X5001V8-2.7 [XICOR]

CPU Supervisor; CPU监控器
X5001V8-2.7
型号: X5001V8-2.7
厂家: XICOR INC.    XICOR INC.
描述:

CPU Supervisor
CPU监控器

电源电路 电源管理电路 光电二极管 监控
文件: 总19页 (文件大小:101K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
X5001  
CPU Supervisor  
Features  
DESCRIPTION  
• 200ms Power On Reset Delay  
• Low Vcc Detection and Reset Assertion  
Five Standard ResetThreshold Voltages  
Adjust Low Vcc ResetThreshold Voltage using  
special programming sequence  
Reset Signal Valid to Vcc=1V  
• Selectable Nonvolatile WatchdogTimer  
0.2, 0.6, 1.4 seconds  
This device combines three popular functions, Power on  
Reset, Watchdog Timer, and Supply Voltage Supervision  
in one package. This combination lowers system cost,  
reduces board space requirements, and increases reli-  
ability.  
The Watchdog Timer provides an independent protection  
mechanism for microcontrollers. During a system failure,  
the device will respond with a RESET signal after a  
selectable time-out interval. The user selects the interval  
from three preset values. Once selected, the interval  
does not change, even after cycling the power.  
Off selection  
Select settings through software  
• Long Battery Life With Low Power Consumption  
<50µA Max Standby Current,Watchdog On  
<1µA Max Standby Current,Watchdog Off  
• 2.7V to 5.5V Operation  
The user’s system is protected from low voltage condi-  
tions by the device’s low Vcc detection circuitry. When  
Vcc falls below the minimum Vcc trip point, the system is  
reset. RESET is asserted until Vcc returns to proper  
operating levels and stabilizes. Five industry standard  
• SPI Mode 0 interface  
• Built-in Inadvertent Write Protection  
Power-Up/Power-Down Protection Circuitry  
Watchdog Change Latch  
• High Reliability  
• Available Packages  
8-LeadTSSOP  
8-Lead SOIC  
—8 Pin PDIP  
V
thresholds are available, however, Xicor’s unique  
TRIP  
circuits allow the thresold to be reprogrammed to meet  
custom requirements or to fine-tune the threshold for  
applications requiring higher precision.  
The device utilizes Xicor’s proprietary Direct WriteTM cell  
for the Watchdog TImer control bits and the V  
stor-  
TRIP  
age element, providing a minimum endurance of  
100,000 write cycles and a minimum data retention of  
100 years.  
Block Diagram  
RESET  
WATCHDOG  
TRANSITION  
DETECTOR  
WATCHDOG  
TIMER  
SI  
DATA  
REGISTER  
RESET &  
WATCHDOG  
TIMEBASE  
SO  
COMMAND  
DECODE &  
CONTROL  
LOGIC  
SCK  
CS/WDI  
POWER ON/  
LOW VOLTAGE  
RESET  
V
+
-
CC  
GENERATION  
V
TRIP  
7036 FRM 01  
Xicor, Inc. 1994, 1995, 1996, 1998 Patents Pending  
7078 1.1 8/9/99 CM  
Characteristics subject to change without notice  
1
X5001  
PIN DESCRIPTION  
PIN  
PIN  
(SOIC/PDIP)  
TSSOP  
Name  
Function  
Chip Select Input.CS HIGH, deselects the device and the SO output pin is at  
a high impedance state. Unless a nonvolatile write cycle is underway, the de-  
vice will be in the standby power mode. CS LOW enables the device, placing it  
in the active power mode. Prior to the start of any operation after power up, a  
HIGH to LOW transition on CS is required  
1
1
CS/WDI  
Watchdog Input.A HIGH to LOW transition on the WDI pin restarts the Watch-  
dog timer.The absence of a HIGH to LOW transition within the watchdog time-  
out period results in RESET/RESET going active.  
Serial Output. SO is a push/pull serial data output pin. A read cycle shifts data  
out on this pin.The falling edge of the serial clock (SCK) clocks the data out.  
2
5
2
8
SO  
SI  
Serial Input.SI is a serial data input pin.Input all opcodes, byte addresses, and  
