X28HC256JI-90T1 [XICOR]

EEPROM, 32KX8, 90ns, Parallel, CMOS, PQCC32, PLASTIC, LCC-32;
X28HC256JI-90T1
型号: X28HC256JI-90T1
厂家: XICOR INC.    XICOR INC.
描述:

EEPROM, 32KX8, 90ns, Parallel, CMOS, PQCC32, PLASTIC, LCC-32

可编程只读存储器 电动程控只读存储器 电可擦编程只读存储器 光电二极管 内存集成电路
文件: 总23页 (文件大小:190K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
256K  
32K x 8 Bit  
X28HC256  
5 Volt, Byte Alterable EEPROM  
FEATURES  
DESCRIPTION  
• Access time: 70ns  
• Simple byte and page write  
—Single 5V supply  
No external high voltages or V control circuits  
—Self-timed  
The X28HC256 is a second generation high perfor-  
mance CMOS 32K x 8 EEPROM. It is fabricated with  
Xicor’s proprietary, textured poly floating gate technol-  
ogy, providing a highly reliable 5 Volt only nonvolatile  
memory.  
PP  
—No erase before write  
—No complex programming algorithms  
—No overerase problem  
• Low power CMOS  
—Active: 60mA  
—Standby: 500µA  
• Software data protection  
—Protects data against system level inadvertent  
writes  
• High speed page write capability  
• Highly reliable Direct Writecell  
—Endurance: 1,000,000 cycles  
—Data retention: 100 years  
• Early end of write detection  
DATA polling  
The X28HC256 supports a 128-byte page write opera-  
tion, effectively providing a 24µs/byte write cycle, and  
enabling the entire memory to be typically rewritten in  
less than 0.8 seconds. The X28HC256 also features  
DATA Polling and Toggle Bit Polling, two methods of  
providing early end of write detection. The X28HC256  
also supports the JEDEC standard Software Data Pro-  
tection feature for protecting against inadvertent writes  
during power-up and power-down.  
Endurance for the X28HC256 is specified as a mini-  
mum 1,000,000 write cycles per byte and an inherent  
data retention of 100 years.  
Toggle bit polling  
BLOCK DIAGRAM  
256Kbit  
EEPROM  
Array  
X Buffers  
Latches and  
Decoder  
A –A  
0
14  
Address  
Inputs  
I/O Buffers  
and Latches  
Y Buffers  
Latches and  
DECODER  
I/O –I/O  
0
7
Data Inputs/Outputs  
CE  
OE  
WE  
Control  
Logic and  
Timing  
V
CC  
SS  
V
Characteristics subject to change without notice. 1 of 23  
REV 1.1 2/1/01  
www.xicor.com  
X28HC256  
PIN CONFIGURATION  
TSOP  
Plastic DIP  
CERDIP  
Flat Plastic  
SOIC  
LCC  
PLCC  
A
A
A
A
A
A
A
I/O  
I/O  
I/O  
NC  
V
SS  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
32  
31  
30  
29  
3
4
5
2
1
0
0
1
2
6
A
A
A
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
7
12  
14  
A
A
1
2
3
4
5
6
7
8
9
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
V
CC  
14  
12  
4
3
2
1
32 31 30  
WE  
NC  
V
A
A
A
A
A
A
A
5
29  
A
6
5
4
3
2
1
0
8
A
X28HC256  
A
A
A
A
A
A
A
A
13  
7
6
5
4
3
2
1
0
CC  
6
7
28  
27  
A
9
NC  
A
8
3
4
5
6
7
WE  
A
11  
A
9
A
13  
NC  
OE  
8
9
26  
25  
A
8
A
X28HC256  
(Top View)  
11  
A
9
OE  
A
CE  
11  
A
10  
11  
24  
23  
X28HC256  
10  
A
OE  
10  
A
10  
CE  
I/O  
CE  
I/O  
12  
13  
22  
21  
NC  
I/O  
7
10  
11  
12  
13  
14  
7
I/O  
0
6
PGA  
14 15 16 17 18 19 20  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
6
5
4
3
0
1
2
I/O  
12  
I/O  
13  
I/O  
I/O  
17  
I/O  
18  
1
2
3
5
6
7
15  
I/O  
V
I/O  
A
10  
V
I/O  
I/O  
19  
0
0
2
SS  
4
SS  
11  
14  
16  
A
A
CE  
20  
A
10  
21  
1
9
7
5
8
X28HC256  
A
A
OE  
22  
A
23  
3
4
11  
8
6
A
A
2
V
A
9
24  
A
25  
5
12  
7
CC  
28  
A
A
WE  
27  
A
13  
26  
A
6
14  
4
3
1
(Bottom View)  
PIN DESCRIPTIONS  
Addresses (A –A )  
Write Enable (WE)  
The Write Enable input controls the writing of data to  
the X28HC256.  
0
14  
The Address inputs select an 8-bit memory location  
during a read or write operation.  
PIN NAMES  
Symbol  
A –A  
Description  
Address Inputs  
Data Input/Output  
Write Enable  
Chip Enable  
Output Enable  
+5V  
Chip Enable (CE)  
0
14  
The Chip Enable input must be LOW to enable all read/  
write operations. When CE is HIGH, power consump-  
tion is reduced.  
I/O –I/O  
0
7
WE  
CE  
OE  
Output Enable (OE)  
The Output Enable input controls the data output buff-  
ers, and is used to initiate read operations.  
V
CC  
V
Ground  
SS  
