CLK2X, CLK2X180, or CLKDV) are in use.  
2. Use of the DFS permits lower FCLKIN frequencies. See Table 29.  
3. To double the maximum effective FCLKIN limit, set the CLKIN_DIVIDE_BY_2 attribute to TRUE.  
28  
www.xilinx.com  
DS099-3 (v1.3) March 4, 2004  
1-800-255-7778  
Advance Product Specification  
R
Spartan-3 FPGA Family: DC and Switching Characteristics  
Speed Grade  
Table 28: Switching Characteristics for the DLL  
-5  
-4  
Frequency Mode /  
FCLKIN Range  
Device  
Revision  
Symbol  
Description  
Min Max Min Max Units  
Output Frequency Ranges  
CLKOUT_FREQ_1X_LF  
Frequency for the  
CLK0, CLK90,  
CLK180, and  
Low  
All  
24  
165  
24  
165 MHz  
CLK270 outputs  
CLKOUT_FREQ_1X_HF  
Frequency for the  
CLK0 and CLK180  
outputs  
High  
0
Nophase 48  
shifting  
280  
200  
48  
48  
280 MHz  
200 MHz  
Phase  
48  
shifting  
Future  
48  
48  
48  
326  
330  
330  
48  
48  
48  
TBD MHz  
330 MHz  
330 MHz  
CLKOUT_FREQ_2X_LF  
Frequency for the  
CLK2X and  
Low  
0(3)  
Future  
CLK2X180 outputs  
CLKOUT_FREQ_DV_LF  
CLKOUT_FREQ_DV_HF  
Output Clock Jitter  
Frequency for the  
CLKDV output  
Low  
All  
All  
1.5  
3
100  
215  
1.5  
3
100 MHz  
215 MHz  
High  
CLKOUT_PER_JITT_0  
Period jitter at the  
CLK0 output  
All  
All  
-100 +100 -100 +100  
-150 +150 -150 +150  
-150 +150 -150 +150  
-150 +150 -150 +150  
-200 +200 -200 +200  
ps  
ps  
ps  
ps  
ps  
CLKOUT_PER_JITT_90  
CLKOUT_PER_JITT_180  
CLKOUT_PER_JITT_270  
CLKOUT_PER_JITT_2X  
Period jitter at the  
CLK90 output  
Period jitter at the  
CLK180 output  
Period jitter at the  
CLK270 output  
Period jitter at the  
CLK2X and  
CLK2X180 outputs  
CLKOUT_PER_JITT_DV1  
CLKOUT_PER_JITT_DV2  
Period jitter at the  
CLKDV output  
when performing  
integer division  
-150 +150 -150 +150  
-300 +300 -300 +300  
ps  
ps  
Period jitter at the  
CLKDV output  
when performing  
non-integer  
division  
Duty Cycle  
CLKOUT_DUTY_CYCLE_DLL(4) Duty cycle  
variation for the  
All  
All  
-150 +150 -150 +150  
ps  
CLK0, CLK90,  
CLK180, CLK270,  
CLK2X,  
CLK2X180, and  
CLKDV outputs  
DS099-3 (v1.3) March 4, 2004  
Advance Product Specification  
40  
www.xilinx.com  
1-800-255-7778  
29  
R
Spartan-3 FPGA Family: DC and Switching Characteristics  
Table 28: Switching Characteristics for the DLL (Continued)  
Speed Grade  
-5 -4  
Min Max Min Max Units  
Frequency Mode /  
FCLKIN Range  
Device  
Revision  
Symbol  
Phase Alignment  
Description  
CLKIN_CLKFB_PHASE  
Phase offset  
between the  
CLKIN and CLKFB  
inputs  
All  
All  
All  
-50  
+50 -50  
+50  
ps  
ps  
CLKOUT_PHASE  
Phase offset  
All  
-140 +140 -140 +140  
between any DLL  
output and any  
other DCM outputs  
Lock Time  
LOCK_DLL_24_30  
LOCK_DLL_30_40  
LOCK_DLL_40_50  
LOCK_DLL_50_60  
LOCK_DLL_60  
Delay Lines  
Time required to  
achieve lock  
24 MHz < FCLKIN < 30 MHz  
30 MHz < FCLKIN < 40 MHz  
40 MHz < FCLKIN < 50 MHz  
50 MHz < FCLKIN < 60 MHz  
All  
-
-
-
-
-
960  
720  
400  
200  
160  
-
-
-
-
-
960  
720  
400  
200  
160  
µs  
µs  
µs  
µs  
µs  
F
CLKIN > 60 MHz  
DCM_TAP  
Delay tap  
resolution  
All  
All  
30.0 60.0 30.0 60.0  
ps  
Notes:  
1. The numbers in this table are based on the operating conditions set forth in Table 5 and Table 27.  
2. DLL specifications apply when any of the DLL outputs (CLK0, CLK90, CLK180, CLK270, CLK2X, CLK2X180, or CLKDV) are in use.  
3. For Rev. 0 devices only, use feedback from the CLK0 output (instead of the CLK2X output) and set the CLK_FEEDBACK attribute to  
1X.  
4. This specification only applies if the attribute DUTY_CYCLE_CORRECTION = TRUE.  
30  
www.xilinx.com  
DS099-3 (v1.3) March 4, 2004  
1-800-255-7778  
Advance Product Specification  
R
Spartan-3 FPGA Family: DC and Switching Characteristics  
Table 29: Recommended Operating Conditions for the DFS  
Speed Grade  
-5  
-4  
Frequency  
Symbol  
Description  
Mode  
Min  
Max  
Min  
Max  
Units  
Input Frequency Ranges(2)  
FCLKIN  
CLK_FREQ_FX  
Frequency for the  
CLKIN input  
Low  
1
210  
280  
1
210  
280  
MHz  
MHz  
CLK_FREQ_FX_HF  
High  
48  
48  
Input Clock Jitter  
CLKIN_CYC_JITT_FX_LF  
CLKIN_CYC_JITT_FX_HF  
CLKIN_CYC_PER_FX_LF  
CLKIN_CYC_PER_FX_HF  
Notes:  
Cycle-to-cycle jitter at  
the CLKIN input  
Low  
High  
Low  
High  
-300  
-150  
-1  
+300  
+150  
+1  
-300  
-150  
-1  
+300  
+150  
+1  
ps  
ps  
ns  
ns  
Period jitter at the  
CLKIN input  
-1  
+1  
-1  
+1  
1. DFS specifications apply when either of the DFS outputs (CLKFX or CLKFX180) are in use.  
2. If both DFS and DLL outputs are used on the same DCM, follow the more restrictive CLKIN_FREQ_DLL specifications in Table 27.  
Table 30: Switching Characteristics for the DFS  
Speed Grade  
-5  
-4  
Frequency  
Mode  
Device  
Revision  
Symbol  
Description  
Min  
Max  
Min  
Max  
Units  
Output Frequency Ranges  
CLKOUT_FREQ_FX_LF  
CLKOUT_FREQ_FX_HF  
Frequency for the CLKFX  
and CLKFX180 outputs  
Low  
All  
0
24  
210  
280  
326  
24  
210  
280  
TBD  
MHz  
MHz  
MHz  
High  
210  
210  
210  
210  
Future  
Output Clock Jitter  
CLKOUT_PER_JITT_FX  
Period jitter at the CLKFX  
and CLKFX180 outputs  
All  
All  
All  
All  
ps  
ps  
Duty Cycle(3)  
CLKOUT_DUTY_CYCLE_FX Duty cycle precision for  
the CLKFX and  
-100  
-140  
-
+100  
+140  
10.0  
-100  
-140  
-
+100  
+140  
10.0  
CLKFX180 outputs  
Phase Alignment  
CLKOUT_PHASE  
Phase offset between  
either DFS output and  
any other DCM output  
All  
All  
All  
All  
ps  
Lock Time  
LOCK_FX  
Once the CLKIN and  
CLKFB signals become  
in-phase, the time it takes  
for the DCM’s LOCKED  
output to go High.  
ms  
Notes:  
1. The numbers in this table are based on the operating conditions set forth in Table 5 and Table 29.  
2. DFS specifications apply when either of the DFS outputs (CLKFX or CLKFX180) is in use.  
3. The CLKFX and CLKFX180 outputs always approximate 50% duty cycles.  
DS099-3 (v1.3) March 4, 2004  
Advance Product Specification  
40  
www.xilinx.com  
1-800-255-7778  
31  
R
Spartan-3 FPGA Family: DC and Switching Characteristics  
possible. In order to use the Variable Phase mode, it is nec-  
essary to set the BitGen option Centered_x#y# option to 0.  
BitGen is part of the Xilinx development software. The lines  
to be typed in the command prompt are shown in Table 33,  
page 33.  
Phase Shifter (PS)  
Phase Shifter operation is only supported in the Low fre-  
quency mode. For Rev. 0 devices, the Variable Phase mode  
only permits positive shifts. For any desired negative phase  
shift (–S), an equivalent positive phase shift (360° – S) is  
Table 31: Recommended Operating Conditions for the PS in Variable Phase Mode  
Speed Grade  
-5  
-4  
Frequency Mode/  
FPSCLK Range  
Device  
Revision  
Symbol  
Operating Frequency Ranges  
PSCLK_FREQ Frequency for the  
Description  
Min  
Max  
Min  
Max  
Units  
Low  
All  
1
165  
1
165  
MHz  
(FPSCLK PSCLK input  
)
Input Pulse and Requirements  
PSCLK_PULSE PSCLK pulse width  
as a percentage of  
Low  
0
45%  
40%  
45%  
55%  
60%  
55%  
45%  
40%  
45%  
55%  
60%  
55%  
-
-
-
Low  
FPSCLK < 200 MHz  
FPSCLK > 200 MHz  
Future  
the PSCLK period  
Notes:  
1. The PS specifications in this table apply when the PS attribute CLKOUT_PHASE_SHIFT= VARIABLE.  
Table 32: Switching Characteristics for the PS in Variable Phase Mode  
Speed Grade  
-5  
-4  
Frequency  
Symbol  
Description  
Mode  
Min  
Max  
Min  
Max  
Units  
Phase Shifting Range  
FINE_SHIFT_RANGE  
Low  
Range for variable  
phase shifting  
-
10.0  
-
10.0  
ns  
Lock Time  
LOCK_DLL_FINE_SHIFT(3) In the Variable  
Phase mode, the  
-
-
ms  
Low  
additional time it  
takes for the DCM’s  
LOCKED output to  
go High  
Notes:  
1. The numbers in this table are based on the operating conditions set forth in Table 5 and Table 31.  
2. The PS specifications in this table apply when the PS attribute CLKOUT_PHASE_SHIFT= VARIABLE.  
3. When in the Variable Phase mode, add the values for this parameter to the appropriate LOCK_DLL parameter from Table 28 for the  
total lock time.  
32  
www.xilinx.com  
DS099-3 (v1.3) March 4, 2004  
1-800-255-7778  
Advance Product Specification  
R
Spartan-3 FPGA Family: DC and Switching Characteristics  
Table 33: BitGen Commands for Variable Phase Mode  
Device  
XC3S50  
DCM Location (Device Top View)  
BitGen Command Line  
bitgen -g centered_x0y1:0 design_name.ncd  
bitgen -g centered_x0y0:0 design_name.ncd  
bitgen -g centered_x0y1:0 design_name.ncd  
bitgen -g centered_x1y1:0 design_name.ncd  
bitgen -g centered_x0y0:0 design_name.ncd  
bitgen -g centered_x1y0:0 design_name.ncd  
Upper  
Lower  
All others  
Upper left  
Upper right  
Lower left  
Lower right  
DS099-3 (v1.3) March 4, 2004  
Advance Product Specification  
40  
www.xilinx.com  
1-800-255-7778  
33  
R
Spartan-3 FPGA Family: DC and Switching Characteristics  
Configuration and JTAG Timing  
1.2V  
2.5V  
2.5V  
V
CCINT  
(Supply)  
V
CCAUX  
(Supply)  
V
CCO  
Bank 4  
(Supply)  
TPOR  
PROG_B  
(Input)  
TPL  
TPROG  
INIT_B  
(Open-Drain)  
TICCK  
CCLK  
(Output)  
DS099-3_03_022904  
Notes:  
1. The VCCINT, VCCAUX, and VCCO supplies may be applied in any order.  
2. The Low-going pulse on PROG_B is optional after power-on but necessary for reconfiguration without a power cycle.  
3. The rising edge of INIT_B samples the voltage levels applied to the mode pins (M0 - M2).  
Figure 5: Waveforms for Power-On and the Beginning of Configuration  
Table 34: Power-On Timing and the Beginning of Configuration  
All Speed Grades  
Symbol  
Description  
Device  
Min  
Max  
5
Units  
ms  
ms  
ms  
ms  
ms  
ms  
ms  
ms  
µs  
ms  
ms  
ms  
ms  
ms  
ms  
ms  
ms  
µs  
(2)  
TPOR  
The time from the application of VCCINT, VCCAUX, and XC3S50  
CCO Bank 4 supply voltages (whichever occurs last)  
to the rising transition of the INIT_B pin  
-
V
XC3S200  
XC3S400  
XC3S1000  
XC3S1500  
XC3S2000  
XC3S4000  
XC3S5000  
-
5
-
5
-
5
-
7
-
7
-
7
-
7
TPROG  
The width of the low-going pulse on the PROG_B pin All  
0.3  
-
(2)  
TPL  
The time from the rising edge of the PROG_B pin to XC3S50  
the rising transition on the INIT_B pin  
-
2
XC3S200  
-
2
XC3S400  
-
2
XC3S1000  
XC3S1500  
XC3S2000  
XC3S4000  
XC3S5000  
-
2
-
-
3
3
-
3
-
3
(3)  
TICCK  
The time from the rising edge of the INIT_B pin to the All  
generation of the configuration clock signal at the  
CCLK output pin  
0.5  
4.0  
Notes:  
1. The numbers in this table are based on the operating conditions set forth in Table 5.  
2. Power-on reset and the clearing of configuration memory occurs during this period.  
3. This specification applies only for the Master Serial and Master Parallel modes.  
34  
www.xilinx.com  
DS099-3 (v1.3) March 4, 2004  
1-800-255-7778  
Advance Product Specification  
R
Spartan-3 FPGA Family: DC and Switching Characteristics  
PROG_B  
(Input)  
INIT_B  
(Open-Drain)  
TCCH  
TCCL  
CCLK  
(Input/Output)  
TDCC  
1/FCCSER  
TCCD  
DIN  
(Input)  
Bit n+1  
TCCO  
Bit n  
Bit 0  
Bit 1  
DOUT  
(Output)  
Bit n-63  
Bit n-64  
DS099-3_04_041103  
Notes:  
1. The CS_B, WRITE_B, and BUSY signals are not used in the serial modes. Keep the CS_B and WRITE_B inputs inactive (i.e., both  
pins High).  
Figure 6: Waveforms for Master and Slave Serial Configuration  
Table 35: Timing for the Master and Slave Serial Configuration Modes  
All Speed Grades  
Symbol  
Description  
Slave/Master  
Min  
Max  
Units  
Clock-to-Output Times  
TCCO  
The time from the rising transition on the  
Both  
-
12.0  
ns  
CCLK pin to data appearing at the DOUT pin  
Setup Times  
TDCC  
The time from the setup of data at the DIN pin  
to the rising transition at the CCLK pin  
Both  
Both  
-
-
10.0  
0
ns  
ns  
Hold Times  
TCCD  
The time from the rising transition at the  
CCLK pin to the point when data is last held  
at the DIN pin  
Clock Timing  
TCCH  
The High pulse width at the CCLK input pin  
The Low pulse width at the CCLK input pin  
Slave  
5.0  
5.0  
-
-
-
ns  
ns  
TCCL  
FCCSER  
Frequency of the clock signal at the CCLK  
input pin  
66  
MHz  
FCCSER  
Variation from the generated CCLK frequency  
set using the ConfigRate BitGen option  
Master  
–50%  
+50%  
-
Notes:  
1. The numbers in this table are based on the operating conditions set forth in Table 5.  
DS099-3 (v1.3) March 4, 2004  
Advance Product Specification  
40  
www.xilinx.com  
1-800-255-7778  
35  
R
Spartan-3 FPGA Family: DC and Switching Characteristics  
PROG_B  
(Input)  
INIT_B  
(Open-Drain)  
TSMCSCC  
TSMCCCS  
CS_B  
(Input)  
TSMCCW  
TSMWCC  
RDWR_B  
(Input)  
TCCH  
TCCL  
CCLK  
(Input/Output)  
1/FCCPAR  
Byte n  
TSMDCC  
TSMCCD  
D0 - D7  
(Inputs)  
Byte 0  
Byte 1  
Byte n+1  
TSMCKBY  
TSMCKBY  
High-Z  
High-Z  
BUSY  
(Output)  
BUSY  
DS099-3_05_041103  
Notes:  
1. Switching RDWR_B High or Low while holding CS_B Low asynchronously aborts configuration.  
Figure 7: Waveforms for Master and Slave Parallel Configuration  
Table 36: Timing for the Master and Slave Parallel Configuration Modes  
All Speed Grades  
Symbol  
Description  
Slave/Master  
Min  
Max  
Units  
Clock-to-Output Times  
TSMCKBY  
The time from the rising transition on the CCLK pin to a  
signal transition at the BUSY pin  
Slave  
-
12.0  
ns  
Setup Times  
TSMDCC  
The time from the setup of data at the D0-D7 pins to the  
rising transition at the CCLK pin  
Both  
10.0  
10.0  
10.0  
-
-
-
ns  
ns  
ns  
TSMCSCC  
The time from the setup of a logic level at the CS_B pin to  
the rising transition at the CCLK pin  
(2)  
TSMCCW  
The time from the setup of a logic level at the RDWR_B pin  
to the rising transition at the CCLK pin  
36  
www.xilinx.com  
DS099-3 (v1.3) March 4, 2004  
1-800-255-7778  
Advance Product Specification  
R
Spartan-3 FPGA Family: DC and Switching Characteristics  
Table 36: Timing for the Master and Slave Parallel Configuration Modes (Continued)  
All Speed Grades  
Symbol  
Hold Times  
TSMCCD  
Description  
Slave/Master  
Min  
Max  
Units  
The time from the rising transition at the CCLK pin to the  
point when data is last held at the D0-D7 pins  
Both  
0
0
0
-
-
-
ns  
ns  
ns  
TSMCCCS  
The time from the rising transition at the CCLK pin to the  
point when a logic level is last held at the CS_B pin  
(2)  
TSMWCC  
The time from the rising transition at the CCLK pin to the  
point when a logic level is last held at the RDWR_B pin  
Clock Timing  
TCCH  
The High pulse width at the CCLK input pin  
Slave  
5
-
-
ns  
ns  
TCCL  
The Low pulse width at the CCLK input pin  
5
FCCPAR  
Frequency of the clock signal Not using the BUSY pin(3)  
-
-
66  
MHz  
MHz  
-
at the CCLK input pin  
Using the BUSY pin  
100  
+50%  
FCCPAR  
Variation from the generated CCLK frequency set using  
the BitGen option ConfigRate  
Master  
–50%  
Notes:  
1. The numbers in this table are based on the operating conditions set forth in Table 5.  
2. RDWR_B is synchronized to CCLK for the purpose of performing the Abort operation. The same pin asynchronously controls the  
driver impedance of the D0 - D7 pins. To avoid contention when writing configuration data to the D0 - D7 bus, do not bring RDWR_B  
High when CS_B is Low.  
3. In the Slave Parallel mode, it is necessary to use the BUSY pin when the CCLK frequency exceeds this maximum specification.  
DS099-3 (v1.3) March 4, 2004  
Advance Product Specification  
40  
www.xilinx.com  
1-800-255-7778  
37  
R
Spartan-3 FPGA Family: DC and Switching Characteristics  
TCCH  
TCCL  
TCK  
(Input)  
1/FTCK  
TTCKTMS  
TTMSTCK  
TMS  
(Input)  
TTDITCK  
TTCKTDI  
TDI  
(Input)  
TTCKTDO  
TDO  
(Output)  
DS099_06_040703  
Figure 8: JTAG Waveforms  
Table 37: Timing for the JTAG Test Access Port  
All Speed Grades  
Min Max  
Symbol  
Description  
Units  
Clock-to-Output Times  
TTCKTDO  
The time from the falling transition on the TCK pin  
to data appearing at the TDO pin  
-
11.0  
ns  
Setup Times  
TTDITCK  
The time from the setup of data at the TDI pin to  
the rising transition at the TCK pin  
5.0  
5.0  
-
-
ns  
ns  
TTMSTCK  
The time from the setup of a logic level at the TMS  
pin to the rising transition at the TCK pin  
Hold Times  
TTCKTDI  
The time from the rising transition at the TCK pin  
to the point when data is last held at the TDI pin  
0
0
-
-
ns  
ns  
TTCKTMS  
The time from the rising transition at the TCK pin  
to the point when a logic level is last held at the  
TMS pin  
Clock Timing  
TCCH  
The High pulse width at the TCK pin  
The Low pulse width at the TCK pin  
Frequency of the TCK signal  
5
5
-
-
-
ns  
ns  
TCCL  
FTCK  
33  
MHz  
Notes:  
1. The numbers in this table are based on the operating conditions set forth in Table 5.  
38  
www.xilinx.com  
DS099-3 (v1.3) March 4, 2004  
1-800-255-7778  
Advance Product Specification  
R
Spartan-3 FPGA Family: DC and Switching Characteristics  
Revision History  
Date  
Version No.  
Description  
04/11/03  
07/11/03  
1.0  
1.1  
Initial Xilinx release.  
Extended Absolute Maximum Rating for junction temperature in Table 1. Added numbers for  
typical quiescent supply current (Table 7) and DLL timing.  
02/06/04  
03/04/04  
1.2  
1.3  
Revised VIN maximum rating (Table 1). Added power-on requirements (Table 3), leakage  
current number (Table 6), and differential output voltage levels (Table 11) for Rev. 0. Published  
new quiescent current numbers (Table 7). Updated pull-up and pull-down resistor strengths  
(Table 6). Added LVDCI_DV2 and LVPECL standards (Table 10 and Table 11). Changed  
CCLK setup time (Table 35 and Table 36).  
Added timing numbers from v1.29 speed files as well as DCM timing (Table 27 through  
Table 32).  
The Spartan-3 Family Data Sheet  
DS099-1, Spartan-3 FPGA Family: Introduction and Ordering Information (Module 1)  
DS099-2, Spartan-3 FPGA Family: Functional Description (Module 2)  
DS099-3, Spartan-3 FPGA Family: DC and Switching Characteristics (Module 3)  
DS099-4, Spartan-3 FPGA Family: Pinout Descriptions (Module 4)  
DS099-3 (v1.3) March 4, 2004  
Advance Product Specification  
40  
www.xilinx.com  
1-800-255-7778  
39  
R
Spartan-3 FPGA Family: DC and Switching Characteristics  
40  
www.xilinx.com  
1-800-255-7778  
DS099-3 (v1.3) March 4, 2004  
Advance Product Specification  
0105  
R
Spartan-3 FPGA Family:  
Pinout Descriptions  
0
0
DS099-4 (v1.5) July 13, 2004  
Product Specification  
Introduction  
This data sheet module describes the various pins on a  
Spartan™-3 FPGA and how they connect to the supported  
component packages.  
The Package Overview section describes the various  
packaging options available for Spartan-3 FPGAs.  
Detailed pin list tables and footprint diagrams are  
provided for each package solution.  
The Pin Types section categorizes all of the FPGA  
pins by their function type.  
Pin Descriptions  
The Pin Definitions section provides a top-level  
description for each pin on the device.  
The Detailed, Functional Pin Descriptions section  
offers significantly more detail about each pin,  
especially for the dual- or special-function pins used  
during device configuration.  
Pin Types  
A majority of the pins on a Spartan-3 FPGA are gen-  
eral-purpose, user-defined I/O pins. There are, however, up  
to 12 different functional types of pins on Spartan-3 pack-  
ages, as outlined in Table 1. In the package footprint draw-  
ings that follow, the individual pins are color-coded  
according to pin type as in the table.  
Some pins have associated optional behavior,  
controlled by settings in the configuration bitstream.  
These options are described in the Bitstream Options  
section.  
Table 1: Types of Pins on Spartan-3 FPGAs  
Type/  
Color  
Code  
Description  
Unrestricted, general-purpose user-I/O pin. Most pins can be  
paired together to form differential I/Os.  
Pin Name(s) in Type  
I/O  
IO,  
IO_Lxxy_#  
DUAL  
Dual-purpose pin used in some configuration modes during the IO_Lxxy_#/DIN/D0, IO_Lxxy_#/D1,  
configuration process and then usually available as a user I/O IO_Lxxy_#/D2, IO_Lxxy_#/D3,  
after configuration. If the pin is not used during configuration, this IO_Lxxy_#/D4, IO_Lxxy_#/D5,  
pin behaves as an I/O-type pin. There are 12 dual-purpose  
configuration pins on every package.  
IO_Lxxy_#/D6, IO_Lxxy_#/D7,  
IO_Lxxy_#/CS_B, IO_Lxxy_#/RDWR_B,  
IO_Lxxy_#/BUSY/DOUT,  
IO_Lxxy_#/INIT_B  
CONFIG Dedicated configuration pin. Not available as a user-I/O pin.  
Every package has seven dedicated configuration pins. These  
pins are powered by VCCAUX.  
CCLK, DONE, M2, M1, M0, PROG_B,  
HSWAP_EN  
JTAG  
Dedicated JTAG pin. Not available as a user-I/O pin. Every  
package has four dedicated JTAG pins. These pins are powered  
by VCCAUX.  
TDI, TMS, TCK, TDO  
DCI  
Dual-purpose pin that is either a user-I/O pin or used to calibrate IO/VRN_#  
output buffer impedance for a specific bank using Digital  
Controlled Impedance (DCI). There are two DCI pins per I/O  
bank.  
IO_Lxxy_#/VRN_#  
IO/VRP_#  
IO_Lxxy_#/VRP_#  
VREF  
Dual-purpose pin that is either a user-I/O pin or, along with all  
IO/VREF_#  
other VREF pins in the same bank, provides a reference voltage IO_Lxxy_#/VREF_#  
input for certain I/O standards. If used for a reference voltage  
within a bank, all VREF pins within the bank must be connected.  
© 2003-2004 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and disclaimers are as listed at http://www.xilinx.com/legal.htm.  
All other trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.  
DS099-4 (v1.5) July 13, 2004  
www.xilinx.com  
1
Preliminary Product Specification  
1-800-255-7778  
R
Spartan-3 FPGA Family: Pinout Descriptions  
Table 1: Types of Pins on Spartan-3 FPGAs (Continued)  
Type/  
Color  
Code  
Description  
Pin Name(s) in Type  
GND  
Dedicated ground pin. The number of GND pins depends on the GND  
package used. All must be connected.  
VCCAUX Dedicated auxiliary power supply pin. The number of VCCAUX VCCAUX  
pins depends on the package used. All must be connected to  
+2.5V.  
VCCINT Dedicated internal core logic power supply pin. The number of  
VCCINT pins depends on the package used. All must be  
connected to +1.2V.  
VCCINT  
VCCO_#  
VCCO  
GCLK  
N.C.  
Dedicated I/O bank, output buffer power supply pin. Along with  
other VCCO pins in the same bank, this pin supplies power to the TQ144 Package Only:  
output buffers within the I/O bank and sets the input threshold  
voltage for some I/O standards.  
VCCO_LEFT, VCCO_TOP,  
VCCO_RIGHT, VCCO_BOTTOM  
Dual-purpose pin that is either a user-I/O pin or an input to a  
specific global buffer input. Every package has eight dedicated  
GCLK pins.  
IO_Lxxy_#/GCLK0, IO_Lxxy_#/GCLK1,  
IO_Lxxy_#/GCLK2, IO_Lxxy_#/GCLK3,  
IO_Lxxy_#/GCLK4, IO_Lxxy_#/GCLK5,  
IO_Lxxy_#/GCLK6, IO_Lxxy_#/GCLK7  
This package pin is not connected in this specific  
device/package combination but may be connected in larger  
devices in the same package.  
N.C.  
Notes:  
1. # = I/O bank number, an integer between 0 and 7.  
I/Os with Lxxy_# are part of a differential output pair. ‘Lindi-  
cates differential output capability. The “xx” field is a  
two-digit integer, unique to each bank that identifies a differ-  
ential pin-pair. The ‘y’ field is either ‘P’ for the true signal or  
‘N’ for the inverted signal in the differential pair. The ‘#’ field  
is the I/O bank number.  
Pin Definitions  
Table 2 provides a brief description of each pin listed in the  
Spartan-3 pinout tables and package footprint diagrams.  
Pins are categorized by their pin type, as listed in Table 1.  
See Detailed, Functional Pin Descriptions for more infor-  
mation.  
2
www.xilinx.com  
1-800-255-7778  
DS099-4 (v1.5) July 13, 2004  
Product Specification  
R
Spartan-3 FPGA Family: Pinout Descriptions  
Description  
Table 2: Spartan-3 Pin Definitions  
Pin Name  
Direction  
I/O: General-purpose I/O pins  
User I/O:  
I/O  
User-defined as input,  
output, bidirectional,  
three-state output,  
open-drain output,  
open-source output  
Unrestricted single-ended user-I/O pin. Supports all I/O standards  
except the differential standards.  
User I/O, Half of Differential Pair:  
I/O_Lxxy_#  
User-defined as input,  
output, bidirectional,  
three-state output,  
open-drain output,  
open-source output  
Unrestricted single-ended user-I/O pin or half of a differential pair.  
Supports all I/O standards including the differential standards.  
DUAL: Dual-purpose configuration pins  
Configuration Data Port:  
IO_Lxxy_#/DIN/D0,  
IO_Lxxy_#/D1,  
IO_Lxxy_#/D2,  
IO_Lxxy_#/D3,  
IO_Lxxy_#/D4,  
IO_Lxxy_#/D5,  
IO_Lxxy_#/D6,  
IO_Lxxy_#/D7  
Input during configuration  
In Parallel (SelectMAP) modes, D0-D7 are byte-wide configuration  
data pins. These pins become user I/Os after configuration unless  
the SelectMAP port is retained via the Persist bitstream option.  
Possible bidirectional I/O  
after configuration if  
SelectMap port is retained.  
In Serial modes, DIN (D0) serves as the single configuration data  
input. This pin becomes a user I/O after configuration unless  
retained by the Persist bitstream option.  
Otherwise, user I/O after  
configuration  
Chip Select for Parallel Mode Configuration:  
IO_Lxxy_#/CS_B  
Input during Parallel mode  
configuration  
In Parallel (SelectMAP) modes, this is the active-Low Chip Select  
signal. This pin becomes a user I/O after configuration unless the  
SelectMAP port is retained via the Persist bitstream option.  
Possible input after  
configuration if SelectMap  
port is retained.  
Otherwise, user I/O after  
configuration  
Read/Write Control for Parallel Mode Configuration:  
IO_Lxxy_#/RDWR_B Input during Parallel mode  
configuration  
In Parallel (SelectMAP) modes, this is the active-Low Write  
Enable, active-High Read Enable signal. This pin becomes a user  
I/O after configuration unless the SelectMAP port is retained via  
the Persist bitstream option.  
Possible input after  
configuration if SelectMap  
port is retained.  
Otherwise, user I/O after  
configuration  
Configuration Data Rate Control for Parallel Mode, Serial Data  
Output for Serial Mode:  
IO_Lxxy_#/  
BUSY/DOUT  
Output during configuration  
Possible output after  
configuration if SelectMap  
port is retained.  
In Parallel (SelectMAP) modes, BUSY throttles the rate at which  
configuration data is loaded. This pin becomes a user I/O after  
configuration unless the SelectMAP port is retained via the Persist  
bitstream option.  
Otherwise, user I/O after  
configuration  
In Serial modes, DOUT provides preamble and configuration data  
to downstream devices in a multi-FPGA daisy-chain. This pin  
becomes a user I/O after configuration.  
DS099-4 (v1.5) July 13, 2004  
Product Specification  
www.xilinx.com  
1-800-255-7778  
3
R
Spartan-3 FPGA Family: Pinout Descriptions  
Table 2: Spartan-3 Pin Definitions (Continued)  
Pin Name  
Direction  
Description  
Initializing Configuration Memory/Detected Configuration Error:  
IO_Lxxy_#/INIT_B  
Bidirectional (open-drain)  
during configuration  
When Low, this pin indicates that configuration memory is being  
cleared. When held Low, this pin delays the start of configuration.  
After this pin is released or configuration memory is cleared, the  
pin goes High. During configuration, a Low on this output indicates  
that a configuration data error occurred. This pin becomes a user  
I/O after configuration.  
User I/O after configuration  
DCI: Digitally Controlled Impedance reference resistor input pins  
DCI Reference Resistor for NMOS I/O Transistor (per bank):  
IO_Lxxy_#/VRN_#or Input when using DCI  
IO/VRN_#  
If using DCI, a 1% precision impedance-matching resistor is  
connected between this pin and the VCCO supply for this bank.  
Otherwise, this pin is a user I/O.  
Otherwise, same as I/O  
DCI Reference Resistor for PMOS I/O Transistor (per bank):  
IO_Lxxy_#/VRP_# or Input when using DCI  
IO/VRP_#  
If using DCI, a 1% precision impedance-matching resistor is  
connected between this pin and the ground supply. Otherwise, this  
pin is a user I/O.  
Otherwise, same as I/O  
GCLK: Global clock buffer inputs  
Global Buffer Input:  
IO_Lxxy_#/GCLK0,  
IO_Lxxy_#/GCLK1,  
IO_Lxxy_#/GCLK2,  
IO_Lxxy_#/GCLK3,  
IO_Lxxy_#/GCLK4,  
IO_Lxxy_#/GCLK5,  
IO_Lxxy_#/GCLK6,  
IO_Lxxy_#/GCLK7  
Input if connected to global  
clock buffers  
Direct input to a low-skew global clock buffer. If not connected to a  
global clock buffer, this pin is a user I/O.  
Otherwise, same as I/O  
VREF: I/O bank input reference voltage pins  
Input Buffer Reference Voltage for Special I/O Standards (per  
bank):  
IO_Lxxy_#/VREF_#  
or  
IO/VREF_#  
Voltage supply input when  
VREF pins are used within a  
bank.  
If required to support special I/O standards, all the VREF pins  
within a bank connect to a input threshold voltage source.  
Otherwise, same as I/O  
If not used as input reference voltage pins, these pins are available  
as individual user-I/O pins.  
CONFIG: Dedicated configuration pins  
Configuration Clock:  
CCLK  
Input in Slave configuration  
modes  
The configuration clock signal synchronizes configuration data.  
Output in Master  
configuration modes  
Program/Configure Device:  
PROG_B  
Input  
Active Low asynchronous reset to configuration logic. Asserting  
PROG_B Low for an extended period delays the configuration  
process. This pin has an internal weak pull-up resistor during  
configuration.  
4
www.xilinx.com  
1-800-255-7778  
DS099-4 (v1.5) July 13, 2004  
Product Specification  
R
Spartan-3 FPGA Family: Pinout Descriptions  
Description  
Table 2: Spartan-3 Pin Definitions (Continued)  
Pin Name  
DONE  
Direction  
Configuration Done, Delay Start-up Sequence:  
Bidirectional with open-drain  
or totem-pole Output  
A Low-to-High output transition on this bidirectional pin signals the  
end of the configuration process.  
The FPGA produces a Low-to-High transition on this pin to  
indicate that the configuration process is complete. The DriveDone  
bitstream generation option defines whether this pin functions as  
a totem-pole output that actively drives High or as an open-drain  
output. An open-drain output requires a pull-up resistor to produce  
a High logic level. The open-drain option permits the DONE lines  
of multiple FPGAs to be tied together, so that the common node  
transitions High only after all of the FPGAs have completed  
configuration. Externally holding the open-drain output Low delays  
the start-up sequence, which marks the transition to user mode.  
Configuration Mode Selection:  
M0, M1, M2  
HSWAP_EN  
Input  
Input  
These inputs select the configuration mode. The logic levels  
applied to the mode pins are sampled on the rising edge of INIT_B.  
See Table 7.  
Disable Weak Pull-up Resistors During Configuration:  
A Low on this pin enables weak pull-up resistors on all pins that are  
not actively involved in the configuration process. A High value  
disables all pull-ups, allowing the non-configuration pins to float.  
JTAG: JTAG interface pins  
JTAG Test Clock:  
TCK  
Input  
The TCK clock signal synchronizes all JTAG port operations.  
JTAG Test Data Input:  
TDI  
Input  
TDI is the serial data input for all JTAG instruction and data  
registers.  
JTAG Test Mode Select:  
TMS  
TDO  
Input  
The serial TMS input controls the operation of the JTAG port.  
JTAG Test Data Output:  
Output  
TDO is the serial data output for all JTAG instruction and data  
registers.  
VCCO: I/O bank output voltage supply pins  
VCCO_# Supply  
Power Supply for Output Buffer Drivers (per bank):  
These pins power the output drivers within a specific I/O bank.  
VCCAUX: Auxiliary voltage supply pins  
VCCAUX Supply  
Power Supply for Auxiliary Circuits:  
+2.5V power pins for auxiliary circuits, including the Digital Clock  
Managers (DCMs), the dedicated configuration pins (CONFIG),  
and the dedicated JTAG pins. All VCCAUX pins must be  
connected.  
VCCINT: Internal core voltage supply pins  
VCCINT Supply  
Power Supply for Internal Core Logic:  
+1.2V power pins for the internal logic. All pins must be connected.  
DS099-4 (v1.5) July 13, 2004  
Product Specification  
www.xilinx.com  
1-800-255-7778  
5
R
Spartan-3 FPGA Family: Pinout Descriptions  
Table 2: Spartan-3 Pin Definitions (Continued)  
Pin Name  
Direction  
Description  
GND: Ground supply pins  
Ground:  
GND  
Supply  
Ground pins, which are connected to the power supply’s return  
path. All pins must be connected.  
N.C.: Unconnected package pins  
Unconnected Package Pin:  
N.C.  
These package pins are unconnected.  
Notes:  
1. All unused inputs and bidirectional pins must be tied either High or Low. For unused enable inputs, apply the level that disables the  
associated function. One common approach is to activate internal pull-up or pull-down resistors. An alternative approach is to  
externally connect the pin to either VCCO or GND.  
2. All outputs are of the totem-pole type — i.e., they can drive High as well as Low logic levels — except for the cases where “Open  
Drain” is indicated. The latter can only drive a Low logic level and require a pull-up resistor to produce a High logic level.  
Lindicates differential capability.  
Detailed, Functional Pin Descriptions  
"xx" is a two-digit integer, unique for each bank, that  
identifies a differential pin-pair.  
‘y’ is replaced by ‘P’ for the true signal or ‘N’ for the  
inverted. These two pins form one differential pin-pair.  
‘#’ is an integer, 0 through 7, indicating the associated  
I/O bank.  
I/O Type: Unrestricted, General-purpose I/O  
Pins  
After configuration, I/O-type pins are inputs, outputs, bidi-  
rectional I/O, three-state outputs, open-drain outputs, or  
open-source outputs, as defined in the application  
If unused, these pins are in a high impedance state. The Bit-  
stream generator option UnusedPin enables a weak pull-up  
or pull-down resistor on all unused I/O pins.  
Pins labeled "IO" support all SelectIO™ signal standards  
except differential standards. A given device at most only  
has a few of these pins.  
A majority of the general-purpose I/O pins are labeled in the  
format “IO_Lxxy_#”. These pins support all SelectIO signal  
standards, including the differential standards such as  
LVDS, ULVDS, BLVDS, RSDS, or LDT.  
Behavior from Power-On through End of Configu-  
ration  
During the configuration process, all pins that are not  
actively involved in the configuration process are in a  
high-impedance state. The HSWAP_EN input determines  
whether or not weak pull-up resistors are enabled during  
configuration. HSWAP_EN = 0 enables the weak pull-up  
resistors. HSWAP_EN = 1 disables the pull-up resistors  
allowing the pins to float, which is the desired state for  
hot-swap applications.  
For additional information, see the “IOB” section under  
Functional Description (Module 2 of the Spartan-3 data sheet)  
.
Differential Pair Labeling  
A pin supports differential standards if the pin is labeled in  
the format “Lxxy_#”. The pin name suffix has the following  
significance. Figure 1 provides a specific example showing  
a differential input to and a differential output from Bank 2.  
Pair Number  
Bank 0  
Bank 1  
Bank Number  
IO_L38P_2  
IO_L38N_2  
Positive Polarity,  
True Driver  
IO_L39P_2  
IO_L39N_2  
Negative Polarity,  
Inverted Driver  
Bank 5  
Bank 4  
DS099-4_01_042303  
Figure 1: Differential Pair Labelling  
6
www.xilinx.com  
1-800-255-7778  
DS099-4 (v1.5) July 13, 2004  
Product Specification  
R
Spartan-3 FPGA Family: Pinout Descriptions  
Serial Configuration Modes  
DUAL Type: Dual-Purpose Configuration and  
I/O Pins  
This section describes the dual-purpose pins used during  
either Master or Slave Serial mode. See Table 7 for Mode  
Select pin settings required for Serial modes. All such pins  
are in Bank 4 and powered by VCCO_4.  
These pins serve dual purposes. The user-I/O pins are tem-  
porarily borrowed during the configuration process to load  
configuration data into the FPGA. After configuration, these  
pins are then usually available as a user I/O in the applica-  
tion. If a pin is not applicable to the specific configuration  
mode—controlled by the mode select pins M2, M1, and  
M0—then the pin behaves as an I/O-type pin.  
In both the Master and Slave Serial modes, DIN is the serial  
configuration data input. The D1-D7 inputs are unused in  
serial mode and behave like general-purpose I/O pins.  
In all the cases, the configuration data is synchronized to  
the rising edge of the CCLK clock signal.  
There are 12 dual-purpose configuration pins on every  
package, six of which are part of I/O Bank 4, the other six  
part of I/O Bank 5. Only a few of the pins in Bank 4 are used  
in the Serial configuration modes.  
The DIN, DOUT, and INIT_B pins can be retained in the  
application to support reconfiguration by setting the Persist  
bitstream generation option. However, the serial modes do  
not support device readback.  
See “Configuration” under Functional Description (Module 2  
of the Spartan-3 data sheet).  
See Pin Behavior During Configuration, page 15”.  
Table 3: Dual-Purpose Pins Used in Master or Slave Serial Mode  
Pin Name  
DIN  
Direction  
Description  
Serial Data Input:  
Input  
During the Master or Slave Serial configuration modes, DIN is the serial configuration data  
input, and all data is synchronized to the rising CCLK edge. After configuration, this pin is  
available as a user I/O.  
This signal is located in Bank 4 and its output voltage determined by VCCO_4.  
The BitGen option Persist permits this pin to retain its configuration function in the User  
mode.  
Serial Data Output:  
DOUT  
Output  
In a multi-FPGA design where all the FPGAs use serial mode, connect the DOUT output of  
one FPGA—in either Master or Slave Serial mode—to the DIN input of the next FPGA—in  
Slave Serial mode—so that configuration data passes from one to the next, in daisy-chain  
fashion. This “daisy chain” permits sequential configuration of multiple FPGAs.  
This signal is located in Bank 4 and its output voltage determined by VCCO_4.  
The BitGen option Persist permits this pin to retain its configuration function in the User  
mode.  
Initializing Configuration Memory/Configuration Error:  
INIT_B  
Bidirectional  
(open-drain)  
Just after power is applied, the FPGA produces a Low-to-High transition on this pin  
indicating that initialization (i.e., clearing) of the configuration memory has finished. Before  
entering the User mode, this pin functions as an open-drain output, which requires a pull-up  
resistor in order to produce a High logic level. In a multi-FPGA design, tie (wire AND) the  
INIT_B pins from all FPGAs together so that the common node transitions High only after  
all of the FPGAs have been successfully initialized.  
Externally holding this pin Low beyond the initialization phase delays the start of  
configuration. This action stalls the FPGA at the configuration step just before the mode  
select pins are sampled.  
During configuration, the FPGA indicates the occurrence of a data (i.e., CRC) error by  
asserting INIT_B Low.  
This signal is located in Bank 4 and its output voltage determined by VCCO_4.  
The BitGen option Persist permits this pin to retain its configuration function in the User  
mode.  
DS099-4 (v1.5) July 13, 2004  
Product Specification  
www.xilinx.com  
1-800-255-7778  
7
R
Spartan-3 FPGA Family: Pinout Descriptions  
I/O Bank 4 (VCCO_4)  
High Nibble  
I/O Bank 5 (VCCO_5)  
Low Nibble  
Configuration Data Byte  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
0xA5 =  
1
0
1
0
0
1
0
1
Figure 2: Configuration Data Byte Mapping to D0-D7 Bits  
CS_B and RDWR_B does not matter, although RDWR_B  
must be asserted throughout the configuration process. If  
RDWR_B is de-asserted during configuration, the FPGA  
aborts the configuration operation.  
Parallel Configuration Modes (SelectMAP)  
This section describes the dual-purpose configuration pins  
used during the Master and Slave Parallel configuration  
modes, sometimes also called the SelectMAP modes. In  
both Master and Slave Parallel configuration modes, D0-D7  
form the byte-wide configuration data input. See Table 7 for  
Mode Select pin settings required for Parallel modes.  
After configuration, these pins are available as general-pur-  
pose user I/O. However, the SelectMAP configuration inter-  
face is optionally available for debugging and dynamic  
reconfiguration. To use these SelectMAP pins after configu-  
ration, set the Persist bitstream generation option.  
As shown in Figure 2, D0 is the most-significant bit while D7  
is the least-significant bit. Bits D0-D3 form the high nibble of  
the byte and bits D4-D7 form the low nibble.  
The Readback debugging option, for example, requires the  
Persist bitstream generation option. During Readback  
mode, assert CS_B Low, along with RDWR_B High, to read  
a configuration data byte from the FPGA to the D0-D7 bus  
on a rising CCLK edge. During Readback mode, D0-D7 are  
output pins.  
In the Parallel configuration modes, both the VCCO_4 and  
VCCO_5 voltage supplies are required and must both equal  
the voltage of the attached configuration device, typically  
either 2.5V or 3.3V.  
Assert Low both the chip-select pin, CS_B, and the  
read/write control pin, RDWR_B, to write the configuration  
data byte presented on the D0-D7 pins to the FPGA on a  
rising-edge of the configuration clock, CCLK. The order of  
In all the cases, the configuration data and control signals  
are synchronized to the rising edge of the CCLK clock sig-  
nal.  
8
www.xilinx.com  
1-800-255-7778  
DS099-4 (v1.5) July 13, 2004  
Product Specification  
R
Spartan-3 FPGA Family: Pinout Descriptions  
Table 4: Dual-Purpose Configuration Pins for Parallel (SelectMAP) Configuration Modes  
Pin  
Name  
Direction  
Description  
Configuration Data Port (high nibble):  
D0,  
Input during  
configuration  
D1,  
D2,  
D3  
Collectively, the D0-D7 pins are the byte-wide configuration data port for the Parallel  
(SelectMAP) configuration modes. Configuration data is synchronized to the rising edge of  
CCLK clock signal.  
Outputduring  
readback  
The D0-D3 pins are the high nibble of the configuration data byte and located in Bank 4 and  
powered by VCCO_4.  
The BitGen option Persist permits this pin to retain its configuration function in the User mode.  
Configuration Data Port (low nibble):  
D4,  
D5,  
D6,  
D7  
Input during  
configuration  
The D4-D7 pins are the low nibble of the configuration data byte. However, these signals are  
located in Bank 5 and powered by VCCO_5.  
The BitGen option Persist permits this pin to retain its configuration function in the User mode.  
Outputduring  
readback  
Chip Select for Parallel Mode Configuration:  
CS_B  
Input  
Assert this pin Low, together with RDWR_B to write a configuration data byte from the D0-D7  
bus to the FPGA on a rising CCLK edge.  
During Readback, assert this pin Low, along with RDWR_B High, to read a configuration data  
byte from the FPGA to the D0-D7 bus on a rising CCLK edge.  
This signal is located in Bank 5 and powered by VCCO_5.  
The BitGen option Persist permits this pin to retain its configuration function in the User mode.  
CS_B  
Function  
0
1
FPGA selected. SelectMAP inputs are valid on the next rising edge of CCLK.  
FPGA deselected. All SelectMAP inputs are ignored.  
DS099-4 (v1.5) July 13, 2004  
Product Specification  
www.xilinx.com  
1-800-255-7778  
9
R
Spartan-3 FPGA Family: Pinout Descriptions  
Table 4: Dual-Purpose Configuration Pins for Parallel (SelectMAP) Configuration Modes (Continued)  
Pin  
Name  
Direction  
Description  
Read/Write Control for Parallel Mode Configuration:  
RDWR_B  
Input  
In Master and Slave Parallel modes, assert this pin Low together with CS_B to write a  
configuration data byte from the D0-D7 bus to the FPGA on a rising CCLK edge. Once  
asserted during configuration, RDWR_B must remain asserted until configuration is  
complete.  
During Readback, assert this pin High with CS_B Low to read a configuration data byte from  
the FPGA to the D0-D7 bus on a rising CCLK edge.  
This signal is located in Bank 5 and powered by VCCO_5.  
The BitGen option Persist permits this pin to retain its configuration function in the User mode.  
RDWR_B  
Function  
0
1
If CS_B is Low, then load (write) configuration data to the FPGA.  
This option is valid only if the Persist bitstream option is set to Yes. If CS_B is  
Low, then read configuration data from the FPGA.  
Configuration Data Rate Control for Parallel Mode:  
BUSY  
Output  
In the Slave and Master Parallel modes, BUSY throttles the rate at which configuration data  
is loaded. BUSY is only necessary if CCLK operates at greater than 50 MHz. Ignore BUSY  
for frequencies of 50 MHz and below.  
When BUSY is Low, the FPGA accepts the next configuration data byte on the next rising  
CCLK edge for which CS_B and RDWR_B are Low. When BUSY is High, the FPGA ignores  
the next configuration data byte. The next configuration data value must be held or reloaded  
until the next rising CCLK edge when BUSY is Low. When CS_B is High, BUSY is in a high  
impedance state.  
BUSY  
Function  
0
1
The FPGA is ready to accept the next configuration data byte.  
The FPGA is busy processing the current configuration data byte and is not  
ready to accept the next byte.  
Hi-Z  
If CS_B is High, then BUSY is high impedance.  
This signal is located in Bank 4 and its output voltage is determined by VCCO_4. The BitGen  
option Persist permits this pin to retain its configuration function in the User mode.  
Initializing Configuration Memory/Configuration Error (active-Low):  
INIT_B  
Bidirectional  
(open-drain)  
See description under Serial Configuration Modes, page 7.  
LVCMOS25 I/O standard. If connected to +3.3V, then the  
pins drive LVCMOS output levels and accept either LVTTL  
or LVCMOS input levels.  
JTAG Configuration Mode  
In the JTAG configuration mode all dual-purpose configura-  
tion pins are unused and behave exactly like user-I/O pins,  
as shown in Table 10. See Table 7 for Mode Select pin set-  
tings required for JTAG mode.  
Dual-Purpose Pin Behavior After Configuration  
After the configuration process completes, these pins, if  
they were borrowed during configuration, become user-I/O  
pins available to the application. If a dual-purpose configu-  
ration pin is not used during the configuration process—i.e.,  
the parallel configuration pins when using serial  
mode—then the pin behaves exactly like a general-purpose  
I/O. See I/O Type: Unrestricted, General-purpose I/O  
Pins section above.  
Dual-Purpose Pin I/O Standard During Configura-  
tion  
During configuration, the dual-purpose pins default to  
CMOS input and output levels for the associated VCCO  
voltage supply pins. For example, in the Parallel configura-  
tion modes, both VCCO_4 and VCCO_5 are required. If  
connected to +2.5V, then the associated pins conform to the  
10  
www.xilinx.com  
1-800-255-7778  
DS099-4 (v1.5) July 13, 2004  
Product Specification  
R
Spartan-3 FPGA Family: Pinout Descriptions  
LVDSEXT_25_DCI receivers—then both the VRP_# and  
VRN_# pins connect to separate 1% precision imped-  
ance-matching resistors, as shown in Figure 3c. Neither pin  
is available for user I/O.  
DCI: User I/O or Digitally Controlled  
Impedance Resistor Reference Input  
These pins are individual user-I/O pins unless one of the I/O  
standards used in the bank requires the Digitally Controlled  
Impedance (DCI) feature. If DCI is used, then 1% precision  
resistors connected to the VRP_# and VRN_# pins match  
the impedance on the input or output buffers of the I/O stan-  
dards that use DCI within the bank.  
GCLK: Global Clock Buffer Inputs or  
General-Purpose I/O Pins  