memory data on this pin.The rising edge of the serial clock (SCK) latches the  
input data. Send all opcodes (Table 1), addresses and data MSB first.  
Serial Clock.The Serial Clock controls the serial bus timing for data input and  
output.The rising edge of SCK latches in the opcode, address, or watchdog  
bits present on the SI pin.The falling edge of SCK changes the data output on  
the SO pin.  
6
3
9
6
SCK  
V
Program Enable.When V is LOW, the V  
point is fixed at the last  
TRIP  
PE  
TRIP  
V
valid programmed level.To readjust the V  
be pulled to a high voltage (15-18V).  
level, requires that the VPE pin  
PE  
TRIP  
V
4
8
7
Ground  
SS  
V
14  
Supply Voltage  
CC  
Reset Output.RESET is an active LOW, open drain output which goes active  
whenever Vcc falls below the minimum Vcc sense level. It will remain active un-  
tilVcc rises above the minimumVcc sense level for 200ms.RESET goes active  
if the Watchdog Timer is enabled and CS/WDI remains either HIGH or LOW  
longer than the selectable Watchdog time-out period. A falling edge of CS/WDI  
will reset the Watchdog Timer. RESET goes active on power up at 1V and re-  
mains active for 200ms after the power supply stabilizes.  
7
13  
RESET  
NC  
3-5,10-12  
No internal connections  
Figure 1. PIN CONFIGURATION  
8 Lead TSSOP  
8 Lead SOIC/PDIP  
V
1
2
3
4
8
7
6
5
CS/WDI  
SO  
RESET  
SCK  
SI  
1
2
3
4
8
7
6
5
CC  
VCC  
RESET  
SCK  
SI  
V
PE  
CS/WDI  
SO  
V
SS  
V
V
SS  
PE  
2
X5001  
PRINCIPLES OF OPERATION  
Power On Reset  
To set the new V  
threshold voltage to the Vcc pin and tie the W pin to the  
programming voltage V . Then a V  
voltage, apply the desired V  
TRIP TRIP  
PE  
programming  
P
TRIP  
command sequence is sent to the device over the SPI  
interface. This V programming sequence consists of  
pulling CS LOW, then clocking in data 03h, 00h and 01h.  
This is followed by bringing CS HIGH then LOW and  
clocking in data 02h, 00h, and 01h (in order) and bringing  
Application of power to the X5001 activates a Power On  
Reset Circuit. This circuit goes active at 1V and pulls the  
RESET/RESET pin active. This signal prevents the sys-  
tem microprocessor from starting to operate with insuffi-  
cient voltage or prior to stabilization of the oscillator.When  
TRIP  
CS HIGH. This initiates the V  
programming  
TRIP  
Vcc exceeds the device V  
value for 200ms (nominal)  
TRIP  
sequence.V is brought LOW to end the operation.  
P
the circuit releases RESET, allowing the processor to  
begin executing code.  
Resetting the V  
Voltage  
TRIP  
This procedure is used to set the V  
to a “native” volt-  
TRIP  
Low voltage monitoring  
age level. For example, if the current V  
is 4.4V and  
must be 4.0V, then the V must be  
TRIP  
TRIP  
the new V  
During operation, the X5001 monitors the V  
level and  
TRIP  
CC  
reset. When V  
is reset, the new V  
is something  
asserts RESET if supply voltage falls below a preset mini-  
mum V .The RESET signal prevents the microproces-  
TRIP  
TRIP  
less than 1.7V. This procedure must be used to set the  
voltage to a lower value.  
TRIP  
sor from operating in a power fail or brownout condition.  
The RESET signal remains active until the voltage drops  
below 1V. It also remains active until Vcc returns and  
To reset the V  
voltage, apply greater than 3V to the  
TRIP  
Vcc pin and tie the W pin to the programming voltage  
PE  
exceeds V  
for 200ms.  
TRIP  
Vp. Then a V  
command sequence is sent to the  
TRIP  
device over the SPI interface. This V  
programming  
TRIP  
watchdog timer  
