X90100X8I [XICOR]

NV Electronically Programmable Capacitor; NV电子可编程电容器
X90100X8I
型号: X90100X8I
厂家: XICOR INC.    XICOR INC.
描述:

NV Electronically Programmable Capacitor
NV电子可编程电容器

电容器 电子 PC
文件: 总10页 (文件大小:105K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Small Packages  
MSOP  
Flipchip  
NV Electronically Programmable Capacitor  
X90100  
FEATURES  
DESCRIPTION  
• Non-volatile EEPROM storage of programmed  
trim codes  
• Power On Recall of capacitance setting  
• High-Performance Electronically Trimmable  
Capacitance  
• Excellent Linearity: <0.5 LSB error  
• Very Simple Digital Interface  
• Fast Adjustments: 5µs max incremental change  
• Eliminates the need for mechanical tuning  
• Capacitance trimmable from 7.5 pF to 14.5 pF  
(single-ended mode)  
The Xicor X90100 is a non-volatile electronically pro-  
grammable capacitor. The device is programmed  
through a simple digital interface. After programming,  
the chosen setting for the device is retained by inter-  
nal EEPROM storage whether or not DC power is  
maintained. There are 32 programmable capacitance  
values selectable, ranging from 7.5 pF to 14.5 pF in  
0.23 pF increments, in single-ended mode. The dielec-  
tric is highly stable, and the capacitance exhibits a very  
low voltage coefficient. It has virtually no dielectric  
absorbtion and has a very low temperature drift coeffi-  
cient in differential mode (<50ppm/°C).  
• Packages:  
—MSOP (1.1mm x 3.0mm x 3.0mm)  
—FCP (1.35mm x 1.32mm x 0.50mm)  
The X90100 is programmed through three digital inter-  
face pins, which have Schmitt triggers and pullup  
resistors to secure code retention. The three pins,  
INC, U/D, and CS, are identical in operation to other  
Xicor chips with up/down interface, such as the x9315  
5-bit Digitally Controlled Potentiometer (DCP).  
APPLICATIONS  
• Post-trim of low-cost regenerative receivers  
• Tunable RF stages  
• Low-cost, Low temperature drift oscillators  
• Garage door openers  
• Keyless entry  
• Industrial wireless control  
• Capacitive sensor trimming  
• RFID tags  
BLOCK DIAGRAM  
Cm  
Cp  
1*C  
2*C  
U
U
C
C
PAD  
PAD  
4*C  
8*C  
U
U
V
SS  
16*C  
U
U/D  
CS  
Logic and E2  
INC  
V
Power On Reset  
CC  
1 of 10  
REV 1.4.7 9/8/03  
www.xicor.com  
X90100  
PIN CONFIGURATION  
MSOP  
X90100  
X
X
X
INC  
1
2
3
4
8
7
6
5
V
CC  
V
Limits  
CC  
U/D  
Vss  
Cp  
CS  
Blank =2.7V to 5.5V  
X90100  
N/C  
Temperature Range  
I = Industrial = –40°C to +85°C  
Cm  
Package  
M = 8-Lead MSOP  
FCP  
X = 8-Bump FCP (Flipchip)  
3
6
1
7
2
4
Base Part Number  
5
8
X90100  
X90100 ORDERING CODES  
Ordering  
Number  
Temperature  
Ctotal  
Package  
8-lead MSOP  
8-lead FCP  
Range  
X90100M8I  
X90100X8I  
7.5pF to 14.5pF, Single Ended  
7.5pF to 14.5pF, Single Ended  
-40C to +85C  
-40C to +85C  
PIN DESCRIPTIONS  
Pin Number  
MSOP  
FCP Symbol  
Brief Description  
1
6
INC  
Increment (INC). The INC input is negative-edge triggered. Toggling INC will move the  
capacitance value and either increment or decrement the counter in the direction indicat-  
ed by the logic level on the U/D input.  
2
7
U/D  
Up/Down (U/D). The U/D input controls the direction of the trimmed capacitor value and  
whether the counter is incremented or decremented.  
3
4
8
5
V
Ground.  
SS  
Cp  
Cp. The high (Cp) and low (Cm) terminals of the X90100 are equivalent to the fixed ter-  
minals of a mechanical trimmable capacitor. The minimum dc voltage is V and the  
maximum is V . The value of capacitance across the terminals is determined by digital  
inputs INC, U/D, and CS.  
SS  
CC  
5
4
Cm  
Cm. The high (Cp) and low (Cm) terminals of the X90100 are equivalent to the fixed ter-  