These pins are user-I/O pins unless they specifically con-  
nect to one of the eight low-skew global clock buffers on the  
device, specified using the IBUFG primitive.  
The ‘#’ character in the pin name indicates the associated  
I/O bank and is an integer, 0 through 7.  
There are eight GCLK pins per device and two each appear  
in the top-edge banks, Bank 0 and 1, and the bottom-edge  
banks, Banks 4 and 5. See Figure 1 for a picture of bank  
labeling.  
There are two DCI pins per I/O bank, except in the TQ144  
package, which does not have any DCI inputs for Bank 5.  
VRP and VRN Impedance Resistor Reference  
Inputs  
During configuration, these pins behave exactly like  
user-I/O pins.  
The 1% precision impedance-matching resistor attached to  
the VRP_# pin controls the pull-up impedance of PMOS  
transistor in the input or output buffer. Consequently, the  
VRP_# pin must connect to ground. The ‘P’ character in  
“VRP” indicates that this pin controls the I/O buffer’s PMOS  
transistor impedance. The VRP_# pin is used for both single  
and split termination.  
CONFIG: Dedicated Configuration Pins  
The dedicated configuration pins control the configuration  
process and are not available as user-I/O pins. Every pack-  
age has seven dedicated configuration pins. All CON-  
FIG-type pins are powered by the +2.5V VCCAUX supply.  
The 1% precision impedance-matching resistor attached to  
the VRN_# pin controls the pull-down impedance of NMOS  
transistor in the input or output buffer. Consequently, the  
VRN_# pin must connect to VCCO. The ‘N’ character in  
“VRN” indicates that this pin controls the I/O buffer’s NMOS  
transistor impedance. The VRN_# pin is only used for split  
termination.  
See “Configuration” under Functional Description (Module 2  
of the Spartan-3 data sheet).  
CCLK: Configuration Clock  
The configuration clock signal on this pin synchronizes the  
reading or writing of configuration data. This pin is an input  
for the Slave configuration modes, both parallel and serial.  
Each VRN or VRP reference input requires its own resistor.  
A single resistor cannot be shared between VRN or VRP  
pins associated with different banks.  
After configuration, the CCLK pin is in a high-impedance,  
floating state. By default, CCLK optionally is pulled High to  
VCCAUX as defined by the CclkPin bitstream selection. Any  
clocks applied to CCLK after configuration are ignored  
unless the bitstream option Persist is set to Yes, which  
retains the configuration interface. Persist is set to No by  
default. However, if Persist is set to Yes, then all clock edges  
are potentially active events, depending on the other config-  
uration control signals.  
During configuration, these pins behave exactly like  
user-I/O pins. The associated DCI behavior is not active or  
valid until after configuration completes.  
See “Digitally Controlled Impedance (DCI)” under Functional  
Description (Module 2 of the Spartan-3 data sheet).  
DCI Termination Types  
The bitstream generator option ConfigRate determines the  
frequency of the internally-generated CCLK oscillator  
required for the Master configuration modes. The actual fre-  
quency is approximate due to the characteristics of the sili-  
con oscillator and varies by up to 30% over the temperature  
and voltage range. By default, CCLK operates at approxi-  
mately 6 MHz. Via the ConfigRate option, the oscillator fre-  
quency is set at approximately 3, 6, 12, 25, or 50 MHz. At  
power-on, CCLK always starts operation at its lowest fre-  
quency. The device does not start operating at the higher  
frequency until the ConfigRate control bits are loaded dur-  
ing the configuration process.  
If the I/O in an I/O bank do not use the DCI feature, then no  
external resistors are required and both the VRP_# and  
VRN_# pins are available for user I/O, as shown in  
Figure 3a.  
If the I/O standards within the associated I/O bank require  
single termination—such as GTL_DCI, GTLP_DCI, or  
HSTL_III_DCI—then only the VRP_# signal connects to a  
1% precision impedance-matching resistor, as shown in  
Figure 3b. A resistor is not required for the VRN_# pin.  
Finally, if the I/O standards with the associated I/O bank  
require  
split  
termination—such  
as  
HSTL_I_DCI,  
SSTL2_I_DCI, SSTL2_II_DCI, or LVDS_25_DCI and  
DS099-4 (v1.5) July 13, 2004  
Product Specification  
www.xilinx.com  
1-800-255-7778  
11  
R
Spartan-3 FPGA Family: Pinout Descriptions  
One of eight  
I/O Banks  
One of eight  
I/O Banks  
One of eight  
I/O Banks  
V
CCO  
R
(1%)  
(1%)  
REF  
User I/O  
VRN  
VRP  
VRN  
User I/O  
VRP  
R
(1%)  
R
REF  
REF  
DS099-4_03_071304  
(a) No termination  
(b) Single termination  
Figure 3: DCI Termination Types  
(c) Split termination  
PROG_B: Program/Configure Device  
DONE: Configuration Done, Delay Start-Up  
Sequence  
This asynchronous pin initiates the configuration or re-con-  
figuration processes. A Low-going pulse resets the configu-  
ration logic, initializing the configuration memory. This  
initialization process cannot finish until PROG_B returns  
High. Asserting PROG_B Low for an extended period  
delays the configuration process. At power-up, there is  
always a weak pull-up resistor to VCCAUX on this pin. After  
configuration, the bitstream generator option ProgPin deter-  
mines whether or not the weak pull-up resistor is present.  
By default, the ProgPin option retains the weak pull-up  
resistor.  
The FPGA produces a Low-to-High transition on this pin  
indicating that the configuration process is complete. The  
bitstream generator option DriveDone determines whether  
this pin functions as a totem-pole output that can drive High  
or as an open-drain output. If configured as an open-drain  
output—which is the default behavior—then a pull-up resis-  
tor is required to produce a High logic level. There is a bit-  
stream option that provides an internal weak pull-up  
resistor, otherwise an external pull-up resistor is required.  
The open-drain option permits the DONE lines of multiple  
FPGAs to be tied together, so that the common node transi-  
tions High only after all of the FPGAs have completed con-  
figuration. Externally holding the open-drain DONE pin Low  
delays the start-up sequence, which marks the transition to  
user mode.  
After configuration, hold the PROG_B input High. Any  
Low-going pulse on PROG_B restarts the configuration pro-  
cess.  
Table 5: PROG_B Operation  
PROG_B Input  
Power-up  
Response  
Once the FPGA enters User mode after completing config-  
uration, the DONE pin no longer drives the DONE pin Low.  
The bitstream generator option DonePin determines  
whether or not a weak pull-up resistor is present on the  
DONE pin to pull the pin to VCCAUX. If the weak pull-up  
resistor is eliminated, then the DONE pin must be pulled  
High using an external pull-up resistor or one of the FPGAs  
in the design must actively drive the DONE pin High via the  
DriveDone bitstream generator option.  
Automatically initiates configuration  
process.  
Low-going pulse  
Extended Low  
Initiate (re-)configuration process and  
continue to completion.  
Initiate (re-)configuration process and  
stall process at step where  
configuration memory is cleared.  
Process is stalled until PROG_B  
returns High.  
The bitstream generator option DriveDone causes the  
FPGA to actively drive the DONE output High after configu-  
ration. This option should only be used in single-FPGA  
designs or on the last FPGA in a multi-FPGA daisy-chain.  
1
If the configuration process is started,  
continue to completion. If  
configuration process is complete,  
stay in User mode.  
By default, the bitstream generator software retains the  
weak pull-up resistor and does not actively drive the DONE  
pin as highlighted in Table 6. Table 6 shows the interaction  
of these bitstream options in single- and multi-FPGA  
designs.  
12  
www.xilinx.com  
1-800-255-7778  
DS099-4 (v1.5) July 13, 2004  
Product Specification  
R
Spartan-3 FPGA Family: Pinout Descriptions  
Table 6: DonePin and DriveDone Bitstream Option Interaction  
Single- or Multi-  
DonePin DriveDone  
FPGA Design  
Comments  
Pullnone  
No  
Single  
External pull-up resistor, with value between 330to 3.3k, required on  
DONE.  
Pullnone  
No  
Multi  
External pull-up resistor, with value between 330to 3.3k, required on  
common node connecting to all DONE pins.  
Pullnone  
Pullnone  
Pullup  
Yes  
Yes  
No  
Single  
Multi  
OK, no external requirements.  
DriveDone on last device in daisy-chain only. No external requirements.  
Single  
OK, but weak pull-up on DONE pin has slow rise time. May require 330 Ω  
pull-up resistor for high CCLK frequencies.  
Pullup  
No  
Multi  
External pull-up resistor, with value between 330to 3.3k, required on  
common node connecting to all DONE pins.  
Pullup  
Pullup  
Yes  
Yes  
Single  
Multi  
OK, no external requirements.  
DriveDone on last device in daisy-chain only. No external requirements.  
completes. A High disables the weak pull-up resistors (dur-  
ing configuration, which is the desired state for some appli-  
cations.  
M2, M1, M0: Configuration Mode Selection  
These inputs select the mode to configure the FPGA. The  
logic levels applied to the mode pins are sampled on the ris-  
ing edge of INIT_B.  
Table 8: HSWAP_EN Encoding  
Table 7: Spartan-3 Configuration Mode Select Settings  
HSWAP_EN  
Function  
Configuration Mode  
Master Serial  
Slave Serial  
Master Parallel  
Slave Parallel  
JTAG  
M2  
0
M1  
0
M0  
0
During Configuration  
0
Enable weak pull-up resistors on all pins  
not actively involved in the configuration  
process. Pull-ups are only active until  
configuration completes. See Table 10.  
1
1
1
0
1
1
1
1
0
1
No pull-up resistors during configuration.  
1
0
1
After Configuration, User Mode  
This pin has no function except during  
device configuration.  
Reserved  
0
0
1
X
Reserved  
0
1
0
Notes:  
Reserved  
1
0
0
1. X = don’t care, either 0 or 1.  
After Configuration  
X
X
X
After configuration, HSWAP_EN essentially becomes a  
"don’t care" input and any pull-up resistors previously  
enabled by HSWAP_EN are disabled. If a user I/O in the  
application requires a weak pull-up resistor after configura-  
tion, place a PULLUP primitive on the associated I/O pin.  
Notes:  
1. X = don’t care, either 0 or 1.  
In user mode, after configuration successfully completes,  
any levels applied to these input are ignored. Each of the  
bitstream generator options M0Pin, M1Pin, and M2Pin  
determines whether a weak pull-up resistor, weak pull-down  
resistor, or no resistor is present on its respective mode pin,  
M0, M1, or M2.  
The Bitstream generator option HswapenPin determines  
whether a weak pull-up resistor to VCCAUX, a weak  
pull-down resistor, or no resistor is present on HSWAP_EN  
after configuration.  
HSWAP_EN: Disable Weak Pull-up Resistors Dur-  
ing Configuration  
JTAG: Dedicated JTAG Port Pins  
These pins are dedicated connections to the four-wire IEEE  
1532/IEEE 1149.1 JTAG port, shown in Figure 4 and  
A Low on this asynchronous pin enables weak pull-up resis-  
tors on all user I/Os, although only until device configuration  
DS099-4 (v1.5) July 13, 2004  
Product Specification  
www.xilinx.com  
1-800-255-7778  
13  
R
Spartan-3 FPGA Family: Pinout Descriptions  
described in Table 9. The JTAG port is used for bound-  
ary-scan testing, device configuration, application debug-  
ging, and possibly an additional serial port for the  
application. These pins are dedicated and are not available  
as user-I/O pins. Every package has four dedicated JTAG  
pins and these pins are powered by the +2.5V VCCAUX  
supply.  
resistor. Similarly, the TDO pin is a CMOS output powered  
from +2.5V. The TDO output can directly drive a 3.3V input  
but with reduced noise immunity. See the "3.3V-Tolerant  
Configuration Interface" section in Module 2 for additional  
details.  
The following interface precautions are recommended when  
connecting the JTAG port to a 3.3V interface.  
1. Set any inactive JTAG signals, including TCK, Low  
when not actively used.  
JTAG Port  
2. Limit the drive current into a JTAG input to no more than  
10 mA.  
TDI  
Data In  
TDO  
Data Out  
TMS  
TCK  
Mode Select  
VREF: User I/O or Input Buffer Reference  
Voltage for Special Interface Standards  
These pins are individual user-I/O pins unless collectively  
they supply an input reference voltage, VREF_#, for any  
SSTL, HSTL, GTL, or GTLP I/Os implemented in the asso-  
ciated I/O bank.  
Clock  
DS099-4_04_042103  
Figure 4: JTAG Port  
Using JTAG Port After Configuration  
The ‘#’ character in the pin name represents an integer, 0  
through 7, that indicates the associated I/O bank.  
The JTAG port is always active and available before, during,  
and after FPGA configuration. Add the BSCAN_SPARTAN3  
primitive to the design to create user-defined JTAG instruc-  
tions and JTAG chains to communicate with internal logic.  
The VREF function becomes active for this pin whenever a  
signal standard requiring a reference voltage is used in the  
associated bank.  
Furthermore, the contents of the User ID register within the  
JTAG port can be specified as a Bitstream Generation  
option. By default, the 32-bit User ID register contains  
0xFFFFFFFF.  
If used as a user I/O, then each pin behaves as an indepen-  
dent I/O described in the I/O type section. If used for a ref-  
erence voltage within a bank, then all VREF pins within the  
bank must be connected to the same reference voltage.  
Precautions When Using the JTAG Port in 3.3V  
Environments  
Spartan-3 devices are designed and characterized to sup-  
port certain I/O standards when VREF is connected to  
+1.25V, +1.10V, +1.00V, +0.90V, +0.80V, and +0.75V.  
The JTAG port is powered by the +2.5V VCCAUX power  
supply. When connecting to a 3.3V interface, the JTAG input  
pins must be current-limited to 10 mA or less using a series  
During configuration, these pins behave exactly like  
user-I/O pins.  
Table 9: JTAG Pin Descriptions  
Pin Name Direction  
Description  
Bitstream Generation Option  
TCK  
Input  
Input  
Input  
Output  
Test Clock: The TCK clock signal synchronizes all  
boundary scan operations on its rising edge.  
The BitGen option TckPin  
determines whether a weak pull-up  
resistor, weak pull-down resistor or  
no resistor is present.  
TDI  
Test Data Input: TDI is the serial data input for all JTAG The BitGen option TdiPin  
instruction and data registers. This input is sampled on determines whether a weak pull-up  
the rising edge of TCK.  
resistor, weak pull-down resistor or  
no resistor is present.  
TMS  
TDO  
Test Mode Select: The TMS input controls the  
sequence of states through which the JTAG TAP state determines whether a weak pull-up  
machine passes. This input is sampled on the rising  
edge of TCK.  
The BitGen option TmsPin  
resistor, weak pull-down resistor or  
no resistor is present.  
Test Data Output: The TDO pin is the data output for The BitGen option TdoPin  
all JTAG instruction and data registers. This output is determines whether a weak pull-up  
sampled on the rising edge of TCK. The TDO output is resistor, weak pull-down resistor or  
an active totem-pole driver and is not like the  
no resistor is present.  
open-collector TDO output on Virtex-II Pro™ FPGAs.  
14  
www.xilinx.com  
1-800-255-7778  
DS099-4 (v1.5) July 13, 2004  
Product Specification  
R
Spartan-3 FPGA Family: Pinout Descriptions  
If designing for footprint compatibility across the range of  
devices in a specific package, and if the VREF_# pins within  
a bank connect to an input reference voltage, then also con-  
nect any N.C. (not connected) pins on the smaller devices in  
that package to the input reference voltage. More details are  
provided later for each package type.  
from the VCCINT voltage supply inputs. VCCINT must be  
+1.2V.  
All VCCINT inputs must be connected together and to the  
+1.2V voltage supply. Furthermore, there must be sufficient  
supply decoupling to guarantee problem-free operation, as  
described in XAPP623: Power Distribution System (PDS)  
Design: Using Bypass/Decoupling Capacitors.  
N.C. Type: Unconnected Package Pins  
VCCAUX Type: Voltage Supply for Auxiliary  
Logic  
The VCCAUX pins supply power to various auxiliary cir-  
cuits, such as to the Digital Clock Managers (DCMs), the  
JTAG pins, and to the dedicated configuration pins (CON-  
FIG type). VCCAUX must be +2.5V.  
Pins marked as “N.C.are unconnected for the specific  
device/package combination. For other devices in this same  
package, this pin may be used as an I/O or VREF connec-  
tion. In both the pinout tables and the footprint diagrams,  
unconnected pins are noted with either a black diamond  
symbol (‹) or a black square symbol („).  
If designing for footprint compatibility across multiple device  
densities, check the pin types of the other Spartan-3  
devices available in the same footprint. If the N.C. pin  
matches to VREF pins in other devices, and the VREF pins  
are used in the associated I/O bank, then connect the N.C.  
to the VREF voltage source.  
All VCCAUX inputs must be connected together and to the  
+2.5V voltage supply. Furthermore, there must be sufficient  
supply decoupling to guarantee problem-free operation, as  
described in XAPP623: Power Distribution System (PDS)  
Design: Using Bypass/Decoupling Capacitors.  
Because VCCAUX connects to the DCMs and the DCMs  
are sensitive to voltage changes, be sure that the VCCAUX  
supply and the ground return paths are designed for low  
noise and low voltage drop, especially that caused by a  
large number of simultaneous switching I/Os.  
VCCO Type: Output Voltage Supply for I/O  
Bank  
Each I/O bank has its own set of voltage supply pins that  
determines the output voltage for the output buffers in the  
I/O bank. Furthermore, for some I/O standards such as  
LVCMOS, LVCMOS25, LVTTL, etc., VCCO sets the input  
threshold voltage on the associated input buffers.  
GND Type: Ground  
All GND pins must be connected and have a low resistance  
path back to the various VCCO, VCCINT, and VCCAUX  
supplies.  
Spartan-3 devices are designed and characterized to sup-  
port various I/O standards for VCCO values of +1.2V, +1.5V,  
+1.8V, +2.5V, and +3.3V.  
Pin Behavior During Configuration  
Most VCCO pins are labeled as VCCO_# where the ‘#’  
symbol represents the associated I/O bank number, an inte-  
ger ranging from 0 to 7. In the 144-pin TQFP package  
(TQ144) however, the VCCO pins along an edge of the  
device are combined into a single VCCO input. For exam-  
ple, the VCCO inputs for Bank 0 and Bank 1 along the top  
edge of the package are combined and relabeled  
VCCO_TOP. The bottom, left, and right edges are similarly  
combined.  
Table 10 shows how various pins behave during the FPGA  
configuration process. The actual behavior depends on the  
values applied to the M2, M1, and M0 mode select pins and  
the HSWAP_EN pin. The mode select pins determine which  
of the DUAL type pins are active during configuration. In  
JTAG configuration mode, none of the DUAL-type pins are  
used for configuration and all behave as user-I/O pins.  
All DUAL-type pins not actively used during configuration  
and all I/O-type, DCI-type, VREF-type, GCLK-type pins are  
high impedance (floating, three-stated, Hi-Z) during the  
configuration process. These pins are indicated in Table 10  
as shaded table entries or cells. These pins have a weak  
pull-up resistor to their associated VCCO if the HSWAP_EN  
pin is Low.  
In Serial configuration mode, VCCO_4 must be at a level  
compatible with the attached configuration memory or data  
source. In Parallel configuration mode, both VCCO_4 and  
VCCO_5 must be at the same compatible voltage level.  
All VCCO inputs to a bank must be connected together and  
to the voltage supply. Furthermore, there must be sufficient  
supply decoupling to guarantee problem-free operation, as  
described in XAPP623: Power Distribution System (PDS)  
Design: Using Bypass/Decoupling Capacitors.  
After configuration completes, some pins have optional  
behavior controlled by the configuration bitstream loaded  
into the part. For example, via the bitstream, all unused I/O  
pins can collectively be configured to have a weak pull-up  
resistor, a weak pull-down resistor, or be left in a  
high-impedance state.  
VCCINT Type: Voltage Supply for Internal  
Core Logic  
Internal core logic circuits such as the configurable logic  
blocks (CLBs) and programmable interconnect operate  
DS099-4 (v1.5) July 13, 2004  
Product Specification  
www.xilinx.com  
1-800-255-7778  
15  
R
Spartan-3 FPGA Family: Pinout Descriptions  
Table 10: Pin Behavior After Power-Up, During Configuration  
Configuration Mode Settings <M2:M1:M0>  
Serial Modes SelectMap Parallel Modes  
Bitstream  
Configuration  
Option  
Master  
<0:0:0>  
Slave  
<1:1:1>  
Master  
<0:1:1>  
Slave  
<1:1:0>  
JTAG Mode  
<1:0:1>  
Pin Name  
I/O: General-purpose I/O pins  
IO  
UnusedPin  
UnusedPin  
IO_Lxxy_#  
DUAL: Dual-purpose configuration pins  
IO_Lxxy_#/  
DIN/D0  
DIN (I)  
DIN (I)  
D0 (I/O)  
D1 (I/O)  
D0 (I/O)  
D1 (I/O)  
Persist  
UnusedPin  
IO_Lxxy_#/  
D1  
Persist  
UnusedPin  
IO_Lxxy_#/  
D2  
D2 (I/O)  
D2 (I/O)  
Persist  
UnusedPin  
IO_Lxxy_#/  
D3  
D3 (I/O)  
D3 (I/O)  
Persist  
UnusedPin  
IO_Lxxy_#/  
D4  
D4 (I/O)  
D4 (I/O)  
Persist  
UnusedPin  
IO_Lxxy_#/  
D5  
D5 (I/O)  
D5 (I/O)  
Persist  
UnusedPin  
IO_Lxxy_#/  
D6  
D6 (I/O)  
D6 (I/O)  
Persist  
UnusedPin  
IO_Lxxy_#/  
D7  
D7 (I/O)  
D7 (I/O)  
Persist  
UnusedPin  
IO_Lxxy_#/  
CS_B  
CS_B (I)  
RDWR_B (I)  
BUSY (O)  
CS_B (I)  
RDWR_B (I)  
BUSY (O)  
Persist  
UnusedPin  
IO_Lxxy_#/  
RDWR_B  
Persist  
UnusedPin  
IO_Lxxy_#/  
DOUT (O)  
DOUT (O)  
Persist  
BUSY/DOUT  
UnusedPin  
IO_Lxxy_#/  
INIT_B  
INIT_B (I/OD) INIT_B (I/OD) INIT_B (I/OD) INIT_B (I/OD)  
UnusedPin  
DCI: Digitally Controlled Impedance reference resistor input pins  
IO_Lxxy_#/  
VRN_#  
UnusedPin  
IO/VRN_#  
UnusedPin  
UnusedPin  
IO_Lxxy_#/  
VRP_#  
IO/VRP_#  
UnusedPin  
16  
www.xilinx.com  
1-800-255-7778  
DS099-4 (v1.5) July 13, 2004  
Product Specification  
R
Spartan-3 FPGA Family: Pinout Descriptions  
Table 10: Pin Behavior After Power-Up, During Configuration (Continued)  
Configuration Mode Settings <M2:M1:M0>  
Serial Modes  
SelectMap Parallel Modes  
Bitstream  
Configuration  
Option  
Master  
<0:0:0>  
Slave  
<1:1:1>  
Master  
<0:1:1>  
Slave  
<1:1:0>  
JTAG Mode  
<1:0:1>  
Pin Name  
GCLK: Global clock buffer inputs  
IO_Lxxy_#/  
GCLK0through  
GCLK7  
UnusedPin  
VREF: I/O bank input reference voltage pins  
IO_Lxxy_#/  
VREF_#  
UnusedPin  
UnusedPin  
IO/VREF_#  
CONFIG: Dedicated configuration pins  
CCLK  
CCLK (O)  
CCLK (I)  
CCLK (O)  
CCLK (I)  
CclkPin  
ConfigRate  
PROG_B  
PROG_B (I)  
(pull-up)  
PROG_B (I)  
(pull-up)  
PROG_B (I)  
(pull-up)  
PROG_B (I)  
(pull-up)  
PROG_B (I),  
Via JPROG_B  
instruction  
ProgPin  
DONE  
DONE (I/OD)  
DONE (I/OD)  
DONE (I/OD)  
DONE (I/OD)  
DONE (I/OD)  
DriveDone  
DonePin  
DonePipe  
M2  
M2=0 (I)  
M1=0 (I)  
M0=0 (I)  
M2=1 (I)  
M1=1 (I)  
M0=1 (I)  
M2=0 (I)  
M1=1 (I)  
M0=1 (I)  
M2=1 (I)  
M1=1 (I)  
M0=0 (I)  
M2=1 (I)  
M1=0 (I)  
M0=1 (I)  
M2Pin  
M1Pin  
M1  
M0  
M0Pin  
HSWAP_EN  
HSWAP_EN  
(I)  
HSWAP_EN  
(I)  
HSWAP_EN  
(I)  
HSWAP_EN  
(I)  
HSWAP_EN  
(I)  
HswapenPin  
JTAG: JTAG interface pins  
TDI  
TDI (I)  
TDI (I)  
TMS (I)  
TCK (I)  
TDO (O)  
TDI (I)  
TMS (I)  
TCK (I)  
TDO (O)  
TDI (I)  
TMS (I)  
TCK (I)  
TDO (O)  
TDI (I)  
TMS (I)  
TCK (I)  
TDO (O)  
TdiPin  
TmsPin  
TckPin  
TdoPin  
TMS  
TCK  
TDO  
TMS (I)  
TCK (I)  
TDO (O)  
VCCO: I/O bank output voltage supply pins  
VCCO_4  
(for DUAL pins)  
Same voltage Same voltage Same voltage Same voltage  
VCCO_4  
VCCO_5  
as external  
interface  
as external  
interface  
as external  
interface  
as external  
interface  
VCCO_5  
(for DUAL pins)  
VCCO_5  
VCCO_5  
VCCO_#  
Same voltage Same voltage  
as external  
interface  
as external  
interface  
VCCO_#  
VCCO_#  
VCCO_#  
VCCO_#  
VCCO_#  
+2.5V  
VCCAUX: Auxiliary voltage supply pins  
VCCAUX +2.5V  
+2.5V  
+2.5V  
+2.5V  
DS099-4 (v1.5) July 13, 2004  
Product Specification  
www.xilinx.com  
1-800-255-7778  
17  
R
Spartan-3 FPGA Family: Pinout Descriptions  
Table 10: Pin Behavior After Power-Up, During Configuration (Continued)  
Configuration Mode Settings <M2:M1:M0>  
Serial Modes  
SelectMap Parallel Modes  
Bitstream  
Configuration  
Option  
Master  
<0:0:0>  
Slave  
<1:1:1>  
Master  
<0:1:1>  
Slave  
<1:1:0>  
JTAG Mode  
<1:0:1>  
Pin Name  
VCCINT: Internal core voltage supply pins  
VCCINT  
+1.2V  
+1.2V  
GND  
+1.2V  
GND  
+1.2V  
GND  
+1.2V  
GND  
GND: Ground supply pins  
GND  
GND  
Notes:  
1. #= I/O bank number, an integer from 0 to 7.  
2. (I) = input, (O) = output, (OD) = open-drain output, (I/O) = bidirectional, (I/OD) = bidirectional with open-drain output. Open-drain  
output requires pull-up to create logic High level.  
3.  
Shaded cell indicates that the pin is high-impedance during configuration. To enable a soft pull-up resistor during configuration,  
drive or tie HSWAP_EN Low.  
the name of the bitstream generator option variable, and the  
legal values for each variable. The default option setting for  
each variable is indicated with bold, underlined text.  
Bitstream Options  
Table 11 lists the various bitstream options that affect pins  
on a Spartan-3 FPGA. The table shows the names of the  
affected pins, describes the function of the bitstream option,  
Table 11: Bitstream Options Affecting Spartan-3 Pins  
Option  
Variable  
Name  
Values  
(default  
value)  
Affected Pin  
Name(s)  
Bitstream Generation Function  
Pulldown  
Pullup  
Pullnone  
All unused I/O pins of For all I/O pins that are unused after configuration, this option  
UnusedPin  
type I/O, DUAL,  
defines whether the I/Os are individually tied to VCCO via a weak  
pull-up resistor, tied ground via a weak pull-down resistor, or left  
floating. If left floating, the unused pins should be connected to a  
defined logic level, either from a source internal to the FPGA or  
external.  
GCLK, DCI, VREF  
No  
Yes  
IO_Lxxy_#/DIN,  
IO_Lxxy_#/DOUT,  
IO_Lxxy_#/INIT_B  
Serial configuration mode: If set to Yes, then these pins retain their  
functionality after configuration completes, allowing for device  
(re-)configuration. Readback is not supported in with serial mode.  
Persist  
Persist  
No  
Yes  
IO_Lxxy_#/D0,  
IO_Lxxy_#/D1,  
IO_Lxxy_#/D2,  
IO_Lxxy_#/D3,  
IO_Lxxy_#/D4,  
IO_Lxxy_#/D5,  
IO_Lxxy_#/D6,  
IO_Lxxy_#/D7,  
IO_Lxxy_#/CS_B,  
IO_Lxxy_#/RDWR_B,  
IO_Lxxy_#/BUSY,  
IO_Lxxy_#/INIT_B  
Parallel configuration mode (also called SelectMAP): If set to Yes,  
then these pins retain their SelectMAP functionality after  
configuration completes, allowing for device readback and for  
partial or complete (re-)configuration.  
Pullup  
Pullnone  
CCLK  
After configuration, this bitstream option either pulls CCLK to  
VCCAUX via a weak pull-up resistor, or allows CCLK to float.  
CclkPin  
CCLK  
For Master configuration modes, this option sets the approximate  
frequency, in MHz, for the internal silicon oscillator.  
ConfigRate 3, 6, 12, 25,  
50  
18  
www.xilinx.com  
1-800-255-7778  
DS099-4 (v1.5) July 13, 2004  
Product Specification  
R
Spartan-3 FPGA Family: Pinout Descriptions  
Table 11: Bitstream Options Affecting Spartan-3 Pins (Continued)  
Option  
Variable  
Name  
Values  
(default  
value)  
Affected Pin  
Name(s)  
Bitstream Generation Function  
Pullup  
Pullnone  
PROG_B  
A weak pull-up resistor to VCCAUX exists on PROG_B during  
configuration. After configuration, this bitstream option either  
pulls DONE to VCCAUX via a weak pull-up resistor, or allows  
DONE to float.  
ProgPin  
Pullup  
Pullnone  
DONE  
DONE  
After configuration, this bitstream option either pulls DONE to  
VCCAUX via a weak pull-up resistor, or allows DONE to float. See  
also DriveDone option.  
DonePin  
No  
Yes  
If set to Yes, this option allows the FPGA’s DONE pin to drive High  
when configuration completes. By default, the DONE is an  
open-drain output and can only drive Low. Only single FPGAs and  
the last FPGA in a multi-FPGA daisy-chain should use this option.  
DriveDone  
Pullup  
M2  
After configuration, this bitstream option either pulls M2 to  
VCCAUX via a weak pull-up resistor, to ground via a weak  
pull-down resistor, or allows M2 to float.  
M2Pin  
M1Pin  
M0Pin  
Pulldown  
Pullnone  
Pullup  
Pulldown  
Pullnone  
Pullup  
Pulldown  
Pullnone  
Pullup  
Pulldown  
Pullnone  
Pullup  
Pulldown  
Pullnone  
Pullup  
Pulldown  
Pullnone  
Pullup  
Pulldown  
Pullnone  
Pullup  
Pulldown  
Pullnone  
M1  
After configuration, this bitstream option either pulls M1 to  
VCCAUX via a weak pull-up resistor, to ground via a weak  
pull-down resistor, or allows M1 to float.  
M0  
After configuration, this bitstream option either pulls M0 to  
VCCAUX via a weak pull-up resistor, to ground via a weak  
pull-down resistor, or allows M0 to float.  
HSWAP_EN  
TDI  
After configuration, this bitstream option either pulls HSWAP_EN HswapenPin  
to VCCAUX via a weak pull-up resistor, to ground via a weak  
pull-down resistor, or allows HSWAP_EN to float.  
After configuration, this bitstream option either pulls TDI to  
VCCAUX via a weak pull-up resistor, to ground via a weak  
pull-down resistor, or allows TDI to float.  
TdiPin  
TmsPin  
TckPin  
TdoPin  
TMS  
TCK  
TDO  
After configuration, this bitstream option either pulls TMS to  
VCCAUX via a weak pull-up resistor, to ground via a weak  
pull-down resistor, or allows TMS to float.  
After configuration, this bitstream option either pulls TCK to  
VCCAUX via a weak pull-up resistor, to ground via a weak  
pull-down resistor, or allows TCK to float.  
After configuration, this bitstream option either pulls TDO to  
VCCAUX via a weak pull-up resistor, to ground via a weak  
pull-down resistor, or allows TDO to float.  
where <variable_name> is one of the entries from  
Table 11 and <value> is one of the possible values for the  
specified variable. Multiple bitstream options may be  
entered in this manner.  
Setting Options via BitGen Command-Line  
Program  
To set one or more bitstream generator options using the  
BitGen command-line program, enter  
For a complete listing of all BitGen options, their possible  
settings, and their default settings, enter the following com-  
mand.  
bitgen –g <variable_name>:<value>  
[<variable_name>:<value> …]  
bitgen -help spartan3  
DS099-4 (v1.5) July 13, 2004  
Product Specification  
www.xilinx.com  
1-800-255-7778  
19  
R
Spartan-3 FPGA Family: Pinout Descriptions  
Click the Configuration options tab and modify the avail-  
able options as required by the application, as shown in  
Figure 6.  
Setting Options in Project Navigator  
To set the bitstream generation options in Xilinx ISE Project  
Navigator, right-click on the Generate Programming File  
step in the Process View and click Properties, as shown in  
Figure 5.  
DS099-4_05_030103  
Figure 5: Setting Properties for Generate Programming File Step  
DS099-4_06_030103  
Figure 6: Configuration Option Settings  
20  
www.xilinx.com  
1-800-255-7778  
DS099-4 (v1.5) July 13, 2004  
Product Specification  
R
Spartan-3 FPGA Family: Pinout Descriptions  
DS099-4_07_030103  
Figure 7: Setting to Drive DONE Pin High after Configuration  
To have the DONE pin drive High after successful configu-  
ration, click the Startup options tab and check the Drive  
Done Pin High box, as shown in Figure 7.  
is available as a standard and an environmentally-friendly  
lead-free (Pb-free) option. The Pb-free packages include an  
extra ’G’ in the package style name. For example, the stan-  
dard "VQ100" package becomes "VQG100" when ordered  
as the Pb-free option. The mechanical dimensions of the  
standard and Pb-free packages are similar, as shown in the  
mechanical drawings provided in Table 13.  
Click OK when finished.  
Again, right-click on the Generate Programming File step  
in the Process View. This time, choose Run or Rerun to  
execute the changes.  
Not all Spartan-3 densities are available in all packages.  
However, for a specific package there is a common footprint  
for that supports the various devices available in that pack-  
age. See the footprint diagrams that follow.  
Package Overview  
Table 12 shows the nine low-cost, space-saving production  
package styles for the Spartan-3 family. Each package style  
Table 12: Spartan-3 Family Package Options  
Maximum  
I/O  
Pitch  
(mm)  
Area  
(mm)  
Height  
(mm)  
Package  
Leads  
100  
Type  
VQ100 / VQG100  
TQ144 / TQG144  
PQ208 / PQG208  
FT256 / FTG256  
FG320 / FGG320  
FG456 / FGG456  
FG676 / FGG676  
FG900 / FGG900  
FG1156 / FGG1156  
Very-thin Quad Flat Pack  
Thin Quad Flat Pack  
63  
0.5  
0.5  
0.5  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
16 x 16  
22 x 22  
30.6 x 30.6  
17 x 17  
19 x 19  
23 x 23  
27 x 27  
31 x 31  
35 x 35  
1.20  
1.60  
4.10  
1.55  
2.00  
2.60  
2.60  
2.60  
2.60  
144  
97  
208  
Quad Flat Pack  
141  
173  
221  
333  
489  
633  
784  
256  
Fine-pitch, Thin Ball Grid Array  
Fine-pitch Ball Grid Array  
Fine-pitch Ball Grid Array  
Fine-pitch Ball Grid Array  
Fine-pitch Ball Grid Array  
Fine-pitch Ball Grid Array  
320  
456  
676  
900  
1156  
DS099-4 (v1.5) July 13, 2004  
Product Specification  
www.xilinx.com  
1-800-255-7778  
21  
R
Spartan-3 FPGA Family: Pinout Descriptions  
Detailed mechanical drawings for each package type are  
available from the Xilinx website at the specified location in  
Table 13.  
Table 13: Xilinx Package Mechanical Drawings  
Package  
Web Link (URL)  
http://www.xilinx.com/bvdocs/packages/vq100.pdf  
http://www.xilinx.com/bvdocs/packages/tq144.pdf  
http://www.xilinx.com/bvdocs/packages/pq208.pdf  
http://www.xilinx.com/bvdocs/packages/ft256.pdf  
http://www.xilinx.com/bvdocs/packages/fg320.pdf  
http://www.xilinx.com/bvdocs/packages/fg456.pdf  
http://www.xilinx.com/bvdocs/packages/fg676.pdf  
http://www.xilinx.com/bvdocs/packages/fg900.pdf  
http://www.xilinx.com/bvdocs/packages/fg1156.pdf  
VQ100 / VQG100  
TQ144 / TQG144  
PQ208 / PQG208  
FT256 / FTG256  
FG320 / FGG320  
FG456 / FGG456  
FG676 / FGG676  
FG900 /FGG900  
FG1156 / FGG1156  
Each package has three separate voltage supply  
inputs—VCCINT, VCCAUX, and VCCO—and a common  
ground return, GND. The numbers of pins dedicated to  
these functions varies by package, as shown in Table 14.  
A majority of package pins are user-defined I/O pins. How-  
ever, the numbers and characteristics of these I/O depends  
on the device type and the package in which it is available,  
as shown in Table 15. The table shows the maximum num-  
ber of single-ended I/O pins available, assuming that all  
I/O-, DUAL-, DCI-, VREF-, and GCLK-type pins are used as  
general-purpose I/O. Likewise, the table shows the maxi-  
mum number of differential pin-pairs available on the pack-  
age. Finally, the table shows how the total maximum user  
I/Os are distributed by pin type, including the number of  
unconnected—i.e., N.C.—pins on the device.  
Table 14: Power and Ground Supply Pins by Package  
Package  
VQ100  
TQ144  
PQ208  
FT256  
VCCINT  
VCCAUX  
VCCO  
8
GND  
10  
4
4
4
4
12  
16  
4
8
12  
28  
8
8
24  
32  
FG320  
FG456  
FG676  
FG900  
FG1156  
12  
12  
20  
32  
40  
8
28  
40  
8
40  
52  
16  
24  
32  
64  
76  
80  
120  
184  
104  
22  
www.xilinx.com  
1-800-255-7778  
DS099-4 (v1.5) July 13, 2004  
Product Specification  
R
Spartan-3 FPGA Family: Pinout Descriptions  
All Possible I/O Pins by Type  
Table 15: Maximum User I/Os by Package  
Maximum  
Differential  
Pairs  
Maximum  
Device  
Package  
VQ100  
VQ100  
TQ144  
TQ144  
TQ144  
PQ208  
PQ208  
PQ208  
FT256  
FT256  
FT256  
FG320  
FG320  
FG320  
FG456  
FG456  
FG456  
FG676  
FG676  
FG676  
FG900  
FG900  
FG900  
FG1156  
FG1156  
User I/Os  
I/O  
22  
DUAL  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
DCI  
14  
14  
14  
14  
14  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
VREF  
7
GCLK  
N.C.  
0
XC3S50  
63  
29  
29  
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
XC3S200  
XC3S50  
63  
22  
7
0
97  
46  
51  
12  
12  
12  
16  
22  
22  
24  
24  
24  
29  
29  
29  
32  
36  
36  
40  
48  
48  
48  
48  
48  
55  
56  
0
XC3S200  
XC3S400  
XC3S50  
97  
46  
51  
0
97  
46  
51  
0
124  
141  
141  
173  
173  
173  
221  
221  
221  
264  
333  
333  
391  
487  
489  
565  
633  
633  
712  
784  
56  
72  
17  
0
XC3S200  
XC3S400  
XC3S200  
XC3S400  
XC3S1000  
XC3S400  
XC3S1000  
XC3S1500  
XC3S400  
XC3S1000  
XC3S1500  
XC3S1000  
XC3S1500  
XC3S2000  
XC3S2000  
XC3S4000  
XC3S5000  
XC3S4000  
XC3S5000  
62  
83  
62  
83  
0
76  
113  
113  
113  
156  
156  
156  
196  
261  
261  
315  
403  
405  
481  
549  
549  
621  
692  
0
76  
0
76  
0
100  
100  
100  
116  
149  
149  
175  
221  
221  
270  
300  
300  
312  
344  
0
0
0
69  
0
0
98  
2
0
68  
0
0
73  
1
Electronic versions of the package pinout tables and foot-  
prints are available for download from the Xilinx website.  
Using a spreadsheet program, the data can be sorted and  
reformatted according to any specific needs. Similarly, the  
ASCII-text file is easily parsed by most scripting programs.  
Download the files from the following location:  
http://www.xilinx.com/bvdocs/publications/s3_pin.zip  
DS099-4 (v1.5) July 13, 2004  
Product Specification  
www.xilinx.com  
1-800-255-7778  
23  
R
Spartan-3 FPGA Family: Pinout Descriptions  
Table 16: VQ100 Package Pinout  
VQ100: 100-lead Very-thin Quad Flat  
Package  
The XC3S50 and the XC3S200 devices are available in the  
100-lead very-thin quad flat package, VQ100. Both devices  
share a common footprint for this package as shown in  
Table 16 and Figure 8.  
XC3S50  
XC3S200  
VQ100 Pin  
Number  
Bank  
3
3
3
3
4
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
5
6
6
6
6
6
6
6
6
6
7
7
7
7
7
7
7
7
Pin Name  
Type  
I/O  
IO_L24P_3  
P60  
P63  
P62  
P57  
P50  
P49  
P48  
P47  
P44  
P43  
P42  
P40  
P39  
P38  
P46  
P28  
P27  
P32  
P30  
P35  
P34  
P37  
P36  
P31  
P17  
P21  
P23  
P22  
P16  
P15  
P14  
P13  
P19  
P2  
IO_L40N_3/VREF_3  
IO_L40P_3  
VREF  
I/O  
All the package pins appear in Table 16 and are sorted by  
bank number, then by pin name. Pairs of pins that form a dif-  
ferential I/O pair appear together in the table. The table also  
shows the pin number for each pin and the pin type, as  
defined earlier.  
VCCO_3  
VCCO  
DCI  
IO_L01N_4/VRP_4  
IO_L01P_4/VRN_4  
IO_L27N_4/DIN/D0  
IO_L27P_4/D1  
IO_L30N_4/D2  
IO_L30P_4/D3  
IO_L31N_4/INIT_B  
IO_L31P_4/DOUT/BUSY  
IO_L32N_4/GCLK1  
IO_L32P_4/GCLK0  
VCCO_4  
DCI  
DUAL  
DUAL  
DUAL  
DUAL  
DUAL  
DUAL  
GCLK  
GCLK  
VCCO  
DUAL  
DUAL  
DUAL  
DUAL  
DUAL  
DUAL  
GCLK  
GCLK  
VCCO  
I/O  
Pinout Table  
Table 16: VQ100 Package Pinout  
XC3S50  
XC3S200  
Pin Name  
VQ100 Pin  
Number  
Bank  
0
Type  
DCI  
IO_L01N_0/VRP_0  
IO_L01P_0/VRN_0  
IO_L31N_0  
P97  
P96  
P92  
P91  
P90  
P89  
P94  
P81  
P80  
P79  
P86  
P85  
P88  
P87  
P83  
P75  
P74  
P72  
P71  
P68  
P67  
P65  
P64  
P70  
P55  
P59  
P54  
P53  
P61  
0
DCI  
0
I/O  
0
IO_L31P_0/VREF_0  
IO_L32N_0/GCLK7  
IO_L32P_0/GCLK6  
VCCO_0  
VREF  
GCLK  
GCLK  
VCCO  
I/O  
IO_L01N_5/RDWR_B  
IO_L01P_5/CS_B  
IO_L28N_5/D6  
IO_L28P_5/D7  
IO_L31N_5/D4  
IO_L31P_5/D5  
IO_L32N_5/GCLK3  
IO_L32P_5/GCLK2  
VCCO_5  
0
0
0
1
IO  
1
IO_L01N_1/VRP_1  
IO_L01P_1/VRN_1  
IO_L31N_1/VREF_1  
IO_L31P_1  
DCI  
1
DCI  
1
VREF  
I/O  
1
1
IO_L32N_1/GCLK5  
IO_L32P_1/GCLK4  
VCCO_1  
GCLK  
GCLK  
VCCO  
DCI  
IO  
1
IO  
I/O  
1
IO_L01N_6/VRP_6  
IO_L01P_6/VRN_6  
IO_L24N_6/VREF_6  
IO_L24P_6  
DCI  
2
IO_L01N_2/VRP_2  
IO_L01P_2/VRN_2  
IO_L21N_2  
DCI  
2
DCI  
VREF  
I/O  
2
I/O  
2
IO_L21P_2  
I/O  
IO_L40N_6  
I/O  
2
IO_L24N_2  
I/O  
IO_L40P_6/VREF_6  
VCCO_6  
VREF  
VCCO  
DCI  
2
IO_L24P_2  
I/O  
2
IO_L40N_2  
I/O  
IO_L01N_7/VRP_7  
IO_L01P_7/VRN_7  
IO_L21N_7  
2
IO_L40P_2/VREF_2  
VCCO_2  
VREF  
VCCO  
I/O  
P1  
DCI  
2
P5  
I/O  
3
IO  
IO_L21P_7  
P4  
I/O  
3
IO  
I/O  
IO_L23N_7  
P9  
I/O  
3
IO_L01N_3/VRP_3  
IO_L01P_3/VRN_3  
IO_L24N_3  
DCI  
IO_L23P_7  
P8  
I/O  
3
DCI  
IO_L40N_7/VREF_7  
IO_L40P_7  
P12  
P11  
VREF  
I/O  
3
I/O  
24  
www.xilinx.com  
1-800-255-7778  
DS099-4 (v1.5) July 13, 2004  
Product Specification  
R
Spartan-3 FPGA Family: Pinout Descriptions  
Table 16: VQ100 Package Pinout  
Table 16: VQ100 Package Pinout  
XC3S50  
XC3S200  
Pin Name  
XC3S50  
XC3S200  
Pin Name  
VQ100 Pin  
Number  
VQ100 Pin  
Number  
Bank  
7
Type  
VCCO  
GND  
Bank  
Type  
VCCINT  
CONFIG  
CONFIG  
CONFIG  
CONFIG  
CONFIG  
CONFIG  
CONFIG  
JTAG  
VCCO_7  
P6  
N/A  
VCCINT  
P93  
P52  
P51  
P98  
P25  
P24  
P26  
P99  
P77  
P100  
P76  
P78  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
GND  
P3  
VCCAUX CCLK  
VCCAUX DONE  
GND  
P10  
P20  
P29  
P41  
P56  
P66  
P73  
P82  
P95  
P7  
GND  
GND  
GND  
VCCAUX HSWAP_EN  
VCCAUX M0  
GND  
GND  
GND  
GND  
VCCAUX M1  
GND  
GND  
VCCAUX M2  
GND  
GND  
VCCAUX PROG_B  
VCCAUX TCK  
VCCAUX TDI  
GND  
GND  
GND  
GND  
JTAG  
GND  
GND  
VCCAUX TDO  
VCCAUX TMS  
JTAG  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCINT  
VCCINT  
VCCINT  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCINT  
VCCINT  
VCCINT  
JTAG  
P33  
P58  
P84  
P18  
P45  
P69  
User I/Os by Bank  
Table 17 indicates how the available user-I/O pins are dis-  
tributed between the eight I/O banks on the VQ100 pack-  
age.  
Table 17: User I/Os Per Bank in VQ100 Package  
All Possible I/O Pins by Type  
Maximum  
Package Edge  
I/O Bank  
I/O  
I/O  
1
DUAL  
DCI  
2
VREF  
GCLK  
0
1
2
3
4
5
6
7
6
0
0
0
0
6
6
0
0
1
1
1
1
0
0
2
1
2
2
0
0
2
2
0
0
Top  
7
2
2
8
5
2
Right  
Bottom  
Left  
8
5
2
10  
8
0
2
0
0
8
4
2
8
5
2
DS099-4 (v1.5) July 13, 2004  
Product Specification  
www.xilinx.com  
1-800-255-7778  
25  
R
Spartan-3 FPGA Family: Pinout Descriptions  
VQ100 Footprint  
IO_L01P_7/VRN_7  
1
2
75 IO_L01N_2/VRP_2  
74 IO_L01P_2/VRN_2  
73 GND  
Bank 0  
Bank 1  
IO_L01N_7/VRP_7  
GND  
3
IO_L21P_7  
IO_L21N_7  
4
72 IO_L21N_2  
71 IO_L21P_2  
70 VCCO_2  
5
6
VCCO_7  
VCCAUX  
7
69 VCCINT  
IO_L23P_7  
IO_L23N_7  
8
68 IO_L24N_2  
67 IO_L24P_2  
66 GND  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
GND  
IO_L40P_7  
65 IO_L40N_2  
64 IO_L40P_2/VREF_2  
63 IO_L40N_3/VREF_3  
62 IO_L40P_3  
61 IO_L24N_3  
60 IO_L24P_3  
59 IO  
IO_L40N_7/VREF_7  
IO_L40P_6/VREF_6  
IO_L40N_6  
IO_L24P_6  
IO_L24N_6/VREF_6  
IO  
VCCINT  
58 VCCAUX  
57 VCCO_3  
VCCO_6  
56 GND  
GND  
55 IO  
IO  
IO_L01P_6/VRN_6  
54 IO_L01N_3/VRP_3  
53 IO_L01P_3/VRN_3  
52 CCLK  
IO_L01N_6/VRP_6  
M1  
M0  
Bank 5  
Bank 4  
no VREF, no DCI)  
(no VREF)  
(
51 DONE  
DS099-4_15_042303  
Figure 8: VQ100 Package Footprint (top view). Note pin 1 indicator in top-left corner and logo orientation.  
I/O: Unrestricted, general-purpose user I/O  
DUAL: Configuration pin, then possible  
user I/O  
VREF: User I/O or input voltage reference for  
bank  
22  
12  
7
DCI: User I/O or reference resistor input for  
bank  
GCLK: User I/O or global clock buffer  
input  
VCCO: Output voltage supply for bank  
14  
7
8
4
4
8
4
CONFIG: Dedicated configuration pins  
JTAG: Dedicated JTAG port pins  
VCCINT: Internal core voltage supply (+1.2V)  
VCCAUX: Auxiliary voltage supply (+2.5V)  
N.C.: No unconnected pins in this package  
GND: Ground  
0
10  
26  
www.xilinx.com  
1-800-255-7778  
DS099-4 (v1.5) July 13, 2004  
Product Specification  
R
Spartan-3 FPGA Family: Pinout Descriptions  
Table 18: TQ144 Package Pinout (Continued)  
TQ144: 144-lead Thin Quad Flat  
Package  
The XC3S50, the XC3S200, and the XC3S400 are avail-  
able in the 144-lead thin quad flat package, TQ144. Conse-  
quently, there is only one footprint for this package as shown  
in Table 18 and Figure 9.  
XC3S50  
XC3S200  
XC3S400  
Pin Name  
TQ144Pin  
Number  
Bank  
2
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
4
5
5
5
5
Type  
I/O  
IO_L20P_2  
P104  
P103  
P102  
P100  
P99  
P98  
P97  
P96  
P95  
P93  
P92  
P76  
P74  
P73  
P78  
P77  
P80  
P79  
P83  
P82  
P85  
P84  
P87  
P86  
P90  
P89  
P70  
P69  
P68  
P65  
P63  
P60  
P59  
P58  
P57  
P56  
P55  
P44  
P41  
P40  
P47  
IO_L21N_2  
I/O  
The TQ144 package only has four separate VCCO inputs,  
unlike the other packages, which have eight separate  
VCCO inputs. The TQ144 package has a separate VCCO  
input for the top, bottom, left, and right. However, there are  
still eight separate I/O banks, as shown in Table 18 and  
Figure 9. Banks 0 and 1 share the VCCO_TOP input, Banks  
2 and 3 share the VCCO_RIGHT input, Banks 4 and 5  
share the VCCO_BOTTOM input, and Banks 6 and 7 share  
the VCCO_LEFT input.  
IO_L21P_2  
I/O  
IO_L22N_2  
I/O  
IO_L22P_2  
I/O  
IO_L23N_2/VREF_2  
IO_L23P_2  
VREF  
I/O  
IO_L24N_2  
I/O  
IO_L24P_2  
I/O  
All the package pins appear in Table 18 and are sorted by  
bank number, then by pin name. Pairs of pins that form a dif-  
ferential I/O pair appear together in the table. The table also  
shows the pin number for each pin and the pin type, as  
defined earlier.  
IO_L40N_2  
I/O  
IO_L40P_2/VREF_2  
IO  
VREF  
I/O  
IO_L01N_3/VRP_3  
IO_L01P_3/VRN_3  
IO_L20N_3  
DCI  
DCI  
Pinout Table  
I/O  
IO_L20P_3  
I/O  
Table 18: TQ144 Package Pinout  
IO_L21N_3  
I/O  
XC3S50  
XC3S200  
IO_L21P_3  
I/O  
XC3S400  
Pin Name  
TQ144Pin  
Number  
IO_L22N_3  
I/O  
Bank  
0
Type  
DCI  
DCI  
I/O  
IO_L22P_3  
I/O  
IO_L01N_0/VRP_0  
IO_L01P_0/VRN_0  
IO_L27N_0  
P141  
P140  
P137  
P135  
P132  
P131  
P130  
P129  
P128  
P127  
P116  
P113  
P112  
P119  
P118  
P123  
P122  
P125  
P124  
P108  
P107  
P105  
IO_L23N_3  
I/O  
0
IO_L23P_3/VREF_3  
IO_L24N_3  
VREF  
I/O  
0
0
IO_L27P_0  
I/O  
IO_L24P_3  
I/O  
0
IO_L30N_0  
I/O  
IO_L40N_3/VREF_3  
IO_L40P_3  
VREF  
I/O  
0
IO_L30P_0  
I/O  
0
IO_L31N_0  
I/O  
IO/VREF_4  
VREF  
DCI  
0
IO_L31P_0/VREF_0  
IO_L32N_0/GCLK7  
IO_L32P_0/GCLK6  
IO  
VREF  
GCLK  
GCLK  
I/O  
IO_L01N_4/VRP_4  
IO_L01P_4/VRN_4  
IO_L27N_4/DIN/D0  
IO_L27P_4/D1  
IO_L30N_4/D2  
IO_L30P_4/D3  
IO_L31N_4/INIT_B  
IO_L31P_4/DOUT/BUSY  
IO_L32N_4/GCLK1  
IO_L32P_4/GCLK0  
IO/VREF_5  
0
DCI  
0
DUAL  
DUAL  
DUAL  
DUAL  
DUAL  
DUAL  
GCLK  
GCLK  
VREF  
DUAL  
DUAL  
DUAL  
1
1
IO_L01N_1/VRP_1  
IO_L01P_1/VRN_1  
IO_L28N_1  
DCI  
DCI  
I/O  
1
1
1
IO_L28P_1  
I/O  
1
IO_L31N_1/VREF_1  
IO_L31P_1  
VREF  
I/O  
1
1
IO_L32N_1/GCLK5  
IO_L32P_1/GCLK4  
IO_L01N_2/VRP_2  
IO_L01P_2/VRN_2  
IO_L20N_2  
GCLK  
GCLK  
DCI  
DCI  
I/O  
1
IO_L01N_5/RDWR_B  
IO_L01P_5/CS_B  
IO_L28N_5/D6  
2
2
2
DS099-4 (v1.5) July 13, 2004  
Product Specification  
www.xilinx.com  
1-800-255-7778  
27  
R
Spartan-3 FPGA Family: Pinout Descriptions  
Table 18: TQ144 Package Pinout (Continued)  
Table 18: TQ144 Package Pinout (Continued)  
XC3S50  
XC3S50  
XC3S200  
XC3S200  
XC3S400  
Pin Name  
TQ144Pin  
Number  
XC3S400  
Pin Name  
TQ144Pin  
Number  
Bank  
5
Type  
DUAL  
DUAL  
DUAL  
GCLK  
GCLK  
DCI  
Bank  
4,5  
Type  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
GND  
IO_L28P_5/D7  
P46  
P51  
P50  
P53  
P52  
P36  
P35  
P33  
P32  
P31  
P30  
P28  
P27  
P26  
P25  
P24  
P23  
P21  
P20  
P4  
VCCO_BOTTOM  
VCCO_BOTTOM  
VCCO_LEFT  
VCCO_LEFT  
VCCO_LEFT  
GND  
P43  
P66  
5
IO_L31N_5/D4  
IO_L31P_5/D5  
IO_L32N_5/GCLK3  
IO_L32P_5/GCLK2  
IO_L01N_6/VRP_6  
IO_L01P_6/VRN_6  
IO_L20N_6  
4,5  
5
6,7  
P19  
5
6,7  
P34  
5
6,7  
P3  
6
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