sequence consists of pulling CS LOW, then clocking in  
data 03h, 00h and 01h. This is followed by bringing CS  
HIGH then LOW and clocking in data 02h, 00h, and 03h  
The Watchdog Timer circuit monitors the microprocessor  
activity by monitoring the WDI input. The microprocessor  
must toggle the CS/WDI pin periodically to prevent a  
RESET signal. The CS/WDI pin must be toggled from  
HIGH to LOW prior to the expiration of the watchdog time-  
out period. The state of two nonvolatile control bits in the  
Watchdog Register determine the watchdog timer period.  
(in order) and bringing CS HIGH. This initiates the V  
TRIP  
programming sequence. V is brought LOW to end the  
P
operation.  
VccThreshold Reset Procedure  
The X5001 is shipped with a standard Vcc threshold  
(V  
) voltage. This value will not change over normal  
TRIP  
operating and storage conditions. However, in applica-  
tions where the standard V is not exactly right, or if  
TRIP  
higher precision is needed in the V  
value, the X5001  
TRIP  
threshold may be adjusted. The procedure is described  
below, and requires the application of a high voltage con-  
trol signal.  
Setting the V  
Voltage  
TRIP  
This procedure is used to set the V  
to a higher volt-  
TRIP  
age value. For example, if the current V  
is 4.4V and  
TRIP  
the new V  
is 4.6V, this procedure will directly make  
TRIP  
the change. If the new setting is to be lower than the cur-  
rent setting, then it is necessary to reset the trip point  
before setting the new value.  
3
X5001  
Figure 2. Sample V  
Reset Circuit  
TRIP  
4.7K  
V
P
RESET  
uC  
1
2
3
4
8
7
6
5
Adjust  
Run  
X5001  
SCK  
SI  
V
Adj.  
TRIP  
SO  
CS  
Figure 3. Set V  
Level Sequence (Vcc=desired V value. )  
TRIP  
TRIP  
V
= 15-18V  
PE  
V
PE  
CS  
0
1
2
3
4
5
6
7
8
9
10  
20 21 22 23  
0
1
2
3
4
5
6
7
8
9
10  
20 21 22 23  
SCK  
SI  
16 BITS  
16 BITS  
03h  
0001h  
02h  
0001h  
Figure 4. Reset V  
Level Sequence (Vcc > 3V. )  
TRIP  
V
= 15-18V  
PE  
V
PE  
CS  
0
1
2
3
4
5
6
7
8
9
10  
20 21 22 23  
0
1
2
3
4
5
6
7
8
9
10  
20 21 22 23  
SCK  
SI  
16 BITS  
16 BITS  
03h  
0001h  
02h  
0003h  
4
X5001  
Figure 5. Vtrip Programming Sequence  
Vtrip Programming  
Execute  
Reset Vtrip  
Sequence  
Set Vcc = Vcc applied =  
Desired Vtrip  
Execute  
Set Vtrip  
Sequence  
New Vcc applied =  
Old Vcc applied + Error  
New Vcc applied =  
Old Vcc applied - Error  
Apply 5V to Vcc  
Execute  
Reset Vtrip  
Sequence  
Decrement Vcc  
(Vcc = Vcc - 50mV)  
NO  
RESET pin  
goes active?  
YES  
Error < 0  
Error > 0  
Measured Vtrip -  
Desired Vtrip  
Error = 0  
DONE  
5
X5001  
spi Interface  
Watchdog Change Latch  
The Watchdog Change Latch must be SET before a Write  
Watchdog Timer Operation is initiated. The Enable  
Watchdog Change (EWDC) instruction will set the latch  
and the Disable Watchdog Change (DWDC) instruction  
will reset the latch (See Figure 2.) This latch is automati-  
cally reset upon a power-up condition and after the com-  
pletion of a valid nonvolatile write cycle.  
The device is designed to interface directly with the syn-  
chronous Serial Peripheral Interface (SPI) of many popu-  
lar microcontroller families.  
The device monitors the CS/WDI line and asserts RESET  
output if there is no activity within user selctable time-out  
period. The device also monitors the Vcc supply and  
asserts the RESET if Vcc falls below a preset minimum  
Read WatchdogTimer Register Operation  
(V  
). The device contains an 8-bit Watchdog Timer  
TRIP  
Register to control the watchdog time-out period.The cur-  