Data In/Data Out (I/O –I/O )  
0
7
NC  
No Connect  
Data is written to or read from the X28HC256 through  
the I/O pins.  
Characteristics subject to change without notice. 2 of 23  
REV 1.1 2/1/01  
www.xicor.com  
X28HC256  
DEVICE OPERATION  
Read  
Write Operation Status Bits  
The X28HC256 provides the user two write operation  
status bits. These can be used to optimize a system  
write cycle time. The status bits are mapped onto the  
I/O bus as shown in Figure 1.  
Read operations are initiated by both OE and CE LOW.  
The read operation is terminated by either CE or OE  
returning HIGH. This two line control architecture elimi-  
nates bus contention in a system environment. The  
data bus will be in a high impedance state when either  
OE or CE is HIGH.  
Figure 1. Status Bit Assignment  
I/O DP TB  
5
4
3
2
1
0
Write  
Write operations are initiated when both CE and WE  
are LOW and OE is HIGH. The X28HC256 supports  
both a CE and WE controlled write cycle. That is, the  
address is latched by the falling edge of either CE or  
WE, whichever occurs last. Similarly, the data is  
latched internally by the rising edge of either CE or  
WE, whichever occurs first. A byte write operation,  
once initiated, will automatically continue to comple-  
tion, typically within 3ms.  
Reserved  
Toggle Bit  
DATA Polling  
DATA Polling (I/O )  
7
The X28HC256 features DATA Polling as a method to  
indicate to the host system that the byte write or page  
write cycle has completed. DATA Polling allows a sim-  
ple bit test operation to determine the status of the  
X28HC256. This eliminates additional interrupt inputs  
or external hardware. During the internal programming  
cycle, any attempt to read the last byte written will pro-  
Page Write Operation  
The page write feature of the X28HC256 allows the  
entire memory to be written in typically 0.8 seconds.  
Page write allows up to one hundred twenty-eight  
bytes of data to be consecutively written to the  
X28HC256, prior to the commencement of the internal  
programming cycle. The host can fetch data from  
another device within the system during a page write  
operation (change the source address), but the page  
duce the complement of that data on I/O (i.e., write  
data = 0xxx xxxx, read data = 1xxx xxxx). Once the  
7
programming cycle is complete, I/O will reflect true  
7
data.  
Toggle Bit (I/O )  
6
address (A through A ) for each subsequent valid  
7
14  
The X28HC256 also provides another method for  
determining when the internal write cycle is complete.  
During the internal programming cycle I/O will toggle  
write cycle to the part during this operation must be the  
same as the initial page address.  
6
The page write mode can be initiated during any write  
operation. Following the initial byte write cycle, the host  
can write an additional one to one hundred twenty-  
seven bytes in the same manner as the first byte was  
written. Each successive byte load cycle, started by  
the WE HIGH to LOW transition, must begin within  
100µs of the falling edge of the preceding WE. If a sub-  
sequent WE HIGH to LOW transition is not detected  
within 100µs, the internal automatic programming  
cycle will commence. There is no page write window  
limitation. Effectively the page write window is infinitely  
wide, so long as the host continues to access the  
device within the byte load cycle time of 100µs.  
from HIGH to LOW and LOW to HIGH on subsequent  
attempts to read the device. When the internal cycle is  
complete the toggling will cease, and the device will be  
accessible for additional read and write operations.  
Characteristics subject to change without notice. 3 of 23  
REV 1.1 2/1/01  
www.xicor.com  
X28HC256  
DATA POLLING I/O  
7
Figure 2. DATA Polling Bus Sequence  
Last  
Write  
WE  
CE  
OE  
V
IH  
V
HIGH Z  
OH  
I/O  
7
V
OL  
X28HC256  
Ready  
A –A  
An  
An  
An  
An  
An  
An  
An  
0
14  
Figure 3. DATA Polling Software Flow  
DATA Polling can effectively halve the time for writing to  
the X28HC256. The timing diagram in Figure 2 illus-  