minals of a mechanical trimmable capacitor. The minimum dc voltage is V and the  
SS  
maximum is V . The value of capacitance across the terminals is determined by digital  
CC  
inputs INC, U/D, and CS.  
6
7
2
1
N/C  
CS  
Not Connected. Must be floating.  
Chip Select (CS). The device is selected when the CS input is LOW. The current counter  
value is stored in nonvolatile memory when CS is returned HIGH while the INC input is  
also HIGH. After the store operation is complete the X90100 will be placed in the low  
power standby mode until the device is selected once again.  
8
3
V
Positive Supply Voltage.  
CC  
2 of 10  
REV 1.4.7 9/8/03  
www.xicor.com  
X90100  
ABSOLUTE MAXIMUM RATINGS  
COMMENT  
Temperature under bias ....................–65°C to +135°C  
Stresses above those listed under “Absolute Maximum  
Ratings” may cause permanent damage to the device.  
This is a stress rating only; the functional operation of  
the device (at these or any other conditions above  
those listed in the operational sections of this specifi-  
cation) is not implied. Exposure to absolute maximum  
rating conditions for extended periods may affect  
device reliability.  
Storage temperature .........................–65°C to +150°C  
Voltage on CS, INC, U/D, C , and  
P
C with respect to V ...........................1V to +7V  
M
SS  
V = |V –V | ..................................................... 5V  
CP CM  
Lead temperature (soldering 10 seconds)..........300°C  
CAPACITOR CHARACTERISTICS (Vcc=+5V, T =25°C, single ended mode, C = 0V, unless otherwise stated.)  
A
M
Limits  
Typ(4). Max.  
15  
Symbol  
Parameter  
Absolute accuracy  
C terminal voltage  
Min.  
Unit  
%
Test Conditions/Notes  
V
0
0
V
V
V
Cp  
p
CC  
V
C
terminal voltage  
V
Cm  
m
CC  
C  
C  
Capacitance increments  
Capacitance range  
Capacitance at Code=0  
Capacitance at Code=31  
Quality factor(5)  
0.23  
7
pF  
pF  
pF  
pF  
C
C
7.5  
14.5  
7
TOTAL  
TOTAL  
Q
f=315 MHz  
Resolution  
5
bits  
lsb  
lsb  
INL  
Absolute linearity error(1)  
Relative linearity error(2)  
0.15  
0.15  
50  
DNL  
TC  
1
C
Temperature Coefficient(5)  
ppm/°C Differential Mode  
V
TOTAL  
V
Supply Voltage  
2.7  
5.5  
CC  
Notes: (1) Absolute linearity is used to determine actual capacitance versus expected capacitance = C (actual) — C (expected) = 0.15 Ml.  
(n)  
(n)  
(2) Relative linearity is a measure of the error in step size between settings = C  
—[C + Ml] = 0.15 Ml.  
(n+1)  
(n)  
(3) lsb = least significant bit = C  
/31.  
TOT  
(4) Typical values are for T = 25°C and nominal supply voltage.  
A
(5) This parameter is not 100% tested  
3 of 10  
REV 1.4.7 9/8/03  
www.xicor.com  
X90100  
D.C. OPERATING CHARACTERISTICS (V  
= 5V, T = 25°C unless otherwise specified)  
CC  
A
Limits  
(4)  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Test Conditions  
CS = V , U/D = V or V and  
INC = 0.4V @ max. t  
I
V
V
active current (Increment)  
50  
100  
µA  
CC  
CC1  
IL  
IL  
IH  
CYC  
I
active current (Store) (EE-  
PROM Store)  
250  
0.5  
-15  
500  
2
µA  
µA  
µA  
CS = V , U/D = V or V and  
CC  
CC2  
IH  
IL  
IH  
INC = V @ max. t  
IH WR  
I
Standby supply current  
CS = V – 0.3V, U/D and  
CC  
SB  
INC = V or V – 0.3V  
SS  
CC  
I
CS, INC, U/D input leakage  
current  
V
= V  
LI  
IN  
SS  
V
CS, INC, U/D input HIGH voltage  
CS, INC, U/D input LOW voltage  
CS, INC, U/D input capacitance  
V
x 0.7  
V + 0.5  
CC  
V
V
IH  
CC  
V
–0.5  
V
x 0.1  
IL  
(5)  
CC  
C
10  
pF  
V
= 5V, V = V  
,
IN  
CC  
IN  
SS  
T = 25°C, f = 1MHz  
A
ENDURANCE AND DATA RETENTION (V  
= 5V, T = 25°C unless otherwise specified)  
A
CC  
Parameter  
Minimum endurance  