rent settings are accessed via the SI and SO pins.  
If there is not a nonvolatile write in progress, the Read  
Watchdog Timer instruction returns the setting of the  
watchdog timer control bits. The other bits are reserved  
and will return ’0when read. See Figure 3.  
All instructions (Table 1) and data are transferred MSB  
first. Data input on the SI line is latched on the first rising  
edge of SCK after CS goes LOW. Data is output on the  
SO line by the falling edge of SCK. SCK is static, allowing  
the user to stop the clock and then start it again to resume  
operations where left off.  
If a nonvolatile write is in progress, the Read Watchdog  
Timer Register Instruction returns a HIGH on SO. When  
the nonvolatile write cycle is completed, a seperate Read  
Watchdog Timer instruction should be used to determine  
the current status of the Watchdog control bits.  
WatchdogTimer Register  
RESET Operation  
7
0
6
0
5
0
4
3
2
0
1
0
0
0
The RESET (X5001) output is designed to go LOW  
WD WD  
1
0
whenever V has dropped below the minimum trip point  
CC  
and/or the Watchdog timer has reached its programmable  
time-out limit.  
WatchdogTimer Control Bits  
The Watchdog Timer Control bits, WD and WD , select  
the Watchdog Time-out Period. These nonvolatile bits are  
programmed with the Set Watchdog Timer (SWDT)  
instruction.  
0
1
The RESET output is an open drain output and requires a  
pull up resistor.  
Operational Notes  
The device powers-up in the following state:  
Watchdog Control Bits  
WatchdogTime-out  
• The device is in the low power standby state.  
• A HIGH to LOW transition on CS is required to enter an  
active state and receive an instruction.  
• SO pin is high impedance.  
• The Watchdog Change Latch is reset.  
WD1  
WD0  
(Typical)  
1.4 Seconds  
600 Milliseconds  
200 Milliseconds  
Disabled  
0
0
1
1
0
1
0
1
• The RESET Signal is active for t  
.
PURST  
Data Protection  
Write Watchdog Register Operation  
The following circuitry has been included to prevent inad-  
vertent writes:  
Changing the Watchdog Timer Register is a two step pro-  
cess. First, the change must be enabled with by setting  
the Watchdog Change Latch (see below). This instruction  
is followed by the Set Watchdog Timer (SWDT) instruc-  
tion, which includes the data to be written (Figure 5). Data  
bits 3 and 4 contain the Watchdog settings and data bits  
0, 1, 2, 5, 6 and 7 must be “0” .  
• A EWDC instruction must be issued to enable a change  
to the watchdog timeout setting.  
• CS must come HIGH at the proper clock count in order  
to implement the requested changes to the watchdog  
timeout setting.  
6
X5001  
Table 1. Instruction Set Definition  
Instruction Format  
Instruction Name and Operation  
0000 0110  
0000 0100  
0000 0001  
EWDC: Enable Watchdog Change Operation  
DWDC: Disable Watchdog Change Operation  
SWDT: Set WatchdogTimer control bits:  
Instruction followed by contents of register: 000(WD ) (WD )000  
1
0
See Watchdog Timer Settings and Figure 3.  
0000 0101  
RWDT: Read WatchdogTimer control bits  
Notes: Instructions are shown with MSB in leftmost position. Instructions are transferred MSB first.  
7038 FRM T03  
Figure 1. Read WatchdogTimer setting  
CS  
0
1
2
3
4
5
6
7
...  
...  
...  
SCK  
SI  
RWDT  
INSTRUCTION  
W
D
1
W
D
0
SO  
Figure 2. Enable Watchdog Change/Disable Watchdog Change Sequence  
CS  
0
1
2
3
4
5
6
7
SCK  
INSTRUCTION  
(1 BYTE)  
SI  
HIGH IMPEDANCE  
SO  
7
X5001  
Figure 3. Write WatchdogTimer Sequence  
CS  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15  
SCK  
INSTRUCTION  
DATA BYTE  
4
6
5
3
SI  