trates the sequence of events on the bus. The software  
flow diagram in Figure 3 illustrates one method of  
implementing the routine.  
Write Data  
No  
Writes  
Complete?  
Yes  
Save Last Data  
and Address  
Read Last  
Address  
IO  
7
No  
Compare?  
Yes  
X28HC256  
Ready  
Characteristics subject to change without notice. 4 of 23  
REV 1.1 2/1/01  
www.xicor.com  
X28HC256  
THE TOGGLE BIT I/O  
6
Figure 4. Toggle Bit Bus Sequence  
Last  
Write  
WE  
CE  
OE  
V
HIGH Z  
OH  
I/O  
6
*
*
V
X28C512/513  
Ready  
OL  
* I/O Beginning and ending state of I/O will vary.  
6
6
Figure 5. Toggle Bit Software Flow  
HARDWARE DATA PROTECTION  
¬
The X28HC256 provides two hardware features that  
protect nonvolatile data from inadvertent writes.  
Last Write  
Yes  
– Default V  
Sense—All write functions are inhibited  
CC  
when V  
is 3.5V typically.  
CC  
– Write Inhibit—Holding either OE LOW, WE HIGH, or  
CE HIGH will prevent an inadvertent write cycle during  
power-up and power-down, maintaining data integrity.  
Load Accum  
From Addr n  
SOFTWARE DATA PROTECTION  
The X28HC256 offers a software-controlled data pro-  
tection feature. The X28HC256 is shipped from Xicor  
with the software data protection NOT ENABLED; that  
is, the device will be in the standard operating mode. In  
this mode data should be protected during power-up/  
down operations through the use of external circuits.  
The host would then have open read and write access  
Compare  
Accum with  
Addr n  
No  
Compare  
ok?  
of the device once V was stable.  
CC  
Yes  
The X28HC256 can be automatically protected during  
power-up and power-down (without the need for exter-  
nal circuits) by employing the software data protection  
feature. The internal software data protection circuit is  
enabled after the first write operation, utilizing the soft-  
ware algorithm. This circuit is nonvolatile, and will  
remain set for the life of the device unless the reset  
command is issued.  
X28C256  
Ready  
The Toggle Bit can eliminate the chore of saving and  
fetching the last address and data in order to implement  
DATA Polling. This can be especially helpful in an array  
comprised of multiple X28HC256 memories that is  
frequently updated. The timing diagram in Figure 4  
illustrates the sequence of events on the bus. The soft-  
ware flow diagram in Figure 5 illustrates a method for  
polling the Toggle Bit.  
Once the software protection is enabled, the X28HC256 is  
also protected from inadvertent and accidental writes in the  
powered-up state. That is, the software algorithm must be  
issued prior to writing additional data to the device.  
Characteristics subject to change without notice. 5 of 23  
REV 1.1 2/1/01  
www.xicor.com  
X28HC256  
SOFTWARE ALGORITHM  
The three-byte sequence opens the page write window,  
enabling the host to write from one to one hundred  
twenty-eight bytes of data. Once the page load cycle  
has been completed, the device will automatically be  
returned to the data protected state.  
Selecting the software data protection mode requires  
the host system to precede data write operations by a  
series of three write operations to three specific  
addresses. Refer to Figure 6 and 7 for the sequence.  
SOFTWARE DATA PROTECTION  
Figure 6. Timing Sequence—Byte or Page Write  
V
CC  
(V  
)
CC  
0V  
Data  
Address  
AAA  
5555  
55  
2AAA  
A0  
5555  
Writes  
ok  
Write  
Protected  
t
WC  
CE  
t  
Byte  
or  
Age  
BLC MAX  
WE  
Figure 7. Write Sequence for Software Data  
Protection  
Regardless of whether the device has previously been  
protected or not, once the software data protection  
algorithm is used and data has been written, the  
X28HC256 will automatically disable further writes  
unless another command is issued to cancel it. If no  
further commands are issued the X28HC256 will be  
write protected during power-down and after any sub-  
sequent power-up.  
Write Data AA  
to Address  
5555  
Write Data 55  
to Address  
2AAA  
Note: Once initiated, the sequence of write operations  
should not be interrupted.  
Write Data A0  