Data retention  
Min.  
100,000  
100  
Unit  
Data changes per bit  
Years  
A.C. CONDITIONS OF TEST  
Input pulse levels  
0V to 3V  
10ns  
Input rise and fall times  
Input reference levels  
1.5V  
4 of 10  
REV 1.4.7 9/8/03  
www.xicor.com  
X90100  
A.C. OPERATING CHARACTERISTICS (V  
= 5V, T = 25°C unless otherwise specified)  
CC  
A
Limits  
(4)  
Typ.  
Symbol  
Parameter  
Min.  
100  
100  
100  
1
Max.  
Unit  
ns  
t
t
CS to INC setup  
Cl  
lD  
INC HIGH to U/D change  
U/D to INC setup  
ns  
t
ns  
DI  
(7)  
t
INC LOW period  
µs  
lL  
(7)  
t
INC HIGH period  
1
µs  
lH  
t
INC Inactive to CS inactive  
CS Deselect time (NO STORE)  
CS Deselect time (STORE)  
1
µs  
lC  
(5)  
t
1
µs  
CPHNS  
(5)  
CPHS  
t
10  
ms  
µs  
t
INC to C  
change  
1
5
5
IW  
TOTAL  
t
INC cycle time  
4
µs  
CYC  
(5)  
t
t
INC input rise and fall time  
500  
5
µs  
,
R
t
F
(5)  
Power up to capacitance stable  
µs  
PU  
t V  
(5)  
CC  
(5)  
V
CC  
power-up rate  
0.2  
50  
10  
V/ms  
ms  
R
t
Store cycle  
WR  
A.C. TIMING  
CS  
t
CYC  
(Store)  
t
CPHNS  
t
t
t
t
t
CI  
IL  
IH  
IC  
CPHS  
90% 90%  
10%  
INC  
U/D  
t
t
t
t
R
ID  
DI  
F
t
IW  
(6)  
MI  
C
TOTAL  
Notes: (6) MI in the A.C. timing diagram refers to the minimum incremental change in the C  
output due to a change in the counter value.  
TOTAL  
(7) t + t 4µs  
IH  
IL  
5 of 10  
REV 1.4.7 9/8/03  
www.xicor.com  
X90100  
POWER UP TIMING (DIGITAL INPUTS FLOATING, INTERNAL PULLUP ACTION SHOWN)  
V
= 3.3 or 5.0V  
CC  
t V  
R
CC  
V
CC  
CS  
INC  
U/D  
POWER UP AND DOWN REQUIREMENTS  
There are no restrictions on the power-up or power-down conditions of V and the voltages applied to the Cp, Cm  
CC  
pins provided that V is always more positive than or equal to V , V , i.e., V  
V , V . The V  
ramp rate  
CC  
Cp Cm  
CC  
Cp Cm  
CC  
spec is always in effect.  
Powerup Requirements  
In order to prevent unwanted tap position changes or an inadvertant store, bring the CS and INC high before or  
concurrently with the V pin. The logic inputs have internal active pullups to provide reliable powerup operation.  
CC  
See powerup timing diagram.  
6 of 10  
REV 1.4.7 9/8/03  
www.xicor.com  
X90100  
PIN CONFIGURATION  
MSOP  
INC  
1
2
3
4
8
7
6
5
V
CC  
U/D  
Vss  
Cp  
CS  
X90100  
N/C (leave floating)  
Cm  
DETAILED PIN DESCRIPTIONS  
Cp and Cm  
PIN NAMES  
Symbol  
Cp  
Default  
output  
output  
supply  
supply  
pull up  
pull up  
pull up  
Description  
Positive capacitor terminal  
Negative capacitor terminal  
Ground  
The high (Cp) and low (Cm) terminals of the X90100  
are equivalent to the fixed terminals of a mechanical  
trimmable capacitor. The minimum dc voltage is V  
Cm  
SS  
V
SS  
CC  
and the maximum is V . The value of capacitance  
CC  
V
Positive supply voltage  
Up/Down control input  
Increment control input  
Chip Select control input  
across the terminals is determined by digital inputs  
INC, U/D, and CS.  
U/D  
INC  
CS  
Up/Down (U/D)  
The U/D input controls the direction of the trimmed  
capacitor value and whether the counter is incre-  
mented or decremented. This pin has an active current  
source pullup.  
PRINCIPLES OF OPERATION  
There are three sections of the X90100: the input con-  
trol, counter and decode section; the nonvolatile mem-  
ory; and the capacitor array. The input control section  
operates just like an up/down counter. The output of  
this counter is decoded to turn on electronic switches  
connecting internal units to the sum capacitor. Under  
the proper conditions the contents of the counter can  
be stored in nonvolatile memory and retained for future  
use. The capacitor array is comprised of 31 individual  