W
D
1
W
D
0
HIGH IMPEDANCE  
SO  
Figure 4. Read Nonvolatile Status (Option 1) (Used to determine end of Watchdog Timer store operation)  
CS  
0
1
2
3
4
5
6
7
SCK  
SI  
RWDT  
INSTRUCTION  
NONVOLATILE WRITE IN PROGRESS  
SO  
SO HIGH During 1st bit while  
in the Nonvolatile write cycle  
Figure 5. Read Nonvolatile Status (Option 2) (Used to determine end of Watchdog Timer store operation)  
CS  
0
1
2
3
4
5
6
7
SCK  
SI  
RWDT  
INSTRUCTION  
NONVOLATILE WRITE IN PROGRESS  
SO  
SO HIGH During  
Nonvolatile write cycle  
8
X5001  
ABSOLUTE MAXIMUM RATINGS*  
*COMMENT  
Temperature under Bias ........................–65°Cto+135°C  
Storage Temperature .............................–65°Cto+150°C  
Stresses above those listed under “Absolute Maximum  
Ratings” may cause permanent damage to the device.  
This is a stress rating only and the functional operation of  
the device at these or any other conditions above those  
listed in the operational sections of this specification is not  
implied. Exposure to absolute maximum rating conditions  
for extended periods may affect device reliability.  
Voltage on any Pin with Respect to V ....... –1.0V to +7V  
SS  
D.C. Output Current ....................................................5mA  
Lead Temperature (Soldering, 10 seconds)............300°C  
RECOMMENDED OPERATING CONDITIONS  
Temp  
Min.  
Max.  
Voltage Option  
–1.8  
Supply Voltage Limits  
1.8V to 3.6V  
Commercial  
0°C  
+70°C  
7036 FRM T07  
–2.7 or -2.7A  
2.7V to 5.5V  
–4.5 or -4.5A  
4.5V to 5.5V  
PT= Package, Temperature  
D.C. OPERATING CHARACTERISTICS (Over the recommended operating conditions unless otherwise specified.)  
Limits  
Symbol  
Parameter  
Units  
Test Conditions  
Min. Typ. Max.  
SCK = V x 0.1/V x 0.9 @ 5MHz,  
SO = Open  
CC  
CC  
I
V
V
Write Current (Active)  
5
mA  
CC1  
CC  
SCK = V x 0.1/V x 0.9 @ 5MHz,  
CC  
CC  
I
Read Current (Active)  
0.4  
mA  
CC2  
CC  
SO = Open  
I
V
V
V
Standby Current WDT=OFF  
Standby Current WDT=ON  
Standby Current WDT=ON  
1
µA CS = V , V = V or V , V = 5.5V  
CC IN SS CC CC  
SB1  
CC  
CC  
CC  
I
50  
20  
µA CS = V , V = V or V , V = 5.5V  
CC IN SS CC CC  
SB2  
I
µA CS = V , V = V or V , V =3.6V  
CC IN SS CC CC  
SB3  
I
Input Leakage Current  
Output Leakage Current  
Input LOW Voltage  
0.1  
0.1  
10  
10  
µA  
µA  
V
V
= V to V  
LI  
IN SS CC  
I
V
= V to V  
LO  
OUT SS CC  
(1)  
–0.5  
V
x0.3  
CC  
V
V
IL  
(1)  
Input HIGH Voltage  
V
x0.7  
V
+0.5  
CC  
V
CC  
IH  
V
Output LOW Voltage  
Output LOW Voltage  
Output LOW Voltage  
Output HIGH Voltage  
Output HIGH Voltage  
Output HIGH Voltage  
Reset Output LOW Voltage  
0.4  
V
V
> 3.3V, I = 2.1mA  
OL1  
CC OL  
V
0.4  
0.4  
V
2V < V < 3.3V, I = 1mA  
CC OL  
OL2  
V
V
VCC 2V, I = 0.5mA  
OL  
OL3  
V
V
V
V
–0.8  
–0.4  
–0.2  
V
V > 3.3V, I = 1.0mA  
CC OH  
OH1  
CC  
CC  
CC  
V
V
2V < VCC 3.3V, I = 0.4mA  
OH2  
OH  
V
V
VCC 2V, I = 0.25mA  
OH3  
OH  
V
0.4  
V
I
= 1mA  
OLRS  
OL  
POWER-UPTIMING  
Symbol  
Parameter  
Min.  
Max.  
Units  
ms  
(2)  
1
5
Power-up to Read Operation  
Power-up to Write Operation  
t
PUR  
(2)  
ms  
t
PUW  
CAPACITANCE T = +25°C, f = 1MHz,V = 5V.  
A
CC  
Symbol  
Test  
Max.  
Units  
pF  
Conditions  
(2)  
OUT  
8
6
V
= 0V  
Output Capacitance (SO, RESET)  
Input Capacitance (SCK, SI, CS)  
C
OUT  
(2)  
IN  
pF  
V
= 0V  
C
IN  
Notes: (1) V min. and V max. are for reference only and are not tested.  
IL  
IH  
(2) This parameter is periodically sampled and not 100% tested.  
9
X5001  
Figure 1. EQUIVALENT A.C. LOAD CIRCUIT  
A.C.TEST CONDITIONS  
3V  
5V  
V