P136  
P139  
P114  
P117  
P94  
6
DCI  
GND  
GND  
6
I/O  
GND  
GND  
6
IO_L20P_6  
I/O  
GND  
GND  
6
IO_L21N_6  
I/O  
GND  
GND  
6
IO_L21P_6  
I/O  
GND  
P101  
P81  
GND  
6
IO_L22N_6  
I/O  
GND  
GND  
6
IO_L22P_6  
I/O  
GND  
P88  
GND  
6
IO_L23N_6  
I/O  
GND  
P64  
GND  
6
IO_L23P_6  
I/O  
GND  
P67  
GND  
6
IO_L24N_6/VREF_6  
IO_L24P_6  
VREF  
I/O  
GND  
P42  
GND  
6
GND  
P45  
GND  
6
IO_L40N_6  
I/O  
GND  
P22  
GND  
6
IO_L40P_6/VREF_6  
IO/VREF_7  
VREF  
VREF  
DCI  
GND  
P29  
GND  
7
GND  
P9  
GND  
7
IO_L01N_7/VRP_7  
IO_L01P_7/VRN_7  
IO_L20N_7  
P2  
GND  
P16  
GND  
7
P1  
DCI  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
P134  
P120  
P62  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
CONFIG  
CONFIG  
CONFIG  
CONFIG  
CONFIG  
CONFIG  
CONFIG  
JTAG  
7
P6  
I/O  
7
IO_L20P_7  
P5  
I/O  
7
IO_L21N_7  
P8  
I/O  
P48  
7
IO_L21P_7  
P7  
I/O  
P133  
P121  
P61  
7
IO_L22N_7  
P11  
P10  
P13  
P12  
P15  
P14  
P18  
P17  
P126  
P138  
P115  
P106  
P75  
P91  
P54  
I/O  
7
IO_L22P_7  
I/O  
7
IO_L23N_7  
I/O  
P49  
7
IO_L23P_7  
I/O  
VCCAUX CCLK  
VCCAUX DONE  
VCCAUX HSWAP_EN  
VCCAUX M0  
P72  
7
IO_L24N_7  
I/O  
P71  
7
IO_L24P_7  
I/O  
P142  
P38  
7
IO_L40N_7/VREF_7  
IO_L40P_7  
VREF  
I/O  
7
VCCAUX M1  
P37  
0,1  
0,1  
0,1  
2,3  
2,3  
2,3  
4,5  
VCCO_TOP  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCAUX M2  
P39  
VCCO_TOP  
VCCAUX PROG_B  
VCCAUX TCK  
VCCAUX TDI  
P143  
P110  
P144  
P109  
P111  
VCCO_TOP  
VCCO_RIGHT  
VCCO_RIGHT  
VCCO_RIGHT  
VCCO_BOTTOM  
JTAG  
VCCAUX TDO  
VCCAUX TMS  
JTAG  
JTAG  
28  
www.xilinx.com  
1-800-255-7778  
DS099-4 (v1.5) July 13, 2004  
Product Specification  
R
Spartan-3 FPGA Family: Pinout Descriptions  
User I/Os by Bank  
Table 19 indicates how the available user-I/O pins are dis-  
tributed between the eight I/O banks on the TQ144 pack-  
age.  
Table 19: User I/Os Per Bank in TQ144 Package  
All Possible I/O Pins by Type  
Maximum  
Package Edge  
I/O Bank  
I/O  
10  
9
I/O  
5
DUAL  
DCI  
2
VREF  
GCLK  
0
1
2
3
4
5
6
7
0
0
0
0
6
6
0
0
1
1
2
2
1
1
2
2
2
2
0
0
2
2
0
0
Top  
4
2
14  
15  
11  
9
10  
11  
0
2
Right  
Bottom  
Left  
2
2
0
0
14  
15  
10  
11  
2
2
DS099-4 (v1.5) July 13, 2004  
Product Specification  
www.xilinx.com  
1-800-255-7778  
29  
R
Spartan-3 FPGA Family: Pinout Descriptions  
TQ144 Footprint  
IO_L01P_7/VRN_7  
IO_L01N_7/VRP_7  
VCCO_LEFT  
IO/VREF_7  
IO_L20P_7  
1
2
3
4
5
6
7
8
9
108 IO_L01N_2/VRP_2  
107 IO_L01P_2/VRN_2  
106 VCCO_RIGHT  
105 IO_L20N_2  
104 IO_L20P_2  
103 IO_L21N_2  
102 IO_L21P_2  
101 GND  
Bank 0  
Bank 1  
VCCO for Top Edge  
X
IO_L20N_7  
IO_L21P_7  
IO_L21N_7  
GND  
100 IO_L22N_2  
99 IO_L22P_2  
98 IO_L23N_2/VREF_2  
97 IO_L23P_2  
96 IO_L24N_2  
95 IO_L24P_2  
94 GND  
IO_L22P_7 10  
IO_L22N_7 11  
IO_L23P_7 12  
IO_L23N_7 13  
IO_L24P_7 14  
IO_L24N_7 15  
GND 16  
93 IO_L40N_2  
92 IO_L40P_2/VREF_2  
91 VCCO_RIGHT  
90 IO_L40N_3/VREF_3  
89 IO_L40P_3  
88 GND  
IO_L40P_7 17  
IO_L40N_7/VREF_7 18  
VCCO_LEFT 19  
IO_L40P_6/VREF_6 20  
IO_L40N_6 21  
GND 22  
87 IO_L24N_3  
86 IO_L24P_3  
85 IO_L23N_3  
84 IO_L23P_3/VREF_3  
83 IO_L22N_3  
82 IO_L22P_3  
81 GND  
IO_L24P_6 23  
IO_L24N_6/VREF_6 24  
IO_L23P_6 25  
IO_L23N_6 26  
IO_L22P_6 27  
IO_L22N_6 28  
GND 29  
80 IO_L21N_3  
79 IO_L21P_3  
78 IO_L20N_3  
77 IO_L20P_3  
76 IO  
IO_L21P_6 30  
IO_L21N_6 31  
IO_L20P_6 32  
IO_L20N_6 33  
VCCO_LEFT 34  
IO_L01P_6/VRN_6 35  
IO_L01N_6/VRP_6 36  
VCCO for Bottom Edge  
75 VCCO_RIGHT  
74  
73  
IO_L01N_3/VRP_3  
IO_L01P_3/VRN_3  
Bank 5  
Bank 4  
(no DCI)  
DS099-4_08_121103  
Figure 9: TQ144 Package Footprint (top view). Note pin 1 indicator in top-left corner and logo orientation.  
I/O: Unrestricted, general-purpose user I/O  
DUAL: Configuration pin, then possible  
user I/O  
VREF: User I/O or input voltage reference for  
bank  
51  
12  
12  
DCI: User I/O or reference resistor input for  
bank  
GCLK: User I/O or global clock buffer  
input  
VCCO: Output voltage supply for bank  
14  
7
12  
4
8
4
CONFIG: Dedicated configuration pins  
JTAG: Dedicated JTAG port pins  
VCCINT: Internal core voltage supply (+1.2V)  
VCCAUX: Auxiliary voltage supply (+2.5V)  
N.C.: No unconnected pins in this package  
GND: Ground  
0
16  
4
30  
www.xilinx.com  
1-800-255-7778  
DS099-4 (v1.5) July 13, 2004  
Product Specification  
R
Spartan-3 FPGA Family: Pinout Descriptions  
Table 20: PQ208 Package Pinout (Continued)  
PQ208: 208-lead Plastic Quad Flat Pack  
XC3S200  
XC3S400  
Pin Name  
PQ208  
Pin  
Number  
The 208-lead plastic quad flat package, PQ208, supports  
three different Spartan-3 devices, including the XC3S50,  
the XC3S200, and the XC3S400. The footprints for the  
XC3S200 and XC3S400 are identical, as shown in Table 20  
and Figure 10. The XC3S50, however, has fewer I/O pins  
resulting in 17 unconnected pins on the PQ208 package,  
labeled as “N.C.In Table 20 and Figure 10, these uncon-  
nected pins are indicated with a black diamond symbol (‹).  
XC3S50  
Pin Name  
Bank  
Type  
0
IO_L32N_0/ IO_L32N_0/  
P184  
GCLK  
GCLK7  
GCLK7  
0
IO_L32P_0/  
GCLK6  
IO_L32P_0/  
GCLK6  
P183  
GCLK  
0
0
1
1
1
1
VCCO_0  
VCCO_0  
IO  
VCCO_0  
VCCO_0  
IO  
P188  
P201  
P167  
P175  
P182  
P162  
VCCO  
VCCO  
I/O  
All the package pins appear in Table 20 and are sorted by  
bank number, then by pin name. Pairs of pins that form a dif-  
ferential I/O pair appear together in the table. The table also  
shows the pin number for each pin and the pin type, as  
defined earlier.  
IO  
IO  
I/O  
IO  
IO  
I/O  
IO_L01N_1/ IO_L01N_1/  
DCI  
If there is a difference between the XC3S50 pinout and the  
pinout for the XC3S200 and XC3S400, then that difference  
is highlighted in Table 20. If the table entry is shaded grey,  
then there is an unconnected pin on the XC3S50 that maps  
to a user-I/O pin on the XC3S200 and XC3S400. If the table  
entry is shaded tan, then the unconnected pin on the  
XC3S50 maps to a VREF-type pin on the XC3S200 and  
XC3S400. If the other VREF pins in the bank all connect to  
a voltage reference to support a special I/O standard, then  
also connect the N.C. pin on the XC3S50 to the same VREF  
voltage. This provides maximum flexibility as you could  
potentially migrate a design from the XC3S50 device to an  
XC3S200 or XC3S400 FPGA without changing the printed  
circuit board.  
VRP_1  
VRP_1  
1
1
IO_L01P_1/  
VRN_1  
IO_L01P_1/  
VRN_1  
P161  
P166  
DCI  
IO_L10N_1/ IO_L10N_1/  
VREF  
VREF_1  
VREF_1  
1
1
1
1
1
1
IO_L10P_1  
IO_L27N_1  
IO_L27P_1  
IO_L28N_1  
IO_L28P_1  
IO_L10P_1  
IO_L27N_1  
IO_L27P_1  
IO_L28N_1  
IO_L28P_1  
P165  
P169  
P168  
P172  
P171  
P178  
I/O  
I/O  
I/O  
I/O  
I/O  
IO_L31N_1/ IO_L31N_1/  
VREF  
VREF_1  
VREF_1  
1
1
IO_L31P_1  
IO_L31P_1  
P176  
P181  
I/O  
Pinout Table  
IO_L32N_1/ IO_L32N_1/  
GCLK5  
GCLK  
Table 20: PQ208 Package Pinout  
GCLK5  
XC3S200  
XC3S400  
Pin Name  
PQ208  
Pin  
Number  
1
IO_L32P_1/  
GCLK4  
IO_L32P_1/  
GCLK4  
P180  
GCLK  
XC3S50  
Pin Name  
Bank  
Type  
I/O  
1
1
2
2
VCCO_1  
VCCO_1  
N.C. (‹)  
VCCO_1  
VCCO_1  
IO/VREF_2  
P164  
P177  
P154  
P156  
VCCO  
VCCO  
VREF  
DCI  
0
0
0
0
0
IO  
IO  
P189  
P197  
P200  
P205  
P204  
IO  
IO  
I/O  
N.C. (‹)  
IO/VREF_0  
IO/VREF_0  
IO/VREF_0  
VREF  
VREF  
DCI  
IO_L01N_2/ IO_L01N_2/  
VRP_2  
VRP_2  
IO_L01N_0/ IO_L01N_0/  
2
IO_L01P_2/  
VRN_2  
IO_L01P_2/  
VRN_2  
P155  
DCI  
VRP_0  
VRP_0  
0
IO_L01P_0/  
VRN_0  
IO_L01P_0/  
VRN_0  
P203  
DCI  
2
2
2
2
2
2
2
2
2
IO_L19N_2  
IO_L19P_2  
IO_L20N_2  
IO_L20P_2  
IO_L21N_2  
IO_L21P_2  
IO_L22N_2  
IO_L22P_2  
IO_L19N_2  
IO_L19P_2  
IO_L20N_2  
IO_L20P_2  
IO_L21N_2  
IO_L21P_2  
IO_L22N_2  
IO_L22P_2  
P152  
P150  
P149  
P148  
P147  
P146  
P144  
P143  
P141  
I/O  
I/O  
0
0
0
0
0
0
0
0
IO_L25N_0  
IO_L25P_0  
IO_L27N_0  
IO_L27P_0  
IO_L30N_0  
IO_L30P_0  
IO_L31N_0  
IO_L25N_0  
IO_L25P_0  
IO_L27N_0  
IO_L27P_0  
IO_L30N_0  
IO_L30P_0  
IO_L31N_0  
P199  
P198  
P196  
P194  
P191  
P190  
P187  
P185  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
IO_L23N_2/ IO_L23N_2/  
VREF_2  
VREF  
IO_L31P_0/  
VREF_0  
IO_L31P_0/  
VREF_0  
VREF  
VREF_2  
2
IO_L23P_2  
IO_L23P_2  
P140  
I/O  
DS099-4 (v1.5) July 13, 2004  
Product Specification  
www.xilinx.com  
1-800-255-7778  
31  
R
Spartan-3 FPGA Family: Pinout Descriptions  
Table 20: PQ208 Package Pinout (Continued)  
Table 20: PQ208 Package Pinout (Continued)  
XC3S200  
XC3S400  
Pin Name  
PQ208  
Pin  
Number  
XC3S200  
XC3S400  
Pin Name  
PQ208  
Pin  
Number  
XC3S50  
Pin Name  
XC3S50  
Pin Name  
Bank  
Type  
I/O  
Bank  
Type  
2
2
2
2
2
2
IO_L24N_2  
IO_L24P_2  
N.C. (‹)  
IO_L24N_2  
IO_L24P_2  
IO_L39N_2  
IO_L39P_2  
IO_L40N_2  
P139  
P138  
P137  
P135  
P133  
P132  
4
IO_L01P_4/  
VRN_4  
IO_L01P_4/  
VRN_4  
P100  
DCI  
I/O  
4
4
4
IO_L25N_4  
IO_L25P_4  
IO_L25N_4  
IO_L25P_4  
P95  
P94  
P92  
I/O  
I/O  
I/O  
N.C. (‹)  
I/O  
IO_L27N_4/ IO_L27N_4/  
DUAL  
IO_L40N_2  
I/O  
DIN/D0  
DIN/D0  
IO_L40P_2/  
VREF_2  
IO_L40P_2/  
VREF_2  
VREF  
4
4
4
4
4
4
4
IO_L27P_4/  
D1  
IO_L27P_4/  
D1  
P90  
P87  
P86  
P83  
P81  
P80  
P79  
DUAL  
DUAL  
DUAL  
DUAL  
DUAL  
GCLK  
GCLK  
2
2
3
VCCO_2  
VCCO_2  
VCCO_2  
VCCO_2  
P136  
P153  
P107  
VCCO  
VCCO  
DCI  
IO_L30N_4/ IO_L30N_4/  
D2  
D2  
IO_L01N_3/ IO_L01N_3/  
IO_L30P_4/  
D3  
IO_L30P_4/  
D3  
VRP_3  
VRP_3  
3
IO_L01P_3/  
VRN_3  
IO_L01P_3/  
VRN_3  
P106  
DCI  
IO_L31N_4/ IO_L31N_4/  
INIT_B  
INIT_B  
3
3
N.C. (‹)  
N.C. (‹)  
IO_L17N_3  
P109  
P108  
I/O  
IO_L31P_4/  
IO_L31P_4/  
DOUT/BUSY DOUT/BUSY  
IO_L17P_3/  
VREF_3  
VREF  
IO_L32N_4/ IO_L32N_4/  
GCLK1  
GCLK1  
3
3
3
3
3
3
3
3
3
3
IO_L19N_3  
IO_L19P_3  
IO_L20N_3  
IO_L20P_3  
IO_L21N_3  
IO_L21P_3  
IO_L22N_3  
IO_L22P_3  
IO_L23N_3  
IO_L19N_3  
IO_L19P_3  
IO_L20N_3  
IO_L20P_3  
IO_L21N_3  
IO_L21P_3  
IO_L22N_3  
IO_L22P_3  
IO_L23N_3  
P113  
P111  
P115  
P114  
P117  
P116  
P120  
P119  
P123  
P122  
I/O  
I/O  
IO_L32P_4/  
GCLK0  
IO_L32P_4/  
GCLK0  
I/O  
4
4
5
5
5
5
VCCO_4  
VCCO_4  
IO  
VCCO_4  
VCCO_4  
IO  
P84  
P98  
P63  
P71  
P78  
P58  
VCCO  
VCCO  
I/O  
I/O  
I/O  
I/O  
IO  
IO  
I/O  
I/O  
IO/VREF_5  
IO/VREF_5  
VREF  
DUAL  
I/O  
IO_L01N_5/ IO_L01N_5/  
I/O  
RDWR_B  
RDWR_B  
IO_L23P_3/  
VREF_3  
IO_L23P_3/  
VREF_3  
VREF  
5
5
5
5
IO_L01P_5/  
CS_B  
IO_L01P_5/  
CS_B  
P57  
P62  
P61  
P65  
DUAL  
DCI  
3
3
3
3
3
IO_L24N_3  
IO_L24P_3  
N.C. (‹)  
IO_L24N_3  
IO_L24P_3  
IO_L39N_3  
IO_L39P_3  
P125  
P124  
P128  
P126  
P131  
I/O  
I/O  
IO_L10N_5/ IO_L10N_5/  
VRP_5  
VRP_5  
I/O  
IO_L10P_5/  
VRN_5  
IO_L10P_5/  
VRN_5  
DCI  
N.C. (‹)  
I/O  
IO_L27N_5/ IO_L27N_5/  
VREF  
IO_L40N_3/ IO_L40N_3/  
VREF  
VREF_5  
VREF_5  
VREF_3  
IO_L40P_3  
VCCO_3  
VCCO_3  
IO  
VREF_3  
IO_L40P_3  
VCCO_3  
VCCO_3  
IO  
5
5
IO_L27P_5  
IO_L27P_5  
P64  
P68  
I/O  
3
3
3
4
4
4
4
4
4
P130  
P110  
P127  
P93  
I/O  
VCCO  
VCCO  
I/O  
IO_L28N_5/ IO_L28N_5/  
DUAL  
D6  
D6  
5
5
5
5
IO_L28P_5/  
D7  
IO_L28P_5/  
D7  
P67  
P74  
P72  
P77  
DUAL  
DUAL  
DUAL  
GCLK  
N.C. (‹)  
IO/VREF_4  
N.C. (‹)  
IO/VREF_4  
IO  
P97  
I/O  
IO_L31N_5/ IO_L31N_5/  
IO/VREF_4  
IO/VREF_4  
IO/VREF_4  
P85  
VREF  
VREF  
VREF  
DCI  
D4  
D4  
P96  
IO_L31P_5/  
D5  
IO_L31P_5/  
D5  
P102  
P101  
IO_L32N_5/ IO_L32N_5/  
GCLK3 GCLK3  
IO_L01N_4/ IO_L01N_4/  
VRP_4 VRP_4  
32  
www.xilinx.com  
1-800-255-7778  
DS099-4 (v1.5) July 13, 2004  
Product Specification  
R
Spartan-3 FPGA Family: Pinout Descriptions  
Table 20: PQ208 Package Pinout (Continued)  
Table 20: PQ208 Package Pinout (Continued)  
XC3S200  
XC3S400  
Pin Name  
PQ208  
Pin  
Number  
XC3S200  
XC3S400  
Pin Name  
PQ208  
Pin  
Number  
XC3S50  
Pin Name  
XC3S50  
Pin Name  
Bank  
Type  
Bank  
Type  
I/O  
5
IO_L32P_5/  
GCLK2  
IO_L32P_5/  
GCLK2  
P76  
GCLK  
7
7
7
7
7
7
7
7
IO_L22P_7  
IO_L23N_7  
IO_L23P_7  
IO_L24N_7  
IO_L24P_7  
N.C. (‹)  
IO_L22P_7  
IO_L23N_7  
IO_L23P_7  
IO_L24N_7  
IO_L24P_7  
IO_L39N_7  
IO_L39P_7  
P15  
P19  
P18  
P21  
P20  
P24  
P22  
P27  
I/O  
5
5
6
6
VCCO_5  
VCCO_5  
N.C. (‹)  
VCCO_5  
VCCO_5  
IO/VREF_6  
P60  
P73  
P50  
P52  
VCCO  
VCCO  
VREF  
DCI  
I/O  
I/O  
I/O  
IO_L01N_6/ IO_L01N_6/  
I/O  
VRP_6  
VRP_6  
N.C. (‹)  
I/O  
6
IO_L01P_6/  
VRN_6  
IO_L01P_6/  
VRN_6  
P51  
DCI  
IO_L40N_7/ IO_L40N_7/  
VREF  
VREF_7  
IO_L40P_7  
VCCO_7  
VCCO_7  
GND  
VREF_7  
IO_L40P_7  
VCCO_7  
VCCO_7  
GND  
6
6
6
6
6
6
6
6
6
6
6
IO_L19N_6  
IO_L19P_6  
IO_L20N_6  
IO_L20P_6  
IO_L21N_6  
IO_L21P_6  
IO_L22N_6  
IO_L22P_6  
IO_L23N_6  
IO_L23P_6  
IO_L19N_6  
IO_L19P_6  
IO_L20N_6  
IO_L20P_6  
IO_L21N_6  
IO_L21P_6  
IO_L22N_6  
IO_L22P_6  
IO_L23N_6  
IO_L23P_6  
P48  
P46  
P45  
P44  
P43  
P42  
P40  
P39  
P37  
P36  
P35  
I/O  
I/O  
7
P26  
P6  
I/O  
VCCO  
VCCO  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
VCCAUX  
VCCAUX  
7
I/O  
7
P23  
I/O  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
P1  
I/O  
GND  
GND  
P186  
P195  
P202  
P163  
P170  
P179  
P134  
P145  
P151  
P157  
P112  
P118  
P129  
P82  
I/O  
GND  
GND  
I/O  
GND  
GND  
I/O  
GND  
GND  
I/O  
GND  
GND  
I/O  
GND  
GND  
IO_L24N_6/ IO_L24N_6/  
VREF_6  
VREF  
GND  
GND  
VREF_6  
GND  
GND  
6
6
6
6
6
IO_L24P_6  
N.C. (‹)  
IO_L24P_6  
IO_L39N_6  
IO_L39P_6  
IO_L40N_6  
P34  
P33  
P31  
P29  
P28  
I/O  
I/O  
GND  
GND  
GND  
GND  
N.C. (‹)  
I/O  
GND  
GND  
IO_L40N_6  
I/O  
GND  
GND  
IO_L40P_6/  
VREF_6  
IO_L40P_6/  
VREF_6  
VREF  
GND  
GND  
6
6
7
VCCO_6  
VCCO_6  
VCCO_6  
VCCO_6  
P32  
P49  
P3  
VCCO  
VCCO  
DCI  
GND  
GND  
GND  
GND  
P91  
IO_L01N_7/ IO_L01N_7/  
VRP_7  
GND  
GND  
P99  
VRP_7  
GND  
GND  
P105  
P53  
7
IO_L01P_7/  
VRN_7  
IO_L01P_7/  
VRN_7  
P2  
DCI  
GND  
GND  
GND  
GND  
P59  
7
7
N.C. (‹)  
N.C. (‹)  
IO_L16N_7  
P5  
P4  
I/O  
GND  
GND  
P66  
IO_L16P_7/  
VREF_7  
VREF  
GND  
GND  
P75  
GND  
GND  
P30  
7
IO_L19N_7/ IO_L19N_7/  
VREF_7  
P9  
VREF  
VREF_7  
GND  
GND  
P41  
7
7
7
7
7
7
IO_L19P_7  
IO_L20N_7  
IO_L20P_7  
IO_L21N_7  
IO_L21P_7  
IO_L22N_7  
IO_L19P_7  
IO_L20N_7  
IO_L20P_7  
IO_L21N_7  
IO_L21P_7  
IO_L22N_7  
P7  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
GND  
GND  
P47  
P11  
P10  
P13  
P12  
P16  
GND  
GND  
P8  
GND  
GND  
P14  
GND  
GND  
P25  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
P193  
P173  
DS099-4 (v1.5) July 13, 2004  
Product Specification  
www.xilinx.com  
1-800-255-7778  
33  
R
Spartan-3 FPGA Family: Pinout Descriptions  
Table 20: PQ208 Package Pinout (Continued)  
Table 20: PQ208 Package Pinout (Continued)  
XC3S200  
XC3S400  
Pin Name  
PQ208  
Pin  
Number  
XC3S200  
XC3S400  
Pin Name  
PQ208  
Pin  
Number  
XC3S50  
Pin Name  
XC3S50  
Pin Name  
Bank  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
Type  
Bank  
Type  
CONFIG  
CONFIG  
CONFIG  
JTAG  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
CCLK  
P142  
P121  
P89  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
CONFIG  
CONFIG  
CONFIG  
CONFIG  
VCCAUX M1  
M1  
P54  
P56  
VCCAUX M2  
M2  
VCCAUX PROG_B  
VCCAUX TCK  
VCCAUX TDI  
VCCAUX TDO  
VCCAUX TMS  
PROG_B  
TCK  
P207  
P159  
P208  
P158  
P160  
P69  
P38  
TDI  
JTAG  
P17  
TDO  
TMS  
JTAG  
P192  
P174  
P88  
JTAG  
User I/Os by Bank  
Table 21 indicates how the available user-I/O pins are dis-  
tributed between the eight I/O banks for the XC3S50 in the  
PQ208 package. Similarly, Table 22 shows how the avail-  
able user-I/O pins are distributed between the eight I/O  
banks for the XC3S200 and XC3S400 in the PQ208 pack-  
age.  
P70  
VCCAUX CCLK  
VCCAUX DONE  
P104  
P103  
P206  
P55  
DONE  
VCCAUX HSWAP_EN HSWAP_EN  
VCCAUX M0 M0  
Table 21: User I/Os Per Bank for XC3S50 in PQ208 Package  
All Possible I/O Pins by Type  
Maximum  
Package Edge  
I/O Bank  
I/O  
15  
15  
16  
16  
15  
15  
16  
16  
I/O  
9
DUAL  
DCI  
2
VREF  
GCLK  
0
1
2
3
4
5
6
7
0
0
0
0
6
6
0
0
2
2
2
2
2
2
2
2
2
2
0
0
2
2
0
0
Top  
9
2
13  
12  
3
2
Right  
Bottom  
Left  
2
2
3
2
12  
12  
2
2
34  
www.xilinx.com  
1-800-255-7778  
DS099-4 (v1.5) July 13, 2004  
Product Specification  
R
Spartan-3 FPGA Family: Pinout Descriptions  
Table 22: User I/Os Per Bank for XC3S200 and XC3S400 in PQ208 Package  
All Possible I/O Pins by Type  
Maximum  
I/O  
Package Edge  
I/O Bank  
I/O  
9
DUAL  
DCI  
2
VREF  
GCLK  
0
1
2
3
4
5
6
7
16  
15  
19  
20  
17  
15  
19  
20  
0
0
0
0
6
6
0
0
3
2
3
3
3
2
3
3
2
2
0
0
2
2
0
0
Top  
9
2
14  
15  
4
2
Right  
Bottom  
Left  
2
2
3
2
14  
15  
2
2
DS099-4 (v1.5) July 13, 2004  
Product Specification  
www.xilinx.com  
1-800-255-7778  
35  
R
Spartan-3 FPGA Family: Pinout Descriptions  
PQ208 Footprint  
Left Half of Package  
(top view)  
XC3S50  
(124 max. user I/O)  
I/O: Unrestricted,  
general-purpose user I/O  
72  
1
GND  
IO_L01P_7/VRN_7  
IO_L01N_7/VRP_7  
(‹) IO_L16P_7/VREF_7  
(‹) IO_L16N_7  
VCCO_7  
Bank 0  
2
3
4
5
6
7
8
9
VREF: User I/O or input  
voltage reference for bank  
16  
17  
N.C.: Unconnected pins for  
XC3S50 (‹)  
IO_L19P_7  
GND  
IO_L19N_7/VREF_7  
IO_L20P_7 10  
IO_L20N_7 11  
IO_L21P_7 12  
IO_L21N_7 13  
GND 14  
XC3S200, XC3S400  
(141 max user I/O)  
I/O: Unrestricted,  
83  
general-purpose user I/O  
IO_L22P_7 15  
IO_L22N_7 16  
VCCAUX 17  
VREF: User I/O or input  
voltage reference for bank  
22  
0
IO_L23P_7 18  
IO_L23N_7 19  
IO_L24P_7 20  
IO_L24N_7 21  
(‹) IO_L39P_7 22  
VCCO_7 23  
N.C.: No unconnected pins  
in this package  
All devices  
DUAL: Configuration pin,  
then possible user I/O  
(‹) IO_L39N_7 24  
GND 25  
12  
IO_L40P_7 26  
IO_L40N_7/VREF_7 27  
IO_L40P_6/VREF_6 28  
IO_L40N_6 29  
GND 30  
GCLK: User I/O or global  
clock buffer input  
8
DCI: User I/O or reference  
resistor input for bank  
(‹) IO_L39P_6 31  
VCCO_6 32  
16  
7
(‹) IO_L39N_6 33  
IO_L24P_6 34  
IO_L24N_6/VREF_6 35  
IO_L23P_6 36  
IO_L23N_6 37  
VCCAUX 38  
CONFIG: Dedicated  
configuration pins  
JTAG: Dedicated JTAG  
port pins  
4
IO_L22P_6 39  
IO_L22N_6 40  
GND 41  
IO_L21P_6 42  
IO_L21N_6 43  
IO_L20P_6 44  
IO_L20N_6 45  
IO_L19P_6 46  
GND 47  
VCCINT: Internal core  
voltage supply (+1.2V)  
4
VCCO: Output voltage  
supply for bank  
12  
8
IO_L19N_6 48  
VCCO_6 49  
VCCAUX: Auxiliary voltage  
supply (+2.5V)  
(‹) IO/VREF_6 50  
IO_L01P_6/VRN_6 51  
IO_L01N_6/VRP_6 52  
Bank 5  
GND: Ground  
28  
DS099-4_09a_121103  
Figure 10: PQ208 Package Footprint (top view). Note pin 1 indicator in top-left corner and logo orientation.  
36  
www.xilinx.com  
1-800-255-7778  
DS099-4 (v1.5) July 13, 2004  
Product Specification  
R
Spartan-3 FPGA Family: Pinout Descriptions  
Right Half of Package  
(top view)  
156 IO_L01N_2/VRP_2  
155 IO_L01P_2/VRN_2  
154 IO/VREF_2 (‹)  
153 VCCO_2  
Bank 1  
152 IO_L19N_2  
151 GND  
150 IO_L19P_2  
149 IO_L20N_2  
148 IO_L20P_2  
147 IO_L21N_2  
146 IO_L21P_2  
145 GND  
144 IO_L22N_2  
143 IO_L22P_2  
142 VCCAUX  
141 IO_L23N_2/VREF_2  
140 IO_L23P_2  
139 IO_L24N_2  
138 IO_L24P_2  
137 IO_L39N_2 (‹)  
136 VCCO_2  
135 IO_L39P_2 (‹)  
134 GND  
133 IO_L40N_2  
132 IO_L40P_2/VREF_2  
131 IO_L40N_3/VREF_3  
130 IO_L40P_3  
129 GND  
128 IO_L39N_3 (‹)  
127 VCCO_3  
126 IO_L39P_3 (‹)  
125 IO_L24N_3  
124 IO_L24P_3  
123 IO_L23N_3  
122 IO_L23P_3/VREF_3  
121 VCCAUX  
120 IO_L22N_3  
119 IO_L22P_3  
118 GND  
117 IO_L21N_3  
116 IO_L21P_3  
115 IO_L20N_3  
114 IO_L20P_3  
113 IO_L19N_3  
112 GND  
111 IO_L19P_3  
110 VCCO_3  
109 IO_L17N_3 (‹)  
108 IO_L17P_3/VREF_3 (‹)  
107 IO_L01N_3/VRP_3  
106 IO_L01P_3/VRN_3  
105 GND  
Bank 4  
DS099-4_9b_121103  
DS099-4 (v1.5) July 13, 2004  
Product Specification  
www.xilinx.com  
1-800-255-7778  
37  
R
Spartan-3 FPGA Family: Pinout Descriptions  
Table 23: FT256 Package Pinout (Continued)  
FT256: 256-lead Fine-pitch Thin Ball  
Grid Array  
The 256-lead fine-pitch thin ball grid array package, FT256,  
supports three different Spartan-3 devices, including the  
XC3S200, the XC3S400, and the XC3S1000. The footprints  
for all three devices are identical, as shown in Table 23 and  
Figure 11.  
XC3S200  
XC3S400  
XC3S1000  
Pin Name  
FT256  
Pin  
Number  
Bank  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
Type  
DCI  
VREF  
I/O  
IO_L01P_1/VRN_1  
IO_L10N_1/VREF_1  
IO_L10P_1  
B14  
A13  
B13  
B12  
C12  
D11  
E11  
B11  
C11  
D10  
E10  
A10  
B10  
C9  
All the package pins appear in Table 23 and are sorted by  
bank number, then by pin name. Pairs of pins that form a dif-  
ferential I/O pair appear together in the table. The table also  
shows the pin number for each pin and the pin type, as  
defined earlier.  
IO_L27N_1  
I/O  
IO_L27P_1  
I/O  
IO_L28N_1  
I/O  
IO_L28P_1  
I/O  
Pinout Table  
IO_L29N_1  
I/O  
Table 23: FT256 Package Pinout  
IO_L29P_1  
I/O  
IO_L30N_1  
I/O  
XC3S200  
XC3S400  
XC3S1000  
Pin Name  
FT256  
Pin  
Number  
IO_L30P_1  
I/O  
IO_L31N_1/VREF_1  
IO_L31P_1  
VREF  
I/O  
Bank  
0
Type  
I/O  
IO  
IO  
A5  
A7  
A3  
D5  
B4  
A4  
C5  
B5  
E6  
D6  
C6  
B6  
E7  
D7  
C7  
B7  
D8  
C8  
B8  
A8  
E8  
F7  
IO_L32N_1/GCLK5  
IO_L32P_1/GCLK4  
VCCO_1  
GCLK  
GCLK  
VCCO  
VCCO  
VCCO  
I/O  
0
I/O  
D9  
0
IO/VREF_0  
IO/VREF_0  
IO_L01N_0/VRP_0  
IO_L01P_0/VRN_0  
IO_L25N_0  
IO_L25P_0  
IO_L27N_0  
IO_L27P_0  
IO_L28N_0  
IO_L28P_0  
IO_L29N_0  
IO_L29P_0  
IO_L30N_0  
IO_L30P_0  
IO_L31N_0  
IO_L31P_0/VREF_0  
IO_L32N_0/GCLK7  
IO_L32P_0/GCLK6  
VCCO_0  
VREF  
VREF  
DCI  
DCI  
I/O  
E9  
0
VCCO_1  
F9  
0
VCCO_1  
F10  
G16  
B16  
C16  
C15  
D14  
D15  
D16  
E13  
E14  
E15  
E16  
F12  
F13  
F14  
F15  
G12  
G13  
G14  
G15  
H13  
H14  
H15  
0
IO  
0
IO_L01N_2/VRP_2  
IO_L01P_2/VRN_2  
IO_L16N_2  
DCI  
DCI  
I/O  
0
I/O  
0
I/O  
0
I/O  
IO_L16P_2  
I/O  
0
I/O  
IO_L17N_2  
I/O  
0
I/O  
IO_L17P_2/VREF_2  
IO_L19N_2  
VREF  
I/O  
0
I/O  
0
I/O  
IO_L19P_2  
I/O  
0
I/O  
IO_L20N_2  
I/O  
0
I/O  
IO_L20P_2  
I/O  
0
I/O  
IO_L21N_2  
I/O  
0
VREF  
GCLK  
GCLK  
VCCO  
VCCO  
VCCO  
I/O  
IO_L21P_2  
I/O  
0
IO_L22N_2  
I/O  
0
IO_L22P_2  
I/O  
0
IO_L23N_2/VREF_2  
IO_L23P_2  
VREF  
I/O  
0
VCCO_0  
0
VCCO_0  
F8  
IO_L24N_2  
I/O  
1
IO  
A9  
A12  
C10  
D12  
A14  
IO_L24P_2  
I/O  
1
IO  
I/O  
IO_L39N_2  
I/O  
1
IO  
I/O  
IO_L39P_2  
I/O  
1
IO/VREF_1  
IO_L01N_1/VRP_1  
VREF  
DCI  
IO_L40N_2  
I/O  
1
38  
www.xilinx.com  
1-800-255-7778  
DS099-4 (v1.5) July 13, 2004  
Product Specification  
R
Spartan-3 FPGA Family: Pinout Descriptions  
Table 23: FT256 Package Pinout (Continued)  
Table 23: FT256 Package Pinout (Continued)  
XC3S200  
XC3S200  
XC3S400  
XC3S1000  
Pin Name  
FT256  
Pin  
Number  
XC3S400  
XC3S1000  
Pin Name  
FT256  
Pin  
Number  
Bank  
2
2
2
2
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
Type  
VREF  
VCCO  
VCCO  
VCCO  
I/O  
Bank  
4
4
4
4
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
6
6
6
Type  
DUAL  
I/O  
IO_L40P_2/VREF_2  
VCCO_2  
H16  
G11  
H11  
H12  
K15  
P16  
R16  
P15  
P14  
N16  
N15  
M14  
N14  
M16  
M15  
L13  
M13  
L15  
L14  
K12  
L12  
K14  
K13  
J14  
IO_L27P_4/D1  
N11  
P11  
R11  
M10  
N10  
P10  
R10  
N9  
P9  
IO_L28N_4  
VCCO_2  
IO_L28P_4  
I/O  
VCCO_2  
IO_L29N_4  
I/O  
IO  
IO_L29P_4  
I/O  
IO_L01N_3/VRP_3  
IO_L01P_3/VRN_3  
IO_L16N_3  
IO_L16P_3  
IO_L17N_3  
IO_L17P_3/VREF_3  
IO_L19N_3  
IO_L19P_3  
IO_L20N_3  
IO_L20P_3  
IO_L21N_3  
IO_L21P_3  
IO_L22N_3  
IO_L22P_3  
IO_L23N_3  
IO_L23P_3/VREF_3  
IO_L24N_3  
IO_L24P_3  
IO_L39N_3  
IO_L39P_3  
IO_L40N_3/VREF_3  
IO_L40P_3  
VCCO_3  
DCI  
DCI  
I/O  
IO_L30N_4/D2  
IO_L30P_4/D3  
IO_L31N_4/INIT_B  
IO_L31P_4/DOUT/BUSY  
IO_L32N_4/GCLK1  
IO_L32P_4/GCLK0  
VCCO_4  
DUAL  
DUAL  
DUAL  
DUAL  
GCLK  
GCLK  
VCCO  
VCCO  
VCCO  
I/O  
I/O  
I/O  
R9  
T9  
VREF  
I/O  
L9  
I/O  
VCCO_4  
L10  
M9  
N5  
P7  
I/O  
VCCO_4  
I/O  
IO  
I/O  
IO  
I/O  
I/O  
IO  
T5  
I/O  
I/O  
IO/VREF_5  
T8  
VREF  
DUAL  
DUAL  
DCI  
I/O  
IO_L01N_5/RDWR_B  
IO_L01P_5/CS_B  
IO_L10N_5/VRP_5  
IO_L10P_5/VRN_5  
IO_L27N_5/VREF_5  
IO_L27P_5  
T3  
I/O  
R3  
T4  
VREF  
I/O  
R4  
R5  
P5  
DCI  
I/O  
VREF  
I/O  
I/O  
J13  
I/O  
IO_L28N_5/D6  
IO_L28P_5/D7  
IO_L29N_5  
N6  
M6  
R6  
P6  
DUAL  
DUAL  
I/O  
J16  
VREF  
I/O  
K16  
J11  
VCCO  
VCCO  
VCCO  
I/O  
IO_L29P_5/VREF_5  
IO_L30N_5  
VREF  
I/O  
VCCO_3  
J12  
N7  
M7  
T7  
VCCO_3  
K11  
T12  
T14  
N12  
P13  
T10  
R13  
T13  
P12  
R12  
M11  
IO_L30P_5  
I/O  
IO  
IO_L31N_5/D4  
IO_L31P_5/D5  
IO_L32N_5/GCLK3  
IO_L32P_5/GCLK2  
VCCO_5  
DUAL  
DUAL  
GCLK  
GCLK  
VCCO  
VCCO  
VCCO  
I/O  
IO  
I/O  
R7  
P8  
IO/VREF_4  
IO/VREF_4  
IO/VREF_4  
IO_L01N_4/VRP_4  
IO_L01P_4/VRN_4  
IO_L25N_4  
IO_L25P_4  
IO_L27N_4/DIN/D0  
VREF  
VREF  
VREF  
DCI  
DCI  
I/O  
N8  
L7  
VCCO_5  
L8  
VCCO_5  
M8  
K1  
IO  
I/O  
IO_L01N_6/VRP_6  
IO_L01P_6/VRN_6  
R1  
P1  
DCI  
DUAL  
DCI  
DS099-4 (v1.5) July 13, 2004  
Product Specification  
www.xilinx.com  
1-800-255-7778  
39  
R
Spartan-3 FPGA Family: Pinout Descriptions  
Table 23: FT256 Package Pinout (Continued)  
Table 23: FT256 Package Pinout (Continued)  
XC3S200  
XC3S200  
XC3S400  
XC3S1000  
Pin Name  
FT256  
Pin  
Number  
XC3S400  
XC3S1000  
Pin Name  
FT256  
Pin  
Number  
Bank  
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
Type  
I/O  
Bank  
7
Type  
I/O  
IO_L16N_6  
P2  
N3  
N2  
N1  
M4  
M3  
M2  
M1  
L5  
L4  
L3  
L2  
K5  
K4  
K3  
K2  
J4  
IO_L24N_7  
G3  
G4  
H3  
H4  
H1  
G1  
G6  
H5  
H6  
A1  
IO_L16P_6  
I/O  
7
IO_L24P_7  
IO_L39N_7  
IO_L39P_7  
IO_L40N_7/VREF_7  
IO_L40P_7  
VCCO_7  
VCCO_7  
VCCO_7  
GND  
I/O  
IO_L17N_6  
IO_L17P_6/VREF_6  
IO_L19N_6  
IO_L19P_6  
I/O  
7
I/O  
VREF  
I/O  
7
I/O  
7
VREF  
I/O  
I/O  
7
IO_L20N_6  
IO_L20P_6  
I/O  
7
VCCO  
VCCO  
VCCO  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
I/O  
7
IO_L21N_6  
IO_L21P_6  
I/O  
7
I/O  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
IO_L22N_6  
IO_L22P_6  
I/O  
GND  
A16  
B2  
I/O  
GND  
IO_L23N_6  
IO_L23P_6  
I/O  
GND  
B9  
I/O  
GND  
B15  
F6  
IO_L24N_6/VREF_6  
IO_L24P_6  
VREF  
I/O  
GND  
GND  
F11  
G7  
G8  
G9  
G10  
H2  
H7  
H8  
H9  
H10  
J7  
IO_L39N_6  
IO_L39P_6  
I/O  
GND  
J3  
I/O  
GND  
IO_L40N_6  
IO_L40P_6/VREF_6  
VCCO_6  
J2  
I/O  
GND  
J1  
VREF  
VCCO  
VCCO  
VCCO  
I/O  
GND  
J5  
GND  
VCCO_6  
J6  
GND  
VCCO_6  
K6  
G2  
C1  
B1  
C2  
C3  
D1  
D2  
E3  
D3  
E1  
E2  
F4  
E4  
F2  
F3  
G5  
F5  
GND  
IO  
GND  
IO_L01N_7/VRP_7  
IO_L01P_7/VRN_7  
IO_L16N_7  
IO_L16P_7/VREF_7  
IO_L17N_7  
IO_L17P_7  
DCI  
DCI  
I/O  
GND  
GND  
GND  
J8  
VREF  
I/O  
GND  
J9  
GND  
J10  
J15  
K7  
I/O  
GND  
IO_L19N_7/VREF_7  
IO_L19P_7  
VREF  
I/O  
GND  
GND  
K8  
IO_L20N_7  
IO_L20P_7  
I/O  
GND  
K9  
I/O  
GND  
K10  
L6  
IO_L21N_7  
IO_L21P_7  
I/O  
GND  
I/O  
GND  
L11  
R2  
R8  
R15  
T1  
IO_L22N_7  
IO_L22P_7  
I/O  
GND  
I/O  
GND  
IO_L23N_7  
IO_L23P_7  
I/O  
GND  
I/O  
GND  
40  
www.xilinx.com  
1-800-255-7778  
DS099-4 (v1.5) July 13, 2004  
Product Specification  
R
Spartan-3 FPGA Family: Pinout Descriptions  
Table 23: FT256 Package Pinout (Continued)  
Table 23: FT256 Package Pinout (Continued)  
XC3S200  
XC3S200  
XC3S400  
XC3S1000  
Pin Name  
FT256  
Pin  
Number  
XC3S400  
XC3S1000  
Pin Name  
FT256  
Pin  
Number  
Bank  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
Type  
Bank  
Type  
VCCINT  
CONFIG  
CONFIG  
CONFIG  
CONFIG  
CONFIG  
CONFIG  
CONFIG  
JTAG  
GND  
T16  
A6  
GND  
N/A  
VCCINT  
N13  
T15  
R14  
C4  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCAUX CCLK  
VCCAUX DONE  
A11  
F1  
VCCAUX HSWAP_EN  
VCCAUX M0  
F16  
L1  
P3  
VCCAUX M1  
T2  
L16  
T6  
VCCAUX M2  
P4  
VCCAUX PROG_B  
VCCAUX TCK  
VCCAUX TDI  
B3  
T11  
D4  
C14  
A2  
JTAG  
D13  
E5  
VCCAUX TDO  
VCCAUX TMS  
A15  
C13  
JTAG  
JTAG  
E12  
M5  
M12  
N4  
User I/Os by Bank  
Table 24 indicates how the available user-I/O pins are dis-  
tributed between the eight I/O banks on the FT256 package.  
Table 24: User I/Os Per Bank in FT256 Package  
All Possible I/O Pins by Type  
Maximum  
Package Edge  
I/O Bank  
I/O  
20  
20  
23  
23  
21  
20  
23  
23  
I/O  
13  
13  
18  
18  
8
DUAL  
DCI  
2
VREF  
GCLK  
0
1
2
3
4
5
6
7
0
0
0
0
6
6
0
0
3
3
3
3
3
3
3
3
2
2
0
0
2
2
0
0
Top  
2
2
Right  
Bottom  
Left  
2
2
7
2
18  
18  
2
2
DS099-4 (v1.5) July 13, 2004  
Product Specification  
www.xilinx.com  
1-800-255-7778  
41  
R
Spartan-3 FPGA Family: Pinout Descriptions  
FT256 Footprint  
Bank 0  
Bank 1  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
I/O  
L01P_0  
VRN_0  
I/O  
L32P_0  
GCLK6  
I/O  
L31N_1  
VREF_1  
I/O  
I/O  
IO  
VREF_0  
VCCAUX  
VCCAUX  
TDI  
I/O  
I/O  
I/O  
I/O  
TDO  
GND  
A
B
C
D
E
F
GND  
L10N_1 L01N_1  
VREF_1 VRP_1  
I/O  
L01P_7  
VRN_7  
I/O  
L01N_0  
VRP_0  
I/O  
L32N_0  
GCLK7  
I/O  
I/O  
I/O  
L01N_2  
VRP_2  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
PROG_B  
GND  
I/O  
GND  
GND  
L01P_1  
L25P_0 L28P_0 L30P_0  
L31P_1 L29N_1 L27N_1 L10P_1  
VRN_1  
I/O  
L01N_7  
VRP_7  
I/O  
L16P_7  
VREF_7  
I/O  
I/O  
L01P_2  
VRN_2  
I/O  
L16N_7  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
L16N_2  
HSWAP_  
EN  
I/O  
TMS  
TCK  
L31P_0 L32N_1  
VREF_0 GCLK5  
L25N_0 L28N_0 L30N_0  
L29P_1 L27P_1  
I/O  
I/O  
L27P_0 L29P_0 L31N_0  
I/O  
L17P_2  
VREF_2  
IO  
VREF_0  
IO  
VREF_1  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCINT  
VCCINT  
I/O  
L32P_1  
GCLK4  
L17N_7 L17P_7 L19P_7  
L30N_1 L28N_1  
L16P_2 L17N_2  
I/O  
L19N_7  
VREF_7  
I/O  
I/O  
I/O  
L21P_7  
I/O  
I/O  
I/O  
I/O  
I/O I/O  
I/O  
VCCO_0 VCCO_1  
VCCINT  
I/O  
VCCINT  
I/O  
L20N_7 L20P_7  
L27N_0 L29N_0  
L30P_1 L28P_1  
L19N_2 L19P_2 L20N_2 L20P_2  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCAUX  
VCCO_0 VCCO_0 VCCO_1 VCCO_1  
VCCAUX  
I/O  
GND  
GND  
VCCO_7  
L22N_7 L22P_7 L21N_7 L23P_7  
L21N_2 L21P_2 L22N_2 L22P_2  
I/O  
L23N_2  
VREF_2  
I/O  
L40P_7  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCO_2  
I/O  
G
H
J
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
L24N_7 L24P_7 L23N_7  
L23P_2 L24N_2 L24P_2  
I/O  
L40N_7  
VREF_7  
I/O  
L40P_2  
VREF_2  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCO_7 VCCO_7  
VCCO_2 VCCO_2  
GND  
I/O  
L39N_7 L39P_7  
L39N_2 L39P_2 L40N_2  
I/O  
L40P_6  
VREF_6  
I/O  
L40N_3  
VREF_3  
I/O  
I/O  
I/O  
I/O  
VCCO_6 VCCO_6  
I/O  
VCCO_3 VCCO_3  
I/O  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
L40N_6 L39P_6 L39N_6  
L39P_3 L39N_3  
I/O  
L24N_6  
VREF_6  
I/O  
L24P_6  
I/O  
I/O  
I/O  
I/O  
L40P_3  
VCCO_6 GND  
GND VCCO_3  
I/O  
I/O  
I/O  
K
L
L23P_6 L23N_6  
L23N_3 L24P_3 L24N_3  
I/O  
L23P_3  
VREF_3  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCAUX  
I/O  
VCCO_5 VCCO_5 VCCO_4 VCCO_4  
VCCAUX  
GND  
GND  
L22P_6 L22N_6 L21P_6 L21N_6  
L21N_3 L22P_3 L22N_3  
I/O  
L27N_4  
DIN  
I/O  
L28P_5  
D7  
I/O  
I/O  
I/O  
I/O  
L30P_5  
I/O  
L29N_4  
I/O I/O I/O  
I/O  
VCCO_5 VCCO_4  
VCCINT  
I/O  
VCCINT  
M
N
P
R
T
L20P_6 L20N_6 L19P_6 L19N_6  
L21P_3 L19N_3 L20P_3 L20N_3  
I/O  
D0  
I/O  
L17P_6  
VREF_6  
I/O  
L28N_5  
D6  
I/O  
I/O  
I/O  
L27P_4  
D1  
IO  
VREF_4  
I/O  
I/O  
I/O  
L30N_5  
I/O  
L29P_4  
I/O  
L19P_3  
I/O  
L17N_3  
VCCINT  
VCCINT  
L32P_5 L31N_4  
GCLK2 INIT_B  
L17P_3  
VREF_3  
L17N_6 L16P_6  
I/O  
I/O  
I/O  
L01P_6  
VRN_6  
I/O  
L29P_5  
VREF_5  
I/O  
L30N_4  
D2  
I/O  
L01N_3  
VRP_3  
IO  
VREF_4  
I/O  
M0  
I/O  
L27P_5  
I/O  
I/O  
I/O  
I/O  
L31P_4  
L32N_5  
DOUT  
M2  
I/O  
I/O  
L16N_6  
L28N_4 L25N_4  
L16P_3 L16N_3  
GCLK3  
BUSY  
I/O  
L01N_6  
VRP_6  
I/O  
I/O  
I/O  
L31P_5  
D5  
I/O  
I/O  
I/O  
L01N_4  
VRP_4  
I/O  
L01P_3  
VRN_3  
I/O  
L29N_5  
I/O  
I/O  
GND  
GND  
DONE  
I/O  
GND  
L01P_5 L10P_5 L27N_5  
CS_B VRN_5 VREF_5  
L32N_4 L30P_4  
L28P_4 L25P_4  
GCLK1  
D3  
I/O  
I/O  
I/O  
L31N_5  
D4  
I/O  
L32P_4  
GCLK0  
I/O  
L01P_4  
VRN_4  
IO  
VREF_5  
IO  
VREF_4  
VCCAUX  
VCCAUX  
M1  
I/O  
I/O  
CCLK  
GND  
L01N_5 L10N_5  
RDWR_B VRP_5  
GND  
Bank 5  
Bank 4  
DS099-4_10_030503  
Figure 11: FT256 Package Footprint (top view)  
I/O: Unrestricted, general-purpose user I/O  
DUAL: Configuration pin, then possible  
user I/O  
VREF: User I/O or input voltage reference for  
bank  
12  
8
24  
24  
8
113  
16  
7
DCI: User I/O or reference resistor input for  
bank  
GCLK: User I/O or global clock buffer input  
JTAG: Dedicated JTAG port pins  
GND: Ground  
VCCO: Output voltage supply for bank  
CONFIG: Dedicated configuration pins  
VCCINT: Internal core voltage supply  
(+1.2V)  
4
N.C.: No unconnected pins in this package  
VCCAUX: Auxiliary voltage supply  
(+2.5V)  
0
32  
8
42  
www.xilinx.com  
1-800-255-7778  
DS099-4 (v1.5) July 13, 2004  
Product Specification  
R
Spartan-3 FPGA Family: Pinout Descriptions  
Table 25: FG320 Package Pinout (Continued)  
FG320: 320-lead Fine-pitch Ball Grid  
Array  
The 320-lead fine-pitch ball grid array package, FG320,  
supports three different Spartan-3 devices, including the  
XC3S400, the XC3S1000, and the XC3S1500. The footprint  
for all three devices is identical, as shown in Table 25 and  
Figure 12.  
XC3S400  
XC3S1000  
XC3S1500  
Pin Name  
FG320  
Pin  
Number  
Bank  
Type  
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
VCCO_0  
C6  
VCCO  
VCCO  
VCCO  
I/O  
VCCO_0  
G8  
The FG320 package is an 18 x 18 array of solder balls  
minus the four center balls.  
VCCO_0  
G9  
IO  
A11  
B13  
D10  
A12  
A16  
A17  
A15  
B15  
C14  
C15  
A14  
B14  
D14  
D13  
E13  
E12  
C12  
D12  
F11  
E11  
C11  
D11  
A10  
B10  
E10  
F10  
B11  
C13  
G10  
G11  
J13  
All the package pins appear in Table 25 and are sorted by  
bank number, then by pin name. Pairs of pins that form a dif-  
ferential I/O pair appear together in the table. The table also  
shows the pin number for each pin and the pin type, as  
defined earlier.  
IO  
I/O  
IO  
I/O  
IO/VREF_1  
IO_L01N_1/VRP_1  
IO_L01P_1/VRN_1  
IO_L10N_1/VREF_1  
IO_L10P_1  
IO_L15N_1  
IO_L15P_1  
IO_L16N_1  
IO_L16P_1  
IO_L24N_1  
IO_L24P_1  
IO_L27N_1  
IO_L27P_1  
IO_L28N_1  
IO_L28P_1  
IO_L29N_1  
IO_L29P_1  
IO_L30N_1  
IO_L30P_1  
IO_L31N_1/VREF_1  
IO_L31P_1  
IO_L32N_1/GCLK5  
IO_L32P_1/GCLK4  
VCCO_1  
VREF  
DCI  
DCI  
VREF  
I/O  
Pinout Table  
Table 25: FG320 Package Pinout  
I/O  
XC3S400  
I/O  
XC3S1000  
XC3S1500  
Pin Name  
FG320  
Pin  
Number  
I/O  
Bank  
Type  
I/O  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
IO  
IO  
D9  
E7  
B3  
D6  
A2  
A3  
B4  
C4  
C5  
D5  
A4  
A5  
B5  
B6  
C7  
D7  
C8  
D8  
E8  
F8  
A7  
A8  
B9  
A9  
E9  
F9  
B8  
I/O  
I/O  
I/O  
I/O  
IO/VREF_0  
VREF  
VREF  
DCI  
DCI  
I/O  
I/O  
IO/VREF_0  
I/O  
IO_L01N_0/VRP_0  
IO_L01P_0/VRN_0  
IO_L09N_0  
I/O  
I/O  
I/O  
IO_L09P_0  
I/O  
I/O  
IO_L10N_0  
I/O  
I/O  
IO_L10P_0  
I/O  
I/O  
IO_L15N_0  
I/O  
VREF  
I/O  
IO_L15P_0  
I/O  
IO_L25N_0  
I/O  
GCLK  
GCLK  
VCCO  
VCCO  
VCCO  
VCCO  
I/O  
IO_L25P_0  
I/O  
IO_L27N_0  
I/O  
IO_L27P_0  
I/O  
VCCO_1  
IO_L28N_0  
I/O  
VCCO_1  
IO_L28P_0  
I/O  
VCCO_1  
IO_L29N_0  
I/O  
IO  
IO_L29P_0  
I/O  
IO_L01N_2/VRP_2  
IO_L01P_2/VRN_2  
IO_L16N_2  
IO_L16P_2  
IO_L17N_2  
IO_L17P_2/VREF_2  
IO_L19N_2  
IO_L19P_2  
C16  
C17  
B18  
C18  
D17  
D18  
D16  
E16  
DCI  
DCI  
I/O  
IO_L30N_0  
I/O  
IO_L30P_0  
I/O  
IO_L31N_0  
I/O  
I/O  
IO_L31P_0/VREF_0  
IO_L32N_0/GCLK7  
IO_L32P_0/GCLK6  
VCCO_0  
VREF  
GCLK  
GCLK  
VCCO  
I/O  
VREF  
I/O  
I/O  
DS099-4 (v1.5) July 13, 2004  
Product Specification  
www.xilinx.com  
1-800-255-7778  
43  
R
Spartan-3 FPGA Family: Pinout Descriptions  
Table 25: FG320 Package Pinout (Continued)  
Table 25: FG320 Package Pinout (Continued)  
XC3S400  
XC3S400  
XC3S1000  
XC3S1500  
Pin Name  
FG320  
Pin  
Number  
XC3S1000  
XC3S1500  
Pin Name  
FG320  
Pin  
Number  
Bank  
Type  
Bank  
Type  
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
IO_L20N_2  
E17  
E18  
F15  
E15  
F14  
G14  
G18  
F17  
G15  
G16  
H13  
H14  
H16  
H15  
H17  
H18  
J18  
I/O  
I/O  
3
3
3
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
IO_L27N_3  
L14  
L13  
L15  
L16  
L18  
L17  
K13  
K14  
K17  
K18  
K12  
L12  
N16  
P12  
V14  
R10  
U13  
V17  
U16  
V16  
P14  
R14  
U15  
V15  
T14  
U14  
R13  
P13  
T12  
R12  
V12  
V11  
R11  
T11  
N11  
P11  
U10  
V10  
I/O  
I/O  
IO_L20P_2  
IO_L27P_3  
IO_L21N_2  
IO_L21P_2  
I/O  
IO_L34N_3  
I/O  
I/O  
IO_L34P_3/VREF_3  
IO_L35N_3  
VREF  
I/O  
IO_L22N_2  
IO_L22P_2  
I/O  
I/O  
IO_L35P_3  
I/O  
IO_L23N_2/VREF_2  
IO_L23P_2  
VREF  
I/O  
IO_L39N_3  
I/O  
IO_L39P_3  
I/O  
IO_L24N_2  
IO_L24P_2  
I/O  
IO_L40N_3/VREF_3  
IO_L40P_3  
VREF  
I/O  
I/O  
IO_L27N_2  
IO_L27P_2  
I/O  
VCCO_3  
VCCO  
VCCO  
VCCO  
I/O  
I/O  
VCCO_3  
IO_L34N_2/VREF_2  
IO_L34P_2  
VREF  
I/O  
VCCO_3  
IO  
IO_L35N_2  
IO_L35P_2  
I/O  
IO  
I/O  
I/O  
IO/VREF_4  
VREF  
VREF  
VREF  
DCI  
IO_L39N_2  
IO_L39P_2  
I/O  
IO/VREF_4  
J17  
I/O  
IO/VREF_4  
IO_L40N_2  
IO_L40P_2/VREF_2  
VCCO_2  
J15  
I/O  
IO_L01N_4/VRP_4  
IO_L01P_4/VRN_4  
IO_L06N_4/VREF_4  
IO_L06P_4  
J14  
VREF  
VCCO  
VCCO  
VCCO  
I/O  
DCI  
F16  
H12  
J12  
VREF  
I/O  
VCCO_2  
VCCO_2  
IO_L09N_4  
I/O  
IO  
K15  
T17  
T16  
T18  
U18  
P16  
R16  
R17  
R18  
P18  
P17  
P15  
N15  
M14  
N14  
M15  
M16  
M18  
N17  
IO_L09P_4  
I/O  
IO_L01N_3/VRP_3  
IO_L01P_3/VRN_3  
IO_L16N_3  
IO_L16P_3  
DCI  
DCI  
I/O  
IO_L10N_4  
I/O  
IO_L10P_4  
I/O  
IO_L25N_4  
I/O  
I/O  
IO_L25P_4  
I/O  
IO_L17N_3  
IO_L17P_3/VREF_3  
IO_L19N_3  
IO_L19P_3  
I/O  
IO_L27N_4/DIN/D0  
IO_L27P_4/D1  
IO_L28N_4  
DUAL  
DUAL  
I/O  
VREF  
I/O  
I/O  
IO_L28P_4  
I/O  
IO_L20N_3  
IO_L20P_3  
I/O  
IO_L29N_4  
I/O  
I/O  
IO_L29P_4  
I/O  
IO_L21N_3  
IO_L21P_3  
I/O  
IO_L30N_4/D2  
IO_L30P_4/D3  
IO_L31N_4/INIT_B  
DUAL  
DUAL  
DUAL  
DUAL  
I/O  
IO_L22N_3  
IO_L22P_3  
I/O  
I/O  
IO_L31P_4/  
DOUT/BUSY  
IO_L23N_3  
IO_L23P_3/VREF_3  
IO_L24N_3  
IO_L24P_3  
I/O  
4
4
4
IO_L32N_4/GCLK1  
IO_L32P_4/GCLK0  
VCCO_4  
N10  
P10  
M10  
GCLK  
GCLK  
VCCO  
VREF  
I/O  
I/O  
44  
www.xilinx.com  
1-800-255-7778  
DS099-4 (v1.5) July 13, 2004  
Product Specification  
R
Spartan-3 FPGA Family: Pinout Descriptions  
Table 25: FG320 Package Pinout (Continued)  
Table 25: FG320 Package Pinout (Continued)  
XC3S400  
XC3S400  
XC3S1000  
XC3S1500  
Pin Name  
FG320  
Pin  
Number  
XC3S1000  
XC3S1500  
Pin Name  
FG320  
Pin  
Number  
Bank  
Type  
Bank  
Type  
4
4
4
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
6
6
6
6
6
6
6
6
6
VCCO_4  
M11  
T13  
U11  
N8  
P8  
U6  
R9  
V3  
V2  
T5  
VCCO  
VCCO  
VCCO  
I/O  
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
IO_L20N_6  
P2  
P1  
N4  
P4  
N5  
M5  
M3  
M4  
N2  
M1  
L6  
I/O  
I/O  
VCCO_4  
IO_L20P_6  
VCCO_4  
IO_L21N_6  
IO_L21P_6  
I/O  
IO  
I/O  
IO  
I/O  
IO_L22N_6  
IO_L22P_6  
I/O  
IO  
I/O  
I/O  
IO/VREF_5  
VREF  
DUAL  
DUAL  
I/O  
IO_L23N_6  
IO_L23P_6  
I/O  
IO_L01N_5/RDWR_B  
IO_L01P_5/CS_B  
IO_L06N_5  
I/O  
IO_L24N_6/VREF_6  
IO_L24P_6  
VREF  
I/O  
IO_L06P_5  
T4  
I/O  
IO_L27N_6  
IO_L27P_6  
I/O  
IO_L10N_5/VRP_5  
IO_L10P_5/VRN_5  
IO_L15N_5  
V4  
U4  
R6  
R5  
V5  
U5  
P6  
P7  
R7  
T7  
DCI  
L5  
I/O  
DCI  
IO_L34N_6/VREF_6  
IO_L34P_6  
L3  
VREF  
I/O  
I/O  
L4  
IO_L15P_5  
I/O  
IO_L35N_6  
IO_L35P_6  
L2  
I/O  
IO_L16N_5  
I/O  
L1  
I/O  
IO_L16P_5  
I/O  
IO_L39N_6  
IO_L39P_6  
K5  
K4  
K1  
K2  
K7  
L7  
I/O  
IO_L27N_5/VREF_5  
IO_L27P_5  
VREF  
I/O  
I/O  
IO_L40N_6  
IO_L40P_6/VREF_6  
VCCO_6  
I/O  
IO_L28N_5/D6  
IO_L28P_5/D7  
IO_L29N_5  
DUAL  
DUAL  
I/O  
VREF  
VCCO  
VCCO  
VCCO  
I/O  
V8  
V7  
R8  
T8  
VCCO_6  
IO_L29P_5/VREF_5  
IO_L30N_5  
VREF  
I/O  
VCCO_6  
N3  
J6  
IO  
IO_L30P_5  
I/O  
IO_L01N_7/VRP_7  
IO_L01P_7/VRN_7  
IO_L16N_7  
IO_L16P_7/VREF_7  
IO_L17N_7  
IO_L17P_7  
C3  
C2  
C1  
B1  
D1  
D2  
E3  
D3  
E2  
E1  
E4  
F4  
G5  
F5  
G1  
F2  
G4  
G3  
DCI  
DCI  
I/O  
IO_L31N_5/D4  
IO_L31P_5/D5  
IO_L32N_5/GCLK3  
IO_L32P_5/GCLK2  
VCCO_5  
U9  
V9  
N9  
P9  
M8  
M9  
T6  
DUAL  
DUAL  
GCLK  
GCLK  
VCCO  
VCCO  
VCCO  
VCCO  
I/O  
VREF  
I/O  
I/O  
VCCO_5  
IO_L19N_7/VREF_7  
IO_L19P_7  
VREF  
I/O  
VCCO_5  
VCCO_5  
U8  
K6  
T3  
IO_L20N_7  
IO_L20P_7  
I/O  
IO  
I/O  
IO_L01N_6/VRP_6  
IO_L01P_6/VRN_6  
IO_L16N_6  
DCI  
IO_L21N_7  
IO_L21P_7  
I/O  
T2  
DCI  
I/O  
U1  
T1  
I/O  
IO_L22N_7  
IO_L22P_7  
I/O  
IO_L16P_6  
I/O  
I/O  
IO_L17N_6  
R2  
R1  
R3  
P3  
I/O  
IO_L23N_7  
IO_L23P_7  
I/O  
IO_L17P_6/VREF_6  
IO_L19N_6  
VREF  
I/O  
I/O  
IO_L24N_7  
IO_L24P_7  
I/O  
IO_L19P_6  
I/O  
I/O  
DS099-4 (v1.5) July 13, 2004  
Product Specification  
www.xilinx.com  
1-800-255-7778  
45  
R
Spartan-3 FPGA Family: Pinout Descriptions  
Table 25: FG320 Package Pinout (Continued)  
Table 25: FG320 Package Pinout (Continued)  
XC3S400  
XC3S400  
XC3S1000  
XC3S1500  
Pin Name  
FG320  
Pin  
Number  
XC3S1000  
XC3S1500  
Pin Name  
FG320  
Pin  
Number  
Bank  
Type  
Bank  
Type  
7
IO_L27N_7  
H5  
H6  
I/O  
VREF  
I/O  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
M7  
N1  
GND  
GND  
7
IO_L27P_7/VREF_7  
IO_L34N_7  
IO_L34P_7  
IO_L35N_7  
IO_L35P_7  
IO_L39N_7  
IO_L39P_7  
IO_L40N_7/VREF_7  
IO_L40P_7  
VCCO_7  
VCCO_7  
VCCO_7  
GND  
7
H4  
N18  
T10  
T9  
GND  
7
H3  
I/O  
GND  
7
H1  
I/O  
GND  
7
H2  
I/O  
U17  
U2  
GND  
7
J1  
I/O  
GND  
7
J2  
I/O  
V1  
GND  
7
J5  
VREF  
I/O  
V13  
V18  
V6  
GND  
7
J4  
GND  
7
F3  
VCCO  
VCCO  
VCCO  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
7
H7  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
B12  
B7  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
CONFIG  
CONFIG  
CONFIG  
CONFIG  
CONFIG  
CONFIG  
CONFIG  
JTAG  
7
J7  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
A1  
G17  
G2  
GND  
A13  
A18  
A6  
GND  
M17  
M2  
GND  
GND  
B17  
B2  
U12  
U7  
GND  
GND  
C10  
C9  
F12  
F13  
F6  
GND  
GND  
F1  
GND  
F18  
G12  
G7  
H10  
H11  
H8  
F7  
GND  
G13  
G6  
GND  
GND  
M13  
M6  
GND  
GND  
N12  
N13  
N6  
GND  
H9  
GND  
J11  
J16  
J3  
GND  
N7  
GND  
VCCAUX CCLK  
VCCAUX DONE  
VCCAUX HSWAP_EN  
VCCAUX M0  
T15  
R15  
E6  
GND  
J8  
GND  
K11  
K16  
K3  
GND  
P5  
GND  
VCCAUX M1  
U3  
GND  
K8  
VCCAUX M2  
R4  
GND  
L10  
L11  
L8  
VCCAUX PROG_B  
VCCAUX TCK  
VCCAUX TDI  
E5  
GND  
E14  
D4  
GND  
JTAG  
GND  
L9  
VCCAUX TDO  
VCCAUX TMS  
D15  
B16  
JTAG  
GND  
M12  
JTAG  
46  
www.xilinx.com  
1-800-255-7778  
DS099-4 (v1.5) July 13, 2004  
Product Specification  
R
Spartan-3 FPGA Family: Pinout Descriptions  
User I/Os by Bank  
Table 26 indicates how the available user-I/O pins are dis-  
tributed between the eight I/O banks on the FG320 pack-  
age.  
Table 26: User I/Os Per Bank in FG320 Package  
Maximum  
All Possible I/O Pins by Type  
Maximum  
I/O  
LVDS  
Pairs  
Package Edge I/O Bank  
I/O  
19  
19  
23  
23  
13  
13  
23  
23  
DUAL  
DCI  
2
VREF  
GCLK  
0
26  
26  
29  
29  
27  
26  
29  
29  
11  
11  
14  
14  
11  
11  
14  
14  
0
0
0
0
6
6
0
0
3
3
4
4
4
3
4
4
2
2
0
0
2
2
0
0
Top  
1
2
2
2
Right  
3
2
4
2
Bottom  
5
2
6
2
Left  
7
2
DS099-4 (v1.5) July 13, 2004  
Product Specification  
www.xilinx.com  
1-800-255-7778  
47  
R
Spartan-3 FPGA Family: Pinout Descriptions  
FG320 Footprint  
Bank 0  
Bank 1  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
GND  
GND  
GND  
L01N_0  
L01P_0  
GND  
L31P_0  
L31N_1  
L10N_1  
L01N_1  
L01P_1  
A
B
C
D
E
F
VREF_1  
L15N_0  
L15P_0  
L30N_0  
L30P_0  
L16N_1  
VRP_0  
VRN_0  
VREF_0 VREF_1  
VRP_1  
VRN_1  
VREF_1  
I/O  
L16P_7  
VREF_7  
I/O  
L16P_1  
I/O  
L10P_1  
I/O  
L16N_2  
I/O  
VREF_0  
I/O  
L31N_0  
I/O  
L31P_1  
I/O  
L25P_0  
I/O  
L09N_0  
I/O  
L25N_0  
VCCAUX  
GND  
GND  
VCCO_0  
VCCO_1  
VCCAUX  
I/O  
TMS  
I/O  
L01P_7  
VRN_7  
I/O  
L01N_7  
VRP_7  
I/O  
L01N_2  
VRP_2  
I/O  
L01P_2  
VRN_2  
I/O  
L30N_1  
I/O  
L28N_1  
I/O  
L15N_1  
I/O  
L15P_1  
I/O  
L16P_2  
I/O  
L16N_7  
I/O  
L09P_0  
I/O  
L10N_0  
I/O  
L27N_0  
I/O  
L28N_0  
VCCO_0  
VCCO_1  
GND  
GND  
I/O  
L17P_2  
VREF_2  
I/O  
L17N_7  
I/O  
L17P_7  
I/O  
L19P_7  
I/O  
L10P_0  
I/O  
VREF_0  
I/O  
L27P_0  
I/O  
L28P_0  
I/O  
L30P_1  
I/O  
L28P_1  
I/O  
L24P_1  
I/O  
L24N_1  
I/O  
L19N_2  
I/O  
L17N_2  
TDI  
I/O  
I/O  
TDO  
I/O  
L19N_7  
VREF_7  
I/O  
L32N_0  
GCLK7  
I/O  
L32N_1  
GCLK5  
I/O  
L29N_0  
I/O  
L29P_1  
I/O  
L27P_1  
I/O  
L27N_1  
I/O  
L21P_2  
I/O  
L19P_2  
I/O  
L20N_2  
I/O  
L20P_2  
I/O  
L20P_7  
I/O  
L20N_7  
I/O  
L21N_7  
HSWAP_  
EN  
PROG_B  
I/O  
TCK  
I/O  
L32P_0  
GCLK6  
I/O  
L32P_1  
GCLK4  
I/O  
L23P_7  
I/O  
L21P_7  
I/O  
L22P_7  
I/O  
L29P_0  
I/O  
L29N_1  
I/O  
L22N_2  
I/O  
L21N_2  
I/O  
L23P_2  
VCCO_2  
VCCO_7  
VCCINT VCCINT  
VCCINT VCCINT  
GND  
GND  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCAUX  
VCCO_1 VCCO_1  
VCCINT  
GND  
VCCINT  
GND  
VCCO_0 VCCO_0  
L23N_2  
G
H
J
VCCAUX  
L23N_7  
L24P_7  
L24N_7  
L22N_7  
L22P_2  
L24N_2  
L24P_2  
VREF_2  
I/O  
L27P_7  
I/O  
L34N_2  
VREF_2  
I/O  
L35N_7  
I/O  
L35P_7  
I/O  
L34P_7  
I/O  
L34N_7  
I/O  
L27N_7  
I/O  
L27N_2  
I/O  
L27P_2  
I/O  
L34P_2  
I/O  
L35N_2  
I/O  
L35P_2  
VCCO_2  
VCCO_2  
VCCO_3  
VCCO_3  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
VCCO_7  
VCCO_7  
VCCO_6  
VCCO_6  
VREF_7  
I/O  
L40N_7  
VREF_7  
I/O  
L40P_2  
VREF_2  
I/O  
L39N_7  
I/O  
L39P_7  
I/O  
L40P_7  
I/O  
L40N_2  
I/O  
L39P_2  
I/O  
L39N_2  
GND  
GND  
GND  
GND  
I/O  
I/O  
I/O  
I/O  
L40P_6  
VREF_6  
I/O  
L40N_3  
VREF_3  
I/O  
L40N_6  
I/O  
L39P_6  
I/O  
L39N_6  
I/O  
L39N_3  
I/O  
L39P_3  
I/O  
L40P_3  
I/O  
K
L
I/O  
L34N_6  
VREF_6  
I/O  
L34P_3  
VREF_3  
I/O  
L35P_6  
I/O  
L35N_6  
I/O  
L34P_6  
I/O  
L27P_6  
I/O  
L27N_6  
I/O  
L27P_3  
I/O  
L27N_3  
I/O  
L34N_3  
I/O  
L35P_3  
I/O  
L35N_3  
GND  
GND  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCO_5 VCCO_5 VCCO_4 VCCO_4  
VCCINT  
VCCAUX  
VCCAUX  
GND  
GND  
L23P_3  
M
N
P
R
T
VCCINT  
L24P_6  
L23N_6  
L23P_6  
L22P_6  
L22N_3  
L23N_3  
L24N_3  
VREF_3  
I/O  
L24N_6  
VREF_6  
I/O  
I/O  
I/O  
I/O  
L21N_6  
I/O  
L22N_6  
I/O  
L22P_3  
I/O  
L21P_3  
I/O  
L24P_3  
I/O  
I/O  
GND  
GND  
VCCINT VCCINT  
L32N_5  
L32N_4  
L30N_4 VCCINT VCCINT  
VCCO_3  
VCCO_6  
D2  
GCLK3  
GCLK1  
I/O  
I/O  
I/O  
L32P_5  
GCLK2  
I/O  
L32P_4  
GCLK0  
I/O  
L30P_4  
D3  
I/O  
L06N_4  
VREF_4  
I/O  
L20P_6  
I/O  
L20N_6  
I/O  
L19P_6  
I/O  
L21P_6  
I/O  
L25P_4  
I/O  
L21N_3  
I/O  
L17N_3  
I/O  
L20P_3  
I/O  
L20N_3  
M0  
I/O  
L27N_5  
L27P_5  
VREF_5  
I/O  
L17P_6  
VREF_6  
I/O  
I/O  
I/O  
L27P_4  
D1  
I/O  
L17P_3  
VREF_3  
I/O  
L17N_6  
I/O  
L19N_6  
I/O  
L15P_5  
I/O  
L30N_5  
I/O  
I/O  
I/O  
L29N_4  
I/O  
L25N_4  
I/O  
L06P_4  
I/O  
L19N_3  
I/O  
L19P_3  
M2  
DONE  
CCLK  
L28N_5  
L15N_5  
D6  
VREF_5 VREF_4  
I/O  
L27N_4  
DIN  
I/O  
L01P_6  
VRN_6  
I/O  
L01N_6  
VRP_6  
I/O  
L28P_5  
D7  
I/O  
L01P_3  
VRN_3  
I/O  
L01N_3  
VRP_3  
I/O  
L16P_6  
I/O  
L06P_5  
I/O  
L06N_5  
I/O  
L30P_5  
I/O  
L29P_4  
I/O  
L10N_4  
I/O  
L16N_3  
VCCO_5  
I/O  
GND  
GND  
VCCO_4  
D0  
I/O  
L10P_5  
VRN_5  
I/O  
L31N_5  
D4  
I/O  
I/O  
L01N_4  
VRP_4  
I/O  
L16N_6  
I/O  
L16P_5  
I/O  
VREF_4  
I/O  
L10P_4  
I/O  
L09N_4  
I/O  
L16P_3  
VCCAUX  
VCCAUX  
VCCO_5  
VCCO_4  
GND  
M1  
GND  
L31N_4  
U
V
INIT_B  
I/O  
I/O  
L01P_5  
CS_B  
I/O  
L01N_5  
RDWR_B VRP_5  
I/O  
L10N_5  
I/O  
L29P_5  
VREF_5  
I/O  
L31P_5  
D5  
I/O  
L01P_4  
VRN_4  
I/O  
L16N_5  
I/O  
L29N_5  
I/O  
L28P_4  
I/O  
L28N_4  
I/O  
L09P_4  
I/O  
VREF_4  
L31P_4  
DOUT  
GND  
I/O  
GND  
GND  
GND  
BUSY  
Bank 5  
Bank 4  
ds099-3_16_121103  
Figure 12: FG320 Package Footprint (top view)  
I/O: Unrestricted, general-purpose user I/O  
DUAL: Configuration pin, then possible  
user I/O  
VREF: User I/O or input voltage reference for  
bank  
12  