capacitors connected in parallel. At one end of each  
element is an electronic switch that connects it to the  
sum.  
Increment (INC)  
The INC input is negative-edge triggered. Toggling INC  
will move the capacitance value and either increment  
or decrement the counter in the direction indicated by  
the logic level on the U/D input. This pin has an active  
current source pullup.  
Chip Select (CS)  
The device is selected when the CS input is LOW. The  
current counter value is stored in nonvolatile memory  
when CS is returned HIGH while the INC input is also  
HIGH. After the store operation is complete the  
X90100 will be placed in the low power standby mode  
until the device is selected once again. This pin has  
active circuit source pullup.  
The capacitor, when at either end of the range, acts  
like its mechanical equivalent and does not move  
beyond the last position. That is, the counter does not  
wrap around when clocked to either extreme.  
The electronic switches on the device operate in a  
“make before break” mode when the counter changes  
positions. If the counter is moved several positions,  
N/C - This pin should be left floating.  
multiple units are connected to the total for t (INC to  
IW  
C
change). The C  
value for the device can  
TOTAL  
TOTAL  
temporarily be increased by a significant amount if the  
counter is moved several positions.  
7 of 10  
REV 1.4.7 9/8/03  
www.xicor.com  
X90100  
When the device is powered-down, the last counter  
position stored will be maintained in the nonvolatile  
memory. When power is restored, the contents of the  
memory are recalled and the capacitor is set to the  
value last stored.  
This procedure allows the system to always power-up  
to a preset value stored in nonvolatile memory; then  
during system operation minor adjustments can be  
made. The adjustments might be based on user prefer-  
ence, system parameter changes due to temperature  
drift, etc.  
INSTRUCTIONS AND PROGRAMMING  
The state of U/D may be changed while CS remains  
LOW. This allows the host system to enable the device  
and then move the counter up and down until the  
proper trim is attained.  
The INC, U/D and CS inputs control the movement of  
the capacitor total value. With CS set LOW the device  
is selected and enabled to respond to the U/D and INC  
inputs. HIGH to LOW transitions on INC will increment  
or decrement (depending on the state of the U/D input)  
a five bit counter. The output of this counter is decoded  
to select one of thirty two capacitor combinations for  
the capacitor array.  
MODE SELECTION  
Mode  
Cap value Up  
CS  
L
INC  
U/D  
H
L
L
Cap value Down  
The value of the counter is stored in nonvolatile mem-  
ory whenever CS transitions HIGH while the INC input  
is also HIGH.  
H
X
L
X
Store Cap Position  
Standby Current  
H
X
The system may select the X90100, move the capaci-  
tor value and deselect the device without having to  
store the latest count total in nonvolatile memory. After  
the count movement is performed as described above  
and once the new position is reached, the system must  
X
No Store, Return to Standby  
L
H
Cap value Up  
(not recommended)  
L
L
Cap value Down  
(not recommended)  
keep INC LOW while taking CS HIGH. The new C  
TO-  
value will be maintained until changed by the sys-  
TAL  
tem or until a power-up/down cycle recalled the  
previously stored data.  
TABLE OF VALUES  
Single-Ended Mode  
Code  
Differential Mode  
= Code • 0.35 + 1.00 (pF)  
0 Code 31  
C
OUT  
C
=
• 7.0 + 7.5 (pF)  
OUT  
31  
0 Code 31  
C
m
C
X1  
p
C
C
p
s
Oscillator  
Circuit  
X90100  
Oscillator  
Circuit  
C
p
C
X2  
m