x 0.1 to V x 0.9  
Input Pulse Levels  
CC  
CC  
Input Rise and Fall Times  
Input and Output Timing Level  
10ns  
3.3KΩ  
1.64KΩ  
V
x0.5  
CC  
OUTPUT  
1.64KΩ  
RESET  
30pF  
100pF  
A.C. CHARACTERISTICS (Over recommended operating conditions, unless otherwise specified)  
Data InputTiming  
1.8V–3.6V  
2.7V–5.5V  
Symbol  
Parameter  
Clock Frequency  
Min.  
Max.  
Min.  
0
Max.  
Units  
f
0
1
2
MHz  
ns  
SCK  
t
Cycle Time  
1000  
400  
400  
400  
400  
100  
100  
500  
200  
200  
200  
200  
50  
CYC  
t
CS Lead Time  
CS Lag Time  
ns  
LEAD  
t
ns  
LAG  
t
Clock HIGH Time  
Clock LOW Time  
Data Setup Time  
Data Hold Time  
Input Rise Time  
Input Fall Time  
CS Deselect Time  
Write Cycle Time  
ns  
WH  
t
ns  
WL  
t
ns  
SU  
t
50  
ns  
H
(3)  
t
2
2
2
2
µs  
RI  
(3)  
t
µs  
ns  
FI  
t
250  
150  
CS  
(4)  
t
10  
10  
ms  
WC  
Data OutputTiming  
Symbol  
1.8V–3.6V  
2.7V–5.5V  
Parameter  
Min.  
Max.  
1
Min.  
Max.  
Units  
f
Clock Frequency  
0
0
2
MHz  
ns  
SCK  
t
Output Disable Time  
Output Valid from Clock Low  
Output Hold Time  
400  
400  
200  
200  
DIS  
t
ns  
V
t
0
0
ns  
HO  
(3)  
t
Output Rise Time  
300  
300  
150  
150  
ns  
RO  
(3)  
t
Output Fall Time  
ns  
FO  
Notes: (3) This parameter is periodically sampled and not 100% tested.  
(4) t is the time from the rising edge of CS after a valid write sequence has been sent to the end of the self-timed internal  
WC  
nonvolatile write cycle.  
10  
X5001  
Figure 1. Data OutputTiming  
CS  
tCYC  
tWH  
tLAG  
SCK  
tV  
MSB OUT  
tHO  
tWL  
tDIS  
SO  
SI  
MSB–1 OUT  
LSB OUT  
ADDR  
LSB IN  
Figure 2. Data InputTiming  
tCS  
CS  
tLEAD  
tLAG  
SCK  
tSU  
tH  
tRI  
tFI  
SI  
MSB IN  
LSB IN  
HIGH IMPEDANCE  
SO  
Figure 1. SymbolTable  
WAVEFORM  
INPUTS  
OUTPUTS  
Must be  
steady  
Will be  
steady  
May change  
from LOW  
to HIGH  
Will change  
from LOW  
to HIGH  
May change  
from HIGH  
to LOW  
Will change  
from HIGH  
to LOW  
Don’t Care:  
Changes  
Allowed  
Changing:  
State Not  
Known  
N/A  
Center Line  
is High  
Impedance  
11  
X5001  
Figure 1. Power-Up and Power-DownTiming  
VTRIP  
VTRIP  
VCC  
tPURST  
0 Volts  
tPURST  
tF  
tRPD  
tR  
RESET (X5001)  
RESET OutputTiming  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Units  
Reset Trip Point Voltage, X5001PT-4.5A  
Reset Trip Point Voltage, X5001PT-4.5  
Reset Trip Point Voltage, X5001PT-2.7A  
Reset Trip Point Voltage, X5001PT-2.7  
Reset Trip Point Voltage, X5001PT-1.8  
4.50  
4.25  
2.85  
2.55  
1.70  
4.75  
4.50  
3.00  
2.70  
1.80  
4.63  
4.38  
2.92  
2.63  
1.75  
V
V
t
TRIP  
Power-up Reset Timeout  
100  
200  
280  
500  
ms  
ns  
ns  
ns  
V
PURST  
(5)  
V
V
V
Detect to Reset/Output  
Fall Time  
t
CC  
CC  
CC  
RPD  
(5)  
t
0.1  
0.1  
1
F
(5)  
Rise Time  
t
R
V
Reset Valid V  
CC  
RVALID  
Notes: (5) This parameter is periodically sampled and not 100% tested.  
PT = Package, Temperature  
Figure 2. CS vs. RESETTiming  
CS  
tCST  
RESET  
tWDO  
tRST  
tWDO  
tRST  
RESET OutputTiming  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Units  
Watchdog Timeout Period,  
WD = 1, WD = 0  
1
0
100  
450  
1
200  
600  
1.4  
300  
800  
2
ms  
ms  
sec  
t
WDO  
WD = 0, WD = 1  
1
0
WD = 0, WD = 0  
1
0
t
CS Pulse Width to Reset the Watchdog  
Reset Timeout  
400  
100  
ns  
CST  
t
200  
300  
ms  
RST  
12  
X5001  
V
ProgrammingTiming Diagram  
TRIP  
Vcc  
(V  
V
TRIP  
)
TRIP  
t
t
THD  
TSU  
V
P
V
PE  
t
t
t
VPH  
VPS  
VPO  
t
PCS  
CS  
t
RP  
SCK  
SI  
0001h or  
0003h  
03h  
0001h  
02h  
13  
X5001  
V
Programming Parameters  