8
29  
28  
12  
8
156  
DCI: User I/O or reference resistor input for  
bank  
GCLK: User I/O or global clock buffer input  
JTAG: Dedicated JTAG port pins  
GND: Ground  
VCCO: Output voltage supply for bank  
16  
7
CONFIG: Dedicated configuration pins  
VCCINT: Internal core voltage supply  
(+1.2V)  
4
N.C.: No unconnected pins in this package  
VCCAUX: Auxiliary voltage supply  
(+2.5V)  
0
40  
48  
www.xilinx.com  
1-800-255-7778  
DS099-4 (v1.5) July 13, 2004  
Product Specification  
R
Spartan-3 FPGA Family: Pinout Descriptions  
Table 27: FG456 Package Pinout (Continued)  
FG456: 456-lead Fine-pitch Ball Grid  
Array  
3S1000  
3S1500  
FG456  
Pin  
3S400  
The 456-lead fine-pitch ball grid array package, FG456,  
supports three different Spartan-3 devices, including the  
XC3S400, the XC3S1000, and the XC3S1500. The foot-  
prints for the XC3S1000 and XC3S1500 are identical, as  
shown in Table 27 and Figure 13. The XC3S400, however,  
has fewer I/O pins which consequently results in 69 uncon-  
nected pins on the FG456 package, labeled as “N.C.In  
Table 27 and Figure 13, these unconnected pins are indi-  
cated with a black diamond symbol (‹).  
Bank  
0
Pin Name  
Pin Name  
Number  
Type  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VREF  
IO_L10N_0  
IO_L10P_0  
IO_L15N_0  
IO_L15P_0  
IO_L16N_0  
IO_L16P_0  
N.C. (‹)  
IO_L10N_0  
IO_L10P_0  
IO_L15N_0  
IO_L15P_0  
IO_L16N_0  
IO_L16P_0  
IO_L19N_0  
IO_L19P_0  
IO_L22N_0  
IO_L22P_0  
IO_L24N_0  
IO_L24P_0  
IO_L25N_0  
IO_L25P_0  
IO_L27N_0  
IO_L27P_0  
IO_L28N_0  
IO_L28P_0  
IO_L29N_0  
IO_L29P_0  
IO_L30N_0  
IO_L30P_0  
IO_L31N_0  
E6  
D6  
0
0
C6  
0
B6  
0
E7  
0
D7  
0
B7  
All the package pins appear in Table 27 and are sorted by  
bank number, then by pin name. Pairs of pins that form a dif-  
ferential I/O pair appear together in the table. The table also  
shows the pin number for each pin and the pin type, as  
defined earlier.  
0
N.C. (‹)  
A7  
0
N.C. (‹)  
E8  
0
N.C. (‹)  
D8  
0
IO_L24N_0  
IO_L24P_0  
IO_L25N_0  
IO_L25P_0  
IO_L27N_0  
IO_L27P_0  
IO_L28N_0  
IO_L28P_0  
IO_L29N_0  
IO_L29P_0  
IO_L30N_0  
IO_L30P_0  
IO_L31N_0  
B8  
0
A8  
If there is a difference between the XC3S400 pinout and the  
pinout for the XC3S1000 and XC3S1500, then that differ-  
ence is highlighted in Table 27. If the table entry is shaded  
grey, then there is an unconnected pin on the XC3S400 that  
maps to a user-I/O pin on the XC3S1000 and XC3S1500. If  
the table entry is shaded tan, then the unconnected pin on  
the XC3S400 maps to a VREF-type pin on the XC3S1000  
and XC3S1500. If the other VREF pins in the bank all con-  
nect to a voltage reference to support a special I/O stan-  
dard, then also connect the N.C. pin on the XC3S400 to the  
same VREF voltage. This provides maximum flexibility as  
you could potentially migrate a design from the XC3S400  
device to an XC3S1000 or XC3S1500 FPGA without chang-  
ing the printed circuit board.  
0
F9  
0
E9  
0
B9  
0
A9  
0
F10  
E10  
C10  
B10  
F11  
E11  
D11  
C11  
0
0
0
0
0
0
0
IO_L31P_0/  
VREF_0  
IO_L31P_0/  
VREF_0  
Pinout Table  
0
0
IO_L32N_0/  
GCLK7  
IO_L32N_0/  
GCLK7  
B11  
A11  
GCLK  
GCLK  
Table 27: FG456 Package Pinout  
3S1000  
3S1500  
FG456  
Pin  
IO_L32P_0/  
GCLK6  
IO_L32P_0/  
GCLK6  
3S400  
Bank  
Pin Name  
Pin Name  
Number  
Type  
I/O  
0
0
0
0
0
1
1
1
1
1
1
1
1
1
VCCO_0  
VCCO_0  
VCCO_0  
VCCO_0  
VCCO_0  
IO  
VCCO_0  
VCCO_0  
VCCO_0  
VCCO_0  
VCCO_0  
IO  
C8  
F8  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
I/O  
0
0
0
0
0
0
0
0
0
IO  
IO  
A10  
D9  
D10  
F6  
IO  
IO  
I/O  
G9  
IO  
IO  
I/O  
G10  
G11  
A12  
E16  
F12  
F13  
F16  
F17  
E13  
F14  
C19  
IO  
IO  
I/O  
IO/VREF_0  
IO/VREF_0  
N.C. (‹)  
IO/VREF_0  
IO/VREF_0  
IO/VREF_0  
IO/VREF_0  
IO/VREF_0  
A3  
VREF  
VREF  
VREF  
VREF  
DCI  
C7  
E5  
IO  
IO  
I/O  
IO  
IO  
I/O  
F7  
IO  
IO  
I/O  
IO_L01N_0/  
VRP_0  
IO_L01N_0/  
VRP_0  
B4  
IO  
IO  
I/O  
IO  
IO  
I/O  
0
IO_L01P_0/  
VRN_0  
IO_L01P_0/  
VRN_0  
A4  
DCI  
IO/VREF_1  
N.C. (‹)  
IO/VREF_1  
IO/VREF_1  
VREF  
VREF  
DCI  
0
0
0
0
IO_L06N_0  
IO_L06P_0  
IO_L09N_0  
IO_L09P_0  
IO_L06N_0  
IO_L06P_0  
IO_L09N_0  
IO_L09P_0  
D5  
C5  
B5  
A5  
I/O  
I/O  
I/O  
I/O  
IO_L01N_1/  
VRP_1  
IO_L01N_1/  
VRP_1  
1
IO_L01P_1/  
VRN_1  
IO_L01P_1/  
VRN_1  
B20  
DCI  
DS099-4 (v1.5) July 13, 2004  
Product Specification  
www.xilinx.com  
1-800-255-7778  
49  
R
Spartan-3 FPGA Family: Pinout Descriptions  
Table 27: FG456 Package Pinout (Continued)  
Table 27: FG456 Package Pinout (Continued)  
3S1000  
3S1500  
FG456  
Pin  
3S1000  
3S1500  
FG456  
Pin  
3S400  
3S400  
Bank  
Pin Name  
Pin Name  
Number  
Type  
Bank  
Pin Name  
Pin Name  
Number  
Type  
I/O  
1
IO_L06N_1/  
VREF_1  
IO_L06N_1/  
VREF_1  
A19  
VREF  
2
2
2
IO_L16P_2  
IO_L17N_2  
IO_L17P_2  
/VREF_2  
IO_L16P_2  
IO_L17N_2  
D19  
D21  
D22  
I/O  
1
1
1
1
IO_L06P_1  
IO_L09N_1  
IO_L09P_1  
IO_L06P_1  
IO_L09N_1  
IO_L09P_1  
B19  
C18  
D18  
A18  
I/O  
I/O  
IO_L17P_2/  
VREF_2  
VREF  
I/O  
2
2
2
2
2
2
2
2
2
IO_L19N_2  
IO_L19P_2  
IO_L20N_2  
IO_L20P_2  
IO_L21N_2  
IO_L21P_2  
IO_L22N_2  
IO_L22P_2  
IO_L23N_2  
/VREF_2  
IO_L19N_2  
IO_L19P_2  
IO_L20N_2  
IO_L20P_2  
IO_L21N_2  
IO_L21P_2  
IO_L22N_2  
IO_L22P_2  
E18  
F18  
E19  
E20  
E21  
E22  
G17  
G18  
F19  
I/O  
I/O  
IO_L10N_1/  
VREF_1  
IO_L10N_1/  
VREF_1  
VREF  
I/O  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
IO_L10P_1  
IO_L15N_1  
IO_L15P_1  
IO_L16N_1  
IO_L16P_1  
N.C. (‹)  
IO_L10P_1  
IO_L15N_1  
IO_L15P_1  
IO_L16N_1  
IO_L16P_1  
IO_L19N_1  
IO_L19P_1  
IO_L22N_1  
IO_L22P_1  
IO_L24N_1  
IO_L24P_1  
IO_L25N_1  
IO_L25P_1  
IO_L27N_1  
IO_L27P_1  
IO_L28N_1  
IO_L28P_1  
IO_L29N_1  
IO_L29P_1  
IO_L30N_1  
IO_L30P_1  
B18  
D17  
E17  
B17  
C17  
C16  
D16  
A16  
B16  
D15  
E15  
B15  
A15  
D14  
E14  
A14  
B14  
C13  
D13  
A13  
B13  
D12  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VREF  
I/O  
I/O  
I/O  
I/O  
I/O  
IO_L23N_2/  
VREF_2  
VREF  
N.C. (‹)  
N.C. (‹)  
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
IO_L23P_2  
IO_L24N_2  
IO_L24P_2  
N.C. (‹)  
IO_L23P_2  
IO_L24N_2  
IO_L24P_2  
IO_L26N_2  
IO_L26P_2  
IO_L27N_2  
IO_L27P_2  
IO_L28N_2  
IO_L28P_2  
IO_L29N_2  
IO_L29P_2  
IO_L31N_2  
IO_L31P_2  
IO_L32N_2  
IO_L32P_2  
IO_L33N_2  
IO_L33P_2  
G19  
F20  
F21  
G20  
H19  
G21  
G22  
H18  
J17  
H21  
H22  
J18  
J19  
J21  
J22  
K17  
K18  
K19  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VREF  
N.C. (‹)  
IO_L24N_1  
IO_L24P_1  
IO_L25N_1  
IO_L25P_1  
IO_L27N_1  
IO_L27P_1  
IO_L28N_1  
IO_L28P_1  
IO_L29N_1  
IO_L29P_1  
IO_L30N_1  
IO_L30P_1  
N.C. (‹)  
IO_L27N_2  
IO_L27P_2  
N.C. (‹)  
N.C. (‹)  
N.C. (‹)  
N.C. (‹)  
N.C. (‹)  
N.C. (‹)  
N.C. (‹)  
IO_L31N_1/  
VREF_1  
IO_L31N_1/  
VREF_1  
N.C. (‹)  
N.C. (‹)  
1
1
IO_L31P_1  
IO_L31P_1  
E12  
B12  
I/O  
N.C. (‹)  
IO_L32N_1/  
GCLK5  
IO_L32N_1/  
GCLK5  
GCLK  
IO_L34N_2/  
VREF_2  
IO_L34N_2/  
VREF_2  
1
IO_L32P_1/  
GCLK4  
IO_L32P_1/  
GCLK4  
C12  
GCLK  
2
2
2
2
2
2
2
2
2
IO_L34P_2  
IO_L35N_2  
IO_L35P_2  
IO_L38N_2  
IO_L38P_2  
IO_L39N_2  
IO_L39P_2  
IO_L40N_2  
IO_L34P_2  
IO_L35N_2  
IO_L35P_2  
IO_L38N_2  
IO_L38P_2  
IO_L39N_2  
IO_L39P_2  
IO_L40N_2  
K20  
K21  
K22  
L17  
L18  
L19  
L20  
L21  
L22  
I/O  
I/O  
1
1
1
1
1
2
2
VCCO_1  
VCCO_1  
VCCO_1  
VCCO_1  
VCCO_1  
IO  
VCCO_1  
VCCO_1  
VCCO_1  
VCCO_1  
VCCO_1  
IO  
C15  
F15  
G12  
G13  
G14  
C22  
C20  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
IO_L01N_2/  
VRP_2  
IO_L01N_2/  
VRP_2  
DCI  
IO_L40P_2/  
VREF_2  
IO_L40P_2/  
VREF_2  
VREF  
2
2
IO_L01P_2/  
VRN_2  
IO_L01P_2/  
VRN_2  
C21  
D20  
DCI  
I/O  
2
2
VCCO_2  
VCCO_2  
VCCO_2  
VCCO_2  
H17  
H20  
VCCO  
VCCO  
IO_L16N_2  
IO_L16N_2  
50  
www.xilinx.com  
1-800-255-7778  
DS099-4 (v1.5) July 13, 2004  
Product Specification  
R
Spartan-3 FPGA Family: Pinout Descriptions  
Table 27: FG456 Package Pinout (Continued)  
Table 27: FG456 Package Pinout (Continued)  
3S1000  
3S1500  
FG456  
Pin  
3S1000  
3S1500  
FG456  
Pin  
3S400  
3S400  
Bank  
Pin Name  
Pin Name  
Number  
Type  
VCCO  
VCCO  
VCCO  
I/O  
Bank  
Pin Name  
Pin Name  
Number  
Type  
I/O  
2
2
2
3
3
VCCO_2  
VCCO_2  
VCCO_2  
IO  
VCCO_2  
VCCO_2  
VCCO_2  
IO  
J16  
K16  
L16  
Y21  
Y20  
3
3
3
3
IO_L38P_3  
IO_L39N_3  
IO_L39P_3  
IO_L38P_3  
IO_L39N_3  
IO_L39P_3  
M17  
M20  
M19  
M22  
I/O  
I/O  
IO_L40N_3/  
VREF_3  
IO_L40N_3/  
VREF_3  
VREF  
IO_L01N_3/  
VRP_3  
IO_L01N_3/  
VRP_3  
DCI  
3
3
3
3
3
3
4
4
4
4
4
4
4
4
IO_L40P_3  
VCCO_3  
VCCO_3  
VCCO_3  
VCCO_3  
VCCO_3  
IO  
IO_L40P_3  
VCCO_3  
VCCO_3  
VCCO_3  
VCCO_3  
VCCO_3  
IO  
M21  
M16  
N16  
P16  
I/O  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
I/O  
3
IO_L01P_3/  
VRN_3  
IO_L01P_3/  
VRN_3  
Y19  
DCI  
3
3
3
3
IO_L16N_3  
IO_L16P_3  
IO_L17N_3  
IO_L16N_3  
IO_L16P_3  
IO_L17N_3  
W22  
Y22  
V19  
W19  
I/O  
I/O  
R17  
R20  
U16  
U17  
W13  
W14  
AB13  
V18  
I/O  
IO_L17P_3/  
VREF_3  
IO_L17P_3/  
VREF_3  
VREF  
IO  
IO  
I/O  
3
3
3
3
3
3
3
3
3
3
IO_L19N_3  
IO_L19P_3  
IO_L20N_3  
IO_L20P_3  
IO_L21N_3  
IO_L21P_3  
IO_L22N_3  
IO_L22P_3  
IO_L23N_3  
IO_L19N_3  
IO_L19P_3  
IO_L20N_3  
IO_L20P_3  
IO_L21N_3  
IO_L21P_3  
IO_L22N_3  
IO_L22P_3  
IO_L23N_3  
W21  
W20  
U19  
V20  
V22  
V21  
T17  
U18  
U21  
U20  
I/O  
I/O  
IO  
IO  
I/O  
IO  
IO  
I/O  
I/O  
IO/VREF_4  
IO/VREF_4  
IO/VREF_4  
IO/VREF_4  
IO/VREF_4  
IO/VREF_4  
VREF  
VREF  
VREF  
DCI  
I/O  
I/O  
Y16  
I/O  
IO_L01N_4/  
VRP_4  
IO_L01N_4/  
VRP_4  
AA20  
I/O  
I/O  
4
IO_L01P_4/  
VRN_4  
IO_L01P_4/  
VRN_4  
AB20  
DCI  
I/O  
IO_L23P_3/  
VREF_3  
IO_L23P_3/  
VREF_3  
VREF  
4
4
4
N.C. (‹)  
N.C. (‹)  
IO_L05N_4  
IO_L05P_4  
AA19  
AB19  
W18  
I/O  
I/O  
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
IO_L24N_3  
IO_L24P_3  
N.C. (‹)  
N.C. (‹)  
IO_L27N_3  
IO_L27P_3  
N.C. (‹)  
N.C. (‹)  
N.C. (‹)  
N.C. (‹)  
N.C. (‹)  
N.C. (‹)  
N.C. (‹)  
N.C. (‹)  
N.C. (‹)  
N.C. (‹)  
IO_L34N_3  
IO_L24N_3  
IO_L24P_3  
IO_L26N_3  
IO_L26P_3  
IO_L27N_3  
IO_L27P_3  
IO_L28N_3  
IO_L28P_3  
IO_L29N_3  
IO_L29P_3  
IO_L31N_3  
IO_L31P_3  
IO_L32N_3  
IO_L32P_3  
IO_L33N_3  
IO_L33P_3  
IO_L34N_3  
R18  
T18  
T20  
T19  
T22  
T21  
R22  
R21  
P19  
R19  
P18  
P17  
P22  
P21  
N18  
N17  
N20  
N19  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VREF  
IO_L06N_4/  
VREF_4  
IO_L06N_4/  
VREF_4  
VREF  
4
4
4
4
4
4
4
4
4
4
4
4
IO_L06P_4  
IO_L09N_4  
IO_L09P_4  
IO_L10N_4  
IO_L10P_4  
IO_L15N_4  
IO_L15P_4  
IO_L16N_4  
IO_L16P_4  
N.C. (‹)  
IO_L06P_4  
IO_L09N_4  
IO_L09P_4  
IO_L10N_4  
IO_L10P_4  
IO_L15N_4  
IO_L15P_4  
IO_L16N_4  
IO_L16P_4  
IO_L19N_4  
IO_L19P_4  
Y18  
AA18  
AB18  
V17  
I/O  
I/O  
I/O  
I/O  
W17  
Y17  
I/O  
I/O  
AA17  
V16  
I/O  
I/O  
W16  
AA16  
AB16  
V15  
I/O  
I/O  
N.C. (‹)  
I/O  
N.C. (‹)  
IO_L22N_4/  
VREF_4  
VREF  
4
4
4
4
4
4
N.C. (‹)  
IO_L22P_4  
IO_L24N_4  
IO_L24P_4  
IO_L25N_4  
IO_L25P_4  
W15  
AA15  
AB15  
U14  
I/O  
I/O  
IO_L24N_4  
IO_L24P_4  
IO_L25N_4  
IO_L25P_4  
I/O  
IO_L34P_3/  
VREF_3  
IO_L34P_3/  
VREF_3  
I/O  
3
3
3
IO_L35N_3  
IO_L35P_3  
IO_L38N_3  
IO_L35N_3  
IO_L35P_3  
IO_L38N_3  
N22  
N21  
M18  
I/O  
I/O  
I/O  
V14  
I/O  
IO_L27N_4/  
DIN/D0  
IO_L27N_4/  
DIN/D0  
AA14  
DUAL  
DS099-4 (v1.5) July 13, 2004  
Product Specification  
www.xilinx.com  
1-800-255-7778  
51  
R
Spartan-3 FPGA Family: Pinout Descriptions  
Table 27: FG456 Package Pinout (Continued)  
Table 27: FG456 Package Pinout (Continued)  
3S1000  
3S1500  
FG456  
Pin  
3S1000  
3S1500  
FG456  
Pin  
3S400  
3S400  
Bank  
Pin Name  
Pin Name  
Number  
Type  
Bank  
Pin Name  
Pin Name  
Number  
Type  
I/O  
4
IO_L27P_4/  
D1  
IO_L27P_4/  
D1  
AB14  
DUAL  
5
5
N.C. (‹)  
N.C. (‹)  
IO_L19N_5  
Y7  
IO_L19P_5/  
VREF_5  
W7  
VREF  
4
4
4
4
4
IO_L28N_4  
IO_L28P_4  
IO_L29N_4  
IO_L29P_4  
IO_L28N_4  
IO_L28P_4  
IO_L29N_4  
IO_L29P_4  
U13  
V13  
I/O  
I/O  
5
5
5
5
5
5
5
N.C. (‹)  
IO_L22N_5  
IO_L22P_5  
IO_L24N_5  
IO_L24P_5  
IO_L25N_5  
IO_L25P_5  
AB7  
AA7  
W8  
I/O  
I/O  
Y13  
I/O  
N.C. (‹)  
AA13  
U12  
I/O  
IO_L24N_5  
IO_L24P_5  
IO_L25N_5  
IO_L25P_5  
I/O  
IO_L30N_4/  
D2  
IO_L30N_4/  
D2  
DUAL  
V8  
I/O  
AB8  
AA8  
W9  
I/O  
4
4
4
4
4
IO_L30P_4/  
D3  
IO_L30P_4/  
D3  
V12  
W12  
Y12  
DUAL  
DUAL  
DUAL  
GCLK  
GCLK  
I/O  
IO_L27N_5/  
VREF_5  
IO_L27N_5/  
VREF_5  
VREF  
IO_L31N_4/  
INIT_B  
IO_L31N_4/  
INIT_B  
5
5
IO_L27P_5  
IO_L27P_5  
V9  
I/O  
IO_L31P_4/  
DOUT/BUSY DOUT/BUSY  
IO_L31P_4/  
IO_L28N_5/  
D6  
IO_L28N_5/  
D6  
AB9  
DUAL  
IO_L32N_4/  
GCLK1  
IO_L32N_4/  
GCLK1  
AA12  
AB12  
5
IO_L28P_5/  
D7  
IO_L28P_5/  
D7  
AA9  
DUAL  
IO_L32P_4/  
GCLK0  
IO_L32P_4/  
GCLK0  
5
5
IO_L29N_5  
IO_L29N_5  
Y10  
I/O  
IO_L29P_5/  
VREF_5  
IO_L29P_5/  
VREF_5  
W10  
VREF  
4
4
4
4
4
5
5
5
5
5
5
5
5
5
VCCO_4  
VCCO_4  
VCCO_4  
VCCO_4  
VCCO_4  
IO  
VCCO_4  
VCCO_4  
VCCO_4  
VCCO_4  
VCCO_4  
IO  
T12  
T13  
T14  
U15  
Y15  
U7  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
I/O  
5
5
5
IO_L30N_5  
IO_L30P_5  
IO_L30N_5  
IO_L30P_5  
AB10  
AA10  
W11  
I/O  
I/O  
IO_L31N_5/  
D4  
IO_L31N_5/  
D4  
DUAL  
5
5
5
IO_L31P_5/  
D5  
IO_L31P_5/  
D5  
V11  
AA11  
Y11  
DUAL  
GCLK  
GCLK  
N.C. (‹)  
IO  
IO  
U9  
I/O  
IO  
U10  
U11  
V7  
I/O  
IO_L32N_5/  
GCLK3  
IO_L32N_5/  
GCLK3  
IO  
IO  
I/O  
IO_L32P_5/  
GCLK2  
IO_L32P_5/  
GCLK2  
IO  
IO  
I/O  
IO  
IO  
V10  
AB11  
U6  
I/O  
5
5
5
5
5
6
6
VCCO_5  
VCCO_5  
VCCO_5  
VCCO_5  
VCCO_5  
IO  
VCCO_5  
VCCO_5  
VCCO_5  
VCCO_5  
VCCO_5  
IO  
T9  
T10  
T11  
U8  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
I/O  
IO/VREF_5  
IO/VREF_5  
IO/VREF_5  
IO/VREF_5  
VREF  
VREF  
DUAL  
IO_L01N_5/  
RDWR_B  
IO_L01N_5/  
RDWR_B  
Y4  
Y8  
5
IO_L01P_5/  
CS_B  
IO_L01P_5/  
CS_B  
AA3  
DUAL  
Y1  
5
5
5
5
5
IO_L06N_5  
IO_L06P_5  
IO_L09N_5  
IO_L09P_5  
IO_L06N_5  
IO_L06P_5  
IO_L09N_5  
IO_L09P_5  
AB4  
AA4  
Y5  
I/O  
I/O  
I/O  
I/O  
DCI  
IO_L01N_6/  
VRP_6  
IO_L01N_6/  
VRP_6  
Y3  
DCI  
6
IO_L01P_6/  
VRN_6  
IO_L01P_6/  
VRN_6  
Y2  
DCI  
W5  
6
6
6
6
IO_L16N_6  
IO_L16P_6  
IO_L17N_6  
IO_L16N_6  
IO_L16P_6  
IO_L17N_6  
W4  
W3  
W2  
W1  
I/O  
I/O  
IO_L10N_5/  
VRP_5  
IO_L10N_5/  
VRP_5  
AB5  
I/O  
5
IO_L10P_5/  
VRN_5  
IO_L10P_5/  
VRN_5  
AA5  
DCI  
IO_L17P_6/  
VREF_6  
IO_L17P_6/  
VREF_6  
VREF  
5
5
5
5
IO_L15N_5  
IO_L15P_5  
IO_L16N_5  
IO_L16P_5  
IO_L15N_5  
IO_L15P_5  
IO_L16N_5  
IO_L16P_5  
W6  
V6  
I/O  
I/O  
I/O  
I/O  
6
6
6
IO_L19N_6  
IO_L19P_6  
IO_L20N_6  
IO_L19N_6  
IO_L19P_6  
IO_L20N_6  
V5  
U5  
V4  
I/O  
I/O  
I/O  
AA6  
Y6  
52  
www.xilinx.com  
1-800-255-7778  
DS099-4 (v1.5) July 13, 2004  
Product Specification  
R
Spartan-3 FPGA Family: Pinout Descriptions  
Table 27: FG456 Package Pinout (Continued)  
Table 27: FG456 Package Pinout (Continued)  
3S1000  
3S1500  
FG456  
Pin  
3S1000  
3S1500  
FG456  
Pin  
3S400  
3S400  
Bank  
Pin Name  
Pin Name  
Number  
Type  
I/O  
Bank  
Pin Name  
Pin Name  
Number  
Type  
I/O  
6
6
6
6
6
6
6
6
IO_L20P_6  
IO_L21N_6  
IO_L21P_6  
IO_L22N_6  
IO_L22P_6  
IO_L23N_6  
IO_L23P_6  
IO_L20P_6  
IO_L21N_6  
IO_L21P_6  
IO_L22N_6  
IO_L22P_6  
IO_L23N_6  
IO_L23P_6  
V3  
V2  
V1  
T6  
T5  
U4  
T4  
U3  
7
7
IO_L16N_7  
IO_L16N_7  
D1  
C1  
I/O  
IO_L16P_7/  
VREF_7  
IO_L16P_7/  
VREF_7  
VREF  
I/O  
7
7
7
IO_L17N_7  
IO_L17P_7  
IO_L17N_7  
IO_L17P_7  
E4  
D4  
D3  
I/O  
I/O  
I/O  
I/O  
IO_L19N_7/  
VREF_7  
IO_L19N_7/  
VREF_7  
VREF  
I/O  
I/O  
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
IO_L19P_7  
IO_L20N_7  
IO_L20P_7  
IO_L21N_7  
IO_L21P_7  
IO_L22N_7  
IO_L22P_7  
IO_L23N_7  
IO_L23P_7  
IO_L24N_7  
IO_L24P_7  
N.C. (‹)  
IO_L19P_7  
IO_L20N_7  
IO_L20P_7  
IO_L21N_7  
IO_L21P_7  
IO_L22N_7  
IO_L22P_7  
IO_L23N_7  
IO_L23P_7  
IO_L24N_7  
IO_L24P_7  
IO_L26N_7  
IO_L26P_7  
IO_L27N_7  
D2  
F4  
E3  
E1  
E2  
G6  
F5  
F2  
F3  
H5  
G5  
G3  
G4  
G1  
G2  
I/O  
I/O  
IO_L24N_6/  
VREF_6  
IO_L24N_6/  
VREF_6  
VREF  
I/O  
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
IO_L24P_6  
N.C. (‹)  
N.C. (‹)  
IO_L27N_6  
IO_L27P_6  
N.C. (‹)  
N.C. (‹)  
N.C. (‹)  
N.C. (‹)  
N.C. (‹)  
N.C. (‹)  
N.C. (‹)  
N.C. (‹)  
N.C. (‹)  
N.C. (‹)  
IO_L24P_6  
IO_L26N_6  
IO_L26P_6  
IO_L27N_6  
IO_L27P_6  
IO_L28N_6  
IO_L28P_6  
IO_L29N_6  
IO_L29P_6  
IO_L31N_6  
IO_L31P_6  
IO_L32N_6  
IO_L32P_6  
IO_L33N_6  
IO_L33P_6  
U2  
T3  
R4  
T2  
T1  
R5  
P6  
R2  
R1  
P5  
P4  
P2  
P1  
N6  
N5  
N4  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VREF  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
N.C. (‹)  
I/O  
IO_L27N_7  
I/O  
IO_L27P_7/  
VREF_7  
IO_L27P_7/  
VREF_7  
VREF  
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
N.C. (‹)  
IO_L28N_7  
IO_L28P_7  
IO_L29N_7  
IO_L29P_7  
IO_L31N_7  
IO_L31P_7  
IO_L32N_7  
IO_L32P_7  
IO_L33N_7  
IO_L33P_7  
IO_L34N_7  
IO_L34P_7  
IO_L35N_7  
IO_L35P_7  
IO_L38N_7  
IO_L38P_7  
IO_L39N_7  
IO_L39P_7  
H1  
H2  
J4  
H4  
J5  
J6  
J1  
J2  
K5  
K6  
K3  
K4  
K1  
K2  
L5  
L6  
L3  
L4  
L1  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VREF  
N.C. (‹)  
IO_L34N_6/  
VREF_6  
IO_L34N_6/  
VREF_6  
N.C. (‹)  
N.C. (‹)  
6
6
6
6
6
6
6
6
6
IO_L34P_6  
IO_L35N_6  
IO_L35P_6  
IO_L38N_6  
IO_L38P_6  
IO_L39N_6  
IO_L39P_6  
IO_L40N_6  
IO_L34P_6  
IO_L35N_6  
IO_L35P_6  
IO_L38N_6  
IO_L38P_6  
IO_L39N_6  
IO_L39P_6  
IO_L40N_6  
N3  
N2  
N1  
M6  
M5  
M4  
M3  
M2  
M1  
I/O  
I/O  
N.C. (‹)  
N.C. (‹)  
I/O  
N.C. (‹)  
I/O  
N.C. (‹)  
I/O  
N.C. (‹)  
I/O  
N.C. (‹)  
I/O  
IO_L34N_7  
IO_L34P_7  
IO_L35N_7  
IO_L35P_7  
IO_L38N_7  
IO_L38P_7  
IO_L39N_7  
IO_L39P_7  
I/O  
IO_L40P_6/  
VREF_6  
IO_L40P_6/  
VREF_6  
VREF  
6
6
6
6
6
7
7
VCCO_6  
VCCO_6  
VCCO_6  
VCCO_6  
VCCO_6  
IO  
VCCO_6  
VCCO_6  
VCCO_6  
VCCO_6  
VCCO_6  
IO  
M7  
N7  
P7  
R3  
R6  
C2  
C3  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
I/O  
IO_L40N_7/  
VREF_7  
IO_L40N_7/  
VREF_7  
IO_L01N_7/  
VRP_7  
IO_L01N_7/  
VRP_7  
DCI  
7
7
7
IO_L40P_7  
VCCO_7  
VCCO_7  
IO_L40P_7  
VCCO_7  
VCCO_7  
L2  
H3  
H6  
I/O  
7
IO_L01P_7/  
VRN_7  
IO_L01P_7/  
VRN_7  
C4  
DCI  
VCCO  
VCCO  
DS099-4 (v1.5) July 13, 2004  
Product Specification  
www.xilinx.com  
1-800-255-7778  
53  
R
Spartan-3 FPGA Family: Pinout Descriptions  
Table 27: FG456 Package Pinout (Continued)  
Table 27: FG456 Package Pinout (Continued)  
3S1000  
3S1500  
FG456  
Pin  
3S1000  
3S1500  
FG456  
Pin  
3S400  
3S400  
Bank  
7
Pin Name  
Pin Name  
Number  
Type  
VCCO  
VCCO  
VCCO  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
Bank  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
Pin Name  
Pin Name  
Number  
Type  
GND  
VCCO_7  
VCCO_7  
VCCO_7  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
VCCO_7  
VCCO_7  
VCCO_7  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
J7  
K7  
GND  
GND  
P3  
P9  
7
GND  
GND  
GND  
7
L7  
GND  
GND  
P10  
P11  
P12  
P13  
P14  
P20  
Y9  
GND  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
A1  
GND  
GND  
GND  
A22  
AA2  
AA21  
AB1  
AB22  
B2  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
Y14  
A6  
GND  
B21  
C9  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
CCLK  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
CONFIG  
CONFIG  
CONFIG  
CONFIG  
CONFIG  
CONFIG  
CONFIG  
JTAG  
A17  
AB6  
AB17  
F1  
C14  
J3  
J9  
J10  
J11  
J12  
J13  
J14  
J20  
K9  
F22  
U1  
U22  
G7  
G8  
G15  
G16  
H7  
K10  
K11  
K12  
K13  
K14  
L9  
H16  
R7  
R16  
T7  
T8  
L10  
L11  
L12  
L13  
L14  
M9  
T15  
T16  
AA22  
AB21  
B3  
VCCAUX CCLK  
VCCAUX DONE  
DONE  
VCCAUX HSWAP_EN HSWAP_EN  
VCCAUX M0  
VCCAUX M1  
VCCAUX M2  
VCCAUX PROG_B  
VCCAUX TCK  
VCCAUX TDI  
VCCAUX TDO  
VCCAUX TMS  
M0  
AB2  
AA1  
AB3  
A2  
M10  
M11  
M12  
M13  
M14  
N9  
M1  
M2  
PROG_B  
TCK  
TDI  
A21  
B1  
JTAG  
TDO  
TMS  
B22  
A20  
JTAG  
N10  
N11  
N12  
N13  
N14  
JTAG  
54  
www.xilinx.com  
1-800-255-7778  
DS099-4 (v1.5) July 13, 2004  
Product Specification  
R
Spartan-3 FPGA Family: Pinout Descriptions  
able user-I/O pins are distributed between the eight I/O  
banks for the XC3S1000 and XC3S1500 in the FG456  
package.  
User I/Os by Bank  
Table 28 indicates how the available user-I/O pins are dis-  
tributed between the eight I/O banks for the XC3S400 in the  
FG456 package. Similarly, Table 29 shows how the avail-  
Table 28: User I/Os Per Bank for XC3S400 in FG456 Package  
All Possible I/O Pins by Type  
I/O  
Bank  
Maximum  
I/O  
Edge  
I/O  
27  
27  
25  
25  
21  
21  
25  
25  
DUAL  
DCI  
2
VREF  
GCLK  
0
1
2
3
4
5
6
7
35  
35  
31  
31  
35  
35  
31  
31  
0
0
0
0
6
6
0
0
4
4
4
4
4
4
4
4
2
2
0
0
2
2
0
0
Top  
2
2
Right  
Bottom  
Left  
2
2
2
2
2
Table 29: User I/Os Per Bank for XC3S1000 and XC3S1500 in FG456 Package  
All Possible I/O Pins by Type  
Maximum  
I/O  
Edge  
I/O Bank  
I/O  
31  
31  
37  
37  
26  
25  
37  
37  
DUAL  
DCI  
2
VREF  
GCLK  
0
1
2
3
4
5
6
7
40  
40  
43  
43  
41  
40  
43  
43  
0
0
0
0
6
6
0
0
5
5
4
4
5
5
4
4
2
2
0
0
2
2
0
0
Top  
2
2
Right  
Bottom  
Left  
2
2
2
2
2
DS099-4 (v1.5) July 13, 2004  
Product Specification  
www.xilinx.com  
1-800-255-7778  
55  
R
Spartan-3 FPGA Family: Pinout Descriptions  
FG456 Footprint  
Bank 0  
7
1
2
3
4
5
6
8
9
10  
11  
Left Half of Package  
(top view)  
I/O  
L19P_0  
‹
I/O  
L01P_0  
VRN_0  
I/O  
L32P_0  
GCLK6  
IO  
VREF_0  
I/O  
L09P_0  
I/O  
I/O  
PROG_B  
VCCAUX  
I/O  
A
B
C
D
E
F
GND  
L24P_0 L27P_0  
XC3S400  
(264 max. user I/O)  
I/O  
L19N_0  
‹
I/O  
L01N_0  
VRP_0  
I/O  
L32N_0  
GCLK7  
HSWAP_  
EN  
I/O  
I/O  
I/O  
I/O  
I/O  
TDI  
GND  
L09N_0 L15P_0  
L24N_0 L27N_0 L29P_0  
I/O: Unrestricted,  
general-purpose user I/O  
196  
I/O  
L16P_7  
VREF_7  
I/O  
I/O  
I/O  
L31P_0  
VREF_0  
IO  
VREF_0  
I/O  
I/O  
I/O  
VCCO_0  
I/O  
I/O  
GND  
L01N_7 L01P_7  
VRP_7 VRN_7  
L06P_0 L15N_0  
L29N_0  
I/O  
VREF: User I/O or input  
32  
I/O  
L22P_0  
‹
I/O  
I/O  
voltage reference for bank  
I/O  
I/O  
I/O  
I/O  
I/O  
L31N_0  
I/O  
I/O  
L19N_7  
L16N_7 L19P_7  
L17P_7 L06N_0 L10P_0 L16P_0  
VREF_7  
N.C.: Unconnected pins for  
XC3S400 (‹)  
IO  
VREF_0  
‹
I/O  
L22N_0  
‹
69  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
L21N_7 L21P_7 L20P_7 L17N_7  
L10N_0 L16N_0  
L25P_0 L28P_0 L30P_0  
XC3S1000, XC3S1500  
(333 max user I/O)  
IO  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCAUX  
VCCO_0  
VREF_0  
L23N_7 L23P_7 L20N_7 L22P_7  
L25N_0 L28N_0 L30N_0  
I/O: Unrestricted,  
general-purpose user I/O  
261  
I/O  
L27P_7  
VREF_7  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCO_0 VCCO_0 VCCO_0  
VCCINT VCCINT  
VCCINT  
G
H
J
L26N_7 L26P_7  
L27N_7  
L24P_7 L22N_7  
‹
‹
VREF: User I/O or input  
36  
I/O  
I/O  
I/O  
L29P_7  
I/O  
L24N_7  
L28N_7 L28P_7  
voltage reference for bank  
VCCO_7  
VCCO_7  
‹
‹
‹
I/O  
I/O  
I/O  
I/O  
I/O  
N.C.: No unconnected pins  
in this package  
0
L32N_7 L32P_7  
L29N_7 L31N_7 L31P_7  
VCCO_7  
GND  
I/O  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
‹
‹
‹
‹
‹
I/O  
I/O  
All devices  
I/O  
I/O  
I/O  
L33N_7 L33P_7  
VCCO_7  
K
L35N_7 L35P_7 L34N_7 L34P_7  
DUAL: Configuration pin,  
then possible user I/O  
‹
‹
12  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCO_7  
L L40N_7  
L40P_7 L39N_7 L39P_7 L38N_7 L38P_7  
VREF_7  
GCLK: User I/O or global  
clock buffer input  
8
I/O  
M L40P_6  
VREF_6  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCO_6  
L40N_6 L39P_6 L39N_6 L38P_6 L38N_6  
DCI: User I/O or reference  
16  
I/O  
I/O  
I/O  
L34N_6  
VREF_6  
resistor input for bank  
I/O  
I/O  
I/O  
L33P_6 L33N_6  
VCCO_6  
N
GND  
GND  
GND  
GND  
GND  
GND  
L35P_6 L35N_6 L34P_6  
‹
‹
CONFIG: Dedicated  
configuration pins  
I/O  
I/O  
I/O  
I/O  
I/O  
7
L32P_6 L32N_6  
L31P_6 L31N_6 L28P_6  
VCCO_6  
GND  
P
R
T
‹
‹
‹
‹
‹
I/O  
I/O  
I/O  
I/O  
JTAG: Dedicated JTAG  
port pins  
4
L29P_6 L29N_6  
L26P_6 L28N_6  
VCCO_6  
VCCO_6  
VCCINT  
‹
‹
‹
‹
I/O  
L26N_6  
‹
VCCINT: Internal core  
12  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCO_5 VCCO_5 VCCO_5  
I/O  
VCCINT VCCINT  
L27P_6 L27N_6  
L23P_6 L22P_6 L22N_6  
voltage supply (+1.2V)  
I/O  
L24N_6  
VREF_6  
IO  
VREF_5  
I/O  
L24P_6  
I/O  
I/O  
VCCO: Output voltage  
supply for bank  
VCCAUX  
VCCO_5  
I/O  
I/O  
I/O  
I/O  
U
V
L23N_6 L19P_6  
40  
‹
I/O  
L31P_5  
D5  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCAUX:Auxiliaryvoltage  
supply (+2.5V)  
L21P_6 L21N_6 L20P_6 L20N_6 L19N_6 L15P_5  
L24P_5 L27P_5  
8
I/O  
L19P_5  
VREF_5  
‹
I/O  
L19N_5  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
W L17P_6  
L27N_5 L29P_5 L31N_5  
L17N_6 L16P_6 L16N_6 L09P_5 L15N_5  
L24N_5  
GND: Ground  
VREF_6  
VREF_5 VREF_5  
D4  
52  
I/O  
I/O  
I/O  
I/O  
L32P_5  
GCLK2  
I/O  
I/O  
I/O  
GND  
VCCO_5  
I/O  
M1  
Y
L01P_6 L01N_6 L01N_5  
VRN_6 VRP_6 RDWR_B  
L09N_5 L16P_5  
L29N_5  
‹
I/O  
L22P_5  
‹
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
L32N_5  
GCLK3  
A
A
I/O  
I/O  
L25P_5  
GND  
M0  
L01P_5  
CS_B  
L10P_5  
L16N_5  
VRN_5  
L28P_5  
L30P_5  
D7  
L06P_5  
I/O  
L22N_5  
‹
I/O  
I/O  
I/O  
A
B
IO  
VREF_5  
I/O  
L06N_5  
I/O  
L25N_5  
VCCAUX  
L10N_5  
GND  
M2  
L28N_5  
L30N_5  
D6  
VRP_5  
Bank 5  
DS099-4_11a_030203  
Figure 13: FG456 Package Footprint (top view)  
56  
www.xilinx.com  
1-800-255-7778  
DS099-4 (v1.5) July 13, 2004  
Product Specification  
R
Spartan-3 FPGA Family: Pinout Descriptions  
Bank 1  
12  
13  
14  
15  
16  
I/O  
L22N_1  
‹
17  
18  
19  
20  
21  
22  
Right Half of Package  
(top view)  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCAUX  
I/O  
TMS  
TCK  
GND  
L10N_1 L06N_1  
VREF_1 VREF_1  
A
B
C
L30N_1 L28N_1 L25P_1  
I/O  
L22P_1  
‹
I/O  
L32N_1  
GCLK5  
I/O  
L01P_1  
VRN_1  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
GND  
I/O  
TDO  
L30P_1 L28P_1 L25N_1  
L16N_1 L10P_1 L06P_1  
I/O  
L19N_1  
‹
I/O  
L32P_1  
GCLK4  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCO_1  
I/O  
GND  
I/O  
I/O  
I/O  
L01N_1 L01N_2 L01P_2  
VRP_1 VRP_2 VRN_2  
L29N_1  
I/O  
L16P_1 L09N_1  
I/O  
L19P_1  
‹
I/O  
L31N_1  
VREF_1  
I/O  
I/O  
I/O  
I/O  
I/O  
L17P_2 D  
L29P_1 L27N_1 L24N_1  
L15N_1 L09P_1 L16P_2 L16N_2 L17N_2  
VREF_2  
IO  
VREF_1  
I/O  
L31P_1  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
E
L27P_1 L24P_1  
L15P_1 L19N_2 L20N_2 L20P_2 L21N_2 L21P_2  
IO  
I/O  
L23N_2  
VREF_2  
I/O  
I/O  
I/O  
VREF_1  
VCCO_1  
VCCAUX  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
F
G
H
J
L19P_2  
L24N_2 L24P_2  
‹
I/O  
L26N_2  
‹
I/O  
I/O  
I/O  
VCCO_1 VCCO_1 VCCO_1  
VCCINT VCCINT  
VCCINT  
L22N_2 L22P_2 L23P_2  
L27N_2 L27P_2  
I/O  
I/O  
I/O  
I/O  
L28N_2 L26P_2  
L29N_2 L29P_2  
VCCO_2  
I/O  
VCCO_2  
‹
‹
‹
‹
I/O  
I/O  
I/O  
I/O  
L28P_2 L31N_2 L31P_2  
L32N_2 L32P_2  
VCCO_2  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
I/O  
‹
‹
‹
‹
‹
I/O  
I/O  
I/O  
L34N_2  
VREF_2  
I/O  
I/O  
L33N_2 L33P_2  
VCCO_2  
K
L
L34P_2 L35N_2 L35P_2  
‹
‹
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCO_2  
L40P_2  
L38N_2 L38P_2 L39N_2 L39P_2 L40N_2  
VREF_2  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCO_3  
L40N_3 M  
L38P_3 L38N_3 L39P_3 L39N_3 L40P_3  
VREF_3  
I/O  
I/O  
I/O  
L34P_3  
VREF_3  
I/O  
I/O  
I/O  
L33P_3 L33N_3  
VCCO_3  
N
L34N_3 L35P_3 L35N_3  
‹
‹
I/O  
I/O  
I/O  
I/O  
I/O  
L31P_3 L31N_3 L29N_3  
L32P_3 L32N_3  
VCCO_3  
GND  
P
R
T
‹
‹
‹
‹
‹
I/O  
L29P_3  
‹
I/O  
I/O  
I/O  
L24N_3  
L28P_3 L28N_3  
VCCO_3  
VCCO_3  
I/O  
VCCINT  
‹
‹
I/O  
I/O  
I/O  
I/O  
I/O  
L26P_3 L26N_3  
VCCO_4 VCCO_4 VCCO_4  
I/O  
VCCINT VCCINT  
L22N_3 L24P_3  
L27P_3 L27N_3  
‹
‹
I/O  
L23P_3  
VREF_3  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
L23N_3  
VCCO_4  
VCCAUX  
I/O  
I/O  
L30N_4  
D2  
U
V
W
Y
L28N_4 L25N_4  
L22P_3 L20N_3  
I/O  
L22N_4  
VREF_4  
‹
I/O  
L22P_4  
I/O  
L30P_4  
D3  
IO  
VREF_4  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
L28P_4 L25P_4  
L16N_4 L10N_4  
L17N_3 L20P_3 L21P_3 L21N_3  
I/O  
L31N_4  
INIT_B  
I/O  
L31P_4  
DOUT L29N_4  
BUSY  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
L06N_4 L17P_3  
VREF_4 VREF_3  
L16P_4 L10P_4  
L19P_3 L19N_3 L16N_3  
‹
I/O  
I/O  
I/O  
IO  
VREF_4  
I/O  
I/O  
L16P_3  
VCCO_4  
GND  
I/O  
L01P_3 L01N_3  
VRN_3 VRP_3  
L15N_4 L06P_4  
I/O  
L27N_4  
DIN  
I/O  
L19N_4  
‹
I/O  
L05N_4  
‹
I/O  
L01N_4  
VRP_4  
A
A
I/O  
I/O  
L24N_4  
I/O  
I/O  
GND  
CCLK  
L32N_4  
L29P_4  
GCLK1  
L15P_4 L09N_4  
D0  
I/O  
I/O  
I/O  
IO  
I/O  
L27P_4  
D1  
I/O  
L01P_4  
VRN_4  
A
B
I/O  
L24P_4  
I/O  
L09P_4  
L19P_4  
L05P_4  
VCCAUX  
DONE GND  
L32P_4  
VREF_4  
GCLK0  
‹
‹
Bank 4  
DS099-4_11b_030503  
DS099-4 (v1.5) July 13, 2004  
Product Specification  
www.xilinx.com  
1-800-255-7778  
57  
R
Spartan-3 FPGA Family: Pinout Descriptions  
Table 30: FG676 Package Pinout (Continued)  
FG676: 676-lead Fine-pitch Ball Grid  
Array  
FG676  
XC3S1000  
Bank Pin Name  
XC3S1500  
Pin Name  
XC3S2000  
Pin Name Number  
Pin  
The 676-lead fine-pitch ball grid array package, FG676,  
supports three different Spartan-3 devices, including the  
XC3S1000, the XC3S1500, and the XC3S2000. All three  
have nearly identical footprints but are slightly different due  
to unconnected pins on the XC3S1000 and XC3S1500. For  
example, because the XC3S1000 has fewer I/O pins, this  
device has 98 unconnected pins on the FG676 package,  
labeled as “N.C.In Table 30 and Figure 14, these uncon-  
nected pins are indicated with a black diamond symbol (‹).  
The XC3S1500, however, has only two unconnected pins,  
also labeled “N.C.in the pinout table but indicated with a  
black square symbol („).  
Type  
0
IO_L01P_0/ IO_L01P_0/ IO_L01P_0/  
D5  
DCI  
VRN_0  
VRN_0  
VRN_0  
0
0
IO_L05N_0  
IO_L05N_0  
IO_L05N_0  
B4  
A4  
I/O  
IO_L05P_0/ IO_L05P_0/ IO_L05P_0/  
VREF  
VREF_0  
VREF_0  
VREF_0  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
IO_L06N_0  
IO_L06P_0  
IO_L07N_0  
IO_L07P_0  
IO_L08N_0  
IO_L08P_0  
IO_L09N_0  
IO_L09P_0  
IO_L10N_0  
IO_L10P_0  
N.C. (‹)  
IO_L06N_0  
IO_L06P_0  
IO_L07N_0  
IO_L07P_0  
IO_L08N_0  
IO_L08P_0  
IO_L09N_0  
IO_L09P_0  
IO_L10N_0  
IO_L10P_0  
IO_L11N_0  
IO_L11P_0  
IO_L12N_0  
IO_L12P_0  
IO_L15N_0  
IO_L15P_0  
IO_L16N_0  
IO_L16P_0  
IO_L17N_0  
IO_L17P_0  
IO_L18N_0  
IO_L18P_0  
IO_L19N_0  
IO_L19P_0  
IO_L22N_0  
IO_L22P_0  
IO_L23N_0  
IO_L23P_0  
IO_L24N_0  
IO_L24P_0  
IO_L25N_0  
IO_L25P_0  
IO_L26N_0  
IO_L06N_0  
IO_L06P_0  
IO_L07N_0  
IO_L07P_0  
IO_L08N_0  
IO_L08P_0  
IO_L09N_0  
IO_L09P_0  
IO_L10N_0  
IO_L10P_0  
IO_L11N_0  
IO_L11P_0  
IO_L12N_0  
IO_L12P_0  
IO_L15N_0  
IO_L15P_0  
IO_L16N_0  
IO_L16P_0  
IO_L17N_0  
IO_L17P_0  
IO_L18N_0  
IO_L18P_0  
IO_L19N_0  
IO_L19P_0  
IO_L22N_0  
IO_L22P_0  
IO_L23N_0  
IO_L23P_0  
IO_L24N_0  
IO_L24P_0  
IO_L25N_0  
IO_L25P_0  
IO_L26N_0  
C5  
B5  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VREF  
E6  
D6  
C6  
B6  
All the package pins appear in Table 30 and are sorted by  
bank number, then by pin name. Pairs of pins that form a dif-  
ferential I/O pair appear together in the table. The table also  
shows the pin number for each pin and the pin type, as  
defined earlier.  
E7  
D7  
B7  
A7  
If there is a difference between the XC1000, XC3S1500 and  
XC3S2000 pinouts, then that difference is highlighted in  
Table 30. If the table entry is shaded grey, then there is an  
unconnected pin on either the XC3S1000 or XC3S1500 that  
maps to a user-I/O pin on the XC3S2000. If the table entry  
is shaded tan, then the unconnected pin on either the  
XC3S1000 or XC3S1500 maps to a VREF-type pin on the  
XC3S2000. If the other VREF pins in the bank all connect to  
a voltage reference to support a special I/O standard, then  
also connect the N.C. pin on the XC3S1000 or XC3S1500  
to the same VREF voltage. This provides maximum flexibil-  
ity as you could potentially migrate a design from the  
XC3S1000 through to the XC3S2000 FPGA without chang-  
ing the printed circuit board.  
G8  
F8  
N.C. (‹)  
N.C. (‹)  
E8  
N.C. (‹)  
D8  
IO_L15N_0  
IO_L15P_0  
IO_L16N_0  
IO_L16P_0  
N.C. (‹)  
B8  
A8  
G9  
F9  
E9  
N.C. (‹)  
D9  
N.C. (‹)  
C9  
N.C. (‹)  
B9  
IO_L19N_0  
IO_L19P_0  
IO_L22N_0  
IO_L22P_0  
N.C. (‹)  
F10  
E10  
D10  
C10  
B10  
A10  
G11  
F11  
E11  
D11  
B11  
A11  
Pinout Table  
Table 30: FG676 Package Pinout  
FG676  
XC3S1000  
Bank Pin Name  
XC3S1500  
Pin Name  
XC3S2000  
Pin Name Number  
Pin  
Type  
I/O  
N.C. (‹)  
0
0
0
0
0
0
0
0
0
0
0
0
0
IO  
IO  
IO  
A3  
A5  
IO_L24N_0  
IO_L24P_0  
IO_L25N_0  
IO_L25P_0  
N.C. (‹)  
IO  
IO  
IO  
I/O  
IO  
IO  
IO  
A6  
I/O  
IO  
IO  
IO  
C4  
I/O  
N.C. (‹)  
IO  
IO  
C8  
I/O  
IO  
IO  
IO  
C12  
E13  
H11  
H12  
B3  
I/O  
N.C. (‹)  
IO_L26P_0/ IO_L26P_0/  
IO  
IO  
IO  
I/O  
VREF_0  
VREF_0  
IO  
IO  
IO  
I/O  
0
0
0
0
0
0
IO_L27N_0  
IO_L27P_0  
IO_L28N_0  
IO_L28P_0  
IO_L29N_0  
IO_L29P_0  
IO_L27N_0  
IO_L27P_0  
IO_L28N_0  
IO_L28P_0  
IO_L29N_0  
IO_L29P_0  
IO_L27N_0  
IO_L27P_0  
IO_L28N_0  
IO_L28P_0  
IO_L29N_0  
IO_L29P_0  
G12  
H13  
F12  
E12  
B12  
A12  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
IO  
IO  
IO  
I/O  
IO/VREF_0  
IO/VREF_0  
IO/VREF_0  
IO/VREF_0  
IO/VREF_0  
IO/VREF_0  
IO/VREF_0  
IO/VREF_0  
IO/VREF_0  
VREF  
VREF  
VREF  
DCI  
F7  
G10  
E5  
IO_L01N_0/ IO_L01N_0/ IO_L01N_0/  
VRP_0 VRP_0 VRP_0  
58  
www.xilinx.com  
1-800-255-7778  
DS099-4 (v1.5) July 13, 2004  
Product Specification  
R
Spartan-3 FPGA Family: Pinout Descriptions  
Table 30: FG676 Package Pinout (Continued)  
Table 30: FG676 Package Pinout (Continued)  
FG676  
FG676  
XC3S1000  
Bank Pin Name  
XC3S1500  
Pin Name  
XC3S2000  
Pin Name Number  
Pin  
XC3S1000  
Bank Pin Name  
XC3S1500  
Pin Name  
XC3S2000  
Pin Name Number  
Pin  
Type  
I/O  
Type  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VREF  
0
0
0
0
IO_L30N_0  
IO_L30P_0  
IO_L31N_0  
IO_L30N_0  
IO_L30P_0  
IO_L31N_0  
IO_L30N_0  
IO_L30P_0  
IO_L31N_0  
G13  
F13  
D13  
C13  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
IO_L10P_1  
N.C. (‹)  
IO_L10P_1  
IO_L11N_1  
IO_L11P_1  
IO_L12N_1  
IO_L12P_1  
IO_L15N_1  
IO_L15P_1  
IO_L16N_1  
IO_L16P_1  
IO_L18N_1  
IO_L18P_1  
IO_L19N_1  
IO_L19P_1  
IO_L22N_1  
IO_L22P_1  
IO_L23N_1  
IO_L23P_1  
IO_L24N_1  
IO_L24P_1  
IO_L25N_1  
IO_L25P_1  
IO_L26N_1  
IO_L26P_1  
IO_L27N_1  
IO_L27P_1  
IO_L28N_1  
IO_L28P_1  
IO_L29N_1  
IO_L29P_1  
IO_L30N_1  
IO_L30P_1  
IO_L10P_1  
IO_L11N_1  
IO_L11P_1  
IO_L12N_1  
IO_L12P_1  
IO_L15N_1  
IO_L15P_1  
IO_L16N_1  
IO_L16P_1  
IO_L18N_1  
IO_L18P_1  
IO_L19N_1  
IO_L19P_1  
IO_L22N_1  
IO_L22P_1  
IO_L23N_1  
IO_L23P_1  
IO_L24N_1  
IO_L24P_1  
IO_L25N_1  
IO_L25P_1  
IO_L26N_1  
IO_L26P_1  
IO_L27N_1  
IO_L27P_1  
IO_L28N_1  
IO_L28P_1  
IO_L29N_1  
IO_L29P_1  
IO_L30N_1  
IO_L30P_1  
B20  
E19  
F19  
C19  
D19  
A19  
B19  
F18  
G18  
B18  
C18  
F17  
G17  
D17  
E17  
A17  
B17  
G16  
H16  
E16  
F16  
A16  
B16  
G15  
H15  
E15  
F15  
A15  
B15  
G14  
H14  
D14  
I/O  
N.C. (‹)  
I/O  
IO_L31P_0/ IO_L31P_0/ IO_L31P_0/  
VREF_0 VREF_0 VREF_0  
IO_L32N_0/ IO_L32N_0/ IO_L32N_0/  
GCLK7 GCLK7 GCLK7  
IO_L32P_0/ IO_L32P_0/ IO_L32P_0/  
GCLK6  
VCCO_0  
VCCO_0  
VCCO_0  
VCCO_0  
VCCO_0  
VCCO_0  
VCCO_0  
VCCO_0  
IO  
N.C. (‹)  
VREF  
N.C. (‹)  
0
0
B13  
A13  
GCLK  
GCLK  
IO_L15N_1  
IO_L15P_1  
IO_L16N_1  
IO_L16P_1  
N.C. (‹)  
GCLK6  
VCCO_0  
VCCO_0  
VCCO_0  
VCCO_0  
VCCO_0  
VCCO_0  
VCCO_0  
VCCO_0  
IO  
GCLK6  
VCCO_0  
VCCO_0  
VCCO_0  
VCCO_0  
VCCO_0  
VCCO_0  
VCCO_0  
VCCO_0  
IO  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
C7  
C11  
H9  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
I/O  
N.C. (‹)  
H10  
J11  
J12  
J13  
K13  
A14  
A22  
A23  
D16  
E18  
F14  
F20  
G19  
C15  
C17  
D18  
D22  
IO_L19N_1  
IO_L19P_1  
IO_L22N_1  
IO_L22P_1  
N.C. (‹)  
N.C. (‹)  
IO  
IO  
IO  
I/O  
IO_L24N_1  
IO_L24P_1  
IO_L25N_1  
IO_L25P_1  
N.C. (‹)  
IO  
IO  
IO  
I/O  
IO  
IO  
IO  
I/O  
IO  
IO  
IO  
I/O  
IO  
IO  
IO  
I/O  
IO  
IO  
IO  
I/O  
N.C. (‹)  
IO  
IO  
IO  
I/O  
IO_L27N_1  
IO_L27P_1  
IO_L28N_1  
IO_L28P_1  
IO_L29N_1  
IO_L29P_1  
IO_L30N_1  
IO_L30P_1  
IO/VREF_1  
IO/VREF_1  
N.C. (‹)  
IO/VREF_1  
IO/VREF_1  
IO/VREF_1  
IO/VREF_1  
IO/VREF_1  
IO/VREF_1  
VREF  
VREF  
VREF  
DCI  
IO_L01N_1/ IO_L01N_1/ IO_L01N_1/  
VRP_1 VRP_1 VRP_1  
IO_L01P_1/ IO_L01P_1/ IO_L01P_1/  
1
E22  
DCI  
VRN_1  
VRN_1  
VRN_1  
1
1
1
1
1
IO_L04N_1  
IO_L04P_1  
IO_L05N_1  
IO_L05P_1  
IO_L04N_1  
IO_L04P_1  
IO_L05N_1  
IO_L05P_1  
IO_L04N_1  
IO_L04P_1  
IO_L05N_1  
IO_L05P_1  
B23  
C23  
E21  
F21  
B22  
I/O  
I/O  
IO_L31N_1/ IO_L31N_1/ IO_L31N_1/  
VREF_1  
VREF_1  
VREF_1  
I/O  
1
1
IO_L31P_1  
IO_L31P_1  
IO_L31P_1  
E14  
B14  
I/O  
I/O  
IO_L32N_1/ IO_L32N_1/ IO_L32N_1/  
GCLK5 GCLK5 GCLK5  
IO_L32P_1/ IO_L32P_1/ IO_L32P_1/  
GCLK  
IO_L06N_1/ IO_L06N_1/ IO_L06N_1/  
VREF_1  
VREF  
VREF_1  
VREF_1  
1
C14  
GCLK  
1
1
1
1
1
1
1
1
IO_L06P_1  
IO_L07N_1  
IO_L07P_1  
IO_L08N_1  
IO_L08P_1  
IO_L09N_1  
IO_L09P_1  
IO_L06P_1  
IO_L07N_1  
IO_L07P_1  
IO_L08N_1  
IO_L08P_1  
IO_L09N_1  
IO_L09P_1  
IO_L06P_1  
IO_L07N_1  
IO_L07P_1  
IO_L08N_1  
IO_L08P_1  
IO_L09N_1  
IO_L09P_1  
C22  
C21  
D21  
A21  
B21  
D20  
E20  
A20  
I/O  
I/O  
GCLK4  
GCLK4  
GCLK4  
1
1
1
1
1
1
1
VCCO_1  
VCCO_1  
VCCO_1  
VCCO_1  
VCCO_1  
VCCO_1  
VCCO_1  
VCCO_1  
VCCO_1  
VCCO_1  
VCCO_1  
VCCO_1  
VCCO_1  
VCCO_1  
VCCO_1  
VCCO_1  
VCCO_1  
VCCO_1  
VCCO_1  
VCCO_1  
VCCO_1  
C16  
C20  
H17  
H18  
J14  
J15  
J16  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
I/O  
I/O  
I/O  
I/O  
I/O  
IO_L10N_1/ IO_L10N_1/ IO_L10N_1/  
VREF_1 VREF_1 VREF_1  
VREF  
DS099-4 (v1.5) July 13, 2004  
Product Specification  
www.xilinx.com  
1-800-255-7778  
59  
R
Spartan-3 FPGA Family: Pinout Descriptions  
Table 30: FG676 Package Pinout (Continued)  
Table 30: FG676 Package Pinout (Continued)  
FG676  
FG676  
XC3S1000  
Bank Pin Name  
XC3S1500  
Pin Name  
XC3S2000  
Pin Name Number  
Pin  
XC3S1000  
Bank Pin Name  
XC3S1500  
Pin Name  
XC3S2000  
Pin Name Number  
Pin  
Type  
VCCO  
I/O  
Type  
I/O  
1
2
2
VCCO_1  
VCCO_1  
VCCO_1  
IO  
K14  
F22  
C25  
2
2
2
2
2
2
2
2
2
2
2
2
IO_L27P_2  
IO_L28N_2  
IO_L28P_2  
IO_L29N_2  
IO_L29P_2  
IO_L31N_2  
IO_L31P_2  
IO_L32N_2  
IO_L32P_2  
IO_L33N_2  
IO_L33P_2  
IO_L27P_2  
IO_L28N_2  
IO_L28P_2  
IO_L29N_2  
IO_L29P_2  
IO_L31N_2  
IO_L31P_2  
IO_L32N_2  
IO_L32P_2  
IO_L33N_2  
IO_L33P_2  
IO_L27P_2  
IO_L28N_2  
IO_L28P_2  
IO_L29N_2  
IO_L29P_2  
IO_L31N_2  
IO_L31P_2  
IO_L32N_2  
IO_L32P_2  
IO_L33N_2  
IO_L33P_2  
L20  
L21  
L22  
L25  
L26  
M19  
M20  
M21  
M22  
L23  
M24  
M25  
N.C. (‹)  
N.C. („)  
I/O  
IO_L01N_2/ IO_L01N_2/ IO_L01N_2/  
VRP_2 VRP_2 VRP_2  
IO_L01P_2/ IO_L01P_2/ IO_L01P_2/  
DCI  
I/O  
I/O  
2
C26  
DCI  
I/O  
VRN_2  
VRN_2  
VRN_2  
I/O  
2
2
2
IO_L02N_2  
IO_L02P_2  
IO_L02N_2  
IO_L02P_2  
IO_L02N_2  
IO_L02P_2  
E23  
E24  
D25  
I/O  
I/O  
I/O  
I/O  
IO_L03N_2/ IO_L03N_2/ IO_L03N_2/  
VREF  
VREF_2  
IO_L03P_2  
N.C. (‹)  
N.C. (‹)  
N.C. (‹)  
N.C. (‹)  
N.C. (‹)  
N.C. (‹)  
N.C. (‹)  
N.C. (‹)  
N.C. (‹)  
VREF_2  
VREF_2  
I/O  
2
2
2
2
2
2
2
2
2
2
IO_L03P_2  
IO_L05N_2  
IO_L05P_2  
IO_L06N_2  
IO_L06P_2  
IO_L07N_2  
IO_L07P_2  
IO_L08N_2  
IO_L08P_2  
IO_L03P_2  
IO_L05N_2  
IO_L05P_2  
IO_L06N_2  
IO_L06P_2  
IO_L07N_2  
IO_L07P_2  
IO_L08N_2  
IO_L08P_2  
D26  
E25  
E26  
G20  
G21  
F23  
F24  
G22  
G23  
F25  
I/O  
I/O  
I/O  
I/O  
I/O  
IO_L34N_2/ IO_L34N_2/ IO_L34N_2/  
VREF_2  
VREF  
VREF_2  
VREF_2  
I/O  
2
2
2
2
2
2
2
2
2
IO_L34P_2  
IO_L35N_2  
IO_L35P_2  
IO_L38N_2  
IO_L38P_2  
IO_L39N_2  
IO_L39P_2  
IO_L40N_2  
IO_L34P_2  
IO_L35N_2  
IO_L35P_2  
IO_L38N_2  
IO_L38P_2  
IO_L39N_2  
IO_L39P_2  
IO_L40N_2  
IO_L34P_2  
IO_L35N_2  
IO_L35P_2  
IO_L38N_2  
IO_L38P_2  
IO_L39N_2  
IO_L39P_2  
IO_L40N_2  
M26  
N19  
N20  
N21  
N22  
N23  
N24  
N25  
N26  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
IO_L09N_2/ IO_L09N_2/  
VREF_2  
VREF  
VREF_2  
I/O  
2
2
2
2
2
2
2
2
2
N.C. (‹)  
IO_L09P_2  
IO_L10N_2  
IO_L10P_2  
IO_L14N_2  
IO_L14P_2  
IO_L16N_2  
IO_L16P_2  
IO_L17N_2  
IO_L09P_2  
IO_L10N_2  
IO_L10P_2  
IO_L14N_2  
IO_L14P_2  
IO_L16N_2  
IO_L16P_2  
IO_L17N_2  
F26  
G25  
G26  
H20  
H21  
H22  
J21  
I/O  
I/O  
I/O  
N.C. (‹)  
IO_L40P_2/ IO_L40P_2/ IO_L40P_2/  
VREF  
VREF_2  
VCCO_2  
VCCO_2  
VCCO_2  
VCCO_2  
VCCO_2  
VCCO_2  
VCCO_2  
VCCO_2  
VREF_2  
VCCO_2  
VCCO_2  
VCCO_2  
VCCO_2  
VCCO_2  
VCCO_2  
VCCO_2  
VCCO_2  
VREF_2  
VCCO_2  
VCCO_2  
VCCO_2  
VCCO_2  
VCCO_2  
VCCO_2  
VCCO_2  
VCCO_2  
N.C. (‹)  
I/O  
2
2
2
2
2
2
2
2
3
G24  
J19  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
DCI  
IO_L14N_2  
IO_L14P_2  
IO_L16N_2  
IO_L16P_2  
IO_L17N_2  
I/O  
I/O  
K19  
L18  
I/O  
I/O  
L24  
H23  
H24  
I/O  
M18  
N17  
N18  
AA22  
IO_L17P_2/ IO_L17P_2/ IO_L17P_2/  
VREF_2  
VREF  
VREF_2  
VREF_2  
2
2
2
2
2
2
2
2
2
IO_L19N_2  
IO_L19P_2  
IO_L20N_2  
IO_L20P_2  
IO_L21N_2  
IO_L21P_2  
IO_L22N_2  
IO_L22P_2  
IO_L19N_2  
IO_L19P_2  
IO_L20N_2  
IO_L20P_2  
IO_L21N_2  
IO_L21P_2  
IO_L22N_2  
IO_L22P_2  
IO_L19N_2  
IO_L19P_2  
IO_L20N_2  
IO_L20P_2  
IO_L21N_2  
IO_L21P_2  
IO_L22N_2  
IO_L22P_2  
H25  
H26  
J20  
K20  
J22  
J23  
J24  
J25  
K21  
I/O  
I/O  
IO_L01N_3/ IO_L01N_3/ IO_L01N_3/  
VRP_3 VRP_3 VRP_3  
IO_L01P_3/ IO_L01P_3/ IO_L01P_3/  
VRN_3 VRN_3 VRN_3  
IO_L02N_3/ IO_L02N_3/ IO_L02N_3/  
I/O  
3
3
AA21  
AB24  
DCI  
I/O  
I/O  
VREF  
I/O  
VREF_3  
VREF_3  
VREF_3  
3
3
3
3
3
3
3
3
3
3
IO_L02P_3  
IO_L03N_3  
IO_L03P_3  
N.C. (‹)  
N.C. (‹)  
N.C. (‹)  
N.C. (‹)  
N.C. (‹)  
N.C. (‹)  
N.C. (‹)  
IO_L02P_3  
IO_L03N_3  
IO_L03P_3  
IO_L05N_3  
IO_L05P_3  
IO_L06N_3  
IO_L06P_3  
IO_L07N_3  
IO_L07P_3  
IO_L08N_3  
IO_L02P_3  
IO_L03N_3  
IO_L03P_3  
IO_L05N_3  
IO_L05P_3  
IO_L06N_3  
IO_L06P_3  
IO_L07N_3  
IO_L07P_3  
IO_L08N_3  
AB23  
AC26  
AC25  
Y21  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
IO_L23N_2/ IO_L23N_2/ IO_L23N_2/  
VREF_2  
VREF  
VREF_2  
VREF_2  
2
2
2
2
2
2
IO_L23P_2  
IO_L24N_2  
IO_L24P_2  
IO_L26N_2  
IO_L26P_2  
IO_L27N_2  
IO_L23P_2  
IO_L24N_2  
IO_L24P_2  
IO_L26N_2  
IO_L26P_2  
IO_L27N_2  
IO_L23P_2  
IO_L24N_2  
IO_L24P_2  
IO_L26N_2  
IO_L26P_2  
IO_L27N_2  
K22  
K23  
K24  
K25  
K26  
L19  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
Y20  
AB26  
AB25  
AA24  
AA23  
Y23  
60  
www.xilinx.com  
1-800-255-7778  
DS099-4 (v1.5) July 13, 2004  
Product Specification  
R
Spartan-3 FPGA Family: Pinout Descriptions  
Table 30: FG676 Package Pinout (Continued)  
Table 30: FG676 Package Pinout (Continued)  
FG676  
FG676  
XC3S1000  
Bank Pin Name  
XC3S1500  
Pin Name  
XC3S2000  
Pin Name Number  
Pin  
XC3S1000  
Bank Pin Name  
XC3S1500  
Pin Name  
XC3S2000  
Pin Name Number  
Pin  
Type  
I/O  
Type  
I/O  
3
3
3
N.C. (‹)  
N.C. (‹)  
N.C. (‹)  
IO_L08P_3  
IO_L09N_3  
IO_L08P_3  
IO_L09N_3  
Y22  
3
3
3
3
IO_L38P_3  
IO_L39N_3  
IO_L39P_3  
IO_L38P_3  
IO_L39N_3  
IO_L39P_3  
IO_L38P_3  
IO_L39N_3  
IO_L39P_3  
P21  
P24  
P23  
P26  
AA26  
AA25  
I/O  
I/O  
IO_L09P_3/ IO_L09P_3/  
VREF_3  
VREF  
I/O  
VREF_3  
IO_L40N_3/ IO_L40N_3/ IO_L40N_3/  
VREF  
3
3
3
3
3
3
3
3
N.C. (‹)  
IO_L10N_3  
IO_L10P_3  
IO_L14N_3  
IO_L14P_3  
IO_L16N_3  
IO_L16P_3  
IO_L17N_3  
IO_L10N_3  
IO_L10P_3  
IO_L14N_3  
IO_L14P_3  
IO_L16N_3  
IO_L16P_3  
IO_L17N_3  
W21  
W20  
Y26  
Y25  
V21  
W22  
W24  
W23  
I/O  
I/O  
VREF_3  
IO_L40P_3  
VCCO_3  
VCCO_3  
VCCO_3  
VCCO_3  
VCCO_3  
VCCO_3  
VCCO_3  
VCCO_3  
IO  
VREF_3  
IO_L40P_3  
VCCO_3  
VCCO_3  
VCCO_3  
VCCO_3  
VCCO_3  
VCCO_3  
VCCO_3  
VCCO_3  
IO  
VREF_3  
IO_L40P_3  
VCCO_3  
VCCO_3  
VCCO_3  
VCCO_3  
VCCO_3  
VCCO_3  
VCCO_3  
VCCO_3  
IO  
N.C. (‹)  
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
4
4
P25  
P17  
I/O  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
I/O  
IO_L14N_3  
IO_L14P_3  
IO_L16N_3  
IO_L16P_3  
IO_L17N_3  
I/O  
P18  
I/O  
R18  
I/O  
T18  
I/O  
T24  
I/O  
IO_L17P_3/ IO_L17P_3/ IO_L17P_3/  
VREF_3  
U19  
VREF  
VREF_3  
VREF_3  
V19  
3
3
3
3
3
3
3
3
3
3
IO_L19N_3  
IO_L19P_3  
IO_L20N_3  
IO_L20P_3  
IO_L21N_3  
IO_L21P_3  
IO_L22N_3  
IO_L22P_3  
IO_L23N_3  
IO_L19N_3  
IO_L19P_3  
IO_L20N_3  
IO_L20P_3  
IO_L21N_3  
IO_L21P_3  
IO_L22N_3  
IO_L22P_3  
IO_L23N_3  
IO_L19N_3  
IO_L19P_3  
IO_L20N_3  
IO_L20P_3  
IO_L21N_3  
IO_L21P_3  
IO_L22N_3  
IO_L22P_3  
IO_L23N_3  
W26  
W25  
U20  
V20  
V23  
V22  
V25  
V24  
U22  
U21  
I/O  
I/O  
Y24  
AA20  
AD15  
AD19  
AD23  
AF21  
AF22  
W15  
W16  
AB14  
AD25  
Y17  
I/O  
IO  
IO  
IO  
I/O  
I/O  
N.C. (‹)  
IO  
IO  
IO  
I/O  
I/O  
IO  
IO  
I/O  
I/O  
IO  
IO  
IO  
I/O  
I/O  
IO  
IO  
IO  
I/O  
I/O  
IO  
IO  
IO  
I/O  
I/O  
IO  
IO  
IO  
I/O  
IO_L23P_3/ IO_L23P_3/ IO_L23P_3/  
VREF_3  
VREF  
IO/VREF_4  
IO/VREF_4  
IO/VREF_4  
IO/VREF_4  
IO/VREF_4  
IO/VREF_4  
IO/VREF_4  
IO/VREF_4  
IO/VREF_4  
VREF  
VREF  
VREF  
DCI  
VREF_3  
VREF_3  
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
IO_L24N_3  
IO_L24P_3  
IO_L26N_3  
IO_L26P_3  
IO_L27N_3  
IO_L27P_3  
IO_L28N_3  
IO_L28P_3  
IO_L29N_3  
IO_L29P_3  
IO_L31N_3  
IO_L31P_3  
IO_L32N_3  
IO_L32P_3  
IO_L33N_3  
IO_L33P_3  
IO_L34N_3  
IO_L24N_3  
IO_L24P_3  
IO_L26N_3  
IO_L26P_3  
IO_L27N_3  
IO_L27P_3  
IO_L28N_3  
IO_L28P_3  
IO_L29N_3  
IO_L29P_3  
IO_L31N_3  
IO_L31P_3  
IO_L32N_3  
IO_L32P_3  
IO_L33N_3  
IO_L33P_3  
IO_L34N_3  
IO_L24N_3  
IO_L24P_3  
IO_L26N_3  
IO_L26P_3  
IO_L27N_3  
IO_L27P_3  
IO_L28N_3  
IO_L28P_3  
IO_L29N_3  
IO_L29P_3  
IO_L31N_3  
IO_L31P_3  
IO_L32N_3  
IO_L32P_3  
IO_L33N_3  
IO_L33P_3  
IO_L34N_3  
U24  
U23  
U26  
U25  
T20  
T19  
T22  
T21  
T26  
T25  
R20  
R19  
R22  
R21  
R24  
T23  
R26  
R25  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VREF  
IO_L01N_4/ IO_L01N_4/ IO_L01N_4/  
VRP_4 VRP_4 VRP_4  
IO_L01P_4/ IO_L01P_4/ IO_L01P_4/  
AB22  
4
AC22  
DCI  
VRN_4  
VRN_4  
VRN_4  
4
4
4
4
4
IO_L04N_4  
IO_L04P_4  
IO_L05N_4  
IO_L05P_4  
IO_L04N_4  
IO_L04P_4  
IO_L05N_4  
IO_L05P_4  
IO_L04N_4  
IO_L04P_4  
IO_L05N_4  
IO_L05P_4  
AE24  
AF24  
AE23  
AF23  
AD22  
I/O  
I/O  
I/O  
I/O  
IO_L06N_4/ IO_L06N_4/ IO_L06N_4/  
VREF_4  
VREF  
VREF_4  
VREF_4  
4
4
4
4
4
4
4
4
4
4
4
IO_L06P_4  
IO_L07N_4  
IO_L07P_4  
IO_L08N_4  
IO_L08P_4  
IO_L09N_4  
IO_L09P_4  
IO_L10N_4  
IO_L10P_4  
N.C. (‹)  
IO_L06P_4  
IO_L07N_4  
IO_L07P_4  
IO_L08N_4  
IO_L08P_4  
IO_L09N_4  
IO_L09P_4  
IO_L10N_4  
IO_L10P_4  
IO_L11N_4  
IO_L11P_4  
IO_L06P_4  
IO_L07N_4  
IO_L07P_4  
IO_L08N_4  
IO_L08P_4  
IO_L09N_4  
IO_L09P_4  
IO_L10N_4  
IO_L10P_4  
IO_L11N_4  
IO_L11P_4  
AE22  
AB21  
AC21  
AD21  
AE21  
AB20  
AC20  
AE20  
AF20  
Y19  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
IO_L34P_3/ IO_L34P_3/ IO_L34P_3/  
VREF_3  
VREF_3  
VREF_3  
3
3
3
IO_L35N_3  
IO_L35P_3  
IO_L38N_3  
IO_L35N_3  
IO_L35P_3  
IO_L38N_3  
IO_L35N_3  
IO_L35P_3  
IO_L38N_3  
P20  
P19  
P22  
I/O  
I/O  
I/O  
N.C. (‹)  
AA19  
DS099-4 (v1.5) July 13, 2004  
Product Specification  
www.xilinx.com  
1-800-255-7778  
61  
R
Spartan-3 FPGA Family: Pinout Descriptions  
Table 30: FG676 Package Pinout (Continued)  
Table 30: FG676 Package Pinout (Continued)  
FG676  
FG676  
XC3S1000  
Bank Pin Name  
XC3S1500  
Pin Name  
XC3S2000  
Pin Name Number  
Pin  
XC3S1000  
Bank Pin Name  
XC3S1500  
Pin Name  
XC3S2000  
Pin Name Number  
Pin  
Type  
I/O  
Type  
VCCO  
VCCO  
VCCO  
VCCO  
I/O  
4
4
4
4
4
4
4
4
4
4
4
4
4
N.C. (‹)  
IO_L12N_4  
IO_L12P_4  
IO_L15N_4  
IO_L15P_4  
IO_L16N_4  
IO_L16P_4  
IO_L17N_4  
IO_L17P_4  
IO_L18N_4  
IO_L18P_4  
IO_L19N_4  
IO_L19P_4  
IO_L12N_4  
IO_L12P_4  
IO_L15N_4  
IO_L15P_4  
IO_L16N_4  
IO_L16P_4  
IO_L17N_4  
IO_L17P_4  
IO_L18N_4  
IO_L18P_4  
IO_L19N_4  