to Address  
5555  
Byte/Page  
Load Enabled  
Write Data XX  
to Any  
Address  
Optional  
Byte/Page  
Load Operation  
Write Last  
Byte to  
Last Address  
After t  
WC  
Re-Enters Data  
Protected State  
Characteristics subject to change without notice. 6 of 23  
REV 1.1 2/1/01  
www.xicor.com  
X28HC256  
RESETTING SOFTWARE DATA PROTECTION  
Figure 8. Reset Software Data Protection Timing Sequence  
V
CC  
AAA  
5555  
55  
2AAA  
80  
5555  
AA  
5555  
55  
2AAA  
20  
5555  
Standard  
Operating  
Mode  
Data  
Address  
t
WC  
CE  
WE  
Figure 9. Write Sequence for resetting Software  
Data Protection  
In the event the user wants to deactivate the software  
data protection feature for testing or reprogramming in  
an EEPROM programmer, the following six step algo-  
rithm will reset the internal protection circuit. After t  
the X28HC256 will be in standard operating mode.  
,
WC  
Write Data AA  
to Address  
5555  
Note: Once initiated, the sequence of write operations  
should not be interrupted.  
Write Data 55  
to Address  
2AAA  
SYSTEM CONSIDERATIONS  
Because the X28HC256 is frequently used in large  
memory arrays, it is provided with a two line control  
architecture for both read and write operations. Proper  
usage can provide the lowest possible power dissipa-  
tion, and eliminate the possibility of contention where  
multiple I/O pins share the same bus.  
Write Data 80  
to Address  
5555  
Write Data AA  
to Address  
5555  
To gain the most benefit, it is recommended that CE be  
decoded from the address bus and be used as the pri-  
mary device selection input. Both OE and WE would  
then be common among all devices in the array. For a  
read operation, this assures that all deselected devices  
are in their standby mode, and that only the selected  
device(s) is/are outputting data on the bus.  
Write Data 55  
to Address  
2AAA  
Because the X28HC256 has two power modes,  
standby and active, proper decoupling of the memory  
array is of prime concern. Enabling CE will cause tran-  
sient current spikes. The magnitude of these spikes is  
dependent on the output capacitive loading of the l/Os.  
Therefore, the larger the array sharing a common bus,  
the larger the transient spikes. The voltage peaks  
associated with the current transients can be sup-  
pressed by the proper selection and placement of  
decoupling capacitors. As a minimum, it is recommended  
Write Data 20  
to Address  
5555  
After t  
,
WC  
Re-Enters  
Unprotected  
State  
Characteristics subject to change without notice. 7 of 23  
REV 1.1 2/1/01  
www.xicor.com  
X28HC256  
that a 0.1µF high frequency ceramic capacitor be used  
between V  
and V  
at each device. Depending on  
CC  
SS  
the size of the array, the value of the capacitor may  
have to be larger.  
In addition, it is recommended that a 4.7µF electrolytic  
bulk capacitor be placed between V  
and V  
for  
CC  
SS  
each eight devices employed in the array. This bulk  
capacitor is employed to overcome the voltage droop  
caused by the inductive effects of the PC board traces.  
Characteristics subject to change without notice. 8 of 23  
REV 1.1 2/1/01  
www.xicor.com  
X28HC256  
ABSOLUTE MAXIMUM RATINGS  
COMMENT  
Temperature under bias  
Stresses above those listed under “Absolute Maximum  
Ratings” may cause permanent damage to the device.  
This is a stress rating only; functional operation of the  
device (at these or any other conditions above those indi-  
cated in the operational sections of this specification) is  
not implied. Exposure to absolute maximum rating condi-  
tions for extended periods may affect device reliability.  
X28HC256 ...................................... –10°C to +85°C  
X28HC256I, X28HC256M............. –65°C to +135°C  
Storage temperature ........................ –65°C to +150°C  
Voltage on any pin with  
respect to V  
........................................–1V to +7V  
SS  
D.C. output current ............................................. 10mA  
Lead temperature (soldering, 10 seconds)........ 300°C  
RECOMMENDED OPERATING CONDITIONS  
