X28C256DM-25 [XICOR]

5 Volt, Byte Alterable E2PROM; 5伏,可变的字节E2PROM
X28C256DM-25
型号: X28C256DM-25
厂家: XICOR INC.    XICOR INC.
描述:

5 Volt, Byte Alterable E2PROM
5伏,可变的字节E2PROM

存储 内存集成电路 可编程只读存储器 电动程控只读存储器 电可擦编程只读存储器
文件: 总24页 (文件大小:114K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
256K  
X28C256  
32K x 8 Bit  
5 Volt, Byte Alterable E2PROM  
FEATURES  
DESCRIPTION  
2
Access Time: 200ns  
Simple Byte and Page Write  
— Single 5V Supply  
—No External High Voltages or V Control  
Circuits  
— Self-Timed  
The X28C256 is an 32K x 8 E PROM, fabricated with  
Xicor’s proprietary, high performance, floating gate  
CMOS technology. Like all Xicor programmable non-  
volatile memories the X28C256 is a 5V only device. The  
X28C256 features the JEDEC approved pinout for byte-  
widememories,compatiblewithindustrystandardRAMs.  
PP  
No Erase Before Write  
No Complex Programming Algorithms  
—No Overerase Problem  
Low Power CMOS:  
The X28C256 supports a 64-byte page write operation,  
effectively providing a 78µs/byte write cycle and en-  
abling the entire memory to be typically written in less  
than 2.5 seconds. The X28C256 also features DATA  
and Toggle Bit Polling, a system software support  
scheme used to indicate the early completion of a write  
cycle. In addition, the X28C256 includes a user-optional  
software data protection mode that further enhances  
Xicor’s hardware write protect capability.  
—Active: 60mA  
—Standby: 200µA  
Software Data Protection  
— Protects Data Against System Level  
Inadvertent Writes  
High Speed Page Write Capability  
Highly Reliable Direct Write Cell  
2
Xicor E PROMs are designed and tested for applica-  
— Endurance: 100,000 Write Cycles  
— Data Retention: 100 Years  
Early End of Write Detection  
DATA Polling  
tions requiring extended endurance. Inherent data re-  
tention is greater than 100 years.  
—Toggle Bit Polling  
PIN CONFIGURATION  
LCC  
PLCC  
PLASTIC DIP  
CERDIP  
FLAT PACK  
SOIC  
TSOP  
A
A
A
I/O  
I/O  
I/O  
1
2
3
4
5
6
7
8
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
A
A
A
A
A
A
A
NC  
V
NC  
2
1
0
0
1
2
3
4
5
6
7
12  
14  
A14  
1
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
V
CC  
4
3
2
1
32 31 30  
A
2
WE  
12  
A
A
A
A
A
A
A
5
6
7
8
9
29  
28  
27  
26  
25  
24  
23  
22  
21  
A
A
A
6
5
4
3
2
1
0
8
A
7
A
6
A
5
A
4
A
3
A
2
A
1
A
0
3
A
13  
9
4
A
8
A
9
NC  
11  
5
V
SS  
NC  
NC  
OE  
A
X28C256  
6
A
9
11  
X28C256  
CC  
I/O  
10  
11  
12  
13  
14  
15  
16  
7
OE  
3
4
5
6
7
X28C256  
I/O  
I/O  
I/O  
I/O  
WE  
10  
11  
12  
13  
10  
8
A
10  
A
A
A
A
13  
8
9
CE  
I/O  
9
CE  
NC  
7
10  
11  
12  
13  
14  
I/O  
7
I/O  
6
I/O  
5
I/0  
4
CE  
11  
I/O  
I/O  
0
6
A
I/O  
0
I/O  
1
I/O  
2
OE  
10  
14 15 16 17 18 19 20  
3855 ILL F23  
V
I/O  
3
SS  
3855 FHD F03  
3855 FHD F02  
© Xicor, Inc. 1991, 1995 Patents Pending  
3855-1.9 8/1/97 T1/C0/D8 EW  
Characteristics subject to change without notice  
1
X28C256  
PIN DESCRIPTIONS  
PIN NAMES  
Symbol  
A –A  
Addresses (A –A )  
Description  
Address Inputs  
Data Input/Output  
Write Enable  
Chip Enable  
Output Enable  
+5V  
0
14  
The Address inputs select an 8-bit memory location  
during a read or write operation.  