IO_L19P_4  
AB19  
AC19  
AE19  
AF19  
Y18  
4
4
4
4
5
5
5
5
5
5
5
5
5
5
5
5
VCCO_4  
VCCO_4  
VCCO_4  
VCCO_4  
IO  
VCCO_4  
VCCO_4  
V15  
V16  
N.C. (‹)  
VCCO_4  
VCCO_4  
I/O  
IO_L15N_4  
IO_L15P_4  
IO_L16N_4  
IO_L16P_4  
N.C. (‹)  
VCCO_4  
VCCO_4  
W17  
W18  
AA7  
AA13  
AB9  
AC9  
AC11  
AD10  
AD12  
AF4  
I/O  
VCCO_4  
VCCO_4  
I/O  
IO  
IO  
I/O  
AA18  
AB18  
AC18  
AD18  
AE18  
AC17  
AA17  
AD17  
IO  
IO  
IO  
I/O  
I/O  
IO  
IO  
IO  
I/O  
I/O  
N.C. (‹)  
N.C. (‹)  
IO  
IO  
IO  
I/O  
I/O  
N.C. (‹)  
IO  
IO  
I/O  
I/O  
N.C. (‹)  
IO  
IO  
IO  
I/O  
I/O  
IO_L19N_4  
IO_L19P_4  
IO  
IO  
IO  
I/O  
I/O  
IO  
IO  
IO  
I/O  
I/O  
IO_L22N_4/ IO_L22N_4/ IO_L22N_4/  
VREF_4  
IO  
IO  
IO  
Y8  
VREF  
I/O  
VREF_4  
VREF_4  
IO/VREF_5  
IO/VREF_5  
IO/VREF_5  
IO/VREF_5  
IO/VREF_5  
IO/VREF_5  
AF5  
VREF  
VREF  
DUAL  
4
4
4
4
4
4
4
4
4
IO_L22P_4  
N.C. (‹)  
IO_L22P_4  
IO_L23N_4  
IO_L23P_4  
IO_L24N_4  
IO_L24P_4  
IO_L25N_4  
IO_L25P_4  
IO_L26N_4  
IO_L22P_4  
IO_L23N_4  
IO_L23P_4  
IO_L24N_4  
IO_L24P_4  
IO_L25N_4  
IO_L25P_4  
IO_L26N_4  
AB17  
AE17  
AF17  
Y16  
I/O  
I/O  
AF13  
AC5  
IO_L01N_5/ IO_L01N_5/ IO_L01N_5/  
RDWR_B RDWR_B RDWR_B  
IO_L01P_5/ IO_L01P_5/ IO_L01P_5/  
N.C. (‹)  
I/O  
IO_L24N_4  
IO_L24P_4  
IO_L25N_4  
IO_L25P_4  
N.C. (‹)  
5
AB5  
I/O  
DUAL  
CS_B  
CS_B  
CS_B  
AA16  
AB16  
AC16  
AE16  
AF16  
I/O  
5
5
5
5
5
5
5
5
5
5
5
5
5
IO_L04N_5  
IO_L04P_5  
IO_L05N_5  
IO_L05P_5  
IO_L06N_5  
IO_L06P_5  
IO_L07N_5  
IO_L07P_5  
IO_L08N_5  
IO_L08P_5  
IO_L09N_5  
IO_L09P_5  
IO_L04N_5  
IO_L04P_5  
IO_L05N_5  
IO_L05P_5  
IO_L06N_5  
IO_L06P_5  
IO_L07N_5  
IO_L07P_5  
IO_L08N_5  
IO_L08P_5  
IO_L09N_5  
IO_L09P_5  
IO_L04N_5  
IO_L04P_5  
IO_L05N_5  
IO_L05P_5  
IO_L06N_5  
IO_L06P_5  
IO_L07N_5  
IO_L07P_5  
IO_L08N_5  
IO_L08P_5  
IO_L09N_5  
IO_L09P_5  
AE4  
AD4  
AB6  
AA6  
AE5  
AD5  
AD6  
AC6  
AF6  
AE6  
AC7  
AB7  
AF7  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
DCI  
I/O  
I/O  
I/O  
N.C. (‹)  
IO_L26P_4/ IO_L26P_4/  
VREF_4 VREF_4  
IO_L27N_4/ IO_L27N_4/ IO_L27N_4/  
DIN/D0 DIN/D0 DIN/D0  
IO_L27P_4/ IO_L27P_4/ IO_L27P_4/  
VREF  
4
4
Y15  
DUAL  
DUAL  
W14  
D1  
D1  
D1  
4
4
4
4
4
IO_L28N_4  
IO_L28P_4  
IO_L29N_4  
IO_L29P_4  
IO_L28N_4  
IO_L28P_4  
IO_L29N_4  
IO_L29P_4  
IO_L28N_4  
IO_L28P_4  
IO_L29N_4  
IO_L29P_4  
AA15  
AB15  
AE15  
AF15  
Y14  
I/O  
I/O  
I/O  
I/O  
IO_L10N_5/ IO_L10N_5/ IO_L10N_5/  
VRP_5 VRP_5 VRP_5  
IO_L10P_5/ IO_L10P_5/ IO_L10P_5/  
IO_L30N_4/ IO_L30N_4/ IO_L30N_4/  
D2 D2 D2  
IO_L30P_4/ IO_L30P_4/ IO_L30P_4/  
D3 D3 D3  
IO_L31N_4/ IO_L31N_4/ IO_L31N_4/  
INIT_B INIT_B INIT_B  
DUAL  
5
5
AE7  
AB8  
DCI  
4
4
4
4
4
AA14  
AC14  
AD14  
AE14  
AF14  
DUAL  
DUAL  
DUAL  
GCLK  
GCLK  
VRN_5  
VRN_5  
VRN_5  
N.C. (‹)  
IO_L11N_5/ IO_L11N_5/  
VREF_5  
VREF  
VREF_5  
5
5
5
5
5
5
5
5
5
5
N.C. (‹)  
IO_L11P_5  
IO_L12N_5  
IO_L12P_5  
IO_L15N_5  
IO_L15P_5  
IO_L16N_5  
IO_L16P_5  
IO_L18N_5  
IO_L18P_5  
IO_L19N_5  
IO_L11P_5  
IO_L12N_5  
IO_L12P_5  
IO_L15N_5  
IO_L15P_5  
IO_L16N_5  
IO_L16P_5  
IO_L18N_5  
IO_L18P_5  
IO_L19N_5  
AA8  
AD8  
AC8  
AF8  
AE8  
AA9  
Y9  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
IO_L31P_4/ IO_L31P_4/ IO_L31P_4/  
DOUT/BUSY DOUT/BUSY DOUT/BUSY  
N.C. (‹)  
IO_L32N_4/ IO_L32N_4/ IO_L32N_4/  
GCLK1  
N.C. (‹)  
GCLK1  
GCLK1  
IO_L15N_5  
IO_L15P_5  
IO_L16N_5  
IO_L16P_5  
N.C. (‹)  
IO_L32P_4/ IO_L32P_4/ IO_L32P_4/  
GCLK0  
GCLK0  
GCLK0  
4
4
4
4
VCCO_4  
VCCO_4  
VCCO_4  
VCCO_4  
VCCO_4  
VCCO_4  
VCCO_4  
VCCO_4  
VCCO_4  
VCCO_4  
VCCO_4  
VCCO_4  
AD16  
AD20  
U14  
VCCO  
VCCO  
VCCO  
VCCO  
AE9  
AD9  
AA10  
N.C. (‹)  
V14  
IO_L19N_5  
62  
www.xilinx.com  
1-800-255-7778  
DS099-4 (v1.5) July 13, 2004  
Product Specification  
R
Spartan-3 FPGA Family: Pinout Descriptions  
Table 30: FG676 Package Pinout (Continued)  
Table 30: FG676 Package Pinout (Continued)  
FG676  
FG676  
XC3S1000  
Bank Pin Name  
XC3S1500  
Pin Name  
XC3S2000  
Pin Name Number  
Pin  
XC3S1000  
Bank Pin Name  
XC3S1500  
Pin Name  
XC3S2000  
Pin Name Number  
Pin  
Type  
Type  
I/O  
5
IO_L19P_5/ IO_L19P_5/ IO_L19P_5/  
Y10  
6
6
6
6
6
6
6
6
6
6
IO_L03P_6  
N.C. (‹)  
N.C. (‹)  
N.C. (‹)  
N.C. (‹)  
N.C. (‹)  
N.C. (‹)  
N.C. (‹)  
N.C. (‹)  
N.C. (‹)  
IO_L03P_6  
IO_L05N_6  
IO_L05P_6  
IO_L06N_6  
IO_L06P_6  
IO_L07N_6  
IO_L07P_6  
IO_L08N_6  
IO_L08P_6  
IO_L03P_6  
IO_L05N_6  
IO_L05P_6  
IO_L06N_6  
IO_L06P_6  
IO_L07N_6  
IO_L07P_6  
IO_L08N_6  
IO_L08P_6  
AC1  
AB2  
AB1  
Y7  
VREF  
VREF_5  
VREF_5  
VREF_5  
I/O  
5
5
5
5
5
5
5
5
5
5
5
IO_L22N_5  
IO_L22P_5  
N.C. (‹)  
IO_L22N_5  
IO_L22P_5  
IO_L23N_5  
IO_L23P_5  
IO_L24N_5  
IO_L24P_5  
IO_L25N_5  
IO_L25P_5  
IO_L26N_5  
IO_L26P_5  
IO_L22N_5  
IO_L22P_5  
IO_L23N_5  
IO_L23P_5  
IO_L24N_5  
IO_L24P_5  
IO_L25N_5  
IO_L25P_5  
IO_L26N_5  
IO_L26P_5  
AC10  
AB10  
AF10  
AE10  
Y11  
I/O  
I/O  
I/O  
I/O  
I/O  
Y6  
I/O  
N.C. (‹)  
I/O  
AA4  
AA3  
Y5  
I/O  
IO_L24N_5  
IO_L24P_5  
IO_L25N_5  
IO_L25P_5  
N.C. (‹)  
I/O  
I/O  
W11  
I/O  
I/O  
AB11  
AA11  
AF11  
AE11  
Y12  
I/O  
Y4  
I/O  
I/O  
IO_L09N_6/ IO_L09N_6/  
VREF_6  
AA2  
VREF  
I/O  
VREF_6  
N.C. (‹)  
6
6
6
6
6
6
6
6
6
N.C. (‹)  
IO_L09P_6  
IO_L10N_6  
IO_L10P_6  
IO_L14N_6  
IO_L14P_6  
IO_L16N_6  
IO_L16P_6  
IO_L17N_6  
IO_L09P_6  
IO_L10N_6  
IO_L10P_6  
IO_L14N_6  
IO_L14P_6  
IO_L16N_6  
IO_L16P_6  
IO_L17N_6  
AA1  
Y2  
I/O  
I/O  
I/O  
IO_L27N_5/ IO_L27N_5/ IO_L27N_5/  
N.C. (‹)  
VREF  
VREF_5  
VREF_5  
VREF_5  
N.C. (‹)  
Y1  
I/O  
5
5
IO_L27P_5  
IO_L27P_5  
IO_L27P_5  
W12  
I/O  
IO_L14N_6  
IO_L14P_6  
IO_L16N_6  
IO_L16P_6  
IO_L17N_6  
W7  
W6  
V6  
I/O  
IO_L28N_5/ IO_L28N_5/ IO_L28N_5/  
D6 D6 D6  
IO_L28P_5/ IO_L28P_5/ IO_L28P_5/  
AB12  
DUAL  
I/O  
I/O  
5
AA12  
DUAL  
D7  
D7  
D7  
W5  
W4  
W3  
I/O  
5
5
IO_L29N_5  
IO_L29N_5  
IO_L29N_5  
AF12  
AE12  
I/O  
I/O  
IO_L29P_5/ IO_L29P_5/ IO_L29P_5/  
VREF  
IO_L17P_6/ IO_L17P_6/ IO_L17P_6/  
VREF_6  
VREF  
VREF_5  
VREF_5  
VREF_5  
VREF_6  
VREF_6  
5
5
5
IO_L30N_5  
IO_L30P_5  
IO_L30N_5  
IO_L30P_5  
IO_L30N_5  
IO_L30P_5  
Y13  
W13  
AC13  
I/O  
I/O  
6
6
6
6
6
6
6
6
6
6
6
IO_L19N_6  
IO_L19P_6  
IO_L20N_6  
IO_L20P_6  
IO_L21N_6  
IO_L21P_6  
IO_L22N_6  
IO_L22P_6  
IO_L23N_6  
IO_L23P_6  
IO_L19N_6  
IO_L19P_6  
IO_L20N_6  
IO_L20P_6  
IO_L21N_6  
IO_L21P_6  
IO_L22N_6  
IO_L22P_6  
IO_L23N_6  
IO_L23P_6  
IO_L19N_6  
IO_L19P_6  
IO_L20N_6  
IO_L20P_6  
IO_L21N_6  
IO_L21P_6  
IO_L22N_6  
IO_L22P_6  
IO_L23N_6  
IO_L23P_6  
W2  
W1  
V7  
U7  
V5  
V4  
V3  
V2  
U6  
U5  
U4  
I/O  
I/O  
IO_L31N_5/ IO_L31N_5/ IO_L31N_5/  
D4 D4 D4  
IO_L31P_5/ IO_L31P_5/ IO_L31P_5/  
D5 D5 D5  
IO_L32N_5/ IO_L32N_5/ IO_L32N_5/  
GCLK3 GCLK3 GCLK3  
IO_L32P_5/ IO_L32P_5/ IO_L32P_5/  
DUAL  
I/O  
I/O  
5
5
5
AB13  
AE13  
AD13  
DUAL  
GCLK  
GCLK  
I/O  
I/O  
I/O  
I/O  
GCLK2  
GCLK2  
GCLK2  
I/O  
5
5
5
5
5
5
5
5
6
6
VCCO_5  
VCCO_5  
VCCO_5  
VCCO_5  
VCCO_5  
VCCO_5  
VCCO_5  
VCCO_5  
N.C. (‹)  
VCCO_5  
VCCO_5  
VCCO_5  
VCCO_5  
VCCO_5  
VCCO_5  
VCCO_5  
VCCO_5  
N.C. („)  
VCCO_5  
VCCO_5  
VCCO_5  
VCCO_5  
VCCO_5  
VCCO_5  
VCCO_5  
VCCO_5  
IO  
AD7  
AD11  
U13  
V11  
V12  
V13  
W9  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
I/O  
I/O  
IO_L24N_6/ IO_L24N_6/ IO_L24N_6/  
VREF_6  
VREF  
VREF_6  
VREF_6  
6
6
6
6
6
6
6
6
6
6
6
6
6
IO_L24P_6  
IO_L26N_6  
IO_L26P_6  
IO_L27N_6  
IO_L27P_6  
IO_L28N_6  
IO_L28P_6  
IO_L29N_6  
IO_L29P_6  
IO_L31N_6  
IO_L31P_6  
IO_L32N_6  
IO_L32P_6  
IO_L24P_6  
IO_L26N_6  
IO_L26P_6  
IO_L27N_6  
IO_L27P_6  
IO_L28N_6  
IO_L28P_6  
IO_L29N_6  
IO_L29P_6  
IO_L31N_6  
IO_L31P_6  
IO_L32N_6  
IO_L32P_6  
IO_L24P_6  
IO_L26N_6  
IO_L26P_6  
IO_L27N_6  
IO_L27P_6  
IO_L28N_6  
IO_L28P_6  
IO_L29N_6  
IO_L29P_6  
IO_L31N_6  
IO_L31P_6  
IO_L32N_6  
IO_L32P_6  
U3  
U2  
U1  
T8  
T7  
T6  
T5  
T2  
T1  
R8  
R7  
R6  
R5  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
W10  
AA5  
AD2  
IO_L01N_6/ IO_L01N_6/ IO_L01N_6/  
VRP_6 VRP_6 VRP_6  
IO_L01P_6/ IO_L01P_6/ IO_L01P_6/  
DCI  
6
AD1  
DCI  
VRN_6  
VRN_6  
VRN_6  
6
6
6
IO_L02N_6  
IO_L02P_6  
IO_L02N_6  
IO_L02P_6  
IO_L02N_6  
IO_L02P_6  
AB4  
AB3  
AC2  
I/O  
I/O  
IO_L03N_6/ IO_L03N_6/ IO_L03N_6/  
VREF_6 VREF_6 VREF_6  
VREF  
DS099-4 (v1.5) July 13, 2004  
Product Specification  
www.xilinx.com  
1-800-255-7778  
63  
R
Spartan-3 FPGA Family: Pinout Descriptions  
Table 30: FG676 Package Pinout (Continued)  
Table 30: FG676 Package Pinout (Continued)  
FG676  
FG676  
XC3S1000  
Bank Pin Name  
XC3S1500  
Pin Name  
XC3S2000  
Pin Name Number  
Pin  
XC3S1000  
Bank Pin Name  
XC3S1500  
Pin Name  
XC3S2000  
Pin Name Number  
Pin  
Type  
I/O  
Type  
6
6
6
IO_L33N_6  
IO_L33P_6  
IO_L33N_6  
IO_L33P_6  
IO_L33N_6  
IO_L33P_6  
T4  
R3  
R2  
7
IO_L16P_7/ IO_L16P_7/ IO_L16P_7/  
VREF_7  
H5  
VREF  
VREF_7  
VREF_7  
I/O  
7
7
7
IO_L17N_7  
IO_L17P_7  
IO_L17N_7  
IO_L17P_7  
IO_L17N_7  
IO_L17P_7  
H3  
H4  
H1  
I/O  
I/O  
IO_L34N_6/ IO_L34N_6/ IO_L34N_6/  
VREF_6  
VREF  
VREF_6  
VREF_6  
6
6
6
6
6
6
6
6
6
IO_L34P_6  
IO_L35N_6  
IO_L35P_6  
IO_L38N_6  
IO_L38P_6  
IO_L39N_6  
IO_L39P_6  
IO_L40N_6  
IO_L34P_6  
IO_L35N_6  
IO_L35P_6  
IO_L38N_6  
IO_L38P_6  
IO_L39N_6  
IO_L39P_6  
IO_L40N_6  
IO_L34P_6  
IO_L35N_6  
IO_L35P_6  
IO_L38N_6  
IO_L38P_6  
IO_L39N_6  
IO_L39P_6  
IO_L40N_6  
R1  
P8  
P7  
P6  
P5  
P4  
P3  
P2  
P1  
IO_L19N_7/ IO_L19N_7/ IO_L19N_7/  
VREF_7  
I/O  
I/O  
VREF  
VREF_7  
VREF_7  
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
IO_L19P_7  
IO_L20N_7  
IO_L20P_7  
IO_L21N_7  
IO_L21P_7  
IO_L22N_7  
IO_L22P_7  
IO_L23N_7  
IO_L23P_7  
IO_L24N_7  
IO_L24P_7  
IO_L26N_7  
IO_L26P_7  
IO_L27N_7  
IO_L19P_7  
IO_L20N_7  
IO_L20P_7  
IO_L21N_7  
IO_L21P_7  
IO_L22N_7  
IO_L22P_7  
IO_L23N_7  
IO_L23P_7  
IO_L24N_7  
IO_L24P_7  
IO_L26N_7  
IO_L26P_7  
IO_L27N_7  
IO_L19P_7  
IO_L20N_7  
IO_L20P_7  
IO_L21N_7  
IO_L21P_7  
IO_L22N_7  
IO_L22P_7  
IO_L23N_7  
IO_L23P_7  
IO_L24N_7  
IO_L24P_7  
IO_L26N_7  
IO_L26P_7  
IO_L27N_7  
H2  
K7  
J7  
J4  
J5  
J2  
J3  
K5  
K6  
K3  
K4  
K1  
K2  
L7  
L8  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
IO_L40P_6/ IO_L40P_6/ IO_L40P_6/  
VREF  
I/O  
VREF_6  
VCCO_6  
VCCO_6  
VCCO_6  
VCCO_6  
VCCO_6  
VCCO_6  
VCCO_6  
VCCO_6  
VREF_6  
VCCO_6  
VCCO_6  
VCCO_6  
VCCO_6  
VCCO_6  
VCCO_6  
VCCO_6  
VCCO_6  
VREF_6  
VCCO_6  
VCCO_6  
VCCO_6  
VCCO_6  
VCCO_6  
VCCO_6  
VCCO_6  
VCCO_6  
6
6
6
6
6
6
6
6
7
P9  
P10  
R9  
T3  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
DCI  
I/O  
I/O  
I/O  
I/O  
T9  
I/O  
U8  
V8  
Y3  
F5  
I/O  
IO_L27P_7/ IO_L27P_7/ IO_L27P_7/  
VREF_7  
VREF  
VREF_7  
VREF_7  
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
IO_L28N_7  
IO_L28P_7  
IO_L29N_7  
IO_L29P_7  
IO_L31N_7  
IO_L31P_7  
IO_L32N_7  
IO_L32P_7  
IO_L33N_7  
IO_L33P_7  
IO_L34N_7  
IO_L34P_7  
IO_L35N_7  
IO_L35P_7  
IO_L38N_7  
IO_L38P_7  
IO_L39N_7  
IO_L39P_7  
IO_L28N_7  
IO_L28P_7  
IO_L29N_7  
IO_L29P_7  
IO_L31N_7  
IO_L31P_7  
IO_L32N_7  
IO_L32P_7  
IO_L33N_7  
IO_L33P_7  
IO_L34N_7  
IO_L34P_7  
IO_L35N_7  
IO_L35P_7  
IO_L38N_7  
IO_L38P_7  
IO_L39N_7  
IO_L39P_7  
IO_L28N_7  
IO_L28P_7  
IO_L29N_7  
IO_L29P_7  
IO_L31N_7  
IO_L31P_7  
IO_L32N_7  
IO_L32P_7  
IO_L33N_7  
IO_L33P_7  
IO_L34N_7  
IO_L34P_7  
IO_L35N_7  
IO_L35P_7  
IO_L38N_7  
IO_L38P_7  
IO_L39N_7  
IO_L39P_7  
L5  
L6  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VREF  
IO_L01N_7/ IO_L01N_7/ IO_L01N_7/  
VRP_7 VRP_7 VRP_7  
IO_L01P_7/ IO_L01P_7/ IO_L01P_7/  
7
F6  
L1  
DCI  
VRN_7  
VRN_7  
VRN_7  
L2  
7
7
7
IO_L02N_7  
IO_L02P_7  
IO_L02N_7  
IO_L02P_7  
IO_L02N_7  
IO_L02P_7  
E3  
E4  
D1  
I/O  
I/O  
M7  
M8  
M6  
M5  
M3  
L4  
IO_L03N_7/ IO_L03N_7/ IO_L03N_7/  
VREF  
VREF_7  
IO_L03P_7  
N.C. (‹)  
N.C. (‹)  
N.C. (‹)  
N.C. (‹)  
N.C. (‹)  
N.C. (‹)  
N.C. (‹)  
N.C. (‹)  
N.C. (‹)  
N.C. (‹)  
N.C. (‹)  
N.C. (‹)  
VREF_7  
VREF_7  
7
7
7
7
7
7
7
7
7
7
7
7
7
IO_L03P_7  
IO_L05N_7  
IO_L05P_7  
IO_L06N_7  
IO_L06P_7  
IO_L07N_7  
IO_L07P_7  
IO_L08N_7  
IO_L08P_7  
IO_L09N_7  
IO_L09P_7  
IO_L10N_7  
IO_L03P_7  
IO_L05N_7  
IO_L05P_7  
IO_L06N_7  
IO_L06P_7  
IO_L07N_7  
IO_L07P_7  
IO_L08N_7  
IO_L08P_7  
IO_L09N_7  
IO_L09P_7  
IO_L10N_7  
D2  
G6  
G7  
E1  
E2  
F3  
F4  
G4  
G5  
F1  
F2  
H6  
H7  
I/O  
I/O  
I/O  
M1  
M2  
N7  
N8  
N5  
N6  
N3  
N4  
N1  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
IO_L40N_7/ IO_L40N_7/ IO_L40N_7/  
VREF_7  
I/O  
VREF_7  
VREF_7  
IO_L10P_7/ IO_L10P_7/  
VREF_7  
VREF  
7
7
7
7
IO_L40P_7  
VCCO_7  
VCCO_7  
VCCO_7  
IO_L40P_7  
VCCO_7  
VCCO_7  
VCCO_7  
IO_L40P_7  
VCCO_7  
VCCO_7  
VCCO_7  
N2  
G3  
J8  
I/O  
VREF_7  
VCCO  
VCCO  
VCCO  
7
7
7
IO_L14N_7  
IO_L14P_7  
IO_L16N_7  
IO_L14N_7  
IO_L14P_7  
IO_L16N_7  
IO_L14N_7  
IO_L14P_7  
IO_L16N_7  
G1  
G2  
J6  
I/O  
I/O  
I/O  
K8  
64  
www.xilinx.com  
1-800-255-7778  
DS099-4 (v1.5) July 13, 2004  
Product Specification  
R
Spartan-3 FPGA Family: Pinout Descriptions  
Table 30: FG676 Package Pinout (Continued)  
Table 30: FG676 Package Pinout (Continued)  
FG676  
FG676  
XC3S1000  
Bank Pin Name  
XC3S1500  
Pin Name  
XC3S2000  
Pin Name Number  
Pin  
XC3S1000  
Bank Pin Name  
XC3S1500  
Pin Name  
XC3S2000  
Pin Name Number  
Pin  
Type  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
Type  
GND  
7
7
7
7
7
VCCO_7  
VCCO_7  
VCCO_7  
VCCO_7  
VCCO_7  
VCCO_7  
VCCO_7  
VCCO_7  
VCCO_7  
VCCO_7  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
VCCO_7  
VCCO_7  
VCCO_7  
VCCO_7  
VCCO_7  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
L3  
L9  
N/A GND  
N/A GND  
N/A GND  
N/A GND  
N/A GND  
N/A GND  
N/A GND  
N/A GND  
N/A GND  
N/A GND  
N/A GND  
N/A GND  
N/A GND  
N/A GND  
N/A GND  
N/A GND  
N/A GND  
N/A GND  
N/A GND  
N/A GND  
N/A GND  
N/A GND  
N/A GND  
N/A GND  
N/A GND  
N/A GND  
N/A GND  
N/A GND  
N/A GND  
N/A GND  
N/A GND  
N/A GND  
N/A GND  
N/A GND  
N/A GND  
N/A GND  
N/A VCCAUX  
N/A VCCAUX  
N/A VCCAUX  
N/A VCCAUX  
N/A VCCAUX  
N/A VCCAUX  
N/A VCCAUX  
N/A VCCAUX  
N/A VCCAUX  
GND  
GND  
M17  
M23  
N11  
N12  
N13  
N14  
N15  
N16  
P11  
P12  
P13  
P14  
P15  
P16  
R4  
GND  
GND  
GND  
M9  
GND  
GND  
GND  
N9  
GND  
GND  
GND  
N10  
A1  
GND  
GND  
GND  
N/A GND  
N/A GND  
N/A GND  
N/A GND  
N/A GND  
N/A GND  
N/A GND  
N/A GND  
N/A GND  
N/A GND  
N/A GND  
N/A GND  
N/A GND  
N/A GND  
N/A GND  
N/A GND  
N/A GND  
N/A GND  
N/A GND  
N/A GND  
N/A GND  
N/A GND  
N/A GND  
N/A GND  
N/A GND  
N/A GND  
N/A GND  
N/A GND  
N/A GND  
N/A GND  
N/A GND  
N/A GND  
N/A GND  
N/A GND  
N/A GND  
N/A GND  
N/A GND  
N/A GND  
N/A GND  
N/A GND  
GND  
GND  
GND  
A26  
AC4  
AC12  
AC15  
AC23  
AD3  
AD24  
AE2  
AE25  
AF1  
AF26  
B2  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
R10  
R11  
R12  
R13  
R14  
R15  
R16  
R17  
R23  
T10  
T11  
T12  
T13  
T14  
T15  
T16  
T17  
U11  
U12  
U15  
U16  
A2  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
B25  
C3  
GND  
GND  
GND  
GND  
GND  
GND  
C24  
D4  
GND  
GND  
GND  
GND  
GND  
GND  
D12  
D15  
D23  
K11  
K12  
K15  
K16  
L10  
L11  
L12  
L13  
L14  
L15  
L16  
L17  
M4  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
A9  
M10  
M11  
M12  
M13  
M14  
M15  
M16  
A18  
A25  
AE1  
AE26  
AF2  
AF9  
AF18  
DS099-4 (v1.5) July 13, 2004  
Product Specification  
www.xilinx.com  
1-800-255-7778  
65  
R
Spartan-3 FPGA Family: Pinout Descriptions  
Table 30: FG676 Package Pinout (Continued)  
Table 30: FG676 Package Pinout (Continued)  
FG676  
FG676  
XC3S1000  
Bank Pin Name  
XC3S1500  
Pin Name  
XC3S2000  
Pin Name Number  
Pin  
XC3S1000  
Bank Pin Name  
XC3S1500  
Pin Name  
XC3S2000  
Pin Name Number  
Pin  
Type  
Type  
N/A VCCAUX  
N/A VCCAUX  
N/A VCCAUX  
N/A VCCAUX  
N/A VCCAUX  
N/A VCCAUX  
N/A VCCAUX  
N/A VCCINT  
N/A VCCINT  
N/A VCCINT  
N/A VCCINT  
N/A VCCINT  
N/A VCCINT  
N/A VCCINT  
N/A VCCINT  
N/A VCCINT  
N/A VCCINT  
N/A VCCINT  
N/A VCCINT  
N/A VCCINT  
N/A VCCINT  
N/A VCCINT  
N/A VCCINT  
N/A VCCINT  
N/A VCCINT  
N/A VCCINT  
N/A VCCINT  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
CCLK  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
CCLK  
AF25  
B1  
VCC DONE  
AUX  
DONE  
DONE  
AC24  
C2  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
CONFIG  
CONFIG  
CONFIG  
CONFIG  
CONFIG  
CONFIG  
CONFIG  
JTAG  
VCC HSWAP_EN HSWAP_EN HSWAP_EN  
AUX  
B26  
J1  
VCC M0  
AUX  
M0  
M0  
AE3  
AC3  
AF3  
D3  
J26  
V1  
VCC M1  
AUX  
M1  
M1  
V26  
H8  
VCC M2  
AUX  
M2  
M2  
H19  
J9  
VCC PROG_B  
AUX  
PROG_B  
TCK  
TDI  
PROG_B  
TCK  
TDI  
VCC TCK  
AUX  
B24  
C1  
J10  
J17  
J18  
K9  
VCC TDI  
AUX  
JTAG  
VCC TDO  
AUX  
TDO  
TMS  
TDO  
TMS  
D24  
A24  
JTAG  
K10  
K17  
K18  
U9  
VCC TMS  
AUX  
JTAG  
User I/Os by Bank  
U10  
U17  
U18  
V9  
Table 31 indicates how the available user-I/O pins are dis-  
tributed between the eight I/O banks for the XC3S1000 in  
the FG676 package. Similarly, Table 32 shows how the  
available user-I/O pins are distributed between the eight I/O  
banks for the XC3S1500 in the FG676 package. Finally,  
Table 33 shows the same information for the XC3S2000 in  
the FG676 package.  
V10  
V17  
V18  
W8  
W19  
AD26  
VCC CCLK  
AUX  
Table 31: User I/Os Per Bank for XC3S1000 in FG676 Package  
All Possible I/O Pins by Type  
I/O  
Bank  
Maximum  
I/O  
Edge  
I/O  
40  
41  
41  
41  
35  
35  
41  
41  
DUAL  
DCI  
2
VREF  
GCLK  
0
1
2
3
4
5
6
7
49  
50  
48  
48  
50  
50  
48  
48  
0
0
0
0
6
6
0
0
5
5
5
5
5
5
5
5
2
2
0
0
2
2
0
0
Top  
2
2
Right  
Bottom  
Left  
2
2
2
2
2
66  
www.xilinx.com  
1-800-255-7778  
DS099-4 (v1.5) July 13, 2004  
Product Specification  
R
Spartan-3 FPGA Family: Pinout Descriptions  
All Possible I/O Pins by Type  
Table 32: User I/Os Per Bank for XC3S1500 in FG676 Package  
I/O  
Bank  
Maximum  
I/O  
Edge  
I/O  
52  
51  
52  
52  
47  
45  
52  
52  
DUAL  
DCI  
2
VREF  
GCLK  
0
1
2
3
4
5
6
7
62  
61  
60  
60  
63  
61  
60  
60  
0
0
0
0
6
6
0
0
6
6
6
6
6
6
6
6
2
2
0
0
2
2
0
0
Top  
2
2
Right  
Bottom  
Left  
2
2
2
2
2
Table 33: User I/Os Per Bank for XC3S2000 in FG676 Package  
All Possible I/O Pins by Type  
Maximum  
Edge  
I/O Bank  
I/O  
62  
61  
61  
60  
63  
61  
61  
60  
I/O  
52  
51  
53  
52  
47  
45  
53  
52  
DUAL  
DCI  
2
VREF  
GCLK  
0
1
2
3
4
5
6
7
0
0
0
0
6
6
0
0
6
6
6
6
6
6
6
6
2
2
0
0
2
2
0
0
Top  
2
2
Right  
Bottom  
Left  
2
2
2
2
2
DS099-4 (v1.5) July 13, 2004  
Product Specification  
www.xilinx.com  
1-800-255-7778  
67  
R
Spartan-3 FPGA Family: Pinout Descriptions  
FG676 Footprint  
Bank 0  
8
1
2
3
4
I/O  
L05P_0  
VREF_0  
5
6
7
9
VCCAUX  
I/O  
10  
11  
12  
13  
I/O  
L32P_0  
GCLK6  
I/O  
Left Half of Package  
(top view)  
I/O  
L26P_0  
VREF_0  
‹
I/O  
L10P_0  
I/O  
L15P_0  
I/O  
L29P_0  
L23P_0  
VCCAUX  
GND  
I/O  
I/O  
I/O  
A
B
C
D
E
F
‹
I/O  
I/O  
I/O  
L32N_0  
GCLK7  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
L29N_0  
L18P_0 L23N_0 L26N_0  
XC3S1000  
GND  
VCCAUX  
TD I  
VREF_0 L05N_0 L06P_0 L08P_0 L10N_0 L15N_0  
‹
‹
‹
(391 max. user I/O)  
I/O: Unrestricted,  
I/O  
L18N_0  
I/O  
L31P_0  
VREF_0  
I/O  
HSWAP_  
EN  
I/O  
I/O  
I/O  
L22P_0  
GND  
VCCO_0  
I/O  
VCCO_0  
I/O  
I/O  
315  
L06N_0 L08N_0  
‹
general-purpose user I/O  
‹
I/O  
I/O  
I/O  
L03N_7  
VREF_7  
I/O  
I/O  
I/O  
L03P_7  
I/O  
I/O  
I/O  
L31N_0  
L12P_0 L17P_0  
VREF: User I/O or input  
voltage reference for bank  
PROG_B  
I/O  
GND  
I/O  
GND  
I/O  
L01P_0  
L07P_0 L09P_0  
L22N_0 L25P_0  
40  
VRN_0  
‹
‹
I/O  
I/O  
I/O  
I/O  
I/O  
L01N_0  
VRP_0  
I/O  
I/O  
I/O  
L19P_0  
I/O  
L06N_7 L06P_7  
L12N_0 L17N_0  
I/O  
L02N_7 L02P_7  
L07N_0 L09N_0  
L25N_0 L28P_0  
N.C.: Unconnected pins for  
XC3S1000 (‹)  
‹
‹
‹
‹
98  
I/O  
I/O  
I/O I/O  
I/O  
L11P_0  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
L09N_7 L09P_7 L07N_7 L07P_7  
L01N_7 L01P_7  
VRP_7  
VREF_0  
L16P_0 L19N_0 L24P_0 L28N_0 L30P_0  
VRN_7  
‹
‹
‹
‹
‹
XC3S1500  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
L16N_0  
I/O  
VREF_0  
I/O  
I/O  
I/O  
(487 max user I/O)  
I/O: Unrestricted,  
L08N_7 L08P_7 L05N_7 L05P_7 L11N_0  
VCCO_7  
G
H
J
L14N_7 L14P_7  
L24N_0 L27N_0 L30N_0  
‹
‹
‹
‹
I/O  
L10P_7  
VREF_7  
‹
‹
403  
I/O  
L10N_7  
general-purpose user I/O  
I/O  
I/O  
I/O  
L16P_7  
VREF_7  
I/O  
I/O  
I/O  
L27P_0  
VCCO_0 VCCO_0  
VCCINT VCCINT  
VCCINT VCCINT  
VCCINT  
I/O  
I/O  
L19N_7  
L19P_7 L17N_7 L17P_7  
VREF_7  
‹
VREF: User I/O or input  
voltage reference for bank  
48  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCAUX  
VCCO_7  
VCCO_7  
VCCO_0 VCCO_0 VCCO_0  
L22N_7 L22P_7 L21N_7 L21P_7 L16N_7 L20P_7  
N.C.: Unconnected pins for  
XC3S1500 („)  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
2
VCCO_0  
K
L
GND  
GND  
GND  
GND  
L26N_7 L26P_7 L24N_7 L24P_7 L23N_7 L23P_7 L20N_7  
I/O  
L27P_7  
VREF_7  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
XC3S2000  
VCCO_7  
VCCO_7  
GND  
GND  
L29N_7 L29P_7  
L33P_7 L28N_7 L28P_7 L27N_7  
(489 max user I/O)  
I/O: Unrestricted,  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCO_7  
GND  
GND  
I/O  
M
N
P
R
T
GND  
GND  
GND  
GND  
GND  
GND  
405  
L34N_7 L34P_7 L33N_7  
L32P_7 L32N_7 L31N_7 L31P_7  
general-purpose user I/O  
I/O  
L40N_7  
VREF_7  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VREF: User I/O or input  
voltage reference for bank  
VCCO_7 VCCO_7  
VCCO_6 VCCO_6  
L40P_7 L39N_7 L39P_7 L38N_7 L38P_7 L35N_7 L35P_7  
48  
I/O  
L40P_6  
VREF_6  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
L35N_6  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
L40N_6 L39P_6 L39N_6 L38P_6 L38N_6 L35P_6  
N.C.: No unconnected pins  
0
I/O  
L34N_6  
VREF_6  
I/O  
L34P_6  
I/O  
L33P_6  
I/O  
I/O  
I/O  
I/O  
L31N_6  
VCCO_6  
GND  
GND  
I/O  
L32P_6 L32N_6 L31P_6  
All devices  
DUAL: Configuration pin,  
then possible user I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
L27N_6  
VCCO_6  
VCCO_6  
GND  
GND  
12  
L29P_6 L29N_6  
L33N_6 L28P_6 L28N_6 L27P_6  
I/O  
L24N_6  
VREF_6  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCO_6  
VCCO_6  
VCCINT  
I/O  
VCCO_5  
VCCINT VCCINT  
VCCINT VCCINT  
VCCO_5 VCCO_5  
U
V
W
Y
GCLK: User I/O or global  
clock buffer input  
L26P_6 L26N_6 L24P_6  
L23P_6 L23N_6 L20P_6  
8
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCAUX  
VCCO_5 VCCO_5 VCCO_5  
L22P_6 L22N_6 L21P_6 L21N_6 L16N_6 L20N_6  
DCI: User I/O or reference  
resistor input for bank  
16  
I/O  
L17P_6  
VREF_6  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
L19P_6 L19N_6  
L17N_6 L16P_6 L14P_6 L14N_6  
L24P_5 L27P_5 L30P_5  
CONFIG: Dedicated  
configuration pins  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
7
I/O  
I/O  
L16P_5  
I/O  
L27N_5  
VREF_5  
I/O  
L24N_5  
I/O  
L30N_5  
L10P_6 L10N_6  
L08P_6 L08N_6 L06P_6 L06N_6  
VCCO_6  
I/O  
L19P_5  
VREF_5  
‹
‹
‹
‹
‹
‹
I/O  
L09N_6  
VREF_6  
I/O  
L09P_6  
I/O  
I/O  
L11P_5  
JTAG: Dedicated JTAG  
port pins  
I/O  
L28P_5  
D7  
I/O  
A
A
I/O  
L05P_5  
I/O  
I/O  
I/O  
L07P_6 L07N_6  
4
I/O  
I/O  
I/O  
L16N_5 L19N_5 L25P_5  
‹„  
‹
‹
‹
‹
‹
I/O  
I/O  
I/O  
I/O  
L01P_5  
CS_B  
I/O  
A
B
L11N_5  
VREF_5  
‹
I/O  
I/O  
I/O  
I/O  
I/O  
L22P_5  
I/O  
L25N_5  
VCCINT: Internal core  
voltage supply (+1.2V)  
L05P_6 L05N_6  
I/O  
L28N_5 L31P_5  
D6  
L02P_6 L02N_6  
L05N_5 L09P_5  
20  
D5  
‹
‹
I/O  
L12P_5  
I/O  
L03N_6  
VREF_6  
I/O  
L01N_5  
RDWR_B  
I/O  
L31N_5  
D4  
I/O  
‹
A
C
I/O  
L03P_6  
I/O  
I/O  
I/O  
L22N_5  
M1  
GND  
M0  
GND  
I/O  
GND  
VCCO: Output voltage  
supply for bank  
L07P_5 L09N_5  
‹
64  
I/O  
I/O  
I/O  
I/O  
I/O  
L32P_5  
GCLK2  
A
D
I/O  
I/O  
I/O  
L12N_5 L18P_5  
VCCO_5  
VCCO_5  
I/O  
I/O  
I/O  
I/O  
I/O  
L01P_6 L01N_6  
VRN_6  
L04P_5 L06P_5 L07N_5  
VRP_6  
VCCAUX: Auxiliary voltage  
supply (+2.5V)  
‹
‹
16  
I/O  
I/O  
L10P_5  
VRN_5  
I/O  
A
E
I/O  
I/O  
I/O  
I/O  
L15P_5  
L18N_5 L23P_5 L26P_5  
VCCAUX  
GND  
L29P_5 L32N_5  
VREF_5 GCLK3  
L04N_5 L06N_5 L08P_5  
‹
‹
‹
GND: Ground  
I/O  
I/O  
76  
I/O  
L10N_5  
VRP_5  
A
F
I/O  
I/O  
I/O  
L15N_5  
I/O  
I/O  
L23N_5 L26N_5  
VCCAUX  
M2  
I/O  
GND  
VCCAUX  
VREF_5 L08N_5  
L29N_5 VREF_5  
‹
‹
Bank 5  
DS099-4_12a_030203  
Figure 14: FG676 Package Footprint (top view)  
68  
www.xilinx.com  
1-800-255-7778  
DS099-4 (v1.5) July 13, 2004  
Product Specification  
R
Spartan-3 FPGA Family: Pinout Descriptions  
Bank 1  
14  
15  
16  
17  
18  
VCCAUX  
I/O  
19  
20  
I/O  
L10N_1  
VREF_1  
21  
22  
23  
24  
25  
26  
Right Half of Package  
(top view)  
I/O  
I/O  
I/O  
L29N_1  
I/O  
L15N_1  
I/O  
L08N_1  
L26N_1 L23N_1  
GND  
VCCAUX  
I/O  
I/O  
I/O  
TMS  
A
B
C
D
E
F
‹
‹
I/O  
I/O  
I/O  
L32N_1  
GCLK5  
I/O  
L06N_1  
VREF_1  
I/O  
L29P_1  
I/O  
I/O  
I/O  
I/O  
L04N_1  
L26P_1 L23P_1 L18N_1  
VCCAUX  
I/O  
TCK  
GND  
I/O  
L01N_2 L01P_2  
VRP_2  
L15P_1 L10P_1 L08P_1  
‹
‹
‹
I/O  
I/O  
I/O  
L32P_1  
GCLK4  
I/O  
VREF_1  
I/O  
VREF_1  
I/O  
L07N_1  
I/O  
I/O  
L18P_1 L12N_1  
VCCO_1  
VCCO_1  
GND  
L06P_1 L04P_1  
‹
‹
VRN_2  
I/O  
I/O  
I/O  
L31N_1  
VREF_1  
I/O  
L01N_1  
VRP_1  
I/O  
L03N_2  
VREF_2  
I/O  
L22N_1  
I/O  
I/O  
I/O  
L03P_2  
VREF_1 L12P_1  
GND  
I/O  
I/O  
GND  
TDO  
I/O  
L09N_1 L07P_1  
‹
‹
I/O  
L11N_1  
‹
I/O  
I/O  
I/O  
L22P_1  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
L05N_2 L05P_2  
I/O  
L01P_1  
L31P_1 L28N_1 L25N_1  
L09P_1 L05N_1  
L02N_2 L02P_2  
VRN_1  
‹
‹
I/O  
I/O  
L11P_1  
I/O  
I/O  
I/O  
L09P_2  
I/O  
L09N_2  
VREF_2  
‹
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
L07N_2 L07P_2  
I/O  
L28P_1 L25P_1 L19N_1 L16N_1  
L05P_1  
‹
‹
‹
‹
‹„  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
L06N_2 L06P_2 L08N_2 L08P_2  
L10N_2 L10P_2  
VCCO_2  
I/O  
G
H
J
L30N_1 L27N_1 L24N_1 L19P_1 L16P_1  
‹
‹
‹
‹
‹
‹
I/O  
L17P_2  
VREF_2  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCO_1 VCCO_1  
VCCINT VCCINT  
VCCINT VCCINT  
VCCINT  
VCCO_2  
L30P_1 L27P_1 L24P_1  
L14N_2 L14P_2 L16N_2 L17N_2  
L19N_2 L19P_2  
I/O  
I/O  
I/O  
I/O  
I/O  
L22N_2  
I/O  
L22P_2  
VCCO_1 VCCO_1 VCCO_1  
VCCAUX  
L20N_2 L16P_2 L21N_2 L21P_2  
I/O  
L23N_2  
VREF_2  
I/O  
L20P_2  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCO_1  
GND  
VCCO_2  
I/O  
GND  
GND  
GND  
GND  
K
L
L23P_2 L24N_2 L24P_2 L26N_2 L26P_2  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
GND  
GND  
VCCO_2  
VCCO_2  
VCCO_2  
L27N_2 L27P_2 L28N_2  
L28P_2 L33N_2  
L29N_2 L29P_2  
I/O  
I/O  
I/O  
I/O  
I/O  
L32P_2  
I/O  
L33P_2  
I/O  
GND  
GND  
GND  
GND  
GND  
GND  
L34N_2  
L34P_2  
VREF_2  
M
N
P
R
T
L31N_2 L31P_2 L32N_2  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
GND  
VCCO_2 VCCO_2  
VCCO_3 VCCO_3  
L40P_2  
VREF_2  
L35N_2 L35P_2 L38N_2  
L38P_2 L39N_2 L39P_2 L40N_2  
I/O  
L40N_3  
VREF_3  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
L39N_3  
I/O  
L40P_3  
GND  
GND  
GND  
GND  
GND  
GND  
L35P_3 L35N_3 L38P_3 L38N_3 L39P_3  
I/O  
L34P_3  
VREF_3  
I/O  
I/O  
I/O  
I/O  
I/O  
L33N_3  
I/O  
L34N_3  
VCCO_3  
GND  
GND  
I/O  
L31P_3 L31N_3 L32P_3 L32N_3  
I/O  
I/O  
I/O  
I/O  
I/O  
L29P_3  
I/O  
L29N_3  
VCCO_3  
GND  
VCCO_3  
GND  
GND  
GND  
GND  
GND  
L27P_3 L27N_3 L28P_3 L28N_3 L33P_3  
I/O  
L23P_3  
VREF_3  
I/O  
L20N_3  
I/O  
I/O  
I/O  
L24N_3  
I/O  
L26P_3  
I/O  
L26N_3  
VCCO_4  
VCCO_3  
VCCO_3  
VCCINT VCCINT  
VCCINT VCCINT  
VCCO_4 VCCO_4  
U
V
W
Y
L23N_3 L24P_3  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCO_4 VCCO_4 VCCO_4  
I/O  
L27P_4  
D1  
VCCAUX  
L20P_3 L16N_3  
L21P_3 L21N_3 L22P_3 L22N_3  
I/O  
I/O  
I/O  
L17P_3  
VREF_3  
I/O  
L16P_3  
I/O  
L17N_3  
I/O  
L19P_3  
I/O  
L19N_3  
L10P_3 L10N_3  
I/O  
I/O  
VCCINT  
I/O  
‹
‹
I/O  
L27N_4  
DIN  
I/O  
I/O  
I/O  
I/O  
I/O  
L30N_4  
D2  
I/O  
I/O  
I/O  
I/O  
L14P_3  
I/O  
L14N_3  
L11N_4 L05P_3 L05N_3  
L08P_3 L08N_3  
VCCO_3  
I/O  
L24N_4 VREF_4 L16N_4  
‹
‹
‹
‹
‹
D0  
I/O  
I/O  
L11P_4  
I/O  
I/O  
L09N_3  
I/O  
L30P_4  
D3  
I/O  
I/O  
A
A
L09P_3  
VREF_3  
‹
I/O  
I/O  
I/O  
I/O  
L07P_3 L07N_3  
I/O  
L01P_3 L01N_3  
VRN_3  
L28N_4 L24P_4 L19P_4 L16P_4  
VRP_3  
‹
‹
‹
‹
I/O  
I/O  
I/O  
I/O  
I/O  
L01N_4  
VRP_4  
I/O  
L02N_3  
VREF_3  
A
B
IO  
VREF_4  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
L02P_3  
L17N_4 L12N_4  
L06P_3 L06N_3  
L28P_4 L25N_4 L22P_4  
L09N_4 L07N_4  
‹
‹
‹
‹
I/O  
I/O  
I/O  
L31N_4  
INIT_B  
I/O  
L01P_4  
VRN_4  
A
C
I/O  
I/O  
I/O  
I/O  
I/O  
L03P_3  
I/O  
L03N_3  
L17P_4 L12P_4  
GND  
I/O  
GND  
DONE  
L25P_4 L19N_4  
L09P_4 L07P_4  
‹
‹
I/O  
I/O  
L18N_4  
I/O  
I/O  
L06N_4  
VREF_4  
I/O  
A
D
I/O  
L08N_4  
I/O  
VREF_4  
L31P_4  
DOUT  
BUSY  
VCCO_4  
L22N_4  
VCCO_4  
GND  
I/O  
I/O  
I/O  
CCLK  
‹
VREF_4  
‹
I/O  
I/O  
I/O  
I/O  
L32N_4  
GCLK1  
A
E
I/O  
L29N_4  
I/O  
I/O  
I/O  
I/O  
L26N_4 L23N_4 L18P_4  
VCCAUX  
GND  
L15N_4 L10N_4 L08P_4 L06P_4 L05N_4 L04N_4  
‹
‹
‹
I/O  
I/O  
L23P_4  
I/O  
L32P_4  
GCLK0  
A
F
L26P_4  
VREF_4  
‹
I/O  
L29P_4  
I/O  
I/O  
I/O  
L05P_4  
I/O  
L04P_4  
VCCAUX  
VCCAUX  
I/O  
I/O  
GND  
L15P_4 L10P_4  
‹
Bank 4  
DS099-4_12b_121103  
DS099-4 (v1.5) July 13, 2004  
Product Specification  
www.xilinx.com  
1-800-255-7778  
69  
R
Spartan-3 FPGA Family: Pinout Descriptions  
Table 34: FG900 Package Pinout (Continued)  
FG900: 900-lead Fine-pitch Ball Grid  
Array  
XC3S4000  
XC3S5000  
Pin Name  
FG900  
Pin  
Number  
XC3S2000  
Pin Name  
The 900-lead fine-pitch ball grid array package, FG900,  
supports three different Spartan-3 devices, including the  
XC3S2000, the XC3S4000, and the XC3S5000. The foot-  
prints for the XC3S4000 and XC3S5000 are identical, as  
shown in Table 34 and Figure 15. The XC3S2000, however,  
has fewer I/O pins which consequently results in 68 uncon-  
nected pins on the FG900 package, labeled as “N.C.In  
Table 34 and Figure 15, these unconnected pins are indi-  
cated with a black diamond symbol (‹).  
Bank  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Type  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VREF  
IO_L07P_0  
IO_L08N_0  
IO_L08P_0  
IO_L09N_0  
IO_L09P_0  
IO_L10N_0  
IO_L10P_0  
IO_L11N_0  
IO_L11P_0  
IO_L12N_0  
IO_L12P_0  
IO_L13N_0  
IO_L13P_0  
IO_L14N_0  
IO_L14P_0  
IO_L15N_0  
IO_L15P_0  
IO_L16N_0  
IO_L16P_0  
IO_L17N_0  
IO_L17P_0  
IO_L18N_0  
IO_L18P_0  
IO_L19N_0  
IO_L19P_0  
IO_L20N_0  
IO_L20P_0  
IO_L21N_0  
IO_L21P_0  
IO_L22N_0  
IO_L22P_0  
IO_L23N_0  
IO_L23P_0  
IO_L24N_0  
IO_L24P_0  
IO_L25N_0  
IO_L25P_0  
IO_L26N_0  
IO_L07P_0  
IO_L08N_0  
IO_L08P_0  
IO_L09N_0  
IO_L09P_0  
IO_L10N_0  
IO_L10P_0  
IO_L11N_0  
IO_L11P_0  
IO_L12N_0  
IO_L12P_0  
IO_L13N_0  
IO_L13P_0  
IO_L14N_0  
IO_L14P_0  
IO_L15N_0  
IO_L15P_0  
IO_L16N_0  
IO_L16P_0  
IO_L17N_0  
IO_L17P_0  
IO_L18N_0  
IO_L18P_0  
IO_L19N_0  
IO_L19P_0  
IO_L20N_0  
IO_L20P_0  
IO_L21N_0  
IO_L21P_0  
IO_L22N_0  
IO_L22P_0  
IO_L23N_0  
IO_L23P_0  
IO_L24N_0  
IO_L24P_0  
IO_L25N_0  
IO_L25P_0  
IO_L26N_0  
E8  
D8  
C8  
B8  
A8  
J9  
H9  
All the package pins appear in Table 34 and are sorted by  
bank number, then by pin name. Pairs of pins that form a dif-  
ferential I/O pair appear together in the table. The table also  
shows the pin number for each pin and the pin type, as  
defined earlier.  
G10  
F10  
C10  
B10  
J10  
K11  
H11  
G11  
F11  
E11  
D11  
C11  
B11  
A11  
K12  
J12  
H12  
G12  
F12  
E12  
D12  
C12  
B12  
A12  
J13  
H13  
F13  
E13  
B13  
A13  
K14  
J14  
If there is a difference between the XC3S2000 pinout and  
the pinout for the XC3S4000 and XC3S5000, then that dif-  
ference is highlighted in Table 34. If the table entry is  
shaded, then there is an unconnected pin on the XC3S2000  
that maps to a user-I/O pin on the XC3S4000 and  
XC3S5000.  
Pinout Table  
Table 34: FG900 Package Pinout  
XC3S4000  
XC3S5000  
Pin Name  
FG900  
Pin  
Number  
XC3S2000  
Pin Name  
Bank  
Type  
I/O  
0
0
0
0
0
0
0
0
IO  
IO  
E15  
K15  
D13  
K13  
G8  
IO  
IO  
I/O  
IO  
IO  
I/O  
IO  
IO  
I/O  
IO  
IO  
I/O  
IO/VREF_0  
IO/VREF_0  
IO/VREF_0  
IO/VREF_0  
F9  
VREF  
VREF  
DCI  
C4  
IO_L01N_0/  
VRP_0  
IO_L01N_0/  
VRP_0  
B4  
0
IO_L01P_0/  
VRN_0  
IO_L01P_0/  
VRN_0  
A4  
DCI  
0
0
0
0
0
0
0
0
IO_L02N_0  
IO_L02P_0  
IO_L03N_0  
IO_L03P_0  
IO_L04N_0  
IO_L04P_0  
IO_L05N_0  
IO_L02N_0  
IO_L02P_0  
IO_L03N_0  
IO_L03P_0  
IO_L04N_0  
IO_L04P_0  
IO_L05N_0  
B5  
A5  
D5  
E6  
C6  
B6  
F6  
F7  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
IO_L26P_0/  
VREF_0  
IO_L26P_0/  
VREF_0  
I/O  
IO_L05P_0/  
VREF_0  
IO_L05P_0/  
VREF_0  
VREF  
0
0
0
0
0
IO_L27N_0  
IO_L27P_0  
IO_L28N_0  
IO_L28P_0  
IO_L29N_0  
IO_L27N_0  
IO_L27P_0  
IO_L28N_0  
IO_L28P_0  
IO_L29N_0  
G14  
F14  
C14  
B14  
J15  
I/O  
I/O  
I/O  
I/O  
I/O  
0
0
0
IO_L06N_0  
IO_L06P_0  
IO_L07N_0  
IO_L06N_0  
IO_L06P_0  
IO_L07N_0  
D7  
C7  
F8  
I/O  
I/O  
I/O  
70  
www.xilinx.com  
1-800-255-7778  
DS099-4 (v1.5) July 13, 2004  
Product Specification  
R
Spartan-3 FPGA Family: Pinout Descriptions  
Table 34: FG900 Package Pinout (Continued)  
Table 34: FG900 Package Pinout (Continued)  
XC3S4000  
XC3S5000  
Pin Name  
FG900  
Pin  
Number  
XC3S4000  
XC3S5000  
Pin Name  
FG900  
Pin  
Number  
XC3S2000  
Pin Name  
XC3S2000  
Pin Name  
Bank  
Type  
I/O  
Bank  
Type  
I/O  
0
0
0
0
0
IO_L29P_0  
IO_L30N_0  
IO_L30P_0  
IO_L31N_0  
IO_L29P_0  
IO_L30N_0  
IO_L30P_0  
IO_L31N_0  
H15  
G15  
F15  
D15  
C15  
1
1
IO_L05P_1  
IO_L05P_1  
F25  
C24  
I/O  
IO_L06N_1/  
VREF_1  
IO_L06N_1/  
VREF_1  
VREF  
I/O  
1
1
1
1
1
1
1
1
IO_L06P_1  
IO_L07N_1  
IO_L07P_1  
IO_L08N_1  
IO_L08P_1  
IO_L09N_1  
IO_L09P_1  
IO_L06P_1  
IO_L07N_1  
IO_L07P_1  
IO_L08N_1  
IO_L08P_1  
IO_L09N_1  
IO_L09P_1  
D24  
A24  
B24  
H23  
G24  
F23  
G23  
C23  
I/O  
I/O  
I/O  
IO_L31P_0/  
VREF_0  
IO_L31P_0/  
VREF_0  
VREF  
I/O  
0
0
IO_L32N_0/  
GCLK7  
IO_L32N_0/  
GCLK7  
B15  
A15  
GCLK  
GCLK  
I/O  
I/O  
IO_L32P_0/  
GCLK6  
IO_L32P_0/  
GCLK6  
I/O  
I/O  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
N.C. (‹)  
N.C. (‹)  
N.C. (‹)  
N.C. (‹)  
N.C. (‹)  
N.C. (‹)  
N.C. (‹)  
N.C. (‹)  
VCCO_0  
VCCO_0  
VCCO_0  
VCCO_0  
VCCO_0  
VCCO_0  
VCCO_0  
VCCO_0  
VCCO_0  
VCCO_0  
IO  
IO_L35N_0  
IO_L35P_0  
IO_L36N_0  
IO_L36P_0  
IO_L37N_0  
IO_L37P_0  
IO_L38N_0  
IO_L38P_0  
VCCO_0  
VCCO_0  
VCCO_0  
VCCO_0  
VCCO_0  
VCCO_0  
VCCO_0  
VCCO_0  
VCCO_0  
VCCO_0  
IO  
B7  
A7  
I/O  
I/O  
IO_L10N_1/  
VREF_1  
IO_L10N_1/  
VREF_1  
VREF  
G7  
I/O  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
IO_L10P_1  
IO_L11N_1  
IO_L11P_1  
IO_L12N_1  
IO_L12P_1  
IO_L13N_1  
IO_L13P_1  
IO_L14N_1  
IO_L14P_1  
IO_L15N_1  
IO_L15P_1  
IO_L16N_1  
IO_L16P_1  
IO_L10P_1  
IO_L11N_1  
IO_L11P_1  
IO_L12N_1  
IO_L12P_1  
IO_L13N_1  
IO_L13P_1  
IO_L14N_1  
IO_L14P_1  
IO_L15N_1  
IO_L15P_1  
IO_L16N_1  
IO_L16P_1  
D23  
A23  
B23  
H22  
J22  
I/O  
I/O  
H8  
I/O  
E9  
I/O  
I/O  
D9  
I/O  
I/O  
B9  
I/O  
I/O  
A9  
I/O  
F22  
E23  
D22  
E22  
A22  
B22  
F21  
G21  
B21  
I/O  
C5  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
I/O  
I/O  
E7  
I/O  
C9  
I/O  
G9  
I/O  
J11  
L12  
C13  
G13  
L13  
L14  
E25  
J21  
K20  
F18  
F16  
A16  
J17  
A27  
I/O  
I/O  
I/O  
IO_L17N_1/  
VREF_1  
IO_L17N_1/  
VREF_1  
VREF  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
IO_L17P_1  
IO_L18N_1  
IO_L18P_1  
IO_L19N_1  
IO_L19P_1  
IO_L20N_1  
IO_L20P_1  
IO_L21N_1  
IO_L21P_1  
IO_L22N_1  
IO_L22P_1  
IO_L23N_1  
IO_L23P_1  
IO_L24N_1  
IO_L24P_1  
IO_L25N_1  
IO_L25P_1  
IO_L26N_1  
IO_L17P_1  
IO_L18N_1  
IO_L18P_1  
IO_L19N_1  
IO_L19P_1  
IO_L20N_1  
IO_L20P_1  
IO_L21N_1  
IO_L21P_1  
IO_L22N_1  
IO_L22P_1  
IO_L23N_1  
IO_L23P_1  
IO_L24N_1  
IO_L24P_1  
IO_L25N_1  
IO_L25P_1  
IO_L26N_1  
C21  
G20  
H20  
E20  
F20  
C20  
D20  
A20  
B20  
J19  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
IO  
IO  
I/O  
IO  
IO  
I/O  
IO  
IO  
I/O  
IO  
IO  
I/O  
IO  
IO  
I/O  
IO/VREF_1  
IO/VREF_1  
VREF  
DCI  
IO_L01N_1/  
VRP_1  
IO_L01N_1/  
VRP_1  
1
IO_L01P_1/  
VRN_1  
IO_L01P_1/  
VRN_1  
B27  
DCI  
K19  
G19  
H19  
E19  
F19  
C19  
D19  
A19  
1
1
1
1
1
1
1
IO_L02N_1  
IO_L02P_1  
IO_L03N_1  
IO_L03P_1  
IO_L04N_1  
IO_L04P_1  
IO_L05N_1  
IO_L02N_1  
IO_L02P_1  
IO_L03N_1  
IO_L03P_1  
IO_L04N_1  
IO_L04P_1  
IO_L05N_1  
D26  
C27  
A26  
B26  
B25  
C25  
F24  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
DS099-4 (v1.5) July 13, 2004  
Product Specification  
www.xilinx.com  
1-800-255-7778  
71  
R
Spartan-3 FPGA Family: Pinout Descriptions  
Table 34: FG900 Package Pinout (Continued)  
Table 34: FG900 Package Pinout (Continued)  
XC3S4000  
XC3S5000  
Pin Name  
FG900  
Pin  
Number  
XC3S4000  
XC3S5000  
Pin Name  
FG900  
Pin  
Number  
XC3S2000  
Pin Name  
XC3S2000  
Pin Name  
Bank  
Type  
I/O  
Bank  
Type  
I/O  
1
1
1
1
1
1
1
1
1
1
IO_L26P_1  
IO_L27N_1  
IO_L27P_1  
IO_L28N_1  
IO_L28P_1  
IO_L29N_1  
IO_L29P_1  
IO_L30N_1  
IO_L30P_1  
IO_L26P_1  
IO_L27N_1  
IO_L27P_1  
IO_L28N_1  
IO_L28P_1  
IO_L29N_1  
IO_L29P_1  
IO_L30N_1  
IO_L30P_1  
B19  
F17  
G17  
B17  
C17  
J16  
2
2
2
2
2
2
2
2
2
IO_L05N_2  
IO_L05P_2  
IO_L06N_2  
IO_L06P_2  
IO_L07N_2  
IO_L07P_2  
IO_L08N_2  
IO_L08P_2  
IO_L05N_2  
IO_L05P_2  
IO_L06N_2  
IO_L06P_2  
IO_L07N_2  
IO_L07P_2  
IO_L08N_2  
IO_L08P_2  
F28  
F29  
G27  
G28  
G29  
G30  
G25  
H24  
H25  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
K16  
G16  
H16  
D16  
I/O  
I/O  
I/O  
I/O  
I/O  
IO_L09N_2/  
VREF_2  
IO_L09N_2/  
VREF_2  
VREF  
IO_L31N_1/  
VREF_1  
IO_L31N_1/  
VREF_1  
VREF  
2
2
2
2
2
2
2
IO_L09P_2  
IO_L10N_2  
IO_L10P_2  
IO_L12N_2  
IO_L12P_2  
IO_L13N_2  
IO_L09P_2  
IO_L10N_2  
IO_L10P_2  
IO_L12N_2  
IO_L12P_2  
IO_L13N_2  
H26  
H27  
H28  
H29  
H30  
J26  
I/O  
I/O  
1
1
IO_L31P_1  
IO_L31P_1  
E16  
B16  
I/O  
IO_L32N_1/  
GCLK5  
IO_L32N_1/  
GCLK5  
GCLK  
I/O  
I/O  
1
IO_L32P_1/  
GCLK4  
IO_L32P_1/  
GCLK4  
C16  
GCLK  
I/O  
I/O  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
N.C. (‹)  
N.C. (‹)  
N.C. (‹)  
N.C. (‹)  
N.C. (‹)  
N.C. (‹)  
N.C. (‹)  
N.C. (‹)  
VCCO_1  
VCCO_1  
VCCO_1  
VCCO_1  
VCCO_1  
VCCO_1  
VCCO_1  
VCCO_1  
VCCO_1  
VCCO_1  
IO  
IO_L37N_1  
IO_L37P_1  
IO_L38N_1  
IO_L38P_1  
IO_L39N_1  
IO_L39P_1  
IO_L40N_1  
IO_L40P_1  
VCCO_1  
VCCO_1  
VCCO_1  
VCCO_1  
VCCO_1  
VCCO_1  
VCCO_1  
VCCO_1  
VCCO_1  
VCCO_1  
IO  
H18  
J18  
D18  
E18  
A18  
B18  
K17  
K18  
L17  
C18  
G18  
L18  
L19  
J20  
C22  
G22  
E24  
C26  
J25  
C29  
I/O  
I/O  
IO_L13P_2/  
VREF_2  
IO_L13P_2/  
VREF_2  
J27  
VREF  
I/O  
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
IO_L14N_2  
IO_L14P_2  
IO_L15N_2  
IO_L15P_2  
IO_L16N_2  
IO_L16P_2  
IO_L19N_2  
IO_L19P_2  
IO_L20N_2  
IO_L20P_2  
IO_L21N_2  
IO_L21P_2  
IO_L22N_2  
IO_L22P_2  
IO_L14N_2  
IO_L14P_2  
IO_L15N_2  
IO_L15P_2  
IO_L16N_2  
IO_L16P_2  
IO_L19N_2  
IO_L19P_2  
IO_L20N_2  
IO_L20P_2  
IO_L21N_2  
IO_L21P_2  
IO_L22N_2  
IO_L22P_2  
J29  
J30  
J23  
K22  
K24  
K25  
L25  
L26  
L27  
L28  
L29  
L30  
M22  
M23  
M24  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VREF  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
I/O  
IO_L23N_2/  
VREF_2  
IO_L23N_2/  
VREF_2  
2
2
2
2
2
2
2
2
2
2
2
IO_L23P_2  
IO_L24N_2  
IO_L24P_2  
IO_L26N_2  
IO_L26P_2  
IO_L27N_2  
IO_L27P_2  
IO_L28N_2  
IO_L28P_2  
IO_L29N_2  
IO_L29P_2  
IO_L23P_2  
IO_L24N_2  
IO_L24P_2  
IO_L26N_2  
IO_L26P_2  
IO_L27N_2  
IO_L27P_2  
IO_L28N_2  
IO_L28P_2  
IO_L29N_2  
IO_L29P_2  
M25  
M27  
M28  
M21  
N21  
N22  
N23  
M26  
N25  
N26  
N27  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
IO_L01N_2/  
VRP_2  
IO_L01N_2/  
VRP_2  
DCI  
2
IO_L01P_2/  
VRN_2  
IO_L01P_2/  
VRN_2  
C30  
DCI  
2
2
2
IO_L02N_2  
IO_L02P_2  
IO_L02N_2  
IO_L02P_2  
D27  
D28  
D29  
I/O  
I/O  
IO_L03N_2/  
VREF_2  
IO_L03N_2/  
VREF_2  
VREF  
2
2
2
IO_L03P_2  
IO_L04N_2  
IO_L04P_2  
IO_L03P_2  
IO_L04N_2  
IO_L04P_2  
D30  
E29  
E30  
I/O  
I/O  
I/O  
72  
www.xilinx.com  
1-800-255-7778  
DS099-4 (v1.5) July 13, 2004  
Product Specification  
R
Spartan-3 FPGA Family: Pinout Descriptions  
Table 34: FG900 Package Pinout (Continued)  
Table 34: FG900 Package Pinout (Continued)  
XC3S4000  
XC3S5000  
Pin Name  
FG900  
Pin  
Number  
XC3S4000  
XC3S5000  
Pin Name  
FG900  
Pin  
Number  
XC3S2000  
Pin Name  
XC3S2000  
Pin Name  
Bank  
Type  
I/O  
Bank  
Type  
2
2
2
2
2
2
2
IO_L31N_2  
IO_L31P_2  
IO_L32N_2  
IO_L32P_2  
IO_L33N_2  
IO_L33P_2  
IO_L31N_2  
IO_L31P_2  
IO_L32N_2  
IO_L32P_2  
IO_L33N_2  
IO_L33P_2  
N29  
N30  
P21  
P22  
P24  
P25  
P28  
3
IO_L02N_3/  
VREF_3  
IO_L02N_3/  
VREF_3  
AG28  
VREF  
I/O  
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
IO_L02P_3  
IO_L03N_3  
IO_L03P_3  
IO_L04N_3  
IO_L04P_3  
IO_L05N_3  
IO_L05P_3  
IO_L06N_3  
IO_L06P_3  
IO_L07N_3  
IO_L07P_3  
IO_L08N_3  
IO_L08P_3  
IO_L09N_3  
IO_L02P_3  
IO_L03N_3  
IO_L03P_3  
IO_L04N_3  
IO_L04P_3  
IO_L05N_3  
IO_L05P_3  
IO_L06N_3  
IO_L06P_3  
IO_L07N_3  
IO_L07P_3  
IO_L08N_3  
IO_L08P_3  
IO_L09N_3  
AG27  
AG30  
AG29  
AF30  
AF29  
AE26  
AF27  
AE29  
AE28  
AD28  
AD27  
AD30  
AD29  
AC24  
AD25  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VREF  
I/O  
I/O  
I/O  
I/O  
IO_L34N_2/  
VREF_2  
IO_L34N_2/  
VREF_2  
VREF  
2
2
2
2
2
2
2
2
2
2
2
IO_L34P_2  
IO_L35N_2  
IO_L35P_2  
IO_L37N_2  
IO_L37P_2  
IO_L38N_2  
IO_L38P_2  
IO_L39N_2  
IO_L39P_2  
IO_L40N_2  
IO_L34P_2  
IO_L35N_2  
IO_L35P_2  
IO_L37N_2  
IO_L37P_2  
IO_L38N_2  
IO_L38P_2  
IO_L39N_2  
IO_L39P_2  
IO_L40N_2  
P29  
R21  
R22  
R23  
R24  
R25  
R26  
R27  
R28  
R29  
R30  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
IO_L09P_3/  
VREF_3  
IO_L09P_3/  
VREF_3  
I/O  
3
3
3
3
3
IO_L10N_3  
IO_L10P_3  
IO_L11N_3  
IO_L11P_3  
IO_L10N_3  
IO_L10P_3  
IO_L11N_3  
IO_L11P_3  
AC26  
AC25  
AC28  
AC27  
AC30  
I/O  
I/O  
IO_L40P_2/  
VREF_2  
IO_L40P_2/  
VREF_2  
VREF  
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
3
3
N.C. (‹)  
N.C. (‹)  
N.C. (‹)  
N.C. (‹)  
N.C. (‹)  
N.C. (‹)  
N.C. (‹)  
N.C. (‹)  
N.C. (‹)  
N.C. (‹)  
VCCO_2  
VCCO_2  
VCCO_2  
VCCO_2  
VCCO_2  
VCCO_2  
VCCO_2  
VCCO_2  
VCCO_2  
VCCO_2  
IO  
IO_L41N_2  
IO_L41P_2  
IO_L45N_2  
IO_L45P_2  
IO_L46N_2  
IO_L46P_2  
IO_L47N_2  
IO_L47P_2  
IO_L50N_2  
IO_L50P_2  
VCCO_2  
VCCO_2  
VCCO_2  
VCCO_2  
VCCO_2  
VCCO_2  
VCCO_2  
VCCO_2  
VCCO_2  
VCCO_2  
IO  
E27  
F26  
K28  
K29  
K21  
L21  
I/O  
I/O  
I/O  
I/O  
I/O  
IO_L13N_3/  
VREF_3  
IO_L13N_3/  
VREF_3  
VREF  
I/O  
3
3
3
3
3
3
3
3
3
IO_L13P_3  
IO_L14N_3  
IO_L14P_3  
IO_L15N_3  
IO_L15P_3  
IO_L16N_3  
IO_L16P_3  
IO_L17N_3  
IO_L13P_3  
IO_L14N_3  
IO_L14P_3  
IO_L15N_3  
IO_L15P_3  
IO_L16N_3  
IO_L16P_3  
IO_L17N_3  
AC29  
AB27  
AB26  
AB30  
AB29  
AA22  
AB23  
AA25  
AA24  
I/O  
I/O  
I/O  
I/O  
I/O  
L23  
I/O  
I/O  
L24  
I/O  
I/O  
M29  
M30  
M20  
N20  
P20  
L22  
I/O  
I/O  
I/O  
I/O  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
I/O  
I/O  
IO_L17P_3/  
VREF_3  
IO_L17P_3/  
VREF_3  
VREF  
3
3
3
3
3
3
3
3
3
3
IO_L19N_3  
IO_L19P_3  
IO_L20N_3  
IO_L20P_3  
IO_L21N_3  
IO_L21P_3  
IO_L22N_3  
IO_L22P_3  
IO_L23N_3  
IO_L19N_3  
IO_L19P_3  
IO_L20N_3  
IO_L20P_3  
IO_L21N_3  
IO_L21P_3  
IO_L22N_3  
IO_L22P_3  
IO_L23N_3  
AA29  
AA28  
Y21  
I/O  
I/O  
J24  
N24  
G26  
E28  
J28  
I/O  
AA21  
Y24  
I/O  
I/O  
Y23  
I/O  
N28  
AB25  
AH30  
Y26  
I/O  
Y25  
I/O  
IO_L01N_3/  
VRP_3  
IO_L01N_3/  
VRP_3  
DCI  
Y28  
I/O  
IO_L23P_3/  
VREF_3  
IO_L23P_3/  
VREF_3  
Y27  
VREF  
3
IO_L01P_3/  
VRN_3  
IO_L01P_3/  
VRN_3  
AH29  
DCI  
3
IO_L24N_3  
IO_L24N_3  
Y30  
I/O  
DS099-4 (v1.5) July 13, 2004  
Product Specification  
www.xilinx.com  
1-800-255-7778  
73  
R
Spartan-3 FPGA Family: Pinout Descriptions  
Table 34: FG900 Package Pinout (Continued)  
Table 34: FG900 Package Pinout (Continued)  
XC3S4000  
XC3S5000  
Pin Name  
FG900  
Pin  
Number  
XC3S4000  
XC3S5000  
Pin Name  
FG900  
Pin  
Number  
XC3S2000  
Pin Name  
XC3S2000  
Pin Name  
Bank  
Type  
I/O  
Bank  
Type  
VCCO  
VCCO  
I/O  
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
IO_L24P_3  
IO_L26N_3  
IO_L26P_3  
IO_L27N_3  
IO_L27P_3  
IO_L28N_3  
IO_L28P_3  
IO_L29N_3  
IO_L29P_3  
IO_L31N_3  
IO_L31P_3  
IO_L32N_3  
IO_L32P_3  
IO_L33N_3  
IO_L33P_3  
IO_L34N_3  
IO_L24P_3  
IO_L26N_3  
IO_L26P_3  
IO_L27N_3  
IO_L27P_3  
IO_L28N_3  
IO_L28P_3  
IO_L29N_3  
IO_L29P_3  
IO_L31N_3  
IO_L31P_3  
IO_L32N_3  
IO_L32P_3  
IO_L33N_3  
IO_L33P_3  
IO_L34N_3  
Y29  
W30  
W29  
V21  
W21  
V23  
V22  
V25  
W26  
V30  
V29  
U22  
U21  
U25  
U24  
U29  
U28  
3
3
4
4
4
4
4
4
4
4
4
VCCO_3  
VCCO_3  
AB28  
AF28  
AA16  
AG18  
AA18  
AE22  
AD23  
AH27  
AF16  
AK28  
AJ27  
I/O  
VCCO_3  
VCCO_3  
I/O  
IO  
IO  
I/O  
IO  
IO  
I/O  
I/O  
IO  
IO  
I/O  
I/O  
IO  
IO  
I/O  
I/O  
IO  
IO  
I/O  
I/O  
IO  
IO  
I/O  
I/O  
IO/VREF_4  
IO/VREF_4  
IO/VREF_4  
IO/VREF_4  
VREF  
VREF  
DCI  
I/O  
I/O  
IO_L01N_4/  
VRP_4  
IO_L01N_4/  
VRP_4  
I/O  
4
IO_L01P_4/  
VRN_4  
IO_L01P_4/  
VRN_4  
AK27  
DCI  
I/O  
I/O  
4
4
4
4
4
4
4
4
4
IO_L02N_4  
IO_L02P_4  
IO_L03N_4  
IO_L03P_4  
IO_L04N_4  
IO_L04P_4  
IO_L05N_4  
IO_L05P_4  
IO_L02N_4  
IO_L02P_4  
IO_L03N_4  
IO_L03P_4  
IO_L04N_4  
IO_L04P_4  
IO_L05N_4  
IO_L05P_4  
AJ26  
AK26  
AG26  
AF25  
AD24  
AC23  
AE23  
AF23  
AG23  
I/O  
I/O  
I/O  
I/O  
I/O  
IO_L34P_3/  
VREF_3  
IO_L34P_3/  
VREF_3  
VREF  
I/O  
I/O  
3
3
3
3
3
3
3
3
3
IO_L35N_3  
IO_L35P_3  
IO_L37N_3  
IO_L37P_3  
IO_L38N_3  
IO_L38P_3  
IO_L39N_3  
IO_L39P_3  
IO_L35N_3  
IO_L35P_3  
IO_L37N_3  
IO_L37P_3  
IO_L38N_3  
IO_L38P_3  
IO_L39N_3  
IO_L39P_3  
T22  
T21  
T24  
T23  
T26  
T25  
T28  
T27  
T30  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
IO_L06N_4/  
VREF_4  
IO_L06N_4/  
VREF_4  
VREF  
I/O  
I/O  
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
IO_L06P_4  
IO_L07N_4  
IO_L07P_4  
IO_L08N_4  
IO_L08P_4  
IO_L09N_4  
IO_L09P_4  
IO_L10N_4  
IO_L10P_4  
IO_L11N_4  
IO_L11P_4  
IO_L12N_4  
IO_L12P_4  
IO_L13N_4  
IO_L13P_4  
IO_L14N_4  
IO_L14P_4  
IO_L15N_4  
IO_L15P_4  
IO_L16N_4  
IO_L16P_4  
IO_L06P_4  
IO_L07N_4  
IO_L07P_4  
IO_L08N_4  
IO_L08P_4  
IO_L09N_4  
IO_L09P_4  
IO_L10N_4  
IO_L10P_4  
IO_L11N_4  
IO_L11P_4  
IO_L12N_4  
IO_L12P_4  
IO_L13N_4  
IO_L13P_4  
IO_L14N_4  
IO_L14P_4  
IO_L15N_4  
IO_L15P_4  
IO_L16N_4  
IO_L16P_4  
AH23  
AJ23  
AK23  
AB22  
AC22  
AF22  
AG22  
AJ22  
AK22  
AD21  
AE21  
AH21  
AJ21  
AB21  
AA20  
AC20  
AD20  
AE20  
AF20  
AG20  
AH20  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
IO_L40N_3/  
VREF_3  
IO_L40N_3/  
VREF_3  
VREF  
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
IO_L40P_3  
N.C. (‹)  
N.C. (‹)  
N.C. (‹)  
N.C. (‹)  
N.C. (‹)  
N.C. (‹)  
N.C. (‹)  
N.C. (‹)  
VCCO_3  
VCCO_3  
VCCO_3  
VCCO_3  
VCCO_3  
VCCO_3  
VCCO_3  
VCCO_3  
IO_L40P_3  
IO_L46N_3  
IO_L46P_3  
IO_L47N_3  
IO_L47P_3  
IO_L48N_3  
IO_L48P_3  
IO_L50N_3  
IO_L50P_3  
VCCO_3  
T29  
W23  
W22  
W25  
W24  
W28  
W27  
V27  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
V26  
I/O  
U20  
V20  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO_3  
VCCO_3  
W20  
Y22  
VCCO_3  
VCCO_3  
V24  
VCCO_3  
AB24  
AD26  
V28  
VCCO_3  
VCCO_3  
74  
www.xilinx.com  
1-800-255-7778  
DS099-4 (v1.5) July 13, 2004  
Product Specification  
R
Spartan-3 FPGA Family: Pinout Descriptions  
Table 34: FG900 Package Pinout (Continued)  
Table 34: FG900 Package Pinout (Continued)  
XC3S4000  
XC3S5000  
Pin Name  
FG900  
Pin  
Number  
XC3S4000  
XC3S5000  
Pin Name  
FG900  
Pin  
Number  
XC3S2000  
Pin Name  
XC3S2000  
Pin Name  
Bank  
Type  
I/O  
Bank  
4
Type  
I/O  
4
4
4
4
4
4
4
4
4
4
4
IO_L17N_4  
IO_L17P_4  
IO_L18N_4  
IO_L18P_4  
IO_L19N_4  
IO_L19P_4  
IO_L20N_4  
IO_L20P_4  
IO_L21N_4  
IO_L21P_4  
IO_L17N_4  
IO_L17P_4  
IO_L18N_4  
IO_L18P_4  