Temperature  
Commercial  
Industrial  
Min.  
0°C  
Max.  
+70°C  
+85°C  
+125°C  
Supply Voltage  
Limits  
X28HC256  
5V ±10%  
–40°C  
–55°C  
Military  
D.C. OPERATING CHARACTERISTICS (Over recommended operating conditions unless otherwise specified.)  
Limits  
Symbol  
Parameter  
Min. Typ.(7)  
Max.  
Unit  
Test Conditions  
I
V
active current  
30  
60  
mA CE = OE = V , WE = V , All I/O’s = open,  
CC  
CC  
IL  
IH  
(TTL Inputs)  
address inputs = .4V/2.4V levels @ f = 10MHz  
I
I
V
standby current  
1
2
mA CE = V , OE = V , All I/O’s = open, other  
SB1  
SB2  
CC  
IH  
IL  
(TTL Inputs)  
inputs = V  
IH  
V
standby current  
200  
500  
µA  
CE = V – 0.3V, OE = GND, All I/Os = open,  
CC  
CC  
(CMOS Inputs)  
other inputs = V – 0.3V  
CC  
I
Input leakage current  
Output leakage current  
Input LOW voltage  
Input HIGH voltage  
Output LOW voltage  
Output HIGH voltage  
10  
10  
µA  
µA  
V
V
V
= V to V  
SS CC  
LI  
IN  
I
= V to V , CE = V  
SS CC IH  
LO  
OUT  
(2)  
V
–1  
2
0.8  
lL  
(2)  
V
V
+ 1  
V
IH  
CC  
V
0.4  
V
I
I
= 6mA  
OL  
OL  
V
2.4  
V
= –4mA  
OH  
OH  
Notes: (1) Typical values are for T = 25°C and nominal supply voltage.  
A
(2) V min. and V max. are for reference only and are not tested.  
IL  
IH  
POWER-UP TIMING  
Symbol  
Parameter  
Max.  
Unit  
µs  
(3)  
PUR  
t
Power-up to read  
Power-up to write  
100  
5
(3)  
PUW  
t
ms  
Note: (3) This parameter is periodically sampled and not 100% tested.  
Characteristics subject to change without notice. 9 of 23  
REV 1.1 2/1/01  
www.xicor.com  
X28HC256  
CAPACITANCE T = +25°C, f = 1MHz, V = 5V  
A
CC  
Symbol  
Test  
Max.  
10  
Unit  
pF  
Conditions  
(9)  
I/O  
C
Input/output capacitance  
Input capacitance  
V
= 0V  
= 0V  
I/O  
(9)  
IN  
C
6
pF  
V
IN  
ENDURANCE AND DATA RETENTION  
Parameter  
Endurance  
Min.  
1,000,000  
100  
Max.  
Unit  
Cycles  
Years  
Data retention  
A.C. CONDITIONS OF TEST  
SYMBOL TABLE  
Input pulse levels  
0V to 3V  
WAVEFORM  
INPUTS  
OUTPUTS  
Input rise and fall times  
Input and output timing levels  
5ns  
Must be  
steady  
Will be  
steady  
1.5V  
MODE SELECTION  
May change  
from LOW  
to HIGH  
Will change  
from LOW  
to HIGH  
CE  
L
OE WE  
Mode  
Read  
Write  
I/O  
Power  
active  
active  
May change  
from HIGH  
to LOW  
Will change  
from HIGH  
to LOW  
L
H
X
H
L
D
OUT  
L
D
IN  
Don’t Care:  
Changes  
Allowed  
Changing:  
State Not  
Known  
H
X
Standby and High Z standby  
write inhibit  
N/A  
Center Line  
is High  
Impedance  
X
X
L
X
H
Write inhibit  
Write inhibit  
X
EQUIVALENT A.C. LOAD CIRCUIT  
5V  
1.92KΩ  
OUTPUT  
1.37KΩ  
30pF  
Characteristics subject to change without notice. 10 of 23  
REV 1.1 2/1/01  
www.xicor.com  
X28HC256  
A.C. CHARACTERISTICS (Over the recommended operating conditions, unless otherwise specified.)  
Read Cycle Limits  
X28HC256-70 X28HC256-90 X28HC256-12 X28HC256-15  
Symbol  
Parameter  
Read cycle time  
Min. Max. Min. Max. Min. Max. Min. Max. Unit  
(5)  
RC  
t
70  
90  
120  
150  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
(5)  
CE  
t
Chip enable access time  
Address access time  
70  
70  
35  
90  
90  
40  
120  
120  
50  
150  
150  
50  
(5)  
AA  
t
t
Output enable access time  
CE LOW to active output  
OE LOW to active output  
CE HIGH to high Z output  
OE HIGH to high Z output  
Output hold from address change  
OE  
(4)  
LZ  
t
0
0
0
0
0
0
0
0
(4)  
OLZ  
t
(4)  
HZ  
t
35  
35  
40  
40  
50  
50  
50  
50  
(4)  
OHZ  
t
t
0
0
0
0
OH  
Read Cycle  
t
RC  
Address  
CE  
t
CE  
t
OE  
OE  
V
IH  
WE  
t
t
OHZ  
OLZ  
t
t
t
t
HZ  
LZ  
OH  
AA  
HIGH Z  
Data Valid  
Data Valid  
Data I/O  
Notes: (4) t min., t , t  
min. and t  
are periodically sampled and not 100% tested, t and t  
are measured with CL = 5pF, from the  
OHZ  
LZ  
HZ OLZ  
OHZ  
HZ  
point when CE, OE return HIGH (whichever occurs first) to the time when the outputs are no longer driven.  
(5) For faster 256K products, refer to X28VC256 product line.  
Characteristics subject to change without notice. 11 of 23  
REV 1.1 2/1/01  
www.xicor.com  