0
14  
I/O –I/O  
0
7
WE  
CE  
OE  
Chip Enable (CE)  
The Chip Enable input must be LOW to enable all read/  
writeoperations.WhenCEisHIGH,powerconsumption  
is reduced.  
V
CC  
V
SS  
Ground  
Output Enable (OE)  
NC  
No Connect  
TheOutputEnableinputcontrolsthedataoutputbuffers  
and is used to initiate read operations.  
3855 PGM T01  
PIN CONFIGURATION  
Data In/Data Out (I/O –I/O )  
0
7
PGA  
Data is written to or read from the X28C256 through the  
I/O pins.  
I/O  
12  
I/O  
13  
I/O  
3
15  
I/O  
17  
I/O  
18  
1
2
5
6
I/O  
11  
A
10  
V
14  
I/O  
16  
I/O  
19  
0
0
SS  
4
7
Write Enable (WE)  
The Write Enable input controls the writing of data to the  
X28C256.  
A
A
A
A
CE  
20  
A
21  
1
3
2
4
10  
11  
9
7
8
6
X28C256  
OE  
22  
A
23  
A
A
V
28  
A
24  
A
25  
5
6
12  
7
CC  
9
8
5
4
2
3
A
A
A
WE  
27  
A
13  
26  
14  
1
3855 FHD F04  
BOTTOM VIEW  
FUNCTIONAL DIAGRAM  
256K-BIT  
E PROM  
ARRAY  
X BUFFERS  
LATCHES AND  
DECODER  
2
A –A  
0
14  
ADDRESS  
INPUTS  
I/O BUFFERS  
AND LATCHES  
Y BUFFERS  
LATCHES AND  
DECODER  
I/O –I/O  
0
7
DATA INPUTS/OUTPUTS  
CE  
OE  
WE  
CONTROL  
LOGIC AND  
TIMING  
V
CC  
V
SS  
3855 FHD F01  
2
X28C256  
DEVICE OPERATION  
Read  
Write Operation Status Bits  
The X28C256 provides the user two write operation  
status bits. These can be used to optimize a system  
write cycle time. The status bits are mapped onto the  
I/O bus as shown in Figure 1.  
Read operations are initiated by both OE and CE LOW.  
The read operation is terminated by either CE or OE  
returning HIGH. This two line control architecture elimi-  
natesbuscontentioninasystemenvironment. Thedata  
bus will be in a high impedance state when either OE or  
CE is HIGH.  
Figure 1. Status Bit Assignment  
Write  
I/O DP TB  
5
4
3
2
1
0
Write operations are initiated when bothCE and WE are  
LOWandOEisHIGH.TheX28C256supportsbothaCE  
and WE controlled write cycle. That is, the address is  
latchedbythefallingedgeofeitherCEorWE,whichever  
occurslast. Similarly, thedataislatchedinternallybythe  
rising edge of either CE or WE, whichever occurs first.  
A byte write operation, once initiated, will automatically  
continue to completion, typically within 5ms.  
RESERVED  
TOGGLE BIT  
DATA POLLING  
3855 FHD F11  
DATA Polling (I/O )  
7
The X28C256 features DATA Polling as a method to  
indicate to the host system that the byte write or page  
writecyclehascompleted.DATAPollingallowsasimple  
bittestoperationtodeterminethestatusoftheX28C256,  
eliminating additional interrupt inputs or external hard-  
ware. During the internal programming cycle, any at-  
tempt to read the last byte written will produce the  
Page Write Operation  
The page write feature of the X28C256 allows the entire  
memory to be written in 2.5 seconds. Page write allows  
twotosixty-fourbytesofdatatobeconsecutivelywritten  
to the X28C256 prior to the commencement of the  
internal programming cycle. The host can fetch data  
from another device within the system during a page  
write operation (change the source address), but the  
complement of that data on I/O (i.e. write data = 0xxx  
7
xxxx, read data = 1xxx xxxx). Once the programming  
cycle is complete, I/O will reflect true data. Note: If the  
X28C256 is in the protected state and an illegal write  
operation is attempted DATA Polling will not operate.  