IO_L19N_4  
IO_L19P_4  
IO_L20N_4  
IO_L20P_4  
IO_L21N_4  
IO_L21P_4  
AJ20  
AK20  
AA19  
AB19  
AC19  
AD19  
AE19  
AF19  
AG19  
AH19  
AJ19  
N.C. (‹)  
N.C. (‹)  
N.C. (‹)  
VCCO_4  
VCCO_4  
VCCO_4  
VCCO_4  
VCCO_4  
VCCO_4  
VCCO_4  
VCCO_4  
VCCO_4  
VCCO_4  
IO  
IO_L35P_4  
IO_L38N_4  
IO_L38P_4  
VCCO_4  
VCCO_4  
VCCO_4  
VCCO_4  
VCCO_4  
VCCO_4  
VCCO_4  
VCCO_4  
VCCO_4  
VCCO_4  
IO  
AH24  
AJ24  
AK24  
Y17  
I/O  
4
I/O  
I/O  
4
I/O  
I/O  
4
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
I/O  
I/O  
4
Y18  
I/O  
4
AD18  
AH18  
Y19  
I/O  
4
I/O  
4
I/O  
4
AB20  
AD22  
AH22  
AF24  
AH26  
AE6  
I/O  
4
IO_L22N_4/  
VREF_4  
IO_L22N_4/  
VREF_4  
VREF  
4
4
4
4
4
4
4
4
4
4
4
IO_L22P_4  
IO_L23N_4  
IO_L23P_4  
IO_L24N_4  
IO_L24P_4  
IO_L25N_4  
IO_L25P_4  
IO_L26N_4  
IO_L22P_4  
IO_L23N_4  
IO_L23P_4  
IO_L24N_4  
IO_L24P_4  
IO_L25N_4  
IO_L25P_4  
IO_L26N_4  
AK19  
AB18  
AC18  
AE18  
AF18  
AJ18  
AK18  
AA17  
AB17  
I/O  
I/O  
4
5
I/O  
5
IO  
IO  
AB10  
AA11  
AA15  
AE15  
AH4  
I/O  
I/O  
5
IO  
IO  
I/O  
I/O  
5
IO  
IO  
I/O  
I/O  
5
IO  
IO  
I/O  
I/O  
5
IO/VREF_5  
IO/VREF_5  
IO/VREF_5  
IO/VREF_5  
VREF  
VREF  
DUAL  
I/O  
5
AK15  
AK4  
IO_L26P_4/  
VREF_4  
IO_L26P_4/  
VREF_4  
VREF  
5
IO_L01N_5/  
RDWR_B  
IO_L01N_5/  
RDWR_B  
4
4
IO_L27N_4/  
DIN/D0  
IO_L27N_4/  
DIN/D0  
AD17  
AE17  
DUAL  
DUAL  
5
IO_L01P_5/  
CS_B  
IO_L01P_5/  
CS_B  
AJ4  
DUAL  
IO_L27P_4/  
D1  
IO_L27P_4/  
D1  
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
IO_L02N_5  
IO_L02P_5  
IO_L03N_5  
IO_L03P_5  
IO_L04N_5  
IO_L04P_5  
IO_L05N_5  
IO_L05P_5  
IO_L06N_5  
IO_L06P_5  
IO_L07N_5  
IO_L07P_5  
IO_L08N_5  
IO_L08P_5  
IO_L09N_5  
IO_L09P_5  
IO_L02N_5  
IO_L02P_5  
IO_L03N_5  
IO_L03P_5  
IO_L04N_5  
IO_L04P_5  
IO_L05N_5  
IO_L05P_5  
IO_L06N_5  
IO_L06P_5  
IO_L07N_5  
IO_L07P_5  
IO_L08N_5  
IO_L08P_5  
IO_L09N_5  
IO_L09P_5  
AK5  
AJ5  
AF6  
AG5  
AJ6  
AH6  
AE7  
AD7  
AH7  
AG7  
AK8  
AJ8  
AC9  
AB9  
AG9  
AF9  
AK9  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
DCI  
4
4
4
4
4
IO_L28N_4  
IO_L28P_4  
IO_L29N_4  
IO_L29P_4  
IO_L28N_4  
IO_L28P_4  
IO_L29N_4  
IO_L29P_4  
AH17  
AJ17  
AB16  
AC16  
AD16  
I/O  
I/O  
I/O  
I/O  
IO_L30N_4/  
D2  
IO_L30N_4/  
D2  
DUAL  
4
4
4
4
4
IO_L30P_4/  
D3  
IO_L30P_4/  
D3  
AE16  
AG16  
AH16  
AJ16  
AK16  
DUAL  
DUAL  
DUAL  
GCLK  
GCLK  
IO_L31N_4/  
INIT_B  
IO_L31N_4/  
INIT_B  
IO_L31P_4/  
DOUT/BUSY DOUT/BUSY  
IO_L31P_4/  
IO_L32N_4/  
GCLK1  
IO_L32N_4/  
GCLK1  
IO_L32P_4/  
GCLK0  
IO_L32P_4/  
GCLK0  
IO_L10N_5/  
VRP_5  
IO_L10N_5/  
VRP_5  
4
4
4
4
4
N.C. (‹)  
N.C. (‹)  
N.C. (‹)  
N.C. (‹)  
N.C. (‹)  
IO_L33N_4  
IO_L33P_4  
IO_L34N_4  
IO_L34P_4  
IO_L35N_4  
AH25  
AJ25  
AE25  
AE24  
AG24  
I/O  
I/O  
I/O  
I/O  
I/O  
5
5
IO_L10P_5/  
VRN_5  
IO_L10P_5/  
VRN_5  
AJ9  
DCI  
IO_L11N_5/  
VREF_5  
IO_L11N_5/  
VREF_5  
AE10  
VREF  
DS099-4 (v1.5) July 13, 2004  
Product Specification  
www.xilinx.com  
1-800-255-7778  
75  
R
Spartan-3 FPGA Family: Pinout Descriptions  
Table 34: FG900 Package Pinout (Continued)  
Table 34: FG900 Package Pinout (Continued)  
XC3S4000  
XC3S5000  
Pin Name  
FG900  
Pin  
Number  
XC3S4000  
XC3S5000  
Pin Name  
FG900  
Pin  
Number  
XC3S2000  
Pin Name  
XC3S2000  
Pin Name  
Bank  
Type  
I/O  
Bank  
Type  
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
IO_L11P_5  
IO_L12N_5  
IO_L12P_5  
IO_L13N_5  
IO_L13P_5  
IO_L14N_5  
IO_L14P_5  
IO_L15N_5  
IO_L15P_5  
IO_L16N_5  
IO_L16P_5  
IO_L17N_5  
IO_L17P_5  
IO_L18N_5  
IO_L18P_5  
IO_L19N_5  
IO_L11P_5  
IO_L12N_5  
IO_L12P_5  
IO_L13N_5  
IO_L13P_5  
IO_L14N_5  
IO_L14P_5  
IO_L15N_5  
IO_L15P_5  
IO_L16N_5  
IO_L16P_5  
IO_L17N_5  
IO_L17P_5  
IO_L18N_5  
IO_L18P_5  
IO_L19N_5  
AE9  
AJ10  
AH10  
AD11  
AD10  
AF11  
AE11  
AH11  
AG11  
AK11  
AJ11  
AB12  
AC11  
AD12  
AC12  
AF12  
AE12  
5
IO_L31P_5/  
D5  
IO_L31P_5/  
D5  
AF15  
AJ15  
AH15  
DUAL  
I/O  
5
5
IO_L32N_5/  
GCLK3  
IO_L32N_5/  
GCLK3  
GCLK  
GCLK  
I/O  
I/O  
IO_L32P_5/  
GCLK2  
IO_L32P_5/  
GCLK2  
I/O  
I/O  
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
6
6
N.C. (‹)  
N.C. (‹)  
N.C. (‹)  
N.C. (‹)  
N.C. (‹)  
N.C. (‹)  
N.C. (‹)  
N.C. (‹)  
VCCO_5  
VCCO_5  
VCCO_5  
VCCO_5  
VCCO_5  
VCCO_5  
VCCO_5  
VCCO_5  
VCCO_5  
VCCO_5  
IO  
IO_L35N_5  
IO_L35P_5  
IO_L36N_5  
IO_L36P_5  
IO_L37N_5  
IO_L37P_5  
IO_L38N_5  
IO_L38P_5  
VCCO_5  
VCCO_5  
VCCO_5  
VCCO_5  
VCCO_5  
VCCO_5  
VCCO_5  
VCCO_5  
VCCO_5  
VCCO_5  
IO  
AK7  
AJ7  
I/O  
I/O  
I/O  
I/O  
AD8  
AC8  
AF8  
AE8  
AH8  
AG8  
AH5  
AF7  
AD9  
AH9  
AB11  
Y12  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
I/O  
I/O  
I/O  
IO_L19P_5/  
VREF_5  
IO_L19P_5/  
VREF_5  
VREF  
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
IO_L20N_5  
IO_L20P_5  
IO_L21N_5  
IO_L21P_5  
IO_L22N_5  
IO_L22P_5  
IO_L23N_5  
IO_L23P_5  
IO_L24N_5  
IO_L24P_5  
IO_L25N_5  
IO_L25P_5  
IO_L26N_5  
IO_L26P_5  
IO_L20N_5  
IO_L20P_5  
IO_L21N_5  
IO_L21P_5  
IO_L22N_5  
IO_L22P_5  
IO_L23N_5  
IO_L23P_5  
IO_L24N_5  
IO_L24P_5  
IO_L25N_5  
IO_L25P_5  
IO_L26N_5  
IO_L26P_5  
AH12  
AG12  
AK12  
AJ12  
AA13  
AA12  
AC13  
AB13  
AG13  
AF13  
AK13  
AJ13  
AB14  
AA14  
AE14  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VREF  
Y13  
AD13  
AH13  
Y14  
AB6  
AH2  
IO_L01N_6/  
VRP_6  
IO_L01N_6/  
VRP_6  
DCI  
6
IO_L01P_6/  
VRN_6  
IO_L01P_6/  
VRN_6  
AH1  
DCI  
6
6
6
IO_L02N_6  
IO_L02P_6  
IO_L02N_6  
IO_L02P_6  
AG4  
AG3  
AG2  
I/O  
I/O  
IO_L03N_6/  
VREF_6  
IO_L03N_6/  
VREF_6  
VREF  
6
6
6
6
6
6
6
6
6
6
6
6
IO_L03P_6  
IO_L04N_6  
IO_L04P_6  
IO_L05N_6  
IO_L05P_6  
IO_L06N_6  
IO_L06P_6  
IO_L07N_6  
IO_L07P_6  
IO_L08N_6  
IO_L08P_6  
IO_L03P_6  
IO_L04N_6  
IO_L04P_6  
IO_L05N_6  
IO_L05P_6  
IO_L06N_6  
IO_L06P_6  
IO_L07N_6  
IO_L07P_6  
IO_L08N_6  
IO_L08P_6  
AG1  
AF2  
AF1  
AF4  
AE5  
AE3  
AE2  
AD4  
AD3  
AD2  
AD1  
AD6  
I/O  
I/O  
IO_L27N_5/  
VREF_5  
IO_L27N_5/  
VREF_5  
5
5
IO_L27P_5  
IO_L27P_5  
AE13  
AJ14  
I/O  
I/O  
IO_L28N_5/  
D6  
IO_L28N_5/  
D6  
DUAL  
I/O  
I/O  
5
IO_L28P_5/  
D7  
IO_L28P_5/  
D7  
AH14  
DUAL  
I/O  
I/O  
5
5
IO_L29N_5  
IO_L29N_5  
AC15  
AB15  
I/O  
I/O  
IO_L29P_5/  
VREF_5  
IO_L29P_5/  
VREF_5  
VREF  
I/O  
I/O  
5
5
5
IO_L30N_5  
IO_L30P_5  
IO_L30N_5  
IO_L30P_5  
AD15  
AD14  
AG15  
I/O  
I/O  
I/O  
IO_L09N_6/  
VREF_6  
IO_L09N_6/  
VREF_6  
VREF  
IO_L31N_5/  
D4  
IO_L31N_5/  
D4  
DUAL  
76  
www.xilinx.com  
1-800-255-7778  
DS099-4 (v1.5) July 13, 2004  
Product Specification  
R
Spartan-3 FPGA Family: Pinout Descriptions  
Table 34: FG900 Package Pinout (Continued)  
Table 34: FG900 Package Pinout (Continued)  
XC3S4000  
XC3S5000  
Pin Name  
FG900  
Pin  
Number  
XC3S4000  
XC3S5000  
Pin Name  
FG900  
Pin  
Number  
XC3S2000  
Pin Name  
XC3S2000  
Pin Name  
Bank  
Type  
I/O  
Bank  
Type  
I/O  
6
6
6
6
6
6
6
IO_L09P_6  
IO_L10N_6  
IO_L10P_6  
IO_L11N_6  
IO_L11P_6  
IO_L13N_6  
IO_L09P_6  
IO_L10N_6  
IO_L10P_6  
IO_L11N_6  
IO_L11P_6  
IO_L13N_6  
AC7  
AC6  
AC5  
AC4  
AC3  
AC2  
AC1  
6
6
IO_L33P_6  
IO_L33P_6  
V1  
I/O  
IO_L34N_6/  
VREF_6  
IO_L34N_6/  
VREF_6  
U10  
VREF  
I/O  
6
6
6
6
6
6
6
6
6
6
6
6
6
IO_L34P_6  
IO_L35N_6  
IO_L35P_6  
N.C. (‹)  
IO_L34P_6  
IO_L35N_6  
IO_L35P_6  
IO_L36N_6  
IO_L36P_6  
IO_L37N_6  
IO_L37P_6  
IO_L38N_6  
IO_L38P_6  
IO_L39N_6  
IO_L39P_6  
IO_L40N_6  
U9  
U7  
U6  
U3  
U2  
T10  
T9  
T6  
T5  
T4  
T3  
T2  
T1  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
IO_L13P_6/  
VREF_6  
IO_L13P_6/  
VREF_6  
VREF  
N.C. (‹)  
I/O  
6
6
6
6
6
6
6
6
IO_L14N_6  
IO_L14P_6  
IO_L15N_6  
IO_L15P_6  
IO_L16N_6  
IO_L16P_6  
IO_L17N_6  
IO_L14N_6  
IO_L14P_6  
IO_L15N_6  
IO_L15P_6  
IO_L16N_6  
IO_L16P_6  
IO_L17N_6  
AB5  
AB4  
AB2  
AB1  
AB8  
AA9  
AA7  
AA6  
I/O  
I/O  
IO_L37N_6  
IO_L37P_6  
IO_L38N_6  
IO_L38P_6  
IO_L39N_6  
IO_L39P_6  
IO_L40N_6  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
IO_L17P_6/  
VREF_6  
IO_L17P_6/  
VREF_6  
VREF  
IO_L40P_6/  
VREF_6  
IO_L40P_6/  
VREF_6  
VREF  
6
6
6
6
6
6
6
6
6
IO_L19N_6  
IO_L19P_6  
IO_L20N_6  
IO_L20P_6  
IO_L21N_6  
IO_L21P_6  
IO_L22N_6  
IO_L22P_6  
IO_L19N_6  
IO_L19P_6  
IO_L20N_6  
IO_L20P_6  
IO_L21N_6  
IO_L21P_6  
IO_L22N_6  
IO_L22P_6  
AA3  
AA2  
AA10  
Y10  
Y8  
I/O  
I/O  
6
6
6
6
6
6
6
6
6
6
6
6
6
6
7
7
N.C. (‹)  
N.C. (‹)  
N.C. (‹)  
N.C. (‹)  
VCCO_6  
VCCO_6  
VCCO_6  
VCCO_6  
VCCO_6  
VCCO_6  
VCCO_6  
VCCO_6  
VCCO_6  
VCCO_6  
IO  
IO_L45N_6  
IO_L45P_6  
IO_L52N_6  
IO_L52P_6  
VCCO_6  
VCCO_6  
VCCO_6  
VCCO_6  
VCCO_6  
VCCO_6  
VCCO_6  
VCCO_6  
VCCO_6  
VCCO_6  
IO  
Y4  
Y3  
I/O  
I/O  
I/O  
T8  
I/O  
I/O  
T7  
I/O  
I/O  
V3  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
I/O  
Y7  
I/O  
AB3  
AF3  
AD5  
V7  
Y6  
I/O  
Y5  
I/O  
IO_L24N_6/  
VREF_6  
IO_L24N_6/  
VREF_6  
Y2  
VREF  
AB7  
Y9  
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
IO_L24P_6  
N.C. (‹)  
IO_L24P_6  
IO_L25N_6  
IO_L25P_6  
IO_L26N_6  
IO_L26P_6  
IO_L27N_6  
IO_L27P_6  
IO_L28N_6  
IO_L28P_6  
IO_L29N_6  
IO_L29P_6  
IO_L30N_6  
IO_L30P_6  
IO_L31N_6  
IO_L31P_6  
IO_L32N_6  
IO_L32P_6  
IO_L33N_6  
Y1  
W9  
W8  
W7  
W6  
W4  
W3  
W2  
W1  
W10  
V10  
V9  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
U11  
V11  
W11  
J6  
N.C. (‹)  
IO_L26N_6  
IO_L26P_6  
IO_L27N_6  
IO_L27P_6  
IO_L28N_6  
IO_L28P_6  
IO_L29N_6  
IO_L29P_6  
N.C. (‹)  
IO_L01N_7/  
VRP_7  
IO_L01N_7/  
VRP_7  
C1  
DCI  
7
IO_L01P_7/  
VRN_7  
IO_L01P_7/  
VRN_7  
C2  
DCI  
7
7
7
IO_L02N_7  
IO_L02P_7  
IO_L02N_7  
IO_L02P_7  
D3  
D4  
D1  
I/O  
I/O  
IO_L03N_7/  
VREF_7  
IO_L03N_7/  
VREF_7  
VREF  
N.C. (‹)  
V8  
7
7
7
7
7
7
IO_L03P_7  
IO_L04N_7  
IO_L04P_7  
IO_L05N_7  
IO_L05P_7  
IO_L06N_7  
IO_L03P_7  
IO_L04N_7  
IO_L04P_7  
IO_L05N_7  
IO_L05P_7  
IO_L06N_7  
D2  
E1  
E2  
F5  
E4  
F2  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
IO_L31N_6  
IO_L31P_6  
IO_L32N_6  
IO_L32P_6  
IO_L33N_6  
W5  
V6  
V5  
V4  
V2  
DS099-4 (v1.5) July 13, 2004  
Product Specification  
www.xilinx.com  
1-800-255-7778  
77  
R
Spartan-3 FPGA Family: Pinout Descriptions  
Table 34: FG900 Package Pinout (Continued)  
Table 34: FG900 Package Pinout (Continued)  
XC3S4000  
XC3S5000  
Pin Name  
FG900  
Pin  
Number  
XC3S4000  
XC3S5000  
Pin Name  
FG900  
Pin  
Number  
XC3S2000  
Pin Name  
XC3S2000  
Pin Name  
Bank  
Type  
I/O  
Bank  
Type  
I/O  
7
7
7
7
7
7
7
7
7
IO_L06P_7  
IO_L07N_7  
IO_L07P_7  
IO_L08N_7  
IO_L08P_7  
IO_L09N_7  
IO_L09P_7  
IO_L10N_7  
IO_L06P_7  
IO_L07N_7  
IO_L07P_7  
IO_L08N_7  
IO_L08P_7  
IO_L09N_7  
IO_L09P_7  
IO_L10N_7  
F3  
G3  
G4  
G1  
G2  
H7  
G6  
H5  
H6  
7
7
7
7
7
7
7
7
7
7
7
7
7
IO_L29P_7  
IO_L31N_7  
IO_L31P_7  
IO_L32N_7  
IO_L32P_7  
IO_L33N_7  
IO_L33P_7  
IO_L34N_7  
IO_L34P_7  
IO_L35N_7  
IO_L35P_7  
IO_L37N_7  
IO_L29P_7  
IO_L31N_7  
IO_L31P_7  
IO_L32N_7  
IO_L32P_7  
IO_L33N_7  
IO_L33P_7  
IO_L34N_7  
IO_L34P_7  
IO_L35N_7  
IO_L35P_7  
IO_L37N_7  
N9  
N1  
N2  
P9  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
P10  
P6  
I/O  
I/O  
I/O  
I/O  
P7  
I/O  
I/O  
P2  
I/O  
IO_L10P_7/  
VREF_7  
IO_L10P_7/  
VREF_7  
VREF  
P3  
I/O  
R9  
R10  
R7  
R8  
I/O  
7
7
7
7
7
7
7
7
7
7
IO_L11N_7  
IO_L11P_7  
IO_L13N_7  
IO_L13P_7  
IO_L14N_7  
IO_L14P_7  
IO_L15N_7  
IO_L15P_7  
IO_L16N_7  
IO_L11N_7  
IO_L11P_7  
IO_L13N_7  
IO_L13P_7  
IO_L14N_7  
IO_L14P_7  
IO_L15N_7  
IO_L15P_7  
IO_L16N_7  
H3  
H4  
H1  
H2  
J4  
J5  
J1  
J2  
K9  
J8  
I/O  
I/O  
I/O  
I/O  
I/O  
IO_L37P_7/  
VREF_7  
IO_L37P_7/  
VREF_7  
VREF  
I/O  
I/O  
7
7
7
7
7
IO_L38N_7  
IO_L38P_7  
IO_L39N_7  
IO_L39P_7  
IO_L38N_7  
IO_L38P_7  
IO_L39N_7  
IO_L39P_7  
R5  
R6  
R3  
R4  
R1  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
IO_L40N_7/  
VREF_7  
IO_L40N_7/  
VREF_7  
VREF  
IO_L16P_7/  
VREF_7  
IO_L16P_7/  
VREF_7  
VREF  
7
7
IO_L40P_7  
N.C. (‹)  
N.C. (‹)  
N.C. (‹)  
N.C. (‹)  
N.C. (‹)  
N.C. (‹)  
VCCO_7  
VCCO_7  
VCCO_7  
VCCO_7  
VCCO_7  
VCCO_7  
VCCO_7  
VCCO_7  
VCCO_7  
VCCO_7  
GND  
IO_L40P_7  
IO_L46N_7  
IO_L46P_7  
IO_L49N_7  
IO_L49P_7  
IO_L50N_7  
IO_L50P_7  
VCCO_7  
VCCO_7  
VCCO_7  
VCCO_7  
VCCO_7  
VCCO_7  
VCCO_7  
VCCO_7  
VCCO_7  
VCCO_7  
GND  
R2  
M8  
M9  
N6  
M5  
N4  
N5  
E3  
I/O  
I/O  
7
7
7
IO_L17N_7  
IO_L17P_7  
IO_L17N_7  
IO_L17P_7  
K6  
K7  
K2  
I/O  
I/O  
7
I/O  
IO_L19N_7/  
VREF_7  
IO_L19N_7/  
VREF_7  
VREF  
7
I/O  
7
I/O  
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
IO_L19P_7  
IO_L20N_7  
IO_L20P_7  
IO_L21N_7  
IO_L21P_7  
IO_L22N_7  
IO_L22P_7  
IO_L23N_7  
IO_L23P_7  
IO_L24N_7  
IO_L24P_7  
N.C. (‹)  
IO_L19P_7  
IO_L20N_7  
IO_L20P_7  
IO_L21N_7  
IO_L21P_7  
IO_L22N_7  
IO_L22P_7  
IO_L23N_7  
IO_L23P_7  
IO_L24N_7  
IO_L24P_7  
IO_L25N_7  
IO_L25P_7  
IO_L26N_7  
IO_L26P_7  
IO_L27N_7  
K3  
L10  
K10  
L7  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VREF  
7
I/O  
7
I/O  
7
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
7
J3  
L8  
7
N3  
G5  
J7  
L5  
7
L6  
7
L3  
7
N7  
L9  
L4  
7
L1  
7
M11  
N11  
P11  
A1  
L2  
7
M6  
M7  
M3  
M4  
M1  
M2  
7
N.C. (‹)  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
IO_L26N_7  
IO_L26P_7  
IO_L27N_7  
GND  
GND  
B1  
GND  
GND  
F1  
GND  
GND  
K1  
IO_L27P_7/  
VREF_7  
IO_L27P_7/  
VREF_7  
GND  
GND  
P1  
GND  
GND  
U1  
AA1  
AE1  
7
7
7
IO_L28N_7  
IO_L28P_7  
IO_L29N_7  
IO_L28N_7  
IO_L28P_7  
IO_L29N_7  
N10  
M10  
N8  
I/O  
I/O  
I/O  
GND  
GND  
GND  
GND  
78  
www.xilinx.com  
1-800-255-7778  
DS099-4 (v1.5) July 13, 2004  
Product Specification  
R
Spartan-3 FPGA Family: Pinout Descriptions  
Table 34: FG900 Package Pinout (Continued)  
Table 34: FG900 Package Pinout (Continued)  
XC3S4000  
XC3S5000  
Pin Name  
FG900  
Pin  
Number  
XC3S4000  
XC3S5000  
Pin Name  
FG900  
Pin  
Number  
XC3S2000  
Pin Name  
XC3S2000  
Pin Name  
Bank  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
Type  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
Bank  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
Type  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
AJ1  
AK1  
A2  
GND  
GND  
P15  
R15  
T15  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
B2  
U15  
V15  
W15  
M16  
N16  
P16  
R16  
T16  
AJ2  
E5  
K5  
P5  
U5  
AA5  
AF5  
A6  
U16  
V16  
W16  
A17  
E17  
H17  
N17  
P17  
R17  
T17  
AK6  
K8  
P8  
U8  
AA8  
A10  
E10  
H10  
AC10  
AF10  
AK10  
R12  
T12  
N13  
P13  
R13  
T13  
U13  
V13  
A14  
E14  
H14  
N14  
P14  
R14  
T14  
U14  
V14  
AC14  
AF14  
AK14  
M15  
N15  
U17  
V17  
AC17  
AF17  
AK17  
N18  
P18  
R18  
T18  
U18  
V18  
R19  
T19  
A21  
E21  
H21  
AC21  
AF21  
AK21  
K23  
P23  
U23  
AA23  
A25  
DS099-4 (v1.5) July 13, 2004  
Product Specification  
www.xilinx.com  
1-800-255-7778  
79  
R
Spartan-3 FPGA Family: Pinout Descriptions  
Table 34: FG900 Package Pinout (Continued)  
Table 34: FG900 Package Pinout (Continued)  
XC3S4000  
XC3S5000  
Pin Name  
FG900  
Pin  
Number  
XC3S4000  
XC3S5000  
Pin Name  
FG900  
Pin  
Number  
XC3S2000  
Pin Name  
XC3S2000  
Pin Name  
Bank  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
Type  
GND  
Bank  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
Type  
GND  
GND  
AK25  
E26  
VCCAUX  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCAUX  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
CCLK  
AE27  
L11  
VCCAUX  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
CONFIG  
CONFIG  
CONFIG  
CONFIG  
CONFIG  
CONFIG  
CONFIG  
JTAG  
GND  
GND  
GND  
GND  
GND  
K26  
GND  
R11  
T11  
Y11  
M12  
N12  
P12  
U12  
V12  
W12  
M13  
W13  
M14  
W14  
L15  
GND  
GND  
P26  
GND  
GND  
GND  
U26  
AA26  
AF26  
A29  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
B29  
GND  
GND  
GND  
AJ29  
AK29  
A30  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
B30  
GND  
GND  
GND  
F30  
GND  
GND  
GND  
K30  
GND  
GND  
GND  
P30  
GND  
GND  
GND  
U30  
AA30  
AE30  
AJ30  
AK30  
AK2  
F4  
GND  
Y15  
L16  
GND  
GND  
GND  
GND  
GND  
GND  
Y16  
M17  
W17  
M18  
W18  
M19  
N19  
P19  
U19  
V19  
W19  
L20  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
K4  
P4  
U4  
AA4  
AE4  
D6  
AG6  
D10  
AG10  
D14  
AG14  
D17  
AG17  
D21  
AG21  
D25  
AG25  
F27  
R20  
T20  
Y20  
AH28  
AJ28  
A3  
VCCAUX CCLK  
VCCAUX DONE  
VCCAUX HSWAP_EN  
VCCAUX M0  
DONE  
HSWAP_EN  
M0  
AJ3  
AH3  
AK3  
B3  
VCCAUX M1  
M1  
VCCAUX M2  
M2  
VCCAUX PROG_B  
VCCAUX TCK  
VCCAUX TDI  
PROG_B  
TCK  
B28  
C3  
K27  
TDI  
JTAG  
P27  
VCCAUX TDO  
VCCAUX TMS  
TDO  
C28  
A28  
JTAG  
U27  
AA27  
TMS  
JTAG  
80  
www.xilinx.com  
1-800-255-7778  
DS099-4 (v1.5) July 13, 2004  
Product Specification  
R
Spartan-3 FPGA Family: Pinout Descriptions  
available user-I/O pins are distributed between the eight I/O  
banks for the XC3S4000 and XC3S5000 in the FG900  
package.  
User I/Os by Bank  
Table 35 indicates how the available user-I/O pins are dis-  
tributed between the eight I/O banks for the XC3S2000 in  
the FG900 package. Similarly, Table 36 shows how the  
Table 35: User I/Os Per Bank for XC3S2000 in FG900 Package  
All Possible I/O Pins by Type  
I/O  
Bank  
Maximum  
I/O  
Edge  
I/O  
62  
62  
61  
62  
57  
55  
60  
62  
DUAL  
DCI  
2
VREF  
GCLK  
0
1
2
3
4
5
6
7
71  
71  
69  
71  
72  
71  
69  
71  
0
0
0
0
6
6
0
0
5
5
6
7
5
6
7
7
2
2
0
0
2
2
0
0
Top  
2
2
Right  
Bottom  
Left  
2
2
2
2
2
Table 36: User I/Os Per Bank for XC3S4000 and XC3S5000 in FG900 Package  
All Possible I/O Pins by Type  
I/O  
Bank  
Maximum  
I/O  
Edge  
I/O  
70  
70  
71  
70  
65  
63  
70  
70  
DUAL  
DCI  
2
VREF  
GCLK  
0
1
2
3
4
5
6
7
79  
79  
79  
79  
80  
79  
79  
79  
0
0
0
0
6
6
0
0
5
5
6
7
5
6
7
7
2
2
0
0
2
2
0
0
Top  
2
2
Right  
Bottom  
Left  
2
2
2
2
2
DS099-4 (v1.5) July 13, 2004  
Product Specification  
www.xilinx.com  
1-800-255-7778  
81  
R
Spartan-3 FPGA Family: Pinout Descriptions  
FG900 Footprint  
Bank 0  
1
2
3
4
5
I/O  
6
7
8
I/O  
9
10  
11  
I/O  
12  
I/O  
13  
I/O  
14  
15  
I/O  
L35P_0  
‹
I/O  
L38P_0  
‹
I/O  
I/O  
Left Half of Package  
(top view)  
HSWAP_  
EN  
A
B
C
D
E
F
L01P_0  
VRN_0  
L32P_0  
GCLK6  
GND  
GND  
GND  
GND  
GND  
L02P_0  
L09P_0  
L17P_0 L22P_0 L25P_0  
I/O  
L35N_0  
‹
I/O  
L38N_0  
I/O  
L01N_0  
VRP_0  
I/O  
L32N_0  
GCLK7  
I/O  
I/O  
I/O  
L09N_0  
I/O  
I/O  
I/O  
I/O  
I/O  
PROG_B  
GND  
I/O  
L01N_7 L01P_7  
VRP_7  
GND  
I/O  
L02N_0 L04P_0  
L12P_0 L17N_0 L22N_0 L25N_0 L28P_0  
‹
XC3S2000  
I/O  
L31P_0  
VREF_0  
(565 max. user I/O)  
I/O: Unrestricted,  
IO  
VREF_0  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
L28N_0  
V
CCO_0  
V
CCO_0  
VCCO_0  
TDI  
I/O  
L04N_0 L06P_0 L08P_0  
L12N_0 L16P_0 L21P_0  
V
RN_  
7
481  
I/O  
I/O  
L03N_7  
VREF_7  
general-purpose user I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
L31N_0  
L37P_0  
VCCAUX  
VCCAUX  
VCCAUX  
I/O  
I/O  
L03P_7 L02N_7 L02P_7 L03N_0  
L06N_0 L08N_0  
L16N_0 L21N_0  
‹
I/O  
VREF: User I/O or input  
voltage reference for bank  
I/O  
I/O  
I/O  
L05P_7  
I/O  
L03P_0  
I/O  
L07P_0  
I/O  
I/O  
L37N_0  
V
CCO_7  
GND  
V
CCO_0  
GND  
I/O  
GND  
I/O  
I/O  
48  
L04N_7 L04P_7  
L15P_0 L20P_0 L24P_0  
‹
I/O  
L05P_0  
VREF_0  
IO  
VREF_0  
I/O  
I/O  
I/O  
I/O  
I/O  
L07N_0  
I/O I/O I/O  
I/O  
VCCAUX  
GND  
L06N_7 L06P_7  
L05N_7 L05N_0  
L11P_0 L15N_0 L20N_0 L24N_0 L27P_0 L30P_0  
N.C.: Unconnected pins for  
XC3S2000 (‹)  
68  
I/O  
L36N_0  
‹
I/O  
I/O  
I/O  
I/O  
I/O  
L09P_7  
I/O  
I/O  
I/O  
I/O  
I/O  
V
CCO_7  
VCCO_0  
VCCO_0  
I/O  
G
H
J
L08N_7 L08P_7 L07N_7 L07P_7  
L11N_0 L14P_0 L19P_0  
L27N_0 L30N_0  
I/O  
L36P_0  
‹
XC3S4000, XC3S5000  
(633 max user I/O)  
I/O: Unrestricted,  
I/O  
L10P_7  
VREF_7  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
L09N_7  
I/O  
I/O  
I/O  
I/O  
I/O  
GND  
GND  
I/O  
L13N_7 L13P_7 L11N_7 L11P_7 L10N_7  
L10P_0  
L14N_0 L19N_0 L23P_0  
L29P_0  
I/O  
L16P_7  
VREF_7  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
549  
V
CCO_7  
V
CCO_7  
VCCO_0  
I/O  
L26P_0  
L29N_0  
VREF_0  
L15N_7 L15P_7  
L14N_7 L14P_7  
L10N_0 L13N_0  
L18P_0 L23N_0  
general-purpose user I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCAUX  
I/O  
GND  
GND  
I/O  
GND  
I/O  
K
L
L19N_7  
VREF: User I/O or input  
voltage reference for bank  
L19P_7  
L17N_7 L17P_7  
L16N_7 L20P_7 L13P_0 L18N_0  
I/O  
VCCO_0 VCCO_0 VCCO_0  
VCCINT VCCINT  
L26N_0  
VREF_7  
48  
I/O  
I/O  
I/O  
I/O I/O  
V
CCO_7  
L24N_7 L24P_7 L23N_7 L23P_7 L22N_7 L22P_7 L21N_7 L21P_7  
L20N_7  
N.C.: No unconnected pins  
in this package  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
L27P_7  
VREF_7  
I/O  
I/O  
I/O  
I/O  
0
L49P_7 L25N_7 L25P_7 L46N_7 L46P_7  
V
CCO_7  
VCCINT VCCINT VCCINT GND  
M
N
P
R
T
L27N_7  
L26N_7 L26P_7  
L28P_7  
‹
‹
‹
‹
‹
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
L50N_7 L50P_7 L49N_7  
V
CCO_7  
V
CCO_7  
VCCO_7  
VCCINT GND  
GND  
GND  
All devices  
L31N_7 L31P_7  
L29N_7 L29P_7 L28N_7  
‹
‹
‹
DUAL: Configuration pin,  
then possible user I/O  
12  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCAUX  
VCCO_7  
VCCINT  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
VCCINT  
I/O  
L34N_7 L34P_7  
L33N_7 L33P_7  
L32N_7 L32P_7  
I/O  
L40N_7  
VREF_7  
I/O  
L37P_7  
VREF_7  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCINT  
VCCINT  
GCLK: User I/O or global  
clock buffer input  
GND  
GND  
GND  
GND  
GND  
GND  
L40P_7 L39N_7 L39P_7 L38N_7 L38P_7 L37N_7  
L35N_7 L35P_7  
8
I/O  
I/O  
I/O  
L40P_6  
VREF_6  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
L52P_6 L52N_6  
L40N_6 L39P_6 L39N_6 L38P_6 L38N_6  
L37P_6 L37N_6  
‹
‹
GND  
I/O  
DCI: User I/O or reference  
resistor input for bank  
I/O  
I/O  
I/O  
I/O  
16  
I/O  
I/O  
L36P_6 L36N_6  
VCCO_6  
GND  
VCCAUX GND  
VCCINT  
VCCINT  
U
V
L34N_6  
L34P_6  
VREF_6  
L35P_6 L35N_6  
‹
‹
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
CONFIG: Dedicated  
configuration pins  
L30P_6 L30N_6  
‹
V
CCO_6  
V
CCO_6  
VCCO_6  
L33P_6 L33N_6  
L32P_6 L32N_6 L31P_6  
L29P_6  
7
‹
I/O  
I/O  
I/O  
I/O  
I/O  
I/O I/O I/O  
L28N_6 L27P_6 L27N_6 L31N_6 L26P_6 L26N_6  
I/O  
I/O  
L29N_6  
L25P_6 L25N_6  
VCCO_6  
VCCINT VCCINT VCCINT  
W L28P_6  
‹
‹
JTAG: Dedicated JTAG port  
pins  
I/O  
I/O  
4
I/O  
L24N_6  
VREF_6  
I/O  
Y
I/O  
I/O  
I/O  
I/O  
I/O  
L20P_6  
L45P_6 L45N_6  
V
CCO_6  
VCCO_5 VCCO_5 VCCO_5  
VCCINT  
I/O  
L24P_6  
L22P_6 L22N_6 L21P_6 L21N_6  
‹
‹
I/O  
I/O  
A
VCCINT: Internal core  
voltage supply (+1.2V)  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
GND  
A
GND  
GND  
VCCAUX  
L17P_6  
VREF_6  
L19P_6 L19N_6  
L17N_6  
L16P_6 L20N_6  
L22P_5 L22N_5 L26P_5  
32  
I/O  
L29P_5  
VREF_5  
A
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
V
CCO_6  
V
CCO_6  
VCCO_5  
I/O  
L15P_6 L15N_6  
L14P_6 L14N_6  
L16N_6 L08P_5  
L17N_5 L23P_5 L26N_5  
B
VCCO: Output voltage  
supply for bank  
80  
I/O  
L36P_5  
‹
I/O  
A L13P_6  
C VREF_6  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
L08N_5  
I/O  
I/O  
I/O  
I/O  
GND  
I/O  
GND  
I/O  
L13N_6 L11P_6 L11N_6 L10P_6 L10N_6 L09P_6  
L17P_5 L18P_5 L23N_5  
L29N_5  
I/O  
L36N_5  
‹
I/O  
L09N_6  
VREF_6  
VCCAUX: Auxiliary voltage  
supply (+2.5V)  
A
I/O  
I/O  
I/O  
I/O  
I/O  
L05P_5  
I/O  
I/O  
I/O  
V
CCO_6  
V
CCO_5  
VCCO_5  
24  
L08P_6 L08N_6 L07P_6 L07N_6  
L13P_5 L13N_5 L18N_5  
L30P_5 L30N_5  
D
I/O  
L37P_5  
‹
I/O  
L11N_5  
VREF_5  
I/O  
L19P_5  
VREF_5  
I/O  
L27N_5  
VREF_5  
A
E
I/O  
I/O  
I/O  
L05P_6  
I/O  
L05N_5  
I/O  
L11P_5  
I/O  
I/O  
L27P_5  
VCCAUX  
GND  
I/O  
I/O  
I/O  
L06P_6 L06N_6  
L14P_5  
GND: Ground  
120  
I/O  
I/O  
L31P_5  
D5  
A
F
I/O  
I/O  
L05N_6  
I/O  
L03N_5  
I/O  
L09P_5  
I/O  
I/O  
I/O  
L37N_5  
VCCO_5  
VCCO_6  
GND  
GND  
GND  
L04P_6 L04N_6  
L14N_5 L19N_5 L24P_5  
‹
I/O  
I/O  
I/O  
I/O  
L31N_5  
D4  
A
G
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
L38P_5  
V
CCAUX  
L03N_6  
L03P_6  
VREF_6  
VCCAUX  
I/O  
VCCAUX  
I/O  
L02P_6 L02N_6 L03P_5  
L06P_5  
L09N_5  
L15P_5 L20P_5 L24N_5  
‹
I/O  
L38N_5  
‹
I/O  
I/O  
I/O  
I/O  
A
H
IO  
VREF_5  
I/O  
I/O  
I/O  
V
CCO_5  
V
CCO_5  
V
CCO_5  
M1  
M0  
M2  
L01P_6 L01N_6  
VRN_6 VRP_6  
L28P_5 L32P_5  
L04P_5 L06N_5  
L12P_5 L15N_5 L20N_5  
D7  
GCLK2  
I/O  
L35P_5  
‹
I/O  
L01P_5  
CS_B  
I/O  
L10P_5  
VRN_5  
I/O  
I/O  
A
J
I/O  
I/O  
I/O  
L07P_5  
I/O  
I/O  
I/O  
I/O  
GND  
GND  
GND  
GND  
L28N_5 L32N_5  
L02P_5 L04N_5  
L12N_5 L16P_5 L21P_5 L25P_5  
D6  
GCLK3  
I/O  
L35N_5  
‹
I/O  
L01N_5  
RDWR_B  
I/O  
L10N_5  
VRP_5  
A
K
IO  
VREF_5  
I/O  
GND  
I/O  
L07N_5  
I/O  
I/O  
I/O  
GND  
GND  
L02N_5  
L16N_5 L21N_5 L25N_5  
Bank 5  
DS099-4_13a_121103  
Figure 15: FG900 Package Footprint (top view)  
82  
www.xilinx.com  
1-800-255-7778  
DS099-4 (v1.5) July 13, 2004  
Product Specification  
R
Spartan-3 FPGA Family: Pinout Descriptions  
Bank 1  
16  
17  
18  
19  
I/O  
20  
I/O  
21  
22  
23  
I/O  
24  
I/O  
25  
26  
I/O  
27  
28  
29  
30  
I/O  
I/O  
I/O  
Right Half of Package  
L39N_1  
‹
I/O  
GND  
GND  
GND  
TMS  
GND  
GND  
L01N_1  
VRP_1  
A
L26N_1 L21N_1  
L15N_1 L11N_1 L07N_1  
L03N_1  
(top view)  
I/O  
I/O  
L32N_1  
GCLK5  
I/O  
L17N_1  
VREF_1  
I/O  
I/O  
L28N_1  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
L39P_1  
TCK  
GND  
I/O  
GND  
I/O  
L01P_1  
L15P_1 L11P_1 L07P_1 L04N_1 L03P_1  
VRN_1  
B
L26P_1 L21P_1  
‹
I/O  
L32P_1  
GCLK4  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCO_1  
VCCO_1  
TDO  
I/O  
L10N_1 L06N_1  
VREF_1 VREF_1  
L01N_2 L01P_2 C  
VCCO_1  
L28P_1  
L25N_1 L20N_1 L17P_1  
L04P_1  
L02P_1  
VRP_2 VRN_2  
I/O  
L38N_1  
‹
I/O  
L31N_1  
VREF_1  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCAUX  
GND  
L03N_2  
VREF_2  
D
E
F
VCCAUX  
VCCAUX  
L25P_1 L20P_1  
L14N_1 L10P_1 L06P_1  
L02N_1 L02N_2 L02P_2  
L03P_2  
I/O  
L38P_1  
‹
I/O  
L41N_2  
‹
I/O  
L31P_1  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
GND  
I/O  
I/O  
I/O  
GND  
VCCO_2  
I/O  
VCCO_1  
L24N_1 L19N_1  
L14P_1 L13P_1  
L04N_2 L04P_2  
I/O  
L41P_2  
‹
I/O  
L27N_1  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
GND  
VCCAUX  
L24P_1 L19P_1 L16N_1 L13N_1 L09N_1 L05N_1 L05P_1  
L05N_2 L05P_2  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCO_1  
VCCO_2  
VCCO_1  
G
H
J
L30N_1 L27P_1  
L23N_1 L18N_1 L16P_1  
L09P_1 L08P_1 L08N_2  
L06N_2 L06P_2 L07N_2 L07P_2  
I/O  
L37N_1  
‹
I/O  
L09N_2  
VREF_2  
I/O  
L30P_1  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O I/O I/O I/O  
L09P_2 L10N_2 L10P_2 L12N_2 L12P_2  
GND  
GND  
I/O  
L23P_1 L18P_1  
L12N_1 L08N_1 L08P_2  
I/O  
L37P_1  
‹
I/O  
L13P_2  
VREF_2  
IO  
VREF_1  
I/O  
L29N_1  
I/O  
I/O  
I/O  
I/O  
L13N_2  
I/O  
I/O  
VCCO_1  
L22N_1  
I/O  
VCCO_2  
I/O  
VCCO_2  
I/O  
L45N_2 L45P_2  
‹
L12P_1 L15N_2  
L14N_2 L14P_2  
I/O  
I/O  
I/O  
L46N_2  
‹
I/O  
I/O  
L29P_1  
I/O  
I/O  
I/O  
L15P_2  
I/O  
L40N_1 L40P_1  
GND  
GND  
GND  
I/O  
K
L
VCCAUX  
L22P_1  
L16N_2 L16P_2  
‹
‹
‹
I/O  
L46P_2  
‹
I/O  
I/O  
I/O  
L47N_2 L47P_2  
I/O  
I/O  
I/O  
I/O  
VCCO_2  
VCCINT  
VCCINT  
VCCO_1 VCCO_1 VCCO_1  
L19N_2 L19P_2 L20N_2 L20P_2 L21N_2 L21P_2  
‹
‹
I/O  
I/O  
I/O  
L23N_2  
VREF_2  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
L50N_2 L50P_2  
GND VCCINT VCCINT VCCINT  
VCCO_2  
M
N
P
L26N_2 L22N_2 L22P_2  
L23P_2 L28N_2 L24N_2 L24P_2  
‹
‹
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND VCCINT  
GND VCCINT  
VCCO_2  
VCCO_2  
VCCO_2  
VCCO_2  
L26P_2 L27N_2 L27P_2  
L28P_2 L29N_2 L29P_2  
L31N_2 L31P_2  
I/O  
L34N_2  
VREF_2  
I/O  
I/O  
I/O  
I/O  
I/O  
L34P_2  
GND  
I/O  
GND  
GND  
VCCAUX  
L32N_2 L32P_2  
L33N_2 L33P_2  
I/O I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
GND  
GND  
GND VCCINT  
GND VCCINT  
L40P_2 R  
L35N_2 L35P_2 L37N_2 L37P_2 L38N_2 L38P_2 L39N_2 L39P_2 L40N_2  
VREF_2  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
L40N_3 T  
L35P_3 L35N_3 L37P_3 L37N_3 L38P_3 L38N_3 L39P_3 L39N_3 L40P_3  
VREF_3  
I/O  
L34P_3  
VREF_3  
I/O  
I/O  
I/O  
I/O  
I/O  
L34N_3  
GND VCCINT  
GND  
I/O  
GND  
I/O  
VCCAUX  
I/O  
GND  
U
VCCO_3  
L32P_3 L32N_3  
L33P_3 L33N_3  
I/O  
I/O  
I/O  
VCCO_3  
I/O  
I/O  
L50P_3 L50N_3  
GND VCCINT VCCO_3  
VCCO_3  
I/O  
V
L27N_3 L28P_3 L28N_3  
L29N_3  
L31P_3 L31N_3  
‹
‹
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
L27P_3  
I/O  
L29P_3  
I/O  
I/O  
L46P_3 L46N_3 L47P_3 L47N_3  
L48P_3 L48N_3  
VCCO_3  
GND VCCINT VCCINT VCCINT  
W
Y
L26P_3 L26N_3  
‹
‹
‹
‹
‹
‹
I/O  
I/O  
L20N_3  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCINT VCCO_4 VCCO_4 VCCO_4 VCCINT  
L23P_3  
L23N_3 L24P_3 L24N_3  
VREF_3  
VCCO_3  
L21P_3 L21N_3 L22P_3 L22N_3  
I/O  
I/O  
A
A
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCAUX  
I/O  
I/O  
I/O  
GND  
GND  
GND  
I/O  
L17P_3  
VREF_3  
L26N_4  
L18N_4 L13P_4 L20P_3 L16N_3  
L17N_3  
L19P_3 L19N_3  
I/O  
L26P_4  
VREF_4  
A
B
I/O  
L29N_4  
I/O  
I/O  
L13N_4  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCO_4  
I/O  
VCCO_3  
VCCO_3  
L23N_4 L18P_4  
L08N_4 L16P_3  
L14P_3 L14N_3  
I/O I/O  
L15P_3 L15N_3  
I/O  
I/O  
A
C
I/O  
L29P_4  
I/O I/O  
L23P_4 L19N_4 L14N_4  
I/O  
I/O I/O  
I/O  
I/O  
I/O  
GND  
GND  
L13N_3  
VREF_3  
L08P_4 L04P_4 L09N_3 L10P_3 L10N_3 L11P_3 L11N_3 L13P_3  
I/O  
L27N_4  
DIN  
I/O  
L30N_4  
D2  
I/O  
A
D
I/O  
I/O  
I/O  
I/O  
L04N_4  
I/O  
I/O  
I/O  
I/O  
VCCO_4  
I/O  
L09P_3 VCCO_3  
VREF_3  
VCCO_4  
L19P_4 L14P_4 L11N_4  
L07P_3 L07N_3 L08P_3 L08N_3  
D0  
I/O  
I/O  
I/O  
I/O  
I/O  
A
E
I/O  
I/O I/O I/O  
I/O  
I/O  
I/O  
L34P_4 L34N_4  
I/O  
I/O  
VCCAUX  
GND  
L30P_4 L27P_4  
L24N_4 L20N_4 L15N_4 L11P_4  
L05N_4  
L05N_3  
GND  
I/O  
L06P_3 L06N_3  
D3  
D1  
‹
‹
A
F
I/O  
VREF_4  
I/O  
I/O  
I/O  
I/O  
I/O  
L03P_4  
I/O  
L05P_3  
I/O  
I/O  
VCCO_3  
GND  
GND  
VCCO_4  
L24P_4 L20P_4 L15P_4  
L09N_4 L05P_4  
L04P_3 L04N_3  
I/O  
L35N_4  
‹
I/O  
L31N_4  
INIT_B  
I/O  
I/O  
I/O  
L02N_3  
VREF_3  
A
G
I/O  
I/O  
I/O  
I/O  
I/O  
VCCAUX  
I/O  
I/O  
VCCAUX  
I/O  
VCCAUX  
I/O  
L06N_4  
L09P_4  
VREF_4  
L21N_4 L16N_4  
L03N_4 L02P_3  
L03P_3 L03N_3  
I/O  
I/O  
I/O  
I/O  
A
H
I/O  
I/O  
I/O  
L31P_4  
L35P_4 L33N_4  
I/O  
CCLK  
DONE  
L01P_3 L01N_3  
VRN_3 VRP_3  
VCCO_4  
I/O  
VCCO_4  
L06P_4  
VCCO_4  
DOUT L28N_4  
L21P_4 L16P_4 L12N_4  
‹
‹
BUSY  
I/O  
I/O  
I/O  
I/O  
I/O  
L22N_4  
VREF_4  
I/O  
I/O  
A
J
I/O  
I/O  
I/O  
I/O  
L38N_4 L33P_4  
GND  
GND  
GND  
GND  
L32N_4  
L01N_4  
L02N_4  
VRP_4  
L28P_4 L25N_4  
L17N_4 L12P_4 L10N_4 L07N_4  
‹
‹
GCLK1  
I/O  
L38P_4  
‹
I/O  
L32P_4  
GCLK0  
I/O  
I/O  
A
K
IO  
VREF_4  
I/O  
I/O  
I/O  
I/O  
I/O  
GND  
GND  
GND  
L01P_4  
L02P_4  
VRN_4  
L25P_4 L22P_4 L17P_4  
L10P_4 L07P_4  
Bank 4  
DS099-4_13b_121103  
DS099-4 (v1.5) July 13, 2004  
Product Specification  
www.xilinx.com  
1-800-255-7778  
83  
R
Spartan-3 FPGA Family: Pinout Descriptions  
Table 37: FG1156 Package Pinout (Continued)  
FG1156: 1156-lead Fine-pitch Ball Grid  
Array  
FG1156  
XC3S4000  
Pin Name  
XC3S5000  
Pin Name  
Pin  
Number  
The 1,156-lead fine-pitch ball grid array package, FG1156,  
supports two different Spartan-3 devices, namely the  
XC3S4000, and the XC3S5000. The XC3S2000, however,  
has fewer I/O pins, which consequently results in 73 uncon-  
nected pins on the FG1156 package, labeled as “N.C.In  
Table 37 and Figure 16, these unconnected pins are indi-  
cated with a black diamond symbol (‹).  
Bank  
Type  
I/O  
0
0
0
0
0
0
0
IO  
IO  
L16  
L17  
D5  
IO  
IO  
I/O  
IO/VREF_0  
IO/VREF_0  
IO/VREF_0  
IO/VREF_0  
IO/VREF_0  
IO/VREF_0  
IO/VREF_0  
IO/VREF_0  
VREF  
VREF  
VREF  
VREF  
DCI  
E10  
J14  
L15  
B3  
The XC3S5000 has a single unconnected package pin, ball  
AK31, which is also unconnected for the XC3S4000.  
IO_L01N_0/  
VRP_0  
IO_L01N_0/  
VRP_0  
All the package pins appear in Table 37 and are sorted by  
bank number, then by pin name. Pairs of pins that form a dif-  
ferential I/O pair appear together in the table. The table also  
shows the pin number for each pin and the pin type, as  
defined earlier.  
0
IO_L01P_0/  
VRN_0  
IO_L01P_0/  
VRN_0  
A3  
DCI  
0
0
0
0
0
0
0
0
IO_L02N_0  
IO_L02P_0  
IO_L03N_0  
IO_L03P_0  
IO_L04N_0  
IO_L04P_0  
IO_L05N_0  
IO_L02N_0  
IO_L02P_0  
IO_L03N_0  
IO_L03P_0  
IO_L04N_0  
IO_L04P_0  
IO_L05N_0  
B4  
A4  
C5  
B5  
D6  
C6  
B6  
A6  
I/O  
I/O  
If there is a difference between the XC3S2000 and  
XC3S5000 pinouts, then that difference is highlighted in  
Table 37. If the table entry is shaded grey, then there is an  
unconnected pin on the XC3S2000 that maps to a user-I/O  
pin on the XC3S4000 and XC3S5000. If the table entry is  
shaded tan, which only occurs on ball L29 in I/O Bank 2,  
then the unconnected pin on XC3S4000 maps to a  
VREF-type pin on the XC3S5000. If the other VREF_2 pins  
all connect to a voltage reference to support a special I/O  
standard, then also connect the N.C. pin on the XC3S4000  
to the same VREF_2 voltage. This provides maximum flexi-  
bility as you could potentially migrate a design from the  
XC3S4000 to the XC3S5000 FPGA without changing the  
printed circuit board.  
I/O  
I/O  
I/O  
I/O  
I/O  
IO_L05P_0/  
VREF_0  
IO_L05P_0/  
VREF_0  
VREF  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
IO_L06N_0  
IO_L06P_0  
IO_L07N_0  
IO_L07P_0  
IO_L08N_0  
IO_L08P_0  
IO_L09N_0  
IO_L09P_0  
IO_L10N_0  
IO_L10P_0  
IO_L11N_0  
IO_L11P_0  
IO_L12N_0  
IO_L12P_0  
IO_L13N_0  
IO_L13P_0  
IO_L14N_0  
IO_L14P_0  
IO_L15N_0  
IO_L15P_0  
IO_L16N_0  
IO_L16P_0  
IO_L17N_0  
IO_L06N_0  
IO_L06P_0  
IO_L07N_0  
IO_L07P_0  
IO_L08N_0  
IO_L08P_0  
IO_L09N_0  
IO_L09P_0  
IO_L10N_0  
IO_L10P_0  
IO_L11N_0  
IO_L11P_0  
IO_L12N_0  
IO_L12P_0  
IO_L13N_0  
IO_L13P_0  
IO_L14N_0  
IO_L14P_0  
IO_L15N_0  
IO_L15P_0  
IO_L16N_0  
IO_L16P_0  
IO_L17N_0  
F7  
E7  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
G9  
F9  
D9  
Pinout Table  
C9  
Table 37: FG1156 Package Pinout  
J10  
H10  
G10  
F10  
L12  
K12  
J12  
H12  
F12  
E12  
D12  
C12  
B12  
A12  
H13  
G13  
D13  
FG1156  
XC3S4000  
Pin Name  
XC3S5000  
Pin Name  
Pin  
Number  
Bank  
Type  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
IO  
IO  
B9  
E17  
F6  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
F8  
IO  
G12  
H8  
IO  
IO  
H9  
IO  
J11  
J9  
N.C. (‹)  
N.C. (‹)  
K11  
K13  
K16  
K17  
L13  
IO  
IO  
IO  
IO  
84  
www.xilinx.com  
1-800-255-7778  
DS099-4 (v1.5) July 13, 2004  
Product Specification  
R
Spartan-3 FPGA Family: Pinout Descriptions  
Table 37: FG1156 Package Pinout (Continued)  
Table 37: FG1156 Package Pinout (Continued)  
FG1156  
FG1156  
XC3S4000  
Pin Name  
XC3S5000  
Pin Name  
Pin  
Number  
XC3S4000  
Pin Name  
XC3S5000  
Pin Name  
Pin  
Number  
Bank  
0
Type  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VREF  
Bank  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
Type  
I/O  
IO_L17P_0  
IO_L18N_0  
IO_L18P_0  
IO_L19N_0  
IO_L19P_0  
IO_L20N_0  
IO_L20P_0  
IO_L21N_0  
IO_L21P_0  
IO_L22N_0  
IO_L22P_0  
IO_L23N_0  
IO_L23P_0  
IO_L24N_0  
IO_L24P_0  
IO_L25N_0  
IO_L25P_0  
IO_L26N_0  
IO_L17P_0  
IO_L18N_0  
IO_L18P_0  
IO_L19N_0  
IO_L19P_0  
IO_L20N_0  
IO_L20P_0  
IO_L21N_0  
IO_L21P_0  
IO_L22N_0  
IO_L22P_0  
IO_L23N_0  
IO_L23P_0  
IO_L24N_0  
IO_L24P_0  
IO_L25N_0  
IO_L25P_0  
IO_L26N_0  
C13  
L14  
K14  
H14  
G14  
F14  
E14  
D14  
C14  
B14  
A14  
K15  
J15  
IO_L36P_0  
IO_L37N_0  
IO_L37P_0  
IO_L38N_0  
IO_L38P_0  
N.C. (‹)  
N.C. (‹)  
N.C. (‹)  
N.C. (‹)  
VCCO_0  
VCCO_0  
VCCO_0  
VCCO_0  
VCCO_0  
VCCO_0  
VCCO_0  
VCCO_0  
VCCO_0  
VCCO_0  
VCCO_0  
VCCO_0  
VCCO_0  
IO  
IO_L36P_0  
IO_L37N_0  
IO_L37P_0  
IO_L38N_0  
IO_L38P_0  
IO_L39N_0  
IO_L39P_0  
IO_L40N_0  
IO_L40P_0  
VCCO_0  
VCCO_0  
VCCO_0  
VCCO_0  
VCCO_0  
VCCO_0  
VCCO_0  
VCCO_0  
VCCO_0  
VCCO_0  
VCCO_0  
VCCO_0  
VCCO_0  
IO  
A8  
0
D10  
C10  
B10  
A10  
G11  
F11  
B11  
A11  
B13  
C4  
I/O  
0
I/O  
0
I/O  
0
I/O  
0
I/O  
0
I/O  
0
I/O  
0
I/O  
0
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
I/O  
0
0
C8  
0
D11  
D16  
F13  
G8  
0
G15  
F15  
D15  
C15  
B15  
A15  
0
0
0
H11  
H15  
M13  
M14  
M15  
M16  
B26  
A18  
C23  
E21  
E25  
F18  
F27  
F29  
H23  
H26  
J26  
K19  
L19  
L20  
L21  
L23  
L24  
D30  
K21  
0
0
IO_L26P_0/  
VREF_0  
IO_L26P_0/  
VREF_0  
0
0
0
0
0
0
0
0
0
0
IO_L27N_0  
IO_L27P_0  
IO_L28N_0  
IO_L28P_0  
IO_L29N_0  
IO_L29P_0  
IO_L30N_0  
IO_L30P_0  
IO_L31N_0  
IO_L27N_0  
IO_L27P_0  
IO_L28N_0  
IO_L28P_0  
IO_L29N_0  
IO_L29P_0  
IO_L30N_0  
IO_L30P_0  
IO_L31N_0  
G16  
F16  
C16  
B16  
J17  
I/O  
I/O  
I/O  
I/O  
IO  
IO  
I/O  
I/O  
IO  
IO  
I/O  
H17  
G17  
F17  
D17  
C17  
I/O  
IO  
IO  
I/O  
I/O  
IO  
IO  
I/O  
I/O  
IO  
IO  
I/O  
I/O  
IO  
IO  
I/O  
IO_L31P_0/  
VREF_0  
IO_L31P_0/  
VREF_0  
VREF  
IO  
IO  
I/O  
IO  
IO  
I/O  
0
0
IO_L32N_0/  
GCLK7  
IO_L32N_0/  
GCLK7  
B17  
A17  
GCLK  
GCLK  
IO  
IO  
I/O  
N.C. (‹)  
IO  
IO  
I/O  
IO_L32P_0/  
GCLK6  
IO_L32P_0/  
GCLK6  
IO  
I/O  
0
0
0
0
0
0
0
N.C. (‹)  
IO_L33N_0  
IO_L33P_0  
IO_L34N_0  
IO_L34P_0  
IO_L35N_0  
IO_L35P_0  
IO_L36N_0  
D7  
C7  
B7  
A7  
E8  
D8  
B8  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
IO  
IO  
I/O  
N.C. (‹)  
IO  
IO  
I/O  
N.C. (‹)  
IO  
IO  
I/O  
N.C. (‹)  
N.C. (‹)  
IO  
IO  
I/O  
IO_L35N_0  
IO_L35P_0  
IO_L36N_0  
IO  
I/O  
IO/VREF_1  
IO/VREF_1  
IO/VREF_1  
IO/VREF_1  
VREF  
VREF  
DS099-4 (v1.5) July 13, 2004  
Product Specification  
www.xilinx.com  
1-800-255-7778  
85  
R
Spartan-3 FPGA Family: Pinout Descriptions  
Table 37: FG1156 Package Pinout (Continued)  
Table 37: FG1156 Package Pinout (Continued)  
FG1156  
FG1156  
XC3S4000  
Pin Name  
XC3S5000  
Pin Name  
Pin  
Number  
XC3S4000  
Pin Name  
XC3S5000  
Pin Name  
Pin  
Number  
Bank  
Type  
VREF  
DCI  
Bank  
1
Type  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VREF  
1
1
IO/VREF_1  
IO/VREF_1  
L18  
A32  
IO_L19N_1  
IO_L19P_1  
IO_L20N_1  
IO_L20P_1  
IO_L21N_1  
IO_L21P_1  
IO_L22N_1  
IO_L22P_1  
IO_L23N_1  
IO_L23P_1  
IO_L24N_1  
IO_L24P_1  
IO_L25N_1  
IO_L25P_1  
IO_L26N_1  
IO_L26P_1  
IO_L27N_1  
IO_L27P_1  
IO_L28N_1  
IO_L28P_1  
IO_L29N_1  
IO_L29P_1  
IO_L30N_1  
IO_L30P_1  
IO_L19N_1  
IO_L19P_1  
IO_L20N_1  
IO_L20P_1  
IO_L21N_1  
IO_L21P_1  
IO_L22N_1  
IO_L22P_1  
IO_L23N_1  
IO_L23P_1  
IO_L24N_1  
IO_L24P_1  
IO_L25N_1  
IO_L25P_1  
IO_L26N_1  
IO_L26P_1  
IO_L27N_1  
IO_L27P_1  
IO_L28N_1  
IO_L28P_1  
IO_L29N_1  
IO_L29P_1  
IO_L30N_1  
IO_L30P_1  
A23  
B23  
K22  
L22  
G22  
H22  
C22  
D22  
H21  
J21  
IO_L01N_1/  
VRP_1  
IO_L01N_1/  
VRP_1  
1
1
1
IO_L01P_1/  
VRN_1  
IO_L01P_1/  
VRN_1  
B32  
DCI  
1
1
1
1
1
1
1
1
1
1
1
IO_L02N_1  
IO_L02P_1  
IO_L03N_1  
IO_L03P_1  
IO_L04N_1  
IO_L04P_1  
IO_L05N_1  
IO_L05P_1  
IO_L02N_1  
IO_L02P_1  
IO_L03N_1  
IO_L03P_1  
IO_L04N_1  
IO_L04P_1  
IO_L05N_1  
IO_L05P_1  
A31  
B31  
B30  
C30  
C29  
D29  
A29  
B29  
E28  
I/O  
I/O  
1
1
I/O  
1
I/O  
1
I/O  
1
I/O  
1
F21  
G21  
C21  
D21  
A21  
B21  
F19  
G19  
B19  
C19  
J18  
I/O  
1
I/O  
1
IO_L06N_1/  
VREF_1  
IO_L06N_1/  
VREF_1  
VREF  
1
1
1
1
1
1
1
1
1
1
IO_L06P_1  
IO_L07N_1  
IO_L07P_1  
IO_L08N_1  
IO_L08P_1  
IO_L09N_1  
IO_L09P_1  
IO_L06P_1  
IO_L07N_1  
IO_L07P_1  
IO_L08N_1  
IO_L08P_1  
IO_L09N_1  
IO_L09P_1  
F28  
D27  
E27  
A27  
B27  
F26  
G26  
C26  
I/O  
I/O  
1
1
I/O  
1
I/O  
1
I/O  
1
I/O  
1
I/O  
1
K18  
G18  
H18  
D18  
IO_L10N_1/  
VREF_1  
IO_L10N_1/  
VREF_1  
VREF  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
IO_L10P_1  
IO_L11N_1  
IO_L11P_1  
IO_L12N_1  
IO_L12P_1  
IO_L13N_1  
IO_L13P_1  
IO_L14N_1  
IO_L14P_1  
IO_L15N_1  
IO_L15P_1  
IO_L16N_1  
IO_L16P_1  
IO_L10P_1  
IO_L11N_1  
IO_L11P_1  
IO_L12N_1  
IO_L12P_1  
IO_L13N_1  
IO_L13P_1  
IO_L14N_1  
IO_L14P_1  
IO_L15N_1  
IO_L15P_1  
IO_L16N_1  
IO_L16P_1  
D26  
H25  
J25  
F25  
G25  
C25  
D25  
A25  
B25  
A24  
B24  
J23  
K23  
F23  
I/O  
I/O  
1
1
IO_L31N_1/  
VREF_1  
IO_L31N_1/  
VREF_1  
I/O  
1
1
IO_L31P_1  
IO_L31P_1  
E18  
B18  
I/O  
I/O  
IO_L32N_1/  
GCLK5  
IO_L32N_1/  
GCLK5  
GCLK  
I/O  
I/O  
1
IO_L32P_1/  
GCLK4  
IO_L32P_1/  
GCLK4  
C18  
GCLK  
I/O  
I/O  
1
1
1
1
1
1
1
1
1
1
1
N.C. (‹)  
N.C. (‹)  
N.C. (‹)  
N.C. (‹)  
N.C. (‹)  
N.C. (‹)  
N.C. (‹)  
N.C. (‹)  
IO_L37N_1  
IO_L37P_1  
IO_L38N_1  
IO_L33N_1  
IO_L33P_1  
IO_L34N_1  
IO_L34P_1  
IO_L35N_1  
IO_L35P_1  
IO_L36N_1  
IO_L36P_1  
IO_L37N_1  
IO_L37P_1  
IO_L38N_1  
C28  
D28  
A28  
B28  
J24  
K24  
F24  
G24  
J20  
K20  
F20  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
IO_L17N_1/  
VREF_1  
IO_L17N_1/  
VREF_1  
VREF  
1
1
1
IO_L17P_1  
IO_L18N_1  
IO_L18P_1  
IO_L17P_1  
IO_L18N_1  
IO_L18P_1  
G23  
D23  
E23  
I/O  
I/O  
I/O  
86  
www.xilinx.com  
1-800-255-7778  
DS099-4 (v1.5) July 13, 2004  
Product Specification  
R
Spartan-3 FPGA Family: Pinout Descriptions  
Table 37: FG1156 Package Pinout (Continued)  
Table 37: FG1156 Package Pinout (Continued)  
FG1156  
FG1156  
XC3S4000  
Pin Name  
XC3S5000  
Pin Name  
Pin  
Number  
XC3S4000  
Pin Name  
XC3S5000  
Pin Name  
Pin  
Number  
Bank  
1
Type  
I/O  
Bank  
Type  
IO_L38P_1  
IO_L39N_1  
IO_L39P_1  
IO_L40N_1  
IO_L40P_1  
VCCO_1  
VCCO_1  
VCCO_1  
VCCO_1  
VCCO_1  
VCCO_1  
VCCO_1  
VCCO_1  
VCCO_1  
VCCO_1  
VCCO_1  
VCCO_1  
VCCO_1  
IO  
IO_L38P_1  
IO_L39N_1  
IO_L39P_1  
IO_L40N_1  
IO_L40P_1  
VCCO_1  
VCCO_1  
VCCO_1  
VCCO_1  
VCCO_1  
VCCO_1  
VCCO_1  
VCCO_1  
VCCO_1  
VCCO_1  
VCCO_1  
VCCO_1  
VCCO_1  
IO  
G20  
C20  
D20  
A20  
B20  
B22  
C27  
C31  
D19  
D24  
F22  
G27  
H20  
H24  
M19  
M20  
M21  
M22  
G33  
G34  
U25  
U26  
C33  
2
IO_L09N_2/  
VREF_2  
IO_L09N_2/  
VREF_2  
H31  
VREF  
1
I/O  
2
2
2
2
2
2
2
2
2
IO_L09P_2  
IO_L10N_2  
IO_L10P_2  
IO_L11N_2  
IO_L11P_2  
IO_L12N_2  
IO_L12P_2  
IO_L13N_2  
IO_L09P_2  
IO_L10N_2  
IO_L10P_2  
IO_L11N_2  
IO_L11P_2  
IO_L12N_2  
IO_L12P_2  
IO_L13N_2  
J31  
J32  
J33  
J27  
K26  
K27  
K28  
K29  
K30  
I/O  
I/O  
1
I/O  
1
I/O  
I/O  
1
I/O  
I/O  
1
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
I/O  
I/O  
1
I/O  
1
I/O  
1
I/O  
1
IO_L13P_2/  
VREF_2  
IO_L13P_2/  
VREF_2  
VREF  
1
1
2
2
2
2
2
2
2
2
IO_L14N_2  
IO_L14P_2  
IO_L15N_2  
IO_L15P_2  
IO_L16N_2  
IO_L16P_2  
N.C. (‹)  
IO_L14N_2  
IO_L14P_2  
IO_L15N_2  
IO_L15P_2  
IO_L16N_2  
IO_L16P_2  
IO_L17N_2  
K31  
K32  
K33  
K34  
L25  
L26  
L28  
L29  
I/O  
I/O  
1
1
I/O  
1
I/O  
1
I/O  
1
I/O  
1
I/O  
2
N.C. (‹)  
IO_L17P_2/  
VREF_2  
VREF  
2
IO  
IO  
I/O  
2
IO  
IO  
I/O  
2
2
2
2
2
2
2
2
2
IO_L19N_2  
IO_L19P_2  
IO_L20N_2  
IO_L20P_2  
IO_L21N_2  
IO_L21P_2  
IO_L22N_2  
IO_L22P_2  
IO_L19N_2  
IO_L19P_2  
IO_L20N_2  
IO_L20P_2  
IO_L21N_2  
IO_L21P_2  
IO_L22N_2  
IO_L22P_2  
M29  
M30  
M31  
M32  
M26  
N25  
N27  
N28  
N31  
I/O  
I/O  
2
IO  
IO  
I/O  
2
IO_L01N_2/  
VRP_2  
IO_L01N_2/  
VRP_2  
DCI  
I/O  
I/O  
2
IO_L01P_2/  
VRN_2  
IO_L01P_2/  
VRN_2  
C34  
DCI  
I/O  
I/O  
2
2
2
IO_L02N_2  
IO_L02P_2  
IO_L02N_2  
IO_L02P_2  
D33  
D34  
E32  
I/O  
I/O  
I/O  
I/O  
IO_L03N_2/  
VREF_2  
IO_L03N_2/  
VREF_2  
VREF  
IO_L23N_2/  
VREF_2  
IO_L23N_2/  
VREF_2  
VREF  
2
2
2
2
2
2
2
2
2
2
2
IO_L03P_2  
IO_L04N_2  
IO_L04P_2  
IO_L05N_2  
IO_L05P_2  
IO_L06N_2  
IO_L06P_2  
IO_L07N_2  
IO_L07P_2  
IO_L08N_2  
IO_L08P_2  
IO_L03P_2  
IO_L04N_2  
IO_L04P_2  
IO_L05N_2  
IO_L05P_2  
IO_L06N_2  
IO_L06P_2  
IO_L07N_2  
IO_L07P_2  
IO_L08N_2  
IO_L08P_2  
E33  
F31  
F32  
G29  
G30  
H29  
H30  
H33  
H34  
J28  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
2
2
2
2
2
2
2
2
2
2
2
IO_L23P_2  
IO_L24N_2  
IO_L24P_2  
IO_L26N_2  
IO_L26P_2  
IO_L27N_2  
IO_L27P_2  
IO_L28N_2  
IO_L28P_2  
IO_L29N_2  
IO_L29P_2  
IO_L23P_2  
IO_L24N_2  
IO_L24P_2  
IO_L26N_2  
IO_L26P_2  
IO_L27N_2  
IO_L27P_2  
IO_L28N_2  
IO_L28P_2  
IO_L29N_2  
IO_L29P_2  
N32  
N24  
P24  
P29  
P30  
P31  
P32  
P33  
P34  
R24  
R25  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
J29  
DS099-4 (v1.5) July 13, 2004  
Product Specification  
www.xilinx.com  
1-800-255-7778  
87  
R
Spartan-3 FPGA Family: Pinout Descriptions  
Table 37: FG1156 Package Pinout (Continued)  
Table 37: FG1156 Package Pinout (Continued)  
FG1156  
FG1156  
XC3S4000  
Pin Name  
XC3S5000  
Pin Name  
Pin  
Number  
XC3S4000  
Pin Name  
XC3S5000  
Pin Name  
Pin  
Number  
Bank  
Type  
I/O  
Bank  
Type  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
I/O  
2
2
2
2
2
2
2
2
2
IO_L30N_2  
IO_L30P_2  
IO_L31N_2  
IO_L31P_2  
IO_L32N_2  
IO_L32P_2  
IO_L33N_2  
IO_L33P_2  
IO_L30N_2  
IO_L30P_2  
IO_L31N_2  
IO_L31P_2  
IO_L32N_2  
IO_L32P_2  
IO_L33N_2  
IO_L33P_2  
R28  
R29  
R31  
R32  
R33  
R34  
R26  
T25  
T28  
2
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
VCCO_2  
VCCO_2  
VCCO_2  
VCCO_2  
VCCO_2  
VCCO_2  
VCCO_2  
VCCO_2  
VCCO_2  
VCCO_2  
VCCO_2  
IO  
VCCO_2  
VCCO_2  
VCCO_2  
VCCO_2  
VCCO_2  
VCCO_2  
VCCO_2  
VCCO_2  
VCCO_2  
VCCO_2  
VCCO_2  
IO  
H32  
L27  
I/O  
I/O  
L31  
I/O  
N23  
N29  
N33  
P23  
R23  
R27  
T23  
I/O  
I/O  
I/O  
I/O  
IO_L34N_2/  
VREF_2  
IO_L34N_2/  
VREF_2  
VREF  
2
2
2
2
2
2
2
2
2
2
2
IO_L34P_2  
IO_L35N_2  
IO_L35P_2  
IO_L37N_2  
IO_L37P_2  
IO_L38N_2  
IO_L38P_2  
IO_L39N_2  
IO_L39P_2  
IO_L40N_2  
IO_L34P_2  
IO_L35N_2  
IO_L35P_2  
IO_L37N_2  
IO_L37P_2  
IO_L38N_2  
IO_L38P_2  
IO_L39N_2  
IO_L39P_2  
IO_L40N_2  
T29  
T32  
T33  
U27  
U28  
U29  
U30  
U31  
U32  
U33  
U34  
I/O  
I/O  
T31  
AH33  
AH34  
V25  
V26  
AM34  
I/O  
IO  
IO  
I/O  
I/O  
IO  
IO  
I/O  
I/O  
IO  
IO  
I/O  
I/O  
IO_L01N_3/  
VRP_3  
IO_L01N_3/  
VRP_3  
DCI  
I/O  
I/O  
3
3
IO_L01P_3/  
VRN_3  
IO_L01P_3/  
VRN_3  
AM33  
AL34  
DCI  
I/O  
IO_L02N_3/  
VREF_3  
IO_L02N_3/  
VREF_3  
VREF  
I/O  
IO_L40P_2/  
VREF_2  
IO_L40P_2/  
VREF_2  
VREF  
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
IO_L02P_3  
IO_L03N_3  
IO_L03P_3  
IO_L04N_3  
IO_L04P_3  
IO_L05N_3  
IO_L05P_3  
IO_L06N_3  
IO_L06P_3  
IO_L07N_3  
IO_L07P_3  
IO_L08N_3  
IO_L08P_3  
IO_L09N_3  
IO_L02P_3  
IO_L03N_3  
IO_L03P_3  
IO_L04N_3  
IO_L04P_3  
IO_L05N_3  
IO_L05P_3  
IO_L06N_3  
IO_L06P_3  
IO_L07N_3  
IO_L07P_3  
IO_L08N_3  
IO_L08P_3  
IO_L09N_3  
AL33  
AK33  
AK32  
AJ32  
AJ31  
AJ34  
AJ33  
AH30  
AH29  
AG30  
AG29  
AG34  
AG33  
AF29  
AF28  
I/O  
I/O  
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
IO_L41N_2  
IO_L41P_2  
N.C. (‹)  
IO_L41N_2  
IO_L41P_2  
IO_L42N_2  
IO_L42P_2  
IO_L45N_2  
IO_L45P_2  
IO_L46N_2  
IO_L46P_2  
IO_L47N_2  
IO_L47P_2  
IO_L48N_2  
IO_L48P_2  
IO_L49N_2  
IO_L49P_2  
IO_L50N_2  
IO_L50P_2  
IO_L51N_2  
IO_L51P_2  
VCCO_2  
F33  
F34  
G31  
G32  
L33  
L34  
M24  
M25  
M27  
M28  
M33  
M34  
P25  
P26  
P27  
P28  
T24  
U24  
D32  
H28  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
N.C. (‹)  
I/O  
I/O  
IO_L45N_2  
IO_L45P_2  
IO_L46N_2  
IO_L46P_2  
IO_L47N_2  
IO_L47P_2  
IO_L48N_2  
IO_L48P_2  
N.C. (‹)  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
IO_L09P_3/  
VREF_3  
IO_L09P_3/  
VREF_3  
VREF  
N.C. (‹)  
I/O  
IO_L50N_2  
IO_L50P_2  
N.C. (‹)  
I/O  
3
3
3
3
3
IO_L10N_3  
IO_L10P_3  
IO_L11N_3  
IO_L11P_3  
IO_L12N_3  
IO_L10N_3  
IO_L10P_3  
IO_L11N_3  
IO_L11P_3  
IO_L12N_3  
AF31  
AG31  
AF33  
AF32  
AE26  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
N.C. (‹)  
I/O  
VCCO_2  
VCCO  
VCCO  
VCCO_2  
VCCO_2  
88  
www.xilinx.com  
1-800-255-7778  
DS099-4 (v1.5) July 13, 2004  
Product Specification  
R
Spartan-3 FPGA Family: Pinout Descriptions  
Table 37: FG1156 Package Pinout (Continued)  
Table 37: FG1156 Package Pinout (Continued)  
FG1156  
FG1156  
XC3S4000  
Pin Name  
XC3S5000  
Pin Name  
Pin  
Number  
XC3S4000  
Pin Name  
XC3S5000  
Pin Name  
Pin  
Number  
Bank  
Type  
I/O  
Bank  
Type  
I/O  
3
3
IO_L12P_3  
IO_L12P_3  
AF27  
AE28  
3
3