TRIP  
Parameter  
Description  
Min  
Max  
Units  
t
V
V
V
V
V
V
V
Program Enable Voltage Setup time  
1
µs  
VPS  
TRIP  
TRIP  
TRIP  
TRIP  
TRIP  
TRIP  
TRIP  
t
Program Enable Voltage Hold time  
Programming CS inactive time  
Setup time  
1
1
µs  
µs  
VPH  
t
PCS  
t
1
µs  
TSU  
t
Hold (stable) time  
10  
ms  
ms  
THD  
t
Write Cycle Time  
10  
WC  
Program Enable Voltage Off time  
t
0
us  
VPO  
(Between successive adjustments)  
V
Program Recovery Period  
TRIP  
t
10  
ms  
RP  
(Between successive adjustments)  
V
V
Programming Voltage  
15  
18  
V
V
P
V
Programmed Voltage Range  
1.7  
5.0  
TRAN  
TRIP  
Initial V  
Program Voltage accuracy  
TRIP  
V
V
V
V
-0.1  
-25  
-25  
-25  
+0.4  
+25  
+25  
+25  
V
ta1  
(Vcc applied - V  
) (Programmed at 25oC.)  
TRIP  
Subsequent V  
Program Voltage accuracy  
TRIP  
mV  
mV  
mV  
ta2  
tr  
[(Vcc applied - V ) - V  
. Programmed at 25oC.)  
ta1  
TRIP  
V
Program Voltage repeatability  
TRIP  
(Successive program operations. Programmed at 25oC.)  
V
Program variation after programming (0-75oC).  
TRIP  
tv  
(Programmed at 25oC.)  
V
Programming parameters are periodically sampled and are not 100% Tested.  
TRIP  
14  
X5001  
Vcc Supply Current vs. Temperature (I  
)
t
t
t
vs. Voltage/Temperature (WD1,0=1,1)  
SB  
WDO  
1.85  
20  
18  
Watchdog Timer On (Vcc = 5V)  
17  
1.80  
1.75  
1.70  
1.65  
1.60  
14  
15  
–40°C  
Watchdog Timer On (Vcc = 3V)  
11  
1.55  
1.50  
1.45  
1.40  
25°C  
90°C  
Watchdog Timer Off (Vcc = 3V, 5V)  
1.0  
90C  
0.55  
0.35  
1.7  
3.1  
Voltage  
4.5  
–40C  
25C  
Temp (c)  
V
vs. Temperature (programmed at 25°C)  
vs. Voltage/Temperature (WD1,0=1,0)  
WDO  
TRIP  
5.025  
0.85  
Vtrip=5V  
5.000  
0.80  
4.975  
3.525  
–40°C  
0.75  
Vtrip=3.5V  
Vtrip=2.5V  
25°C  
3.500  
3.475  
0.70  
90°C  
2.525  
2.500  
2.475  
0.65  
0.60  
1.7  
3.1  
4.5  
0
25  
85  
Voltage  
Temperature  
t
vs. Temperature  
vs. Voltage/Temperature (WD1,0 0=0,1)  
PURST  
WDO  
280  
275  
270  
265  
260  
255  
250  
245  
240  
0.30  
0.29  
0.28  
0.27  
0.26  
0.25  
0.24  
0.23  
0.22  
0.21  
0.20  
–40°C  
25°C  
90°C  
235  
–40  
1.7  
3.1  
Voltage  
4.5  
25  
90  
Degrees °C  
15  
X5001  
8-LEAD PLASTIC SMALL OUTLINE GULL WING PACKAGE TYPE S  
0.150 (3.80)  
0.158 (4.00)  
0.228 (5.80)  
0.244 (6.20)  
PIN 1 INDEX  
PIN 1  
0.014 (0.35)  
0.019 (0.49)  
0.188 (4.78)  
0.197 (5.00)  
(4X) 7∞  
0.053 (1.35)  
0.069 (1.75)  
0.004 (0.19)  
0.010 (0.25)  
0.050 (1.27)  
0.010 (0.25)  
0.020 (0.50)  
0.050" TYPICAL  
X 45∞  
0.050"  
TYPICAL  
0– 8∞  
0.0075 (0.19)  
0.010 (0.25)  
0.250"  
0.016 (0.410)  
0.037 (0.937)  
0.030"  
TYPICAL  
8 PLACES  
FOOTPRINT  
NOTE: ALL DIMENSIONS IN INCHES (IN PARENTHESES IN MILLIMETERS)  
16  
X5001  
8-LEAD PLASTIC, TSSOP, PACKAGE TYPE V  
.025 (.65) BSC  
.169 (4.3)  
.252 (6.4) BSC  
.177 (4.5)  
.114 (2.9)  
.122 (3.1)  
.047 (1.20)  
.0075 (.19)  
.0118 (.30)  
.002 (.05)  
.006 (.15)  
.010 (.25)  
Gage Plane  
0– 8∞  
Seating Plane  
.019 (.50)  
.029 (.75)  
DetailA (20X)  
.031 (.80)  
.041 (1.05)  
See Detail “A”  
NOTE: ALL DIMENSIONS IN INCHES (IN PARENTHESES IN MILLIMETERS)  
17  
X5001  
Ordering Information  
PART NUMBER  
RESET (Active LOW)  
Operating  
Temperature Range  
Vcc Range  
Vtrip Range  
Package  
8 pin PDIP  
8L SOIC  
0oC - 70oC  
0oC - 70oC  
0oC - 70oC  
0oC - 70oC  
0oC - 70oC  
0oC - 70oC  
0oC - 70oC  
0oC - 70oC  
0oC - 70oC  
X5001P-4.5A  
X5001S8-4.5A  
X5001V8-4.5A  
X5001P  
4.5-5.5V  
4.5.4.75  
4.25.4.5  
8L TSSOP  
8 pin PDIP  
8L SOIC  
4.5-5.5V  
X5001S8  
8L TSSOP  