X28HC256  
Write Cycle Limits  
Symbol  
Parameter  
Min.  
Typ.(6)  
Max.  
Unit  
ms  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
µs  
ns  
ns  
µs  
µs  
(7)  
WC  
t
Write cycle time  
Address setup time  
Address hold time  
Write setup time  
Write hold time  
3
5
t
0
50  
0
AS  
AH  
CS  
CH  
t
t
t
0
t
CE pulse width  
50  
0
CW  
t
OE HIGH setup time  
OE HIGH hold time  
WE pulse width  
OES  
t
0
OEH  
t
50  
50  
WP  
(8)  
WPH  
t
WE HIGH recovery (page write only)  
Data valid  
t
t
1
DV  
Data setup  
50  
0
DS  
t
Data hold  
DH  
(8)  
DW  
t
Delay to next write after polling is true  
Byte load cycle  
10  
t
0.15  
100  
BLC  
Notes: (6) Typical values are for T = 25°C and nominal supply voltage.  
A
(7) t  
is the minimum cycle time to be allowed from the system perspective unless polling techniques are used. It is the maximum  
WC  
time the device requires to automatically complete the internal write operation.  
(8) t and t are periodically sampled and not 100% tested.  
WPH  
DW  
WE Controlled Write Cycle  
t
WC  
Address  
t
t
AH  
AS  
t
t
CS  
CH  
CE  
OE  
t
t
OEH  
OES  
t
WP  
WE  
Data In  
Data Out  
Data Valid  
t
t
DH  
DS  
HIGH Z  
Characteristics subject to change without notice. 12 of 23  
REV 1.1 2/1/01  
www.xicor.com  
X28HC256  
CE Controlled Write Cycle  
t
WC  
Address  
CE  
t
t
AH  
AS  
t
CW  
t
OES  
OE  
t
OEH  
t
t
t
CS  
CH  
WE  
Data Valid  
Data In  
t
DS  
DH  
HIGH Z  
Data Out  
Page Write Cycle  
OE(9)  
CE  
t
t
BLC  
WP  
WE  
t
WPH  
Address(10)  
Last Byte  
Byte n+2  
I/O  
Byte 0  
Byte 1  
Byte 2  
Byte n  
Byte n+1  
t
WC  
*For each successive write within the page write operation, A –A should be the same or  
7
15  
writes to an unknown address could occur.  
Notes: (9) Between successive byte writes within a page write operation, OE can be strobed LOW: e.g. this can be done with CE and WE  
HIGH to fetch data from another memory device within the system for the next write; or with WE HIGH and CE LOW effectively per-  
forming a polling operation.  
(10)The timings shown above are unique to page write operations. Individual byte load operations within the page write must conform to  
either the CE or WE controlled write cycle timing.  
Characteristics subject to change without notice. 13 of 23  
REV 1.1 2/1/01  
www.xicor.com  
X28HC256  
DATA Polling Timing Diagram(11)  
Address  
CE  
A
A
A
n
n
n
WE  
t
t
OEH  
OES  
OE  
t
DW  
D
= X  
D
= X  
D
= X  
OUT  
I/O  
7
IN  
OUT  
t
WC  
Toggle Bit Timing Diagram(11)  
CE  
WE  
t
OES  
t
OEH  
OE  
t
DW  
HIGH Z  
I/O  
*
6
*
t
WC  
* I/O beginning and ending state will vary, depending upon actual t  
.
WC  
6
Note: (11)Polling operations are by definition read cycles and are therefore subject to read cycle timings.  
Characteristics subject to change without notice. 14 of 23  
REV 1.1 2/1/01  
www.xicor.com  
X28HC256  
PACKAGING INFORMATION  
28-Lead Ceramic Flat Pack Type F  
0.019 (0.48)  
0.015 (0.38)  
Pin 1 Index  
1
28  
0.050 (1.27) BSC  
0.740 (18.80)  
Max.  
0.045 (1.14) Max.  
0.440 (11.18)  
Max.  
0.130 (3.30)  
0.090 (2.29)  
0.006 (0.15)  
0.003 (0.08)  
0.370 (9.40)  
0.250 (6.35)  
Typ. 0.300 2 Plcs.  
0.045 (1.14)  
0.025 (0.66)  
0.180 (4.57)  
Min.  
0.030 (0.76)  
Min.  
NOTE: ALL DIMENSIONS IN INCHES (IN PARENTHESES IN MILLIMETERS)  
Characteristics subject to change without notice. 15 of 23  
REV 1.1 2/1/01  
www.xicor.com  
X28HC256  
PACKAGING INFORMATION  
28-Lead Ceramic Pin Grid Array Package Type K  
12  
11  
9
13  
10  
8
15  
14  
17  
16  
20  
22  
24  
27  
18  
19  
21  
23  
25  
26  
A
A
0.008 (0.20)  
0.050 (1.27)  
7
6
5
2
28  
1
NOTE: LEADS 4,12,18 & 26  
4
3
0.080 (2.03)  
0.070 (1.78)  
Typ. 0.100 (2.54)  
All Leads  
0.080 (2.03) 4 Corners  
0.070 (1.78)  
0.110 (2.79)  
0.090 (2.29)  
0.072 (1.83)  
Pin 1 Index  
0.062 (1.57)  
0.020 (0.51)  
0.016 (0.41)  
0.660 (16.76)  
0.640 (16.26)  
A
A
0.185 (4.70)  
0.175 (4.44)  
0.561 (14.25)  
0.541 (13.75)  
NOTE: ALL DIMENSIONS IN INCHES (IN PARENTHESES IN MILLIMETERS)  
Characteristics subject to change without notice. 16 of 23  