X90100  
Example of a single-ended circuit  
Example of a differential mode circuit  
8 of 10  
REV 1.4.7 9/8/03  
www.xicor.com  
X90100  
PACKAGING INFORMATION  
8 Bump FCP Package  
a
d
1
3
2
4
b
5
6
7
8
f
Bottom View (Bumped Side)  
e
Side View  
e
c
Side View  
Min  
Nominal  
Millimeters  
1.352  
Max  
Symbol  
Package Width  
Package Length  
Package Height  
Body Thickness  
Ball Height  
a
b
c
d
e
f
1.322  
1.297  
0.466  
0.381  
0.085  
0.100  
1.382  
1.357  
0.546  
0.431  
0.115  
0.140  
1.327  
0.506  
0.406  
0.100  
Ball Diameter  
0.125  
Bump Name  
X coordinate, µm  
Y coordinate, µm  
1
2
3
CS  
28.4  
352.9  
-488.6  
478.8  
471.8  
351.3  
NC/Test  
V
CC  
4
5
6
7
8
Cm  
Cp  
491.9  
491.9  
-491.6  
-40.1  
210.8  
-218.2  
-382.7  
-479.2  
-488.7  
INC  
U/D  
V
373.4  
SS  
Note: Coordinate (0,0) is at package center  
9 of 10  
REV 1.4.7 9/8/03  
www.xicor.com  
X90100  
PACKAGING INFORMATION  
8-Lead Miniature Small Outline Gull Wing Package Type M  
0.118 0.002  
(3.00 0.05)  
0.012 + 0.006 / -0.002  
(0.30 + 0.15 / -0.05)  
0.0256 (0.65) Typ.  
R 0.014 (0.36)  
0.118 0.002  
(3.00 0.05)  
0.030 (0.76)  
0.0216 (0.55)  
7° Typ.  
0.036 (0.91)  
0.032 (0.81)  
0.0256" Typical  
0.040 0.002  
(1.02 0.05)  
0.008 (0.20)  
0.004 (0.10)  
0.025"  
Typical  
0.220"  
0.150 (3.81)  
0.020"  
Typical  
8 Places  
0.007 (0.18)  
0.005 (0.13)  
Ref.  
0.193 (4.90)  
Ref.  
FOOTPRINT  
NOTE:  
1. ALL DIMENSIONS IN INCHES AND (MILLIMETERS)  
©Xicor, Inc. 2003 Patents Pending  
LIMITED WARRANTY  
Devices sold by Xicor, Inc. are covered by the warranty and patent indemnification provisions appearing in its Terms of Sale only. Xicor, Inc. makes no warranty,  
express, statutory, implied, or by description regarding the information set forth herein or regarding the freedom of the described devices from patent infringement.  
Xicor, Inc. makes no warranty of merchantability or fitness for any purpose. Xicor, Inc. reserves the right to discontinue production and change specifications and prices  
at any time and without notice.  
Xicor, Inc. assumes no responsibility for the use of any circuitry other than circuitry embodied in a Xicor, Inc. product. No other circuits, patents, or licenses are implied.  
TRADEMARK DISCLAIMER:  
Xicor and the Xicor logo are registered trademarks of Xicor, Inc. AutoStore, Direct Write, Block Lock, SerialFlash, MPS, BiasLock and XDCP are also trademarks of  
Xicor, Inc. All others belong to their respective owners.  
U.S. PATENTS  
Xicor products are covered by one or more of the following U.S. Patents: 4,326,134; 4,393,481; 4,404,475; 4,450,402; 4,486,769; 4,488,060; 4,520,461; 4,533,846;  
4,599,706; 4,617,652; 4,668,932; 4,752,912; 4,829,482; 4,874,967; 4,883,976; 4,980,859; 5,012,132; 5,003,197; 5,023,694; 5,084,667; 5,153,880; 5,153,691;  
5,161,137; 5,219,774; 5,270,927; 5,324,676; 5,434,396; 5,544,103; 5,587,573; 5,835,409; 5,977,585. Foreign patents and additional patents pending.  
LIFE RELATED POLICY  
In situations where semiconductor component failure may endanger life, system designers using this product should design the system with appropriate error detection  
and correction, redundancy and back-up features to prevent such an occurrence.  
Xicor’s products are not authorized for use in critical components in life support devices or systems.  
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to  
perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.  
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life  
support device or system, or to affect its safety or effectiveness.  
Characteristics subject to change without notice. 10 of 10  
REV 1.4.7 9/8/03  
www.xicor.com  