IO_L34N_3  
IO_L34N_3  
W29  
W28  
IO_L13N_3/  
VREF_3  
IO_L13N_3/  
VREF_3  
VREF  
IO_L34P_3/  
VREF_3  
IO_L34P_3/  
VREF_3  
VREF  
3
3
3
3
3
3
3
3
3
IO_L13P_3  
IO_L14N_3  
IO_L14P_3  
IO_L15N_3  
IO_L15P_3  
IO_L16N_3  
IO_L16P_3  
IO_L17N_3  
IO_L13P_3  
IO_L14N_3  
IO_L14P_3  
IO_L15N_3  
IO_L15P_3  
IO_L16N_3  
IO_L16P_3  
IO_L17N_3  
AE27  
AE30  
AE29  
AE32  
AE31  
AE34  
AE33  
AD26  
AD25  
I/O  
I/O  
3
3
3
3
3
3
3
3
3
IO_L35N_3  
IO_L35P_3  
IO_L37N_3  
IO_L37P_3  
IO_L38N_3  
IO_L38P_3  
IO_L39N_3  
IO_L39P_3  
IO_L35N_3  
IO_L35P_3  
IO_L37N_3  
IO_L37P_3  
IO_L38N_3  
IO_L38P_3  
IO_L39N_3  
IO_L39P_3  
W33  
W32  
V28  
V27  
V30  
V29  
V32  
V31  
V34  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
IO_L17P_3/  
VREF_3  
IO_L17P_3/  
VREF_3  
VREF  
IO_L40N_3/  
VREF_3  
IO_L40N_3/  
VREF_3  
VREF  
3
3
3
3
3
3
3
3
3
3
IO_L19N_3  
IO_L19P_3  
IO_L20N_3  
IO_L20P_3  
IO_L21N_3  
IO_L21P_3  
IO_L22N_3  
IO_L22P_3  
IO_L23N_3  
IO_L19N_3  
IO_L19P_3  
IO_L20N_3  
IO_L20P_3  
IO_L21N_3  
IO_L21P_3  
IO_L22N_3  
IO_L22P_3  
IO_L23N_3  
AD34  
AD33  
AC25  
AC24  
AC28  
AC27  
AC30  
AC29  
AC32  
AC31  
I/O  
I/O  
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
IO_L40P_3  
N.C. (‹)  
IO_L40P_3  
IO_L41N_3  
IO_L41P_3  
IO_L44N_3  
IO_L44P_3  
IO_L45N_3  
IO_L45P_3  
IO_L46N_3  
IO_L46P_3  
IO_L47N_3  
IO_L47P_3  
IO_L48N_3  
IO_L48P_3  
IO_L49N_3  
IO_L49P_3  
IO_L50N_3  
IO_L50P_3  
IO_L51N_3  
IO_L51P_3  
VCCO_3  
V33  
AH32  
AH31  
AD29  
AD28  
AC34  
AC33  
AB28  
AB27  
AB32  
AB31  
AA24  
AB24  
AA26  
AA25  
Y25  
I/O  
I/O  
I/O  
N.C. (‹)  
I/O  
I/O  
N.C. (‹)  
I/O  
I/O  
N.C. (‹)  
I/O  
I/O  
IO_L45N_3  
IO_L45P_3  
IO_L46N_3  
IO_L46P_3  
IO_L47N_3  
IO_L47P_3  
IO_L48N_3  
IO_L48P_3  
N.C. (‹)  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
IO_L23P_3/  
VREF_3  
IO_L23P_3/  
VREF_3  
VREF  
I/O  
I/O  
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
IO_L24N_3  
IO_L24P_3  
IO_L26N_3  
IO_L26P_3  
IO_L27N_3  
IO_L27P_3  
IO_L28N_3  
IO_L28P_3  
IO_L29N_3  
IO_L29P_3  
IO_L30N_3  
IO_L30P_3  
IO_L31N_3  
IO_L31P_3  
IO_L32N_3  
IO_L32P_3  
IO_L33N_3  
IO_L33P_3  
IO_L24N_3  
IO_L24P_3  
IO_L26N_3  
IO_L26P_3  
IO_L27N_3  
IO_L27P_3  
IO_L28N_3  
IO_L28P_3  
IO_L29N_3  
IO_L29P_3  
IO_L30N_3  
IO_L30P_3  
IO_L31N_3  
IO_L31P_3  
IO_L32N_3  
IO_L32P_3  
IO_L33N_3  
IO_L33P_3  
AB25  
AC26  
AA28  
AA27  
AA30  
AA29  
AA32  
AA31  
AA34  
AA33  
Y29  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
N.C. (‹)  
I/O  
IO_L50N_3  
IO_L50P_3  
N.C. (‹)  
I/O  
Y24  
I/O  
V24  
I/O  
N.C. (‹)  
W24  
I/O  
VCCO_3  
VCCO_3  
VCCO_3  
VCCO_3  
VCCO_3  
VCCO_3  
VCCO_3  
VCCO_3  
VCCO_3  
VCCO_3  
AA23  
AB23  
AB29  
AB33  
AD27  
AD31  
AG28  
AG32  
AL32  
W23  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO_3  
VCCO_3  
Y28  
VCCO_3  
Y32  
VCCO_3  
Y31  
VCCO_3  
Y34  
VCCO_3  
Y33  
VCCO_3  
W25  
Y26  
VCCO_3  
VCCO_3  
DS099-4 (v1.5) July 13, 2004  
Product Specification  
www.xilinx.com  
1-800-255-7778  
89  
R
Spartan-3 FPGA Family: Pinout Descriptions  
Table 37: FG1156 Package Pinout (Continued)  
Table 37: FG1156 Package Pinout (Continued)  
FG1156  
FG1156  
XC3S4000  
Pin Name  
XC3S5000  
Pin Name  
Pin  
Number  
XC3S4000  
Pin Name  
XC3S5000  
Pin Name  
Pin  
Number  
Bank  
3
Type  
VCCO  
VCCO  
VCCO  
I/O  
Bank  
4
Type  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VREF  
VCCO_3  
VCCO_3  
W31  
Y23  
IO_L09N_4  
IO_L09P_4  
IO_L10N_4  
IO_L10P_4  
IO_L11N_4  
IO_L11P_4  
IO_L12N_4  
IO_L12P_4  
IO_L13N_4  
IO_L13P_4  
IO_L14N_4  
IO_L14P_4  
IO_L15N_4  
IO_L15P_4  
IO_L16N_4  
IO_L16P_4  
IO_L17N_4  
IO_L17P_4  
IO_L18N_4  
IO_L18P_4  
IO_L19N_4  
IO_L19P_4  
IO_L20N_4  
IO_L20P_4  
IO_L21N_4  
IO_L21P_4  
IO_L09N_4  
IO_L09P_4  
IO_L10N_4  
IO_L10P_4  
IO_L11N_4  
IO_L11P_4  
IO_L12N_4  
IO_L12P_4  
IO_L13N_4  
IO_L13P_4  
IO_L14N_4  
IO_L14P_4  
IO_L15N_4  
IO_L15P_4  
IO_L16N_4  
IO_L16P_4  
IO_L17N_4  
IO_L17P_4  
IO_L18N_4  
IO_L18P_4  
IO_L19N_4  
IO_L19P_4  
IO_L20N_4  
IO_L20P_4  
IO_L21N_4  
IO_L21P_4  
AL25  
AM25  
AN25  
AP25  
AD23  
AE23  
AF23  
AG23  
AJ23  
AK23  
AL23  
AM23  
AN23  
AP23  
AG22  
AH22  
AL22  
AM22  
AD21  
AE21  
AG21  
AH21  
AJ21  
AK21  
AL21  
AM21  
AN21  
3
VCCO_3  
VCCO_3  
4
3
VCCO_3  
VCCO_3  
Y27  
4
4
IO  
IO  
AD18  
AD19  
AD20  
AD22  
AE18  
AE19  
AE22  
AE24  
AF24  
AF26  
AG26  
AG27  
AJ27  
AJ29  
AK25  
AN26  
AF21  
AH23  
AK18  
AL30  
AN32  
4
4
IO  
IO  
I/O  
4
4
IO  
IO  
I/O  
4
4
IO  
IO  
I/O  
4
4
IO  
IO  
I/O  
4
4
IO  
IO  
I/O  
4
4
IO  
IO  
I/O  
4
4
N.C. (‹)  
IO  
I/O  
4
4
IO  
IO  
I/O  
4
4
N.C. (‹)  
IO  
I/O  
4
4
IO  
IO  
I/O  
4
4
IO  
IO  
I/O  
4
4
IO  
IO  
I/O  
4
4
IO  
IO  
I/O  
4
4
IO  
IO  
I/O  
4
4
IO  
IO  
I/O  
4
4
IO/VREF_4  
IO/VREF_4  
IO/VREF_4  
IO/VREF_4  
IO/VREF_4  
IO/VREF_4  
IO/VREF_4  
IO/VREF_4  
VREF  
VREF  
VREF  
VREF  
DCI  
4
4
4
4
4
4
4
4
IO_L01N_4/  
VRP_4  
IO_L01N_4/  
VRP_4  
4
4
4
IO_L01P_4/  
VRN_4  
IO_L01P_4/  
VRN_4  
AP32  
DCI  
4
4
IO_L22N_4/  
VREF_4  
IO_L22N_4/  
VREF_4  
4
4
4
4
4
4
4
4
4
IO_L02N_4  
IO_L02P_4  
IO_L03N_4  
IO_L03P_4  
IO_L04N_4  
IO_L04P_4  
IO_L05N_4  
IO_L05P_4  
IO_L02N_4  
IO_L02P_4  
IO_L03N_4  
IO_L03P_4  
IO_L04N_4  
IO_L04P_4  
IO_L05N_4  
IO_L05P_4  
AN31  
AP31  
AM30  
AN30  
AN27  
AP27  
AH26  
AJ26  
AL26  
I/O  
I/O  
4
4
4
4
4
4
4
4
4
IO_L22P_4  
IO_L23N_4  
IO_L23P_4  
IO_L24N_4  
IO_L24P_4  
IO_L25N_4  
IO_L25P_4  
IO_L26N_4  
IO_L22P_4  
IO_L23N_4  
IO_L23P_4  
IO_L24N_4  
IO_L24P_4  
IO_L25N_4  
IO_L25P_4  
IO_L26N_4  
AP21  
AE20  
AF20  
AH20  
AJ20  
AL20  
AM20  
AN20  
AP20  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
IO_L06N_4/  
VREF_4  
IO_L06N_4/  
VREF_4  
VREF  
I/O  
IO_L26P_4/  
VREF_4  
IO_L26P_4/  
VREF_4  
VREF  
4
4
4
4
4
IO_L06P_4  
IO_L07N_4  
IO_L07P_4  
IO_L08N_4  
IO_L08P_4  
IO_L06P_4  
IO_L07N_4  
IO_L07P_4  
IO_L08N_4  
IO_L08P_4  
AM26  
AF25  
AG25  
AH25  
AJ25  
I/O  
I/O  
I/O  
I/O  
I/O  
4
4
IO_L27N_4/  
DIN/D0  
IO_L27N_4/  
DIN/D0  
AH19  
AJ19  
DUAL  
DUAL  
IO_L27P_4/  
D1  
IO_L27P_4/  
D1  
90  
www.xilinx.com  
1-800-255-7778  
DS099-4 (v1.5) July 13, 2004  
Product Specification  
R
Spartan-3 FPGA Family: Pinout Descriptions  
Table 37: FG1156 Package Pinout (Continued)  
Table 37: FG1156 Package Pinout (Continued)  
FG1156  
FG1156  
XC3S4000  
Pin Name  
XC3S5000  
Pin Name  
Pin  
Number  
XC3S4000  
Pin Name  
XC3S5000  
Pin Name  
Pin  
Number  
Bank  
Type  
I/O  
Bank  
4
Type  
VCCO  
VCCO  
I/O  
4
4
4
4
4
IO_L28N_4  
IO_L28P_4  
IO_L29N_4  
IO_L29P_4  
IO_L28N_4  
IO_L28P_4  
IO_L29N_4  
IO_L29P_4  
AM19  
AN19  
AF18  
AG18  
AH18  
VCCO_4  
VCCO_4  
AM31  
AN22  
AD11  
AD12  
AD14  
AD15  
AD16  
AD17  
AE14  
AE16  
AF9  
I/O  
4
VCCO_4  
VCCO_4  
I/O  
5
IO  
IO  
I/O  
5
N.C. (‹)  
IO  
I/O  
IO_L30N_4/  
D2  
IO_L30N_4/  
D2  
DUAL  
5
IO  
IO  
I/O  
5
IO  
IO  
I/O  
4
4
4
4
4
IO_L30P_4/  
D3  
IO_L30P_4/  
D3  
AJ18  
AL18  
AM18  
AN18  
AP18  
DUAL  
DUAL  
DUAL  
GCLK  
GCLK  
5
IO  
IO  
I/O  
5
IO  
IO  
I/O  
IO_L31N_4/  
INIT_B  
IO_L31N_4/  
INIT_B  
5
IO  
IO  
I/O  
5
IO  
IO  
I/O  
IO_L31P_4/  
DOUT/BUSY DOUT/BUSY  
IO_L31P_4/  
5
N.C. (‹)  
IO  
I/O  
IO_L32N_4/  
GCLK1  
IO_L32N_4/  
GCLK1  
5
IO  
IO  
AG9  
I/O  
5
IO  
IO  
AG12  
AJ6  
I/O  
IO_L32P_4/  
GCLK0  
IO_L32P_4/  
GCLK0  
5
IO  
IO  
I/O  
5
IO  
IO  
AJ17  
AK10  
AK14  
AM12  
AN9  
I/O  
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
IO_L33N_4  
IO_L33P_4  
IO_L34N_4  
IO_L34P_4  
IO_L35N_4  
IO_L35P_4  
N.C. (‹)  
N.C. (‹)  
N.C. (‹)  
N.C. (‹)  
IO_L38N_4  
IO_L38P_4  
N.C. (‹)  
N.C. (‹)  
N.C. (‹)  
N.C. (‹)  
VCCO_4  
VCCO_4  
VCCO_4  
VCCO_4  
VCCO_4  
VCCO_4  
VCCO_4  
VCCO_4  
VCCO_4  
VCCO_4  
VCCO_4  
IO_L33N_4  
IO_L33P_4  
IO_L34N_4  
IO_L34P_4  
IO_L35N_4  
IO_L35P_4  
IO_L36N_4  
IO_L36P_4  
IO_L37N_4  
IO_L37P_4  
IO_L38N_4  
IO_L38P_4  
IO_L39N_4  
IO_L39P_4  
IO_L40N_4  
IO_L40P_4  
VCCO_4  
AL29  
AM29  
AN29  
AP29  
AJ28  
AK28  
AL28  
AM28  
AN28  
AP28  
AK27  
AL27  
AH24  
AJ24  
AN24  
AP24  
AC19  
AC20  
AC21  
AC22  
AG20  
AG24  
AH27  
AJ22  
AL19  
AL24  
AM27  
I/O  
I/O  
5
IO  
IO  
I/O  
5
IO  
IO  
I/O  
I/O  
5
IO  
IO  
I/O  
I/O  
5
IO  
IO  
I/O  
I/O  
5
IO/VREF_5  
IO/VREF_5  
IO/VREF_5  
IO/VREF_5  
IO/VREF_5  
IO/VREF_5  
AJ8  
VREF  
VREF  
VREF  
DUAL  
I/O  
5
AL5  
I/O  
5
AP17  
AP3  
I/O  
5
IO_L01N_5/  
RDWR_B  
IO_L01N_5/  
RDWR_B  
I/O  
I/O  
5
IO_L01P_5/  
CS_B  
IO_L01P_5/  
CS_B  
AN3  
DUAL  
I/O  
I/O  
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
IO_L02N_5  
IO_L02P_5  
IO_L03N_5  
IO_L03P_5  
IO_L04N_5  
IO_L04P_5  
IO_L05N_5  
IO_L05P_5  
IO_L06N_5  
IO_L06P_5  
IO_L07N_5  
IO_L07P_5  
IO_L08N_5  
IO_L08P_5  
IO_L09N_5  
IO_L09P_5  
IO_L02N_5  
IO_L02P_5  
IO_L03N_5  
IO_L03P_5  
IO_L04N_5  
IO_L04P_5  
IO_L05N_5  
IO_L05P_5  
IO_L06N_5  
IO_L06P_5  
IO_L07N_5  
IO_L07P_5  
IO_L08N_5  
IO_L08P_5  
IO_L09N_5  
IO_L09P_5  
AP4  
AN4  
AN5  
AM5  
AM6  
AL6  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO_4  
AP6  
VCCO_4  
AN6  
AK7  
VCCO_4  
VCCO_4  
AJ7  
VCCO_4  
AG10  
AF10  
AJ10  
AH10  
AM10  
AL10  
VCCO_4  
VCCO_4  
VCCO_4  
VCCO_4  
VCCO_4  
DS099-4 (v1.5) July 13, 2004  
Product Specification  
www.xilinx.com  
1-800-255-7778  
91  
R
Spartan-3 FPGA Family: Pinout Descriptions  
Table 37: FG1156 Package Pinout (Continued)  
Table 37: FG1156 Package Pinout (Continued)  
FG1156  
FG1156  
XC3S4000  
Pin Name  
XC3S5000  
Pin Name  
Pin  
Number  
XC3S4000  
Pin Name  
XC3S5000  
Pin Name  
Pin  
Number  
Bank  
Type  
Bank  
Type  
5
IO_L10N_5/  
VRP_5  
IO_L10N_5/  
VRP_5  
AP10  
AN10  
AP11  
DCI  
5
IO_L28P_5/  
D7  
IO_L28P_5/  
D7  
AM16  
DUAL  
5
5
IO_L10P_5/  
VRN_5  
IO_L10P_5/  
VRN_5  
DCI  
5
5
IO_L29N_5  
IO_L29N_5  
AF17  
AE17  
I/O  
IO_L29P_5/  
VREF_5  
IO_L29P_5/  
VREF_5  
VREF  
IO_L11N_5/  
VREF_5  
IO_L11N_5/  
VREF_5  
VREF  
5
5
5
IO_L30N_5  
IO_L30P_5  
IO_L30N_5  
IO_L30P_5  
AH17  
AG17  
AL17  
I/O  
I/O  
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
IO_L11P_5  
IO_L12N_5  
IO_L12P_5  
IO_L13N_5  
IO_L13P_5  
IO_L14N_5  
IO_L14P_5  
IO_L15N_5  
IO_L15P_5  
IO_L16N_5  
IO_L16P_5  
IO_L17N_5  
IO_L17P_5  
IO_L18N_5  
IO_L18P_5  
IO_L19N_5  
IO_L11P_5  
IO_L12N_5  
IO_L12P_5  
IO_L13N_5  
IO_L13P_5  
IO_L14N_5  
IO_L14P_5  
IO_L15N_5  
IO_L15P_5  
IO_L16N_5  
IO_L16P_5  
IO_L17N_5  
IO_L17P_5  
IO_L18N_5  
IO_L18P_5  
IO_L19N_5  
AN11  
AF12  
AE12  
AJ12  
AH12  
AL12  
AK12  
AP12  
AN12  
AE13  
AD13  
AH13  
AG13  
AM13  
AL13  
AG14  
AF14  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VREF  
IO_L31N_5/  
D4  
IO_L31N_5/  
D4  
DUAL  
5
5
5
IO_L31P_5/  
D5  
IO_L31P_5/  
D5  
AK17  
AN17  
AM17  
DUAL  
GCLK  
GCLK  
IO_L32N_5/  
GCLK3  
IO_L32N_5/  
GCLK3  
IO_L32P_5/  
GCLK2  
IO_L32P_5/  
GCLK2  
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
N.C. (‹)  
N.C. (‹)  
N.C. (‹)  
N.C. (‹)  
IO_L35N_5  
IO_L35P_5  
IO_L36N_5  
IO_L36P_5  
IO_L37N_5  
IO_L37P_5  
IO_L38N_5  
IO_L38P_5  
N.C. (‹)  
N.C. (‹)  
N.C. (‹)  
N.C. (‹)  
VCCO_5  
VCCO_5  
VCCO_5  
VCCO_5  
VCCO_5  
VCCO_5  
VCCO_5  
VCCO_5  
VCCO_5  
VCCO_5  
VCCO_5  
VCCO_5  
IO_L33N_5  
IO_L33P_5  
IO_L34N_5  
IO_L34P_5  
IO_L35N_5  
IO_L35P_5  
IO_L36N_5  
IO_L36P_5  
IO_L37N_5  
IO_L37P_5  
IO_L38N_5  
IO_L38P_5  
IO_L39N_5  
IO_L39P_5  
IO_L40N_5  
IO_L40P_5  
VCCO_5  
AM7  
AL7  
I/O  
I/O  
AP7  
I/O  
AN7  
I/O  
AL8  
I/O  
AK8  
I/O  
AP8  
I/O  
AN8  
I/O  
IO_L19P_5/  
VREF_5  
IO_L19P_5/  
VREF_5  
AJ9  
I/O  
AH9  
I/O  
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
IO_L20N_5  
IO_L20P_5  
IO_L21N_5  
IO_L21P_5  
IO_L22N_5  
IO_L22P_5  
IO_L23N_5  
IO_L23P_5  
IO_L24N_5  
IO_L24P_5  
IO_L25N_5  
IO_L25P_5  
IO_L26N_5  
IO_L26P_5  
IO_L20N_5  
IO_L20P_5  
IO_L21N_5  
IO_L21P_5  
IO_L22N_5  
IO_L22P_5  
IO_L23N_5  
IO_L23P_5  
IO_L24N_5  
IO_L24P_5  
IO_L25N_5  
IO_L25P_5  
IO_L26N_5  
IO_L26P_5  
AJ14  
AH14  
AM14  
AL14  
AP14  
AN14  
AF15  
AE15  
AJ15  
AH15  
AM15  
AL15  
AP15  
AN15  
AJ16  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VREF  
AM9  
AL9  
I/O  
I/O  
AF11  
AE11  
AJ11  
AH11  
AC13  
AC14  
AC15  
AC16  
AG11  
AG15  
AH8  
I/O  
I/O  
I/O  
I/O  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO_5  
VCCO_5  
VCCO_5  
VCCO_5  
VCCO_5  
VCCO_5  
VCCO_5  
AJ13  
AL11  
AL16  
AM4  
AM8  
IO_L27N_5/  
VREF_5  
IO_L27N_5/  
VREF_5  
VCCO_5  
VCCO_5  
5
5
IO_L27P_5  
IO_L27P_5  
AH16  
AN16  
I/O  
VCCO_5  
IO_L28N_5/  
D6  
IO_L28N_5/  
D6  
DUAL  
VCCO_5  
92  
www.xilinx.com  
1-800-255-7778  
DS099-4 (v1.5) July 13, 2004  
Product Specification  
R
Spartan-3 FPGA Family: Pinout Descriptions  
Table 37: FG1156 Package Pinout (Continued)  
Table 37: FG1156 Package Pinout (Continued)  
FG1156  
FG1156  
XC3S4000  
Pin Name  
XC3S5000  
Pin Name  
Pin  
Number  
XC3S4000  
Pin Name  
XC3S5000  
Pin Name  
Pin  
Number  
Bank  
Type  
VCCO  
I/O  
Bank  
Type  
I/O  
5
6
6
6
6
6
VCCO_5  
VCCO_5  
AN13  
AH1  
AH2  
V9  
6
6
IO_L17N_6  
IO_L17N_6  
AD10  
AD9  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO_L17P_6/  
VREF_6  
IO_L17P_6/  
VREF_6  
VREF  
I/O  
6
6
6
6
6
6
6
6
6
6
6
IO_L19N_6  
IO_L19P_6  
IO_L20N_6  
IO_L20P_6  
IO_L21N_6  
IO_L21P_6  
IO_L22N_6  
IO_L22P_6  
IO_L23N_6  
IO_L23P_6  
IO_L19N_6  
IO_L19P_6  
IO_L20N_6  
IO_L20P_6  
IO_L21N_6  
IO_L21P_6  
IO_L22N_6  
IO_L22P_6  
IO_L23N_6  
IO_L23P_6  
AD2  
AD1  
AC11  
AC10  
AC8  
AC7  
AC6  
AC5  
AC2  
AC1  
AC9  
I/O  
I/O  
I/O  
V10  
AM2  
I/O  
I/O  
IO_L01N_6/  
VRP_6  
IO_L01N_6/  
VRP_6  
DCI  
I/O  
6
IO_L01P_6/  
VRN_6  
IO_L01P_6/  
VRN_6  
AM1  
DCI  
I/O  
I/O  
6
6
6
IO_L02N_6  
IO_L02P_6  
IO_L02N_6  
IO_L02P_6  
AL2  
AL1  
AK3  
I/O  
I/O  
I/O  
I/O  
IO_L03N_6/  
VREF_6  
IO_L03N_6/  
VREF_6  
VREF  
I/O  
I/O  
6
6
6
6
6
6
6
6
6
6
6
6
IO_L03P_6  
IO_L04N_6  
IO_L04P_6  
IO_L05N_6  
IO_L05P_6  
IO_L06N_6  
IO_L06P_6  
IO_L07N_6  
IO_L07P_6  
IO_L08N_6  
IO_L08P_6  
IO_L03P_6  
IO_L04N_6  
IO_L04P_6  
IO_L05N_6  
IO_L05P_6  
IO_L06N_6  
IO_L06P_6  
IO_L07N_6  
IO_L07P_6  
IO_L08N_6  
IO_L08P_6  
AK2  
AJ4  
AJ3  
AJ2  
AJ1  
AH6  
AH5  
AG6  
AG5  
AG2  
AG1  
AF7  
I/O  
I/O  
IO_L24N_6/  
VREF_6  
IO_L24N_6/  
VREF_6  
VREF  
I/O  
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
IO_L24P_6  
IO_L25N_6  
IO_L25P_6  
IO_L26N_6  
IO_L26P_6  
IO_L27N_6  
IO_L27P_6  
IO_L28N_6  
IO_L28P_6  
IO_L29N_6  
IO_L29P_6  
IO_L30N_6  
IO_L30P_6  
IO_L31N_6  
IO_L31P_6  
IO_L32N_6  
IO_L32P_6  
IO_L33N_6  
IO_L33P_6  
IO_L24P_6  
IO_L25N_6  
IO_L25P_6  
IO_L26N_6  
IO_L26P_6  
IO_L27N_6  
IO_L27P_6  
IO_L28N_6  
IO_L28P_6  
IO_L29N_6  
IO_L29P_6  
IO_L30N_6  
IO_L30P_6  
IO_L31N_6  
IO_L31P_6  
IO_L32N_6  
IO_L32P_6  
IO_L33N_6  
IO_L33P_6  
AB10  
AB8  
AB7  
AB4  
AB3  
AB11  
AA11  
AA8  
AA7  
AA6  
AA5  
AA4  
AA3  
AA2  
AA1  
Y11  
Y10  
Y4  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VREF  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
IO_L09N_6/  
VREF_6  
IO_L09N_6/  
VREF_6  
VREF  
6
6
6
6
6
6
6
6
6
IO_L09P_6  
IO_L10N_6  
IO_L10P_6  
IO_L11N_6  
IO_L11P_6  
IO_L12N_6  
IO_L12P_6  
IO_L13N_6  
IO_L09P_6  
IO_L10N_6  
IO_L10P_6  
IO_L11N_6  
IO_L11P_6  
IO_L12N_6  
IO_L12P_6  
IO_L13N_6  
AF6  
AG4  
AF4  
AF3  
AF2  
AF8  
AE9  
AE8  
AE7  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
Y3  
IO_L13P_6/  
VREF_6  
IO_L13P_6/  
VREF_6  
VREF  
IO_L34N_6/  
VREF_6  
IO_L34N_6/  
VREF_6  
Y2  
6
6
6
6
6
6
IO_L14N_6  
IO_L14P_6  
IO_L15N_6  
IO_L15P_6  
IO_L16N_6  
IO_L16P_6  
IO_L14N_6  
IO_L14P_6  
IO_L15N_6  
IO_L15P_6  
IO_L16N_6  
IO_L16P_6  
AE6  
AE5  
AE4  
AE3  
AE2  
AE1  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
6
6
6
6
6
6
IO_L34P_6  
IO_L35N_6  
IO_L35P_6  
IO_L36N_6  
IO_L36P_6  
IO_L37N_6  
IO_L34P_6  
IO_L35N_6  
IO_L35P_6  
IO_L36N_6  
IO_L36P_6  
IO_L37N_6  
Y1  
Y9  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
W10  
W7  
W6  
W3  
DS099-4 (v1.5) July 13, 2004  
Product Specification  
www.xilinx.com  
1-800-255-7778  
93  
R
Spartan-3 FPGA Family: Pinout Descriptions  
Table 37: FG1156 Package Pinout (Continued)  
Table 37: FG1156 Package Pinout (Continued)  
FG1156  
FG1156  
XC3S4000  
Pin Name  
XC3S5000  
Pin Name  
Pin  
Number  
XC3S4000  
Pin Name  
XC3S5000  
Pin Name  
Pin  
Number  
Bank  
Type  
I/O  
Bank  
Type  
6
6
6
6
6
6
6
IO_L37P_6  
IO_L38N_6  
IO_L38P_6  
IO_L39N_6  
IO_L39P_6  
IO_L40N_6  
IO_L37P_6  
IO_L38N_6  
IO_L38P_6  
IO_L39N_6  
IO_L39P_6  
IO_L40N_6  
W2  
V6  
V5  
V4  
V3  
V2  
V1  
7
IO_L01P_7/  
VRN_7  
IO_L01P_7/  
VRN_7  
C2  
DCI  
I/O  
7
7
7
IO_L02N_7  
IO_L02P_7  
IO_L02N_7  
IO_L02P_7  
D1  
D2  
E2  
I/O  
I/O  
I/O  
I/O  
IO_L03N_7/  
VREF_7  
IO_L03N_7/  
VREF_7  
VREF  
I/O  
I/O  
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
IO_L03P_7  
IO_L04N_7  
IO_L04P_7  
IO_L05N_7  
IO_L05P_7  
IO_L06N_7  
IO_L06P_7  
IO_L07N_7  
IO_L07P_7  
IO_L08N_7  
IO_L08P_7  
IO_L09N_7  
IO_L09P_7  
IO_L10N_7  
IO_L03P_7  
IO_L04N_7  
IO_L04P_7  
IO_L05N_7  
IO_L05P_7  
IO_L06N_7  
IO_L06P_7  
IO_L07N_7  
IO_L07P_7  
IO_L08N_7  
IO_L08P_7  
IO_L09N_7  
IO_L09P_7  
IO_L10N_7  
E3  
F3  
F4  
F1  
F2  
G5  
G6  
H5  
H6  
H1  
H2  
J6  
I/O  
I/O  
IO_L40P_6/  
VREF_6  
IO_L40P_6/  
VREF_6  
VREF  
I/O  
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
7
7
7
7
7
N.C. (‹)  
N.C. (‹)  
N.C. (‹)  
N.C. (‹)  
IO_L45N_6  
IO_L45P_6  
N.C. (‹)  
N.C. (‹)  
IO_L48N_6  
IO_L48P_6  
N.C. (‹)  
N.C. (‹)  
IO_L52N_6  
IO_L52P_6  
VCCO_6  
VCCO_6  
VCCO_6  
VCCO_6  
VCCO_6  
VCCO_6  
VCCO_6  
VCCO_6  
VCCO_6  
VCCO_6  
VCCO_6  
VCCO_6  
VCCO_6  
IO  
IO_L41N_6  
IO_L41P_6  
IO_L44N_6  
IO_L44P_6  
IO_L45N_6  
IO_L45P_6  
IO_L46N_6  
IO_L46P_6  
IO_L48N_6  
IO_L48P_6  
IO_L49N_6  
IO_L49P_6  
IO_L52N_6  
IO_L52P_6  
VCCO_6  
VCCO_6  
VCCO_6  
VCCO_6  
VCCO_6  
VCCO_6  
VCCO_6  
VCCO_6  
VCCO_6  
VCCO_6  
VCCO_6  
VCCO_6  
VCCO_6  
IO  
AH4  
AH3  
AD7  
AD6  
AC4  
AC3  
AA10  
AA9  
Y7  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
Y6  
I/O  
J7  
I/O  
W11  
V11  
V8  
I/O  
J4  
I/O  
I/O  
IO_L10P_7/  
VREF_7  
IO_L10P_7/  
VREF_7  
H4  
VREF  
I/O  
V7  
I/O  
7
7
7
7
7
7
7
7
7
7
7
7
IO_L11N_7  
IO_L11P_7  
IO_L12N_7  
IO_L12P_7  
IO_L13N_7  
IO_L13P_7  
IO_L14N_7  
IO_L14P_7  
IO_L15N_7  
IO_L15P_7  
IO_L16N_7  
IO_L11N_7  
IO_L11P_7  
IO_L12N_7  
IO_L12P_7  
IO_L13N_7  
IO_L13P_7  
IO_L14N_7  
IO_L14P_7  
IO_L15N_7  
IO_L15P_7  
IO_L16N_7  
J2  
J3  
I/O  
I/O  
AA12  
AB12  
AB2  
AB6  
AD4  
AD8  
AG3  
AG7  
AL3  
W12  
W4  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
I/O  
K9  
J8  
I/O  
I/O  
K7  
K8  
K5  
K6  
K3  
K4  
K1  
K2  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
IO_L16P_7/  
VREF_7  
IO_L16P_7/  
VREF_7  
VREF  
Y12  
Y8  
7
7
7
IO_L17N_7  
IO_L17P_7  
IO_L17N_7  
IO_L17P_7  
L9  
L10  
L1  
I/O  
I/O  
G1  
IO  
IO  
G2  
I/O  
IO_L19N_7/  
VREF_7  
IO_L19N_7/  
VREF_7  
VREF  
IO  
IO  
U10  
U9  
I/O  
7
7
7
IO_L19P_7  
IO_L20N_7  
IO_L20P_7  
IO_L19P_7  
IO_L20N_7  
IO_L20P_7  
L2  
I/O  
I/O  
I/O  
IO  
IO  
I/O  
M10  
M11  
IO_L01N_7/  
VRP_7  
IO_L01N_7/  
VRP_7  
C1  
DCI  
94  
www.xilinx.com  
1-800-255-7778  
DS099-4 (v1.5) July 13, 2004  
Product Specification  
R
Spartan-3 FPGA Family: Pinout Descriptions  
Table 37: FG1156 Package Pinout (Continued)  
Table 37: FG1156 Package Pinout (Continued)  
FG1156  
FG1156  
XC3S4000  
Pin Name  
XC3S5000  
Pin Name  
Pin  
Number  
XC3S4000  
Pin Name  
XC3S5000  
Pin Name  
Pin  
Number  
Bank  
Type  
I/O  
Bank  
7
Type  
I/O  
7
7
7
7
7
7
7
7
7
7
7
7
7
7
IO_L21N_7  
IO_L21P_7  
IO_L22N_7  
IO_L22P_7  
IO_L23N_7  
IO_L23P_7  
IO_L24N_7  
IO_L24P_7  
IO_L25N_7  
IO_L25P_7  
IO_L26N_7  
IO_L26P_7  
IO_L27N_7  
IO_L21N_7  
IO_L21P_7  
IO_L22N_7  
IO_L22P_7  
IO_L23N_7  
IO_L23P_7  
IO_L24N_7  
IO_L24P_7  
IO_L25N_7  
IO_L25P_7  
IO_L26N_7  
IO_L26P_7  
IO_L27N_7  
M7  
M8  
M5  
M6  
M3  
M4  
N10  
M9  
N3  
N.C. (‹)  
N.C. (‹)  
N.C. (‹)  
IO_L45N_7  
IO_L45P_7  
IO_L46N_7  
IO_L46P_7  
N.C. (‹)  
N.C. (‹)  
IO_L49N_7  
IO_L49P_7  
IO_L50N_7  
IO_L50P_7  
N.C. (‹)  
N.C. (‹)  
VCCO_7  
VCCO_7  
VCCO_7  
VCCO_7  
VCCO_7  
VCCO_7  
VCCO_7  
VCCO_7  
VCCO_7  
VCCO_7  
VCCO_7  
VCCO_7  
VCCO_7  
GND  
IO_L41P_7  
IO_L44N_7  
IO_L44P_7  
IO_L45N_7  
IO_L45P_7  
IO_L46N_7  
IO_L46P_7  
IO_L47N_7  
IO_L47P_7  
IO_L49N_7  
IO_L49P_7  
IO_L50N_7  
IO_L50P_7  
IO_L51N_7  
IO_L51P_7  
VCCO_7  
VCCO_7  
VCCO_7  
VCCO_7  
VCCO_7  
VCCO_7  
VCCO_7  
VCCO_7  
VCCO_7  
VCCO_7  
VCCO_7  
VCCO_7  
VCCO_7  
GND  
G4  
L6  
I/O  
7
I/O  
I/O  
7
L7  
I/O  
I/O  
7
M1  
M2  
N7  
I/O  
I/O  
7
I/O  
I/O  
7
I/O  
I/O  
7
N8  
I/O  
I/O  
7
P9  
I/O  
I/O  
7
P10  
P1  
I/O  
N4  
I/O  
7
I/O  
P11  
N11  
P7  
I/O  
7
P2  
I/O  
I/O  
7
R10  
R11  
U11  
T11  
D3  
I/O  
I/O  
7
I/O  
IO_L27P_7/  
VREF_7  
IO_L27P_7/  
VREF_7  
P8  
VREF  
7
I/O  
7
I/O  
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
IO_L28N_7  
IO_L28P_7  
IO_L29N_7  
IO_L29P_7  
IO_L30N_7  
IO_L30P_7  
IO_L31N_7  
IO_L31P_7  
IO_L32N_7  
IO_L32P_7  
IO_L33N_7  
IO_L33P_7  
IO_L34N_7  
IO_L34P_7  
IO_L35N_7  
IO_L35P_7  
IO_L37N_7  
IO_L28N_7  
IO_L28P_7  
IO_L29N_7  
IO_L29P_7  
IO_L30N_7  
IO_L30P_7  
IO_L31N_7  
IO_L31P_7  
IO_L32N_7  
IO_L32P_7  
IO_L33N_7  
IO_L33P_7  
IO_L34N_7  
IO_L34P_7  
IO_L35N_7  
IO_L35P_7  
IO_L37N_7  
P5  
P6  
P3  
P4  
R6  
R7  
R3  
R4  
R1  
R2  
T10  
R9  
T6  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VREF  
7
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
VCCO  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
7
H3  
7
H7  
7
L4  
7
L8  
7
N12  
N2  
7
7
N6  
7
P12  
R12  
R8  
7
7
7
T12  
T4  
7
T7  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
A1  
T2  
GND  
GND  
A13  
A16  
A19  
A2  
T3  
GND  
GND  
U7  
U8  
GND  
GND  
IO_L37P_7/  
VREF_7  
IO_L37P_7/  
VREF_7  
GND  
GND  
GND  
GND  
A22  
A26  
A30  
A33  
A34  
A5  
7
7
7
7
7
IO_L38N_7  
IO_L38P_7  
IO_L39N_7  
IO_L39P_7  
IO_L38N_7  
IO_L38P_7  
IO_L39N_7  
IO_L39P_7  
U5  
U6  
U3  
U4  
U1  
I/O  
I/O  
GND  
GND  
GND  
GND  
I/O  
GND  
GND  
I/O  
GND  
GND  
IO_L40N_7/  
VREF_7  
IO_L40N_7/  
VREF_7  
VREF  
GND  
GND  
GND  
GND  
A9  
7
7
IO_L40P_7  
IO_L40P_7  
IO_L41N_7  
U2  
G3  
I/O  
I/O  
GND  
GND  
AA14  
N.C. (‹)  
DS099-4 (v1.5) July 13, 2004  
Product Specification  
www.xilinx.com  
1-800-255-7778  
95  
R
Spartan-3 FPGA Family: Pinout Descriptions  
Table 37: FG1156 Package Pinout (Continued)  
Table 37: FG1156 Package Pinout (Continued)  
FG1156  
FG1156  
XC3S4000  
Pin Name  
XC3S5000  
Pin Name  
Pin  
Number  
XC3S4000  
Pin Name  
XC3S5000  
Pin Name  
Pin  
Number  
Bank  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
Type  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
Bank  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
Type  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
AA15  
AA16  
AA17  
AA18  
AA19  
AA20  
AA21  
AB1  
GND  
GND  
AM3  
AM32  
AN1  
AN2  
AN33  
AN34  
AP1  
AP13  
AP16  
AP19  
AP2  
AP22  
AP26  
AP30  
AP33  
AP34  
AP5  
AP9  
B1  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
AB17  
AB18  
AB26  
AB30  
AB34  
AB5  
AB9  
AD3  
AD32  
AE10  
AE25  
AF1  
B2  
AF13  
AF16  
AF19  
AF22  
AF30  
AF34  
AF5  
B33  
B34  
C11  
C24  
C3  
C32  
E1  
AH28  
AH7  
E13  
E16  
E19  
E22  
E26  
E30  
E34  
E5  
AK1  
AK13  
AK16  
AK19  
AK22  
AK26  
AK30  
AK34  
AK5  
E9  
G28  
G7  
AK9  
J1  
AM11  
AM24  
J13  
J16  
96  
www.xilinx.com  
1-800-255-7778  
DS099-4 (v1.5) July 13, 2004  
Product Specification  
R
Spartan-3 FPGA Family: Pinout Descriptions  
Table 37: FG1156 Package Pinout (Continued)  
Table 37: FG1156 Package Pinout (Continued)  
FG1156  
FG1156  
XC3S4000  
Pin Name  
XC3S5000  
Pin Name  
Pin  
Number  
XC3S4000  
Pin Name  
XC3S5000  
Pin Name  
Pin  
Number  
Bank  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
Type  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
Bank  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
Type  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
J19  
J22  
J30  
J34  
J5  
GND  
GND  
T21  
T26  
T30  
T34  
T5  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
K10  
K25  
L3  
T9  
U13  
U14  
U15  
U16  
U17  
U18  
U19  
U20  
U21  
U22  
V13  
V14  
V15  
V16  
V17  
V18  
V19  
V20  
V21  
V22  
W1  
L32  
N1  
N17  
N18  
N26  
N30  
N34  
N5  
N9  
P14  
P15  
P16  
P17  
P18  
P19  
P20  
P21  
R14  
R15  
R16  
R17  
R18  
R19  
R20  
R21  
T1  
W14  
W15  
W16  
W17  
W18  
W19  
W20  
W21  
W26  
W30  
W34  
W5  
T14  
T15  
T16  
T17  
T18  
T19  
T20  
W9  
Y14  
DS099-4 (v1.5) July 13, 2004  
Product Specification  
www.xilinx.com  
1-800-255-7778  
97  
R
Spartan-3 FPGA Family: Pinout Descriptions  
Table 37: FG1156 Package Pinout (Continued)  
Table 37: FG1156 Package Pinout (Continued)  
FG1156  
FG1156  
XC3S4000  
Pin Name  
XC3S5000  
Pin Name  
Pin  
Number  
XC3S4000  
Pin Name  
XC3S5000  
Pin Name  
Pin  
Number  
Bank  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
Type  
Bank  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
Type  
GND  
GND  
Y15  
Y16  
Y17  
Y18  
Y19  
Y20  
Y21  
AK31  
AD30  
AD5  
AG16  
AG19  
AJ30  
AJ5  
AK11  
AK15  
AK20  
AK24  
AK29  
AK6  
E11  
E15  
E20  
E24  
E29  
E6  
GND  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
CCLK  
AA22  
AB13  
AB14  
AB15  
AB16  
AB19  
AB20  
AB21  
AB22  
AC12  
AC17  
AC18  
AC23  
M12  
M17  
M18  
M23  
N13  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
CONFIG  
CONFIG  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
N.C. (‹)  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCINT  
N.C. („)  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCINT  
N.C.  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCINT  
N14  
N15  
N16  
N19  
N20  
N21  
N22  
P13  
F30  
F5  
P22  
R13  
H16  
H19  
L30  
R22  
T13  
T22  
L5  
U12  
R30  
R5  
U23  
V12  
T27  
T8  
V23  
W13  
W22  
Y13  
W27  
W8  
Y30  
Y5  
Y22  
VCCAUX CCLK  
VCCAUX DONE  
AL31  
AD24  
AA13  
DONE  
98  
www.xilinx.com  
1-800-255-7778  
DS099-4 (v1.5) July 13, 2004  
Product Specification  
R
Spartan-3 FPGA Family: Pinout Descriptions  
Table 37: FG1156 Package Pinout (Continued)  
User I/Os by Bank  
FG1156  
Pin  
Number  
Table 38 indicates how the available user-I/O pins are dis-  
tributed between the eight I/O banks for the XC3S4000 in  
the FG1156 package. Similarly, Table 39 shows how the  
available user-I/O pins are distributed between the eight I/O  
banks for the XC3S5000 in the FG1156 package.  
XC3S4000  
Pin Name  
XC3S5000  
Pin Name  
Bank  
Type  
CONFIG  
CONFIG  
CONFIG  
CONFIG  
CONFIG  
JTAG  
VCCAUX HSWAP_EN  
VCCAUX M0  
HSWAP_EN  
M0  
L11  
AL4  
AK4  
AG8  
D4  
VCCAUX M1  
M1  
VCCAUX M2  
M2  
VCCAUX PROG_B  
VCCAUX TCK  
VCCAUX TDI  
PROG_B  
TCK  
D31  
E4  
TDI  
JTAG  
VCCAUX TDO  
VCCAUX TMS  
TDO  
E31  
H27  
JTAG  
TMS  
JTAG  
Table 38: User I/Os Per Bank for XC3S4000 in FG1156 Package  
All Possible I/O Pins by Type  
I/O  
Bank  
Maximum  
I/O  
Package Edge  
I/O  
79  
79  
80  
79  
73  
73  
79  
79  
DUAL  
DCI  
2
VREF  
GCLK  
0
1
2
3
4
5
6
7
90  
90  
88  
88  
90  
90  
88  
88  
0
0
0
0
6
6
0
0
7
7
6
7
7
7
7
7
2
2
0
0
2
2
0
0
Top  
2
2
Right  
Bottom  
Left  
2
2
2
2
2
Table 39: User I/Os Per Bank for XC3S5000 in FG1156 Package  
All Possible I/O Pins by Type  
I/O  
Bank  
Maximum  
I/O  
Package Edge  
I/O  
89  
89  
87  
87  
83  
83  
87  
87  
DUAL  
DCI  
2
VREF  
GCLK  
0
1
2
3
4
5
6
7
100  
100  
96  
0
0
0
0
6
6
0
0
7
7
7
7
7
7
7
7
2
2
0
0
2
2
0
0
Top  
2
2
Right  
Bottom  
Left  
96  
2
100  
100  
96  
2
2
2
96  
2
DS099-4 (v1.5) July 13, 2004  
Product Specification  
www.xilinx.com  
1-800-255-7778  
99  
R
Spartan-3 FPGA Family: Pinout Descriptions  
FG1156 Footprint  
Top Left Corner of  
Package (top view)  
XC3S4000  
(712 max. user I/O)  
I/O: Unrestricted,  
general-purpose user I/O  
VREF: User I/O or input voltage  
reference for bank  
N.C.: Unconnected pins for  
XC3S4000 (‹)  
621  
55  
56  
73  
1
XC3S5000  
(784 max. user I/O)  
I/O: Unrestricted,  
general-purpose user I/O  
VREF: User I/O or input voltage  
reference for bank  
N.C.: Unconnected pins for  
XC3S5000 („)  
692  
Figure 16: FG1156 Package Footprint (top view)  
Bank 0  
1
2
3
I/O  
L01P_0  
VRN_0  
4
5
6
I/O  
L05P_0  
VREF_0  
7
8
9
10  
11  
12  
13  
14  
15  
I/O  
L26P_0  
VREF_0  
16  
17  
I/O  
L32P_0  
GCLK6  
I/O  
I/O  
I/O  
L02P_0  
I/O  
L36P_0  
I/O  
L38P_0  
I/O  
L15P_0  
I/O  
L22P_0  
L34P_0  
L40P_0  
GND  
GND  
GND  
GND  
GND  
GND  
A
B
C
D
E
F
‹
‹
I/O  
L34N_0  
‹
I/O  
L40N_0  
I/O  
L01N_0  
VRP_0  
I/O  
L32N_0  
GCLK7  
I/O  
L02N_0  
I/O  
L03P_0  
I/O  
L05N_0  
I/O  
L36N_0  
I/O  
L38N_0  
I/O  
L15N_0  
I/O  
L22N_0  
I/O  
L26N_0  
I/O  
L28P_0  
GND  
GND  
VCCO_0  
I/O  
‹
I/O  
L33P_0  
‹
I/O  
L01N_7  
VRP_7  
I/O  
L01P_7  
VRN_7  
I/O  
L31P_0  
VREF_0  
I/O  
L03N_0  
I/O  
L04P_0  
I/O  
L08P_0  
I/O  
L37P_0  
I/O  
L14P_0  
I/O  
L17P_0  
I/O  
L21P_0  
I/O  
L25P_0  
I/O  
L28N_0  
VCCO_0  
VCCO_0  
GND  
GND  
I/O  
L33N_0  
‹
IO  
VREF_0  
I/O  
L02N_7  
I/O  
L02P_7  
I/O  
L04N_0  
I/O  
L35P_0  
I/O  
L08N_0  
I/O  
L37N_0  
I/O  
L14N_0  
I/O  
L17N_0  
I/O  
L21N_0  
I/O  
L25N_0  
I/O  
L31N_0  
VCCO_7 PROG_B  
VCCO_0  
VCCAUX  
VCCO_0  
GND  
I/O  
L03N_7  
VREF_7  
IO  
VREF_0  
I/O  
TDI  
I/O  
L06P_0  
I/O  
L35N_0  
I/O  
L13P_0  
I/O  
L20P_0  
GND  
GND  
VCCAUX  
I/O  
GND  
VCCAUX  
I/O  
GND  
L03P_7  
I/O  
L39P_0  
‹
I/O  
L05N_7  
I/O  
L05P_7  
I/O  
L04N_7  
I/O  
L04P_7  
I/O  
L06N_0  
I/O  
L07P_0  
I/O  
L10P_0  
I/O  
L13N_0  
I/O  
L20N_0  
I/O  
L24P_0  
I/O  
L27P_0  
I/O  
L30P_0  
VCCAUX  
VCCO_0  
I/O  
VCCO_0  
I/O  
I/O  
L41N_7  
‹
I/O  
L41P_7  
‹
I/O  
L39N_0  
I/O  
L06N_7  
I/O  
L06P_7  
I/O  
L07N_0  
I/O  
L10N_0  
I/O  
L16P_0  
I/O  
L19P_0  
I/O  
L24N_0  
I/O  
L27N_0  
I/O  
L30N_0  
I/O  
I/O  
GND  
I/O  
G
H
J
‹
I/O  
L10P_7  
VREF_7  
I/O  
L08N_7  
I/O  
L08P_7  
I/O  
L07N_7  
I/O  
L07P_7  
I/O  
L09P_0  
I/O  
L12P_0  
I/O  
L16N_0  
I/O  
L19N_0  
I/O  
L29P_0  
VCCO_7  
VCCO_7  
VCCO_0  
VCCO_0 VCCAUX  
I/O  
I/O  
IO  
VREF_0  
I/O  
L11N_7  
I/O  
L11P_7  
I/O  
L10N_7  
I/O  
L09N_7  
I/O  
L09P_7  
I/O  
L12P_7  
I/O  
L09N_0  
I/O  
L12N_0  
I/O  
L23P_0  
I/O  
L29N_0  
GND  
GND  
I/O  
GND  
I/O  
GND  
‹
I/O  
L16P_7  
VREF_7  
I/O  
I/O  
L16N_7  
I/O  
L15N_7  
I/O  
L15P_7  
I/O  
L14N_7  
I/O  
L14P_7  
I/O  
L13N_7  
I/O  
L13P_7  
I/O  
L12N_7  
I/O  
L11P_0  
I/O  
L18P_0  
I/O  
I/O  
GND  
I/O  
I/O  
K
L
‹
L23N_0  
I/O  
L44N_7  
I/O  
L44P_7  
I/O  
L19N_7  
VREF_7  
HSWAP_  
EN  
IO  
I/O  
I/O  
L19P_7  
I/O  
L17N_7  
I/O  
L17P_7  
I/O  
L11N_0  
I/O  
L18N_0  
GND  
VCCO_7 VCCAUX  
VCCO_7  
I/O  
VREF_0  
‹
‹
I/O  
L45N_7  
I/O  
L45P_7  
I/O  
L23N_7  
I/O  
L23P_7  
I/O  
L22N_7  
I/O  
L22P_7  
I/O  
L21N_7  
I/O  
L21P_7  
I/O  
L24P_7  
I/O  
L20N_7  
I/O  
L20P_7  
VCCO_0 VCCO_0 VCCO_0 VCCO_0  
VCCINT VCCINT VCCINT VCCINT  
VCCINT  
VCCO_7  
VCCO_7  
VCCO_7  
VCCO_7  
VCCINT  
VCCINT  
GND  
GND  
GND  
M
N
P
R
T
I/O  
L25N_7  
I/O  
L25P_7  
I/O  
L46N_7  
I/O  
L46P_7  
I/O  
L24N_7  
I/O  
L26P_7  
VCCO_7  
GND  
VCCO_7  
GND  
GND  
I/O  
L47N_7  
I/O  
L47P_7  
I/O  
L27P_7  
VREF_7  
I/O  
L49N_7  
I/O  
L49P_7  
I/O  
L29N_7  
I/O  
L29P_7  
I/O  
L28N_7  
I/O  
L28P_7  
I/O  
L27N_7  
I/O  
L26N_7  
GND  
GND  
GND  
GND  
GND  
GND  
VCCINT  
VCCINT  
VCCINT  
GND  
‹
‹
I/O  
L32N_7  
I/O  
L32P_7  
I/O  
L31N_7  
I/O  
L31P_7  
I/O  
L30N_7  
I/O  
L30P_7  
I/O  
L33P_7  
I/O  
L50N_7  
I/O  
L50P_7  
VCCAUX  
GND  
VCCO_7  
VCCAUX  
I/O  
L51P_7  
I/O  
L35N_7  
I/O  
L35P_7  
I/O  
L34N_7  
I/O  
L34P_7  
I/O  
L33N_7  
VCCO_7  
GND  
I/O  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
‹
I/O  
L51N_7  
I/O  
L40N_7  
VREF_7  
I/O  
L37P_7  
VREF_7  
I/O  
L40P_7  
I/O  
L39N_7  
I/O  
L39P_7  
I/O  
L38N_7  
I/O  
L38P_7  
I/O  
L37N_7  
U
I/O  
‹
DS099-4_14a_072903  
100  
www.xilinx.com  
1-800-255-7778  
DS099-4 (v1.5) July 13, 2004  
Product Specification  
R
Spartan-3 FPGA Family: Pinout Descriptions  
All Devices  
Top Right Corner of  
Package (top view)  
DUAL: Configuration pin, then  
possible user I/O  
DCI: User I/O or reference  
resistor input for bank  
GCLK: User I/O or global clock  
buffer input  
12  
7
16  
4
8
CONFIG: Dedicated  
configuration pins  
JTAG: Dedicated JTAG port  
pins  
VCCO: Output voltage supply  
for bank  
104  
184  
VCCINT: Internal core voltage  
supply (+1.2V)  
VCCAUX: Auxiliary voltage  
supply (+2.5V)  
GND: Ground  
40  
32  
Bank 1  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
I/O  
L01N_1  
VRP_1  
33  
34  
I/O  
I/O  
L40N_1  
I/O  
L26N_1  
I/O  
L19N_1  
I/O  
L15N_1  
I/O  
L14N_1  
I/O  
L08N_1  
I/O  
L05N_1  
I/O  
L02N_1  
L34N_1  
I/O  
GND  
GND  
GND  
GND  
A
B
C
D
E
F
GND  
GND  
‹
I/O  
L34P_1  
I/O  
L32N_1  
GCLK5  
I/O  
L01P_1  
VRN_1  
I/O  
L28N_1  
I/O  
L40P_1  
I/O  
L26P_1  
I/O  
L19P_1  
I/O  
L15P_1  
I/O  
L14P_1  
I/O  
L08P_1  
I/O  
L05P_1  
I/O  
L03N_1  
I/O  
L02P_1  
VCCO_1  
I/O  
GND  
GND  
‹
I/O  
L33N_1  
‹
I/O  
L32P_1  
GCLK4  
I/O  
L10N_1  
VREF_1  
I/O  
L01N_2  
VRP_2  
I/O  
L01P_2  
VRN_2  
I/O  
L28P_1  
I/O  
L39N_1  
I/O  
L25N_1  
I/O  
L22N_1  
I/O  
L13N_1  
I/O  
L04N_1  
I/O  
L03P_1  
GND  
VCCO_1  
VCCO_1  
I/O  
GND  
I/O  
L33P_1  
I/O  
L31N_1  
VREF_1  
IO  
VREF_1  
I/O  
L39P_1  
I/O  
L25P_1  
I/O  
L22P_1  
I/O  
L18N_1  
I/O  
L13P_1  
I/O  
L10P_1  
I/O  
L07N_1  
I/O  
L04P_1  
I/O  
L02N_2  
I/O  
L02P_2  
VCCO_1  
GND  
VCCO_1  
VCCAUX  
VCCO_2  
TCK  
TDO  
‹
I/O  
L06N_1  
VREF_1  
I/O  
L03N_2  
VREF_2  
I/O  
L31P_1  
I/O  
L18P_1  
I/O  
L07P_1  
I/O  
L03P_2  
VCCAUX  
VCCAUX  
I/O  
I/O  
GND  
I/O  
GND  
GND  
GND  
I/O  
L36N_1  
‹
I/O  
L17N_1  
VREF_1  
I/O  
L27N_1  
I/O  
L38N_1  
I/O  
L24N_1  
I/O  
L12N_1  
I/O  
L09N_1  
I/O  
L06P_1  
I/O  
L04N_2  
I/O  
L04P_2  
I/O  
L41N_2  
I/O  
L41P_2  
VCCO_1  
VCCAUX  
I/O  
I/O  
I/O  
L36P_1  
I/O  
L42N_2  
I/O  
L42P_2  
I/O  
L30N_1  
I/O  
L27P_1  
I/O  
L38P_1  
I/O  
L24P_1  
I/O  
L21N_1  
I/O  
L17P_1  
I/O  
L12P_1  
I/O  
L09P_1  
I/O  
L05N_2  
I/O  
L05P_2  
I/O  
I/O  
VCCO_1  
TMS  
GND  
G
H
J
‹
‹
‹
I/O  
L09N_2  
VREF_2  
I/O  
L30P_1  
I/O  
L23N_1  
I/O  
L21P_1  
I/O  
L11N_1  
I/O  
L06N_2  
I/O  
L06P_2  
I/O  
L07N_2  
I/O  
L07P_2  
VCCAUX VCCO_1  
VCCO_1  
VCCO_2  
VCCO_2  
I/O  
I/O  
I/O  
L35N_1  
I/O  
I/O  
L29N_1  
I/O  
L37N_1  
I/O  
L23P_1  
I/O  
L16N_1  
I/O  
L11P_1  
I/O  
L11N_2  
I/O  
L08N_2  
I/O  
L08P_2  
I/O  
L09P_2  
I/O  
L10N_2  
I/O  
L10P_2  
GND  
GND  
GND  
GND  
‹
‹
I/O  
L35P_1  
I/O  
L13P_2  
VREF_2  
IO  
VREF_1  
I/O  
L29P_1  
I/O  
I/O  
I/O  
L20N_1  
I/O  
L16P_1  
I/O  
L11P_2  
I/O  
L12N_2  
I/O  
L12P_2  
I/O  
L13N_2  
I/O  
L14N_2  
I/O  
L14P_2  
I/O  
L15N_2  
I/O  
L15P_2  
GND  
K
L
L37P_1  
‹
I/O  
I/O  
L17N_2  
I/O  
L17P_2  
VREF_2  
‹
IO  
VREF_1  
I/O  
L20P_1  
I/O  
L16N_2  
I/O  
L16P_2  
I/O  
L45N_2  
I/O  
L45P_2  
GND  
VCCO_2  
VCCAUX VCCO_2  
I/O  
I/O  
I/O  
I/O  
‹
‹
I/O  
L46N_2  
I/O  
L46P_2  
I/O  
L21N_2  
I/O  
L47N_2  
I/O  
L47P_2  
I/O  
L19N_2  
I/O  
L19P_2  
I/O  
L20N_2  
I/O  
L20P_2  
I/O  
L48N_2  
I/O  
L48P_2  
VCCO_1 VCCO_1 VCCO_1 VCCO_1  
VCCINT VCCINT VCCINT VCCINT  
VCCINT  
VCCINT  
GND  
VCCINT  
VCCO_2  
VCCO_2  
VCCO_2  
VCCO_2  
VCCINT  
M
N
P
R
T
I/O  
L23N_2  
VREF_2  
I/O  
L24N_2  
I/O  
L21P_2  
I/O  
L22N_2  
I/O  
L22P_2  
I/O  
L23P_2  
GND  
VCCO_2  
VCCO_2  
GND  
GND  
I/O  
L49N_2  
I/O  
L49P_2  
I/O  
L24P_2  
I/O  
L50N_2  
I/O  
L50P_2  
I/O  
L26N_2  
I/O  
L26P_2  
I/O  
L27N_2  
I/O  
L27P_2  
I/O  
L28N_2  
I/O  
L28P_2  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
‹
‹
I/O  
L29N_2  
I/O  
L29P_2  
I/O  
L33N_2  
I/O  
L30N_2  
I/O  
L30P_2  
I/O  
L31N_2  
I/O  
L31P_2  
I/O  
L32N_2  
I/O  
L32P_2  
VCCO_2  
VCCAUX  
VCCAUX  
GND  
VCCINT  
VCCINT  
GND  
I/O  
L51N_2  
I/O  
L34N_2  
VREF_2  
I/O  
L33P_2  
I/O  
L34P_2  
I/O  
L35N_2  
I/O  
L35P_2  
VCCO_2  
GND  
I/O  
GND  
‹
I/O  
L51P_2  
I/O  
L40P_2  
VREF_2  
I/O  
L37N_2  
I/O  
L37P_2  
I/O  
L38N_2  
I/O  
L38P_2  
I/O  
L39N_2  
I/O  
L39P_2  
I/O  
L40N_2  
I/O  
U
‹
DS099-4_14b_072903  
DS099-4 (v1.5) July 13, 2004  
Product Specification  
www.xilinx.com  
1-800-255-7778  
101  
R
Spartan-3 FPGA Family: Pinout Descriptions  
1
I/O  
L40P_6  
VREF_6  
2
3
4
5
6
7
8
9
10  
11  
I/O  
L49P_6  
‹
12  
13  
14  
15  
16  
17  
I/O  
L40N_6  
I/O  
L39P_6  
I/O  
L39N_6  
I/O  
L38P_6  
I/O  
L38N_6  
I/O  
L52P_6  
I/O  
L52N_6  
VCCINT  
V
W
Y
I/O  
I/O  
GND  
GND  
GND  
GND  
GND  
I/O  
L49N_6  
‹
I/O  
L37P_6  
I/O  
L37N_6  
I/O  
L36P_6  
I/O  
L36N_6  
I/O  
L35P_6  
GND  
VCCO_6  
GND  
VCCAUX  
VCCO_6  
GND  
VCCO_6  
VCCO_6  
VCCO_6  
VCCO_6  
VCCINT  
VCCINT  
VCCINT  
VCCINT  
GND  
GND  
GND  
GND  
I/O  
L34N_6  
VREF_6  
I/O  
L34P_6  
I/O  
L33P_6  
I/O  
L33N_6  
I/O  
L48P_6  
I/O  
L48N_6  
I/O  
L35N_6  
I/O  
L32P_6  
I/O  
L32N_6  
VCCAUX  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
I/O  
L46P_6  
I/O  
L46N_6  
A
A
I/O  
L31P_6  
I/O  
L31N_6  
I/O  
L30P_6  
I/O  
L30N_6  
I/O  
L29P_6  
I/O  
L29N_6  
I/O  
L28P_6  
I/O  
L28N_6  
I/O  
L27P_6  
‹
‹
A
B
I/O  
L26P_6  
I/O  
L26N_6  
I/O  
L25P_6  
I/O  
L25N_6  
I/O  
L24P_6  
I/O  
L27N_6  
VCCO_6  
VCCO_6  
GND  
GND  
GND  
VCCINT VCCINT VCCINT VCCINT  
I/O  
L24N_6  
VREF_6  
A
C
I/O  
L23P_6  
I/O  
L23N_6  
I/O  
L45P_6  
I/O  
L45N_6  
I/O  
L22P_6  
I/O  
L22N_6  
I/O  
L21P_6  
I/O  
L21N_6  
I/O  
L20P_6  
I/O  
L20N_6  
VCCO_5 VCCO_5 VCCO_5 VCCO_5  
VCCINT  
I/O  
I/O  
L44P_6  
I/O  
L44N_6  
I/O  
L17P_6  
VREF_6  
I/O  
A
D
I/O  
L19P_6  
I/O  
L19N_6  
I/O  
L17N_6  
I/O  
L16P_5  
VCCO_6 VCCAUX  
VCCO_6  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
GND  
‹
‹
‹
I/O  
L39P_5  
I/O  
L13P_6  
VREF_6  
I/O  
L29P_5  
VREF_5  
A
E
I/O  
L16P_6  
I/O  
L16N_6  
I/O  
L15P_6  
I/O  
L15N_6  
I/O  
L14P_6  
I/O  
L14N_6  
I/O  
L13N_6  
I/O  
L12P_6  
I/O  
L12P_5  
I/O  
L16N_5  
I/O  
L23P_5  
GND  
‹
I/O  
L39N_5  
I/O  
L09N_6  
VREF_6  
I/O  
L19P_5  
VREF_5  
I/O  
A
F
I/O  
L11P_6  
I/O  
L11N_6  
I/O  
L10P_6  
I/O  
L09P_6  
I/O  
L12N_6  
I/O  
L07P_5  
I/O  
L12N_5  
I/O  
L23N_5  
I/O  
L29N_5  
GND  
GND  
GND  
GND  
‹
‹
A
G
I/O  
L08P_6  
I/O  
L08N_6  
I/O  
L10N_6  
I/O  
L07P_6  
I/O  
L07N_6  
I/O  
L07N_5  
I/O  
L17P_5  
I/O  
L19N_5  
I/O  
L30P_5  
VCCO_6  
VCCO_6  
GND  
VCCO_5  
VCCO_5 VCCAUX  
M2  
I/O  
I/O  
I/O  
L41P_6  
I/O  
L41N_6  
I/O  
L40P_5  
‹
A
H
I/O  
L06P_6  
I/O  
L06N_6  
I/O  
L37P_5  
I/O  
L08P_5  
I/O  
L13P_5  
I/O  
L17N_5  
I/O  
L20P_5  
I/O  
I/O  
I/O  
L30N_5  
I/O  
I/O  
VCCO_5  
L24P_5  
L27P_5  
‹
‹
I/O  
L40N_5  
‹
I/O  
L27N_5  
VREF_5  
A
J
IO  
VREF_5  
I/O  
L05P_6  
I/O  
L05N_6  
I/O  
L04P_6  
I/O  
L04N_6  
I/O  
L06P_5  
I/O  
L37N_5  
I/O  
L08N_5  
I/O  
L13N_5  
I/O  
L20N_5  
I/O  
L24N_5  
VCCAUX  
GND  
VCCO_5  
GND  
I/O  
I/O  
I/O  
L03N_6  
VREF_6  
I/O  
L31P_5  
D5  
A
K
I/O  
L03P_6  
I/O  
L06N_5  
I/O  
L35P_5  
I/O  
L14P_5  
VCCAUX  
VCCAUX  
VCCO_5  
GND  
VCCAUX  
M1  
M0  
I/O  
I/O  
GND  
GND  
GND  
I/O  
L33P_5  
I/O  
L31N_5  
D4  
A
L
IO  
VREF_5  
I/O  
L02P_6  
I/O  
L02N_6  
I/O  
L04P_5  
I/O  
L35N_5  
I/O  
L38P_5  
I/O  
L09P_5  
I/O  
L14N_5  
I/O  
L18P_5  
I/O  
L21P_5  
I/O  
L25P_5  
VCCO_6  
GND  
VCCO_5  
‹
I/O  
L33N_5  
I/O  
L01P_6  
VRN_6  
I/O  
L01N_6  
VRP_6  
I/O  
L28P_5  
D7  
I/O  
L32P_5  
GCLK2  
A
M
I/O  
L03P_5  
I/O  
L04N_5  
I/O  
L38N_5  
I/O  
L09N_5  
I/O  
L18N_5  
I/O  
L21N_5  
I/O  
L25N_5  
VCCO_5  
VCCO_5  
I/O  
‹
I/O  
L34P_5  
I/O  
L01P_5  
CS_B  
I/O  
L10P_5  
VRN_5  
I/O  
L28N_5  
D6  
I/O  
L32N_5  
GCLK3  
A
N
I/O  
L02P_5  
I/O  
L03N_5  
I/O  
L05P_5  
I/O  
L36P_5  
I/O  
L11P_5  
I/O  
L15P_5  
I/O  
L22P_5  
I/O  
L26P_5  
VCCO_5  
GND  
I/O  
GND  
GND  
GND  
GND  
‹
I/O  
L34N_5  
I/O  
L01N_5  
RDWR_B  
I/O  
L10N_5  
VRP_5  
I/O  
L11N_5  
VREF_5  
A
P
IO  
VREF_5  
I/O  
L02N_5  
I/O  
L05N_5  
I/O  
L36N_5  
I/O  
L15N_5  
I/O  
L22N_5  
I/O  
L26N_5  
GND  
GND  
GND  
‹
Bank 5  
DS099-4_14c_072503  
Bottom Left Corner of  
Package (top view)  
102  
www.xilinx.com  
1-800-255-7778  
DS099-4 (v1.5) July 13, 2004  
Product Specification  
R
Spartan-3 FPGA Family: Pinout Descriptions  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
I/O  
L40N_3  
VREF_3  
I/O  
I/O  
L37P_3  
I/O  
L37N_3  
I/O  
L38P_3  
I/O  
L38N_3  
I/O  
L39P_3  
I/O  
L39N_3  
I/O  
L40P_3  
L51N_3  
I/O  
I/O  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
VCCINT  
V
W
Y
‹
I/O  
L51P_3  
I/O  
L34P_3  
VREF_3  
I/O  
L33N_3  
I/O  
L34N_3  
I/O  
L35P_3  
I/O  
L35N_3  
VCCO_3  
VCCO_3  
VCCO_3  
VCCO_3  
VCCINT  
VCCAUX  
VCCO_3  
VCCO_3  
GND  
GND  
GND  
GND  
VCCINT  
I/O  
GND  
GND  
GND  
GND  
GND  
GND  
VCCINT  
VCCINT  
VCCINT  
GND  
GND  
GND  
‹
I/O  
L50P_3  
I/O  
L50N_3  
I/O  
L33P_3  
I/O  
L30P_3  
I/O  
L30N_3  
I/O  
L31P_3  
I/O  
L31N_3  
I/O  
L32P_3  
I/O  
L32N_3  
VCCAUX  
I/O  
L49P_3  
I/O  
L49N_3  
A
A
I/O  
L48N_3  
I/O  
L26P_3  
I/O  
L26N_3  
I/O  
L27P_3  
I/O  
L27N_3  
I/O  
L28P_3  
I/O  
L28N_3  
I/O  
L29P_3  
I/O  
L29N_3  
‹
‹
A
B
I/O  
L48P_3  
I/O  
L24N_3  
I/O  
L46P_3  
I/O  
L46N_3  
I/O  
L47P_3  
I/O  
L47N_3  
VCCO_3  
VCCO_3  
VCCINT VCCINT VCCINT VCCINT  
GND  
GND  
GND  
I/O  
L23P_3  
VREF_3  
A
C
I/O  
L20P_3  
I/O  
L20N_3  
I/O  
L24P_3  
I/O  
L21P_3  
I/O  
L21N_3  
I/O  
L22P_3  
I/O  
L22N_3  
I/O  
L23N_3  
I/O  
L45P_3  
I/O  
L45N_3  
VCCO_4 VCCO_4 VCCO_4 VCCO_4  
I/O  
L44P_3  
I/O  
L44N_3  
I/O  
L17P_3  
VREF_3  
A
D
I/O  
L18N_4  
I/O  
L11N_4  
I/O  
L17N_3  
I/O  
L19P_3  
I/O  
L19N_3  
VCCO_3  
VCCAUX VCCO_3  
GND  
I/O  
I/O  
I/O  
I/O  
I/O  
DONE  
‹
‹
I/O  
L13N_3  
VREF_3  
I/O  
A
E
I/O  
L23N_4  
I/O  
L18P_4  
I/O  
L11P_4  
I/O  
L12N_3  
I/O  
L13P_3  
I/O  
L14P_3  
I/O  
L14N_3  
I/O  
L15P_3  
I/O  
L15N_3  
I/O  
L16P_3  
I/O  
L16N_3  
GND  
I/O  
‹
I/O  
L09P_3  
VREF_3  
I/O  
A
F
IO  
VREF_4  
I/O  
L29N_4  
I/O  
L23P_4  
I/O  
L12N_4  
I/O  
L07N_4  
I/O  
L12P_3  
I/O  
L09N_3  
I/O  
L10N_3  
I/O  
L11P_3  
I/O  
L11N_3  
I/O  
GND  
GND  
GND  
GND  
‹
A
G
I/O  
L29P_4  
I/O  
L19N_4  
I/O  
L16N_4  
I/O  
L12P_4  
I/O  
L07P_4  
I/O  
L07P_3  
I/O  
L07N_3  
I/O  
L10P_3  
I/O  
L08P_3  
I/O  
L08N_3  
VCCAUX VCCO_4  
I/O  
VCCO_4  
VCCO_3  
GND  
VCCO_3  
I/O  
I/O  
VCCO_4  
I/O  
I/O  
L39N_4  
I/O  
L41P_3  
I/O  
L41N_3  
I/O  
L30N_4  
D2  
A
H
IO  
VREF_4  
I/O  
L24N_4  
I/O  
L19P_4  
I/O  
L16P_4  
I/O  
L08N_4  
I/O  
L05N_4  
I/O  
L06P_3  
I/O  
L06N_3  
L27N_4  
DIN  
I/O  
I/O  
‹
‹
‹
D0  
I/O  
L39P_4  
I/O  
L30P_4  
D3  
I/O  
L27P_4  
D1  
A
J
I/O  
L24P_4  
I/O  
L20N_4  
I/O  
L13N_4  
I/O  
L08P_4  
I/O  
L05P_4  
I/O  
L35N_4  
I/O  
L04P_3  
I/O  
L04N_3  
I/O  
L05P_3  
I/O  
L05N_3  
VCCO_4  
GND  
VCCAUX  
GND  
I/O  
‹
N.C.  
‹
„
A
K
IO  
VREF_4  
I/O  
L20P_4  
I/O  
L13P_4  
I/O  
L38N_4  
I/O  
L35P_4  
I/O  
L03P_3  
I/O  
L03N_3  
VCCAUX  
VCCAUX  
VCCAUX  
I/O  
GND  
GND  
GND  
I/O  
L36N_4  
‹
I/O  
L31N_4  
INIT_B  
I/O  
L06N_4  
VREF_4  
I/O  
L02N_3  
VREF_3  
A
L
IO  
VREF_4  
I/O  
L25N_4  
I/O  
L21N_4  
I/O  
L17N_4  
I/O  
L14N_4  
I/O  
L09N_4  
I/O  
L38P_4  
I/O  
L33N_4  
I/O  
L02P_3  
VCCO_4  
VCCO_4  
GND  
VCCO_3  
GND  
CCLK  
I/O  
I/O  
L36P_4  
I/O  
L01P_3  
VRN_3  
I/O  
L01N_3  
VRP_3  
A
M
I/O  
L28N_4  
I/O  
L25P_4  
I/O  
L21P_4  
I/O  
L17P_4  
I/O  
L14P_4  
I/O  
L09P_4  
I/O  
L06P_4  
I/O  
L33P_4  
I/O  
L03N_4  
L31P_4  
DOUT  
BUSY  
VCCO_4  
VCCO_4  
‹
I/O  
L40N_4  
I/O  
L37N_4  
I/O  
L32N_4  
GCLK1  
I/O  
L22N_4  
VREF_4  
I/O  
L01N_4  
VRP_4  
A
N
I/O  
L28P_4  
I/O  
L26N_4  
I/O  
L15N_4  
I/O  
L10N_4  
I/O  
L04N_4  
I/O  
L34N_4  
I/O  
L03P_4  
I/O  
L02N_4  
VCCO_4  
GND  
GND  
GND  
GND  
GND  
I/O  
‹
‹
I/O  
L40P_4  
I/O  
L37P_4  
I/O  
L32P_4  
GCLK0  
I/O  
L26P_4  
VREF_4  
I/O  
L01P_4  
VRN_4  
A
P
I/O  
L22P_4  
I/O  
L15P_4  
I/O  
L10P_4  
I/O  
L04P_4  
I/O  
L34P_4  
I/O  
L02P_4  
GND  
GND  
GND  
‹
‹
Bank 4  
DS099-4_14d_072903  
Bottom Right Corner  
of Package (top view)  
DS099-4 (v1.5) July 13, 2004  
Product Specification  
www.xilinx.com  
1-800-255-7778  
103  
R
Spartan-3 FPGA Family: Pinout Descriptions  
Revision History  
Date  
Version No.  
Description  
04/03/03  
04/21/03  
1.0  
1.1  
Initial Xilinx release.  
Added information on the VQ100 package footprint, including a complete pinout table  
(Table 16) and footprint diagram (Figure 8).  
Updated Table 15 with final I/O counts for the VQ100 package. Also added final differential I/O  
pair counts for the TQ144 package.  
Added clarifying comments to HSWAP_EN pin description on page 13.  
Updated the footprint diagram for the FG900 package shown in Figure 15a and Figure 15b.  
Some thick lines separating I/O banks were incorrect.  
Made cosmetic changes to Figure 1, Figure 3, and Figure 4.  
Updated Xilinx hypertext links.  
Added XC3S200 and XC3S400 to Pin Name column in Table 18.  
AM32 pin was missing GND label in FG1156 package diagram (Figure 16).  
05/12/03  
07/11/03  
1.1.1  
1.1.2  
Corrected misspellings of GCLK in Table 1 and Table 2. Changed CMOS25 to LVCMOS25 in  
Dual-Purpose Pin I/O Standard During Configuration section. Clarified references to  
Module 2. For XC3S5000 in FG1156 package, corrected N.C. symbol to a black square in  
Table 37, key, and package drawing.  
07/29/03  
1.2  
Corrected pin names on FG1156 package. Some package balls incorrectly included LVDS pair  
names. The affected balls on the FG1156 package include G1, G2, G33, G34, U9, U10, U25,  
U26, V9, V10, V25, V26, AH1, AH2, AH33, AH34. The number of LVDS pairs is unaffected.  
Modified affected balls and re-sorted rows in Table 37. Updated affected balls in Figure 16.  
Also updated ASCII and Excel electronic versions of FG1156 pinout.  
08/19/03  
10/09/03  
1.2.1  
1.2.2  
Removed 100 MHz ConfigRate option in CCLK: Configuration Clock section and in Table 11.  
Added note that TDO is a totem-pole output in Table 9.  
Some pins had incorrect bank designations and were improperly sorted in Table 20. No pin  
names or functions changed. Renamed DCI_IN to DCI and added black diamond to N.C. pins  
in Table 20. In Figure 10, removed some extraneous text from pin 106 and corrected spelling  
of pins 45, 48, and 81.  
12/17/03  
1.3  
Added FG320 pin tables and pinout diagram (FG320: 320-lead Fine-pitch Ball Grid Array).  
Made cosmetic changes to the TQ144 footprint (Figure 9), the PQ208 footprint (Figure 10), the  
FG676 footprint (Figure 14), and the FG900 footprint (Figure 15). Clarified wording in  
Precautions When Using the JTAG Port in 3.3V Environments section.  
02/27/04  
07/13/04  
1.4  
1.5  
Clarified wording in Using JTAG Port After Configuration section. In Table 12, reduced  
package height for FG320 and increased maximum I/O values for the FG676, FG900, and  
FG1156 packages.  
Added information on lead-free (Pb-free) package options to the Package Overview section  
plus Table 12 and Table 13. Clarified the VRN_# reference resistor requirements for I/O  
standards that use single termination as described in the DCI Termination Types section and  
in Figure 3b. Graduated from Advance Product Specification to Product Specification.  
104  
www.xilinx.com  
1-800-255-7778  
DS099-4 (v1.5) July 13, 2004  
Product Specification  
R
Spartan-3 FPGA Family: Pinout Descriptions  
The Spartan-3 Family Data Sheet  
DS099-1, Spartan-3 FPGA Family: Introduction and Ordering Information (Module 1)  
DS099-2, Spartan-3 FPGA Family: Functional Description (Module 2)  
DS099-3, Spartan-3 FPGA Family: DC and Switching Characteristics (Module 3)  
DS099-4, Spartan-3 FPGA Family: Pinout Descriptions (Module 4)  
DS099-4 (v1.5) July 13, 2004  
Product Specification  
www.xilinx.com  
1-800-255-7778  
105  