REV 1.1 2/1/01  
www.xicor.com  
X28HC256  
PACKAGING INFORMATION  
28-Lead Plastic Dual In-Line Package Type P  
1.470 (37.34)  
1.400 (35.56)  
0.557 (14.15)  
0.510 (12.95)  
Pin 1 Index  
Pin 1  
0.085 (2.16)  
0.040 (1.02)  
1.300 (33.02)  
Ref.  
0.160 (4.06)  
0.125 (3.17)  
Seating  
Plane  
0.030 (0.76)  
0.015 (0.38)  
0.160 (4.06)  
0.120 (3.05)  
0.110 (2.79)  
0.090 (2.29)  
0.065 (1.65)  
0.040 (1.02)  
0.022 (0.56)  
0.014 (0.36)  
0.625 (15.88)  
0.590 (14.99)  
0°  
15°  
Typ. 0.010 (0.25)  
NOTE:  
1. ALL DIMENSIONS IN INCHES (IN PARENTHESES IN MILLIMETERS)  
2. PACKAGE DIMENSIONS EXCLUDE MOLDING FLASH  
Characteristics subject to change without notice. 17 of 23  
REV 1.1 2/1/01  
www.xicor.com  
X28HC256  
PACKAGING INFORMATION  
28-Lead Plastic Small Outline Gull Wing Package Type S  
0.299 (7.59)  
0.290 (7.37)  
0.419 (10.64)  
0.394 (10.01)  
0.020 (0.508)  
0.014 (0.356)  
0.713 (18.11)  
0.697 (17.70)  
0.105 (2.67)  
0.092 (2.34)  
Base Plane  
Seating Plane  
0.012 (0.30)  
0.003 (0.08)  
0.050 (1.270)  
BSC  
0.050"Typical  
0.0200 (0.5080)  
0.0100 (0.2540)  
X 45°  
0.050"  
Typical  
0.013 (0.32)  
0.008 (0.20)  
0° – 8°  
0.42" Max.  
0.0350 (0.8890)  
0.0160 (0.4064)  
0.030"Typical  
28 Places  
FOOTPRINT  
NOTES:  
1. ALL DIMENSIONS IN INCHES (IN PARENTHESES IN MILLIMETERS)  
2. FORMED LEAD SHALL BE PLANAR WITH RESPECT TO ONE ANOTHER WITHIN 0.004 INCHES  
Characteristics subject to change without notice. 18 of 23  
REV 1.1 2/1/01  
www.xicor.com  
X28HC256  
PACKAGING INFORMATION  
32-Lead Hermetic Dual In-Line Package Type D  
1.690 (42.95)  
Max.  
0.610 (15.49)  
0.500 (12.70)  
Pin 1  
0.005 (0.13) Min.  
0.100 (2.54) Max.  
Seating  
Plane  
0.232 (5.90) Max.  
0.060 (1.52)  
0.015 (0.38)  
0.150 (3.81) Min.  
0.200 (5.08)  
0.125 (3.18)  
0.065 (1.65)  
0.023 (0.58)  
0.014 (0.36)  
Typ. 0.018 (0.46)  
0.033 (0.84)  
0.110 (2.79)  
Typ. 0.055 (1.40)  
0.090 (2.29)  
Typ. 0.100 (2.54)  
0.620 (15.75)  
0.590 (14.99)  
Typ. 0.614 (15.60)  
0°  
15°  
0.015 (0.38)  
0.008 (0.20)  
NOTE: ALL DIMENSIONS IN INCHES (IN PARENTHESES IN MILLIMETERS)  
Characteristics subject to change without notice. 19 of 23  
REV 1.1 2/1/01  
www.xicor.com  
X28HC256  
PACKAGING INFORMATION  
32-Pad Ceramic Leadless Chip Carrier Package Type E  
0.300 (7.62)  
BSC  
0.150 (3.81) BSC  
0.020 (0.51) x 45° Ref.  
0.015 (0.38)  
0.003 (0.08)  
0.095 (2.41)  
0.075 (1.91)  
Pin 1  
0.022 (0.56)  
DIA.  
0.006 (0.15)  
0.055 (1.39)  
0.045 (1.14)  
0.200 (5.08)  
BSC  
0.015 (0.38)  
TYP. (4) PLCS.  
Min.  
0.028 (0.71)  
0.022 (0.56)  
(32) Plcs.  
0.040 (1.02) x 45° Ref.  
Typ. (3) Plcs.  
0.050 (1.27) BSC  
0.088 (2.24)  
0.050 (1.27)  
0.458 (11.63)  
0.442 (11.22)  
0.458 (11.63)  
––  
0.120 (3.05)  
0.060 (1.52)  
0.558 (14.17)  
––  
0.560 (14.22)  
0.540 (13.71)  
0.400 (10.16)  
BSC  
Pin 1 Index Corner  
NOTE:  
1. ALL DIMENSIONS IN INCHES (IN PARENTHESES IN MILLIMETERS)  
2. TOLERANCE: ±1% NLT ±0.005 (0.127)  
Characteristics subject to change without notice. 20 of 23  
REV 1.1 2/1/01  
www.xicor.com  
X28HC256  
PACKAGING INFORMATION  
32-Lead Plastic Leaded Chip Carrier Package Type J  
0.030" Typical  
32 Places  
0.050"  
Typical  
0.420 (10.67)  
0.050"  
Typical  
0.510"  
Typical  
0.400"  
0.050 (1.27) Typ.  
0.300"  
Ref.  
0.410"  
FOOTPRINT  
0.021 (0.53)  
0.013 (0.33)  
Typ. 0.017 (0.43)  
Seating Plane  
0.045 (1.14) x 45°  
±0.004 Lead  
CO – Planarity  
0.015 (0.38)  
0.495 (12.57)  
0.485 (12.32)  
Typ. 0.490 (12.45)  
0.095 (2.41)  
0.060 (1.52)  
0.140 (3.56)  
0.100 (2.45)  
Typ. 0.136 (3.45)  
0.453 (11.51)  
0.447 (11.35)  
Typ. 0.450 (11.43)  
0.048 (1.22)  
0.042 (1.07)  
0.300 (7.62)  
Ref.  
Pin 1  
0.595 (15.11)  
0.585 (14.86)  
Typ. 0.590 (14.99)  
0.553 (14.05)  
0.547 (13.89)  
Typ. 0.550 (13.97)  
0.400  
Ref.  
(10.16)  
3° Typ.  
NOTES:  
1. ALL DIMENSIONS IN INCHES (IN PARENTHESES IN MILLIMETERS)  
2. DIMENSIONS WITH NO TOLERANCE FOR REFERENCE ONLY  
Characteristics subject to change without notice. 21 of 23  
REV 1.1 2/1/01  
www.xicor.com  
X28HC256  
PACKAGING INFORMATION  