相关型号:

X90100XI

NV Electronically Programmable Capacitor
XICOR

X9015

Low Noise, Low Power Volatile
INTERSIL

X9015

Digitally-Controlled Potentiometer
XICOR

X9015TM8-2.7

100K DIGITAL POTENTIOMETER, INCREMENT/DECREMENT CONTROL INTERFACE, 32 POSITIONS, PDSO8, MSOP-8
RENESAS

X9015TM8-2.7

Digital Potentiometer, 1 Func, 100000ohm, Increment/decrement Control Interface, 32 Positions, PDSO8, MSOP-8
XICOR

X9015TM8I-2.7

Digital Potentiometer, 1 Func, 100000ohm, Increment/decrement Control Interface, 32 Positions, PDSO8, MSOP-8
XICOR

X9015TS8-2.7

Low Noise, Low Power Volatile
INTERSIL

X9015TS8-2.7

Digital Potentiometer, 1 Func, 100000ohm, Increment/decrement Control Interface, 32 Positions, PDSO8, PLASTIC, SOIC-8
XICOR

X9015TS8-2.7T1

50K DIGITAL POTENTIOMETER, INCREMENT/DECREMENT CONTROL INTERFACE, 32 POSITIONS, PDSO8, PLASTIC, SOIC-8
RENESAS

X9015TS8I-2.7

Digital Potentiometer, 1 Func, 100000ohm, Increment/decrement Control Interface, 32 Positions, PDSO8, PLASTIC, SOIC-8
XICOR

X9015TS8Z-2.7

50K DIGITAL POTENTIOMETER, INCREMENT/DECREMENT CONTROL INTERFACE, 32 POSITIONS, PDSO8, ROHS COMPLIANT, PLASTIC, SOIC-8
RENESAS

X9015TS8Z-2.7T1

50K DIGITAL POTENTIOMETER, INCREMENT/DECREMENT CONTROL INTERFACE, 32 POSITIONS, PDSO8, ROHS COMPLIANT, PLASTIC, SOIC-8
RENESAS