7
page address (A through A ) for each subsequent  
6
14  
valid write cycle to the part during this operation must be  
the same as the initial page address.  
Toggle Bit (I/O )  
6
The page write mode can be initiated during any write  
operation. Following the initial byte write cycle, the host  
can write an additional one to sixty-three bytes in the  
samemannerasthefirstbytewaswritten. Eachsucces-  
sive byte load cycle, started by the WE HIGH to LOW  
transition, must begin within 100µs of the falling edge of  
the preceding WE. If a subsequent WE HIGH to LOW  
transition is not detected within 100µs, the internal  
automatic programming cycle will commence. There is  
no page write window limitation. Effectively the page  
write window is infinitely wide, so long as the host  
continuestoaccessthedevicewithinthebyteloadcycle  
time of 100µs.  
The X28C256 also provides another method for deter-  
mining when the internal write cycle is complete. During  
the internal programming cycle I/O will toggle from  
HIGH to LOW and LOW to HIGH on subsequent  
attempts to read the device. When the internal cycle is  
complete the toggling will cease and the device will be  
accessible for additional read or write operations.  
6
3
X28C256  
DATA POLLING I/O  
7
Figure 2. DATA Polling Bus Sequence  
LAST  
WRITE  
WE  
CE  
OE  
V
IH  
V
HIGH Z  
OH  
I/O  
7
V
OL  
X28C256  
READY  
A –A  
0
14  
An  
An  
An  
An  
An  
An  
An  
3855 FHD F12  
Figure 3. DATA Polling Software Flow  
DATA Polling can effectively halve the time for writing to  
the X28C256. The timing diagram in Figure 2 illustrates  
the sequence of events on the bus. The software flow  
diagraminFigure3illustratesonemethodofimplement-  
ing the routine.  
WRITE DATA  
NO  
WRITES  
COMPLETE?  
YES  
SAVE LAST DATA  
AND ADDRESS  
READ LAST  
ADDRESS  
IO  
NO  
7
COMPARE?  
YES  
X28C256  
READY  
3855 FHD F13  
4
X28C256  
THE TOGGLE BIT I/O  
6
Figure 4. Toggle Bit Bus Sequence  
LAST  
WRITE  
WE  
CE  
OE  
V
OH  
HIGH Z  
I/O  
6
*
*
V
OL  
X28C256  
READY  
* Beginning and ending state of I/O will vary.  
6
3855 FHD F14  
Figure 5. Toggle Bit Software Flow  
TheToggleBitcaneliminatethesoftwarehousekeeping  
chore of saving and fetching the last address and data  
written to a device in order to implement DATA Polling.  
This can be especially helpful in an array comprised of  
multiple X28C256 memories that is frequently updated.  
The timing diagram in Figure 4 illustrates the sequence  
of events on the bus. The software flow diagram in  
Figure 5 illustrates a method for polling the Toggle Bit.  
LAST WRITE  
LOAD ACCUM  
FROM ADDR n  
COMPARE  
ACCUM WITH  
ADDR n  
NO  
COMPARE  
OK?  
YES  
X28C256  
READY  
3855 FHD F15  
5
X28C256  
HARDWARE DATA PROTECTION  
The X28C256 can be automatically protected during  
power-upandpower-downwithouttheneedforexternal  
circuits by employing the software data protection fea-  
ture. The internal software data protection circuit is  
enabled after the first write operation utilizing the soft-  
warealgorithm. Thiscircuitisnonvolatileandwillremain  
set for the life of the device unless the reset command  
is issued.  