相关型号:

XC3S5000-4FG456C

Spartan-3 FPGA Family : Complete Data Sheet
XILINX

XC3S5000-4FG456I

Spartan-3 FPGA Family : Complete Data Sheet
XILINX

XC3S5000-4FG676C

Spartan-3 FPGA Family : Complete Data Sheet
XILINX

XC3S5000-4FG676I

Spartan-3 FPGA Family : Complete Data Sheet
XILINX

XC3S5000-4FG900C

Spartan-3 FPGA Family : Complete Data Sheet
XILINX

XC3S5000-4FG900I

Spartan-3 FPGA Family : Complete Data Sheet
XILINX

XC3S5000-4FGG676C

Field Programmable Gate Array, 8320 CLBs, 5000000 Gates, 630MHz, 74880-Cell, CMOS, PBGA676, 27 X 27 MM, LEAD FREE, FBGA-676
XILINX

XC3S5000-4FGG676I

暂无描述
XILINX

XC3S5000-4FGG900C

Field Programmable Gate Array, 8320 CLBs, 5000000 Gates, 630MHz, 74880-Cell, CMOS, PBGA900, 31 X 31 MM, LEAD FREE, FBGA-900
XILINX

XC3S5000-4FT256C

Spartan-3 FPGA Family : Complete Data Sheet
XILINX

XC3S5000-4FT256I

Spartan-3 FPGA Family : Complete Data Sheet
XILINX

XC3S5000-4FTG256C

Field Programmable Gate Array, 192 CLBs, 50000 Gates, PBGA256, LEAD FREE, FTBGA-256
XILINX