32-Lead Thin Small Outline Package (TSOP) Type T  
See Note 2  
12.50 (0.492)  
12.30 (0.484)  
Pin #1 Ident.  
O 0.76 (0.03)  
0.50 (0.0197) BSC  
See Note 2  
8.02 (0.315)  
7.98 (0.314)  
0.26 (0.010)  
0.14 (0.006)  
1.18 (0.046)  
1.02 (0.040)  
0.17 (0.007)  
0.03 (0.001)  
Seating  
Plane  
0.58 (0.023)  
0.42 (0.017)  
14.15 (0.557)  
13.83 (0.544)  
14.80 ± 0.05  
(0.583 ± 0.002)  
0.30 ± 0.05  
(0.012 ± 0.002)  
Solder Pads  
Typical  
32 Places  
15 Eq. Spc. 0.50 ± 0.04  
0.0197 ± 0.016 = 7.50 ± 0.06  
(0.295 ± 0.0024) Overall  
Tol. Non-Cumulative  
0.17 (0.007)  
0.03 (0.001)  
0.50 ± 0.04  
1.30 ± 0.05  
(0.0197 ± 0.0016)  
(0.051 ± 0.002)  
FOOTPRINT  
NOTE:  
1. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS (INCHES IN PARENTHESES).  
Characteristics subject to change without notice. 22 of 23  
REV 1.1 2/1/01  
www.xicor.com  
X28HC256  
Ordering Information  
X28HC256  
X
X
-X  
Access Time  
–70 = 70ns  
–90 = 90ns  
–12 = 120ns  
–15 = 150ns  
Device  
Temperature Range  
Blank = Commercial = 0°C to +70°C  
I = Industrial = –40°C to +85°C  
M = Military = –55°C to +125°C  
MB = MIL-STD-883  
Package  
P = 28-Lead Plastic DIP  
D = 28-Lead CERDIP  
J = 32-Lead PLCC  
S = 28-Lead plastic SOIC  
E = 32-Pad LCC  
K = 28-Pin grid array  
F = 28-Lead flat pack  
T = 32-Lead TSOP  
©Xicor, Inc. 2000 Patents Pending  
LIMITED WARRANTY  
Devices sold by Xicor, Inc. are covered by the warranty and patent indemnification provisions appearing in its Terms of Sale only. Xicor, Inc. makes no warranty,  
express, statutory, implied, or by description regarding the information set forth herein or regarding the freedom of the described devices from patent infringement.  
Xicor, Inc. makes no warranty of merchantability or fitness for any purpose. Xicor, Inc. reserves the right to discontinue production and change specifications and prices  
at any time and without notice.  
Xicor, Inc. assumes no responsibility for the use of any circuitry other than circuitry embodied in a Xicor, Inc. product. No other circuits, patents, or licenses are implied.  
TRADEMARK DISCLAIMER:  
Xicor and the Xicor logo are registered trademarks of Xicor, Inc. AutoStore, Direct Write, Block Lock, SerialFlash, MPS, and XDCP are also trademarks of Xicor, Inc. All  
others belong to their respective owners.  
U.S. PATENTS  
Xicor products are covered by one or more of the following U.S. Patents: 4,326,134; 4,393,481; 4,404,475; 4,450,402; 4,486,769; 4,488,060; 4,520,461; 4,533,846;  
4,599,706; 4,617,652; 4,668,932; 4,752,912; 4,829,482; 4,874,967; 4,883,976; 4,980,859; 5,012,132; 5,003,197; 5,023,694; 5,084,667; 5,153,880; 5,153,691;  
5,161,137; 5,219,774; 5,270,927; 5,324,676; 5,434,396; 5,544,103; 5,587,573; 5,835,409; 5,977,585. Foreign patents and additional patents pending.  
LIFE RELATED POLICY  
In situations where semiconductor component failure may endanger life, system designers using this product should design the system with appropriate error detection  
and correction, redundancy and back-up features to prevent such an occurrence.  
Xicor’s products are not authorized for use in critical components in life support devices or systems.  
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to  
perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.  
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life  
support device or system, or to affect its safety or effectiveness.  
Characteristics subject to change without notice. 23 of 23  
REV 1.1 2/1/01  
www.xicor.com  

相关型号:

RENESAS

X28HC256JIZ-12

5 Volt, Byte Alterable EEPROM
INTERSIL
RENESAS

X28HC256JIZ-15

5 Volt, Byte Alterable EEPROM
INTERSIL
RENESAS

X28HC256JIZ-90

5V, Byte Alterable EEPROM
INTERSIL

X28HC256JIZ-90

LOW POWER CMOS EEPROM with hi-speed page write capability 256K EEPROM
ROCHESTER

X28HC256JIZ-90T13

EEPROM, 32KX8, 90ns, Parallel, CMOS, PQCC32
RENESAS

X28HC256JM-12

5 Volt, Byte Alterable EEPROM
INTERSIL

X28HC256JM-12

5 Volt, Byte Alterable E2PROM
XICOR

X28HC256JM-12T1

EEPROM, 32KX8, 120ns, Parallel, CMOS, PQCC32, PLASTIC, LCC-32
XICOR

X28HC256JM-15

5 Volt, Byte Alterable EEPROM
INTERSIL