8L SOIC  
X5001V8  
2.7-5.5V  
2.7-5.5V  
2.85-3.0  
2.55-2.7  
X5001S8-2.7A  
X5001S8-2.7  
X5001V8-2.7  
8L SOIC  
8L TSSOP  
18  
X5001  
Part Mark Information  
8-Lead TSSOP  
8-Lead SOIC  
X5001  
YWW XX  
YWW  
XXXXX  
501AG = 1.8 to 3.6V, 0 to +70°C, V  
501AH = 1.8 to 3.6V, -40 to +85°C, V  
=1.7-1.8V  
=1.7-1.8V  
AG = 1.8 to 3.6V, 0 to +70°C, V  
AH = 1.8 to 3.6V, -40 to +85°C, V  
=1.7-1.8V  
=1.7-1.8V  
TRIP  
TRIP  
TRIP  
TRIP  
501F = 2.7 to 5.5V, 0 to +70°C, V  
501G = 2.7 to 5.5V, -40 to +85°C, V  
501AN = 2.7 to 5.5V, 0 to +70°C, V  
=2.55-2.7V  
=2.55-2.7V  
F = 2.7 to 5.5V, 0 to +70°C, V  
G = 2.7 to 5.5V, -40 to +85°C, V  
=2.55-2.7V  
=2.55-2.7V  
TRIP  
TRIP  
TRIP  
TRIP  
=2.85-3.0V  
TRIP  
AN = 2.7 to 5.5V, 0 to +70°C, V  
AP = 2.7 to 5.5V, -40 to +85°C, V  
=2.85-3.0V  
TRIP  
501AP = 2.7 to 5.5V, -40 to +85°C, V  
=2.85-3.0V  
=4.25-4.5V  
TRIP  
=2.85-3.0V  
TRIP  
501 = 4.5 to 5.5V, 0 to +70°C, V  
TRIP  
Blank = 4.5 to 5.5V, 0 to +70°C, V  
=4.25-4.5V  
TRIP  
501I = 4.5 to 5.5V, -40 to +85°C, V  
501AL = 4.5 to 5.5V, 0 to +70°C, V  
501AM = 4.5 to 5.5V, -40 to +85°C, V  
=4.25-4.5V  
=4.5-4.75V  
TRIP  
TRIP  
I = 4.5 to 5.5V, -40 to +85°C, V  
AL = 4.5 to 5.5V, 0 to +70°C, V  
AM = 4.5 to 5.5V, -40 to +85°C, V  
=4.25-4.5V  
TRIP  
TRIP  
=4.5-4.75V  
=4.5-4.75V  
=4.5-4.75V  
TRIP  
TRIP  
YWW = year/work week device is packaged.  
LIMITEDWARRANTY  
Devices sold by Xicor, Inc. are covered by the warranty and patent indemnification provisions appearing in its Terms of Sale only. Xicor, Inc. makes no  
warranty, express, statutory, implied, or by description regarding the information set forth herein or regarding the freedom of the described devices  
from patent infringement. Xicor, Inc. makes no warranty of merchantability or fitness for any purpose. Xicor, Inc. reserves the right to discontinue  
production and change specifications and prices at any time and without notice.  
Xicor, Inc. assumes no responsibility for the use of any circuitry other than circuitry embodied in a Xicor, Inc. product. No other circuits, patents,  
licenses are implied.  
U.S. PATENTS  
Xicor products are covered by one or more of the following U.S. Patents: 4,263,664; 4,274,012; 4,300,212; 4,314,265; 4,326,134; 4,393,481;  
4,404,475; 4,450,402; 4,486,769; 4,488,060; 4,520,461; 4,533,846; 4,599,706; 4,617,652; 4,668,932; 4,752,912; 4,829, 482; 4,874, 967; 4,883, 976.  
Foreign patents and additional patents pending.  
LIFE RELATED POLICY  
In situations where semiconductor component failure may endanger life, system designers using this product should design the system with appro-  
priate error detection and correction, redundancy and back-up features to prevent such an occurence.  
Xicor's products are not authorized for use in critical components in life support devices or systems.  
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and  
whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result  
in a significant injury to the user.  
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure  
of the life support device or system, or to affect its safety or effectiveness.  
19  

相关型号:

X5001V8-2.7A

CPU Supervisor
INTERSIL

X5001V8-2.7A

CPU Supervisor
RENESAS

X5001V8-4.5A

CPU Supervisor
INTERSIL

X5001V8-4.5A

CPU Supervisor
RENESAS

X5001V8-4.5A

CPU Supervisor
XICOR

X5001V8I

CPU Supervisor
RENESAS

X5001V8I-2.7

CPU Supervisor
INTERSIL

X5001V8I-2.7

CPU Supervisor
RENESAS

X5001V8I-2.7A

CPU Supervisor
INTERSIL

X5001V8I-2.7A

CPU Supervisor
RENESAS

X5001V8I-4.5A

CPU Supervisor
RENESAS

X5001V8IZ

CPU Supervisor
RENESAS