The X28C256 provides three hardware features (com-  
patible with X28C64) that protect nonvolatile data from  
inadvertent writes.  
• Noise Protection—A WE pulse typically less than  
20ns will not initiate a write cycle.  
• Default V Sense—All write functions are inhibited  
CC  
when V is 3.5V typically.  
CC  
Once the software protection is enabled, the X28C256  
is also protected from inadvertent and accidental writes  
in the powered-up state. That is, the software algorithm  
must be issued prior to writing additional data to the  
device.  
• Write Inhibit—Holding either OE LOW, WE HIGH,  
or CE HIGH will prevent an inadvertent write cycle  
during power-up and power-down, maintaining data  
integrity.  
SOFTWARE DATA PROTECTION  
Software Algorithm  
The X28C256 offers a software controlled data protec-  
tionfeature.TheX28C256isshippedfromXicorwiththe  
software data protection NOT ENABLED; that is, the  
device will be in the standard operating mode. In this  
mode data should be protected during power-up/-down  
operations through the use of external circuits. The host  
would then have open read and write access of the  
Selecting the software data protection mode requires  
the host system to precede data write operations by a  
series of three write operations to three specific ad-  
dresses. Refer to Figure 6 and 7 for the sequence. The  
three-byte sequence opens the page write window  
enabling the host to write from one to sixty-four bytes of  
data.* Once the page load cycle has been completed,  
the device will automatically be returned to the data  
protected state.  
device once V was stable.  
CC  
*Note: Once the three-byte sequence is issued it  
must be followed by a valid byte or page write  
operation.  
6
X28C256  
SOFTWARE DATA PROTECTION  
Figure 6. Timing Sequence—Byte or Page Write  
V
(V  
)
CC  
CC  
0V  
DATA  
AA  
55  
2AAA  
A0  
5555  
t
t
WC  
WRITE  
PROTECTED  
WPH2  
ADDR. 5555  
WRITES  
OK  
CE  
t  
BYTE  
OR  
PAGE  
BLC MAX  
WE  
3855 FHD F16  
Figure 7. Write Sequence for  
Software Data Protection  
Regardless of whether the device has previously been  
protected or not, once the software data protection  
algorithmisusedanddatahasbeenwritten,theX28C256  
will automatically disable further writes unless another  
command is issued to cancel it. If no further commands  
are issued the X28C256 will be write protected during  
power-down and after any subsequent power-up.  
WRITE DATA AA  
TO ADDRESS  
5555  
WRITE DATA 55  
TO ADDRESS  
2AAA  
Note: Once initiated, the sequence of write operations  
should not be interrupted.  
WRITE DATA A0  
TO ADDRESS  
5555  
BYTE/PAGE  
LOAD ENABLED  
WRITE DATA XX  
TO ANY  
ADDRESS  
WRITE LAST  
BYTE TO  
LAST ADDRESS  
AFTER t  
RE-ENTERS DATA  
WC  
PROTECTED STATE  
3855 FHD F17  
7
X28C256  
RESETTING SOFTWARE DATA PROTECTION  
Figure 8. Reset Software Data Protection Timing Sequence  
V
CC  
STANDARD  
OPERATING  
MODE  
DATA AA  
ADDR. 5555  
55  
2AAA  
80  
5555  
AA  
5555  
55  
2AAA  
20  
5555  
t  
WC  
CE  
WE  
3855 FHD F18  
Figure 9. Software Sequence to  
Deactivate Software Data Protection  
In the event the user wants to deactivate the software  
data protection feature for testing or reprogramming in  
2
WRITE DATA AA  
TO ADDRESS  
5555  
an E PROM programmer, the following six step algo-  
rithm will reset the internal protection circuit. After t  
the X28C256 will be in standard operating mode.  
,
WC  
Note: Onceinitiated,thesequenceofwriteoperations  
should not be interrupted.  
WRITE DATA 55  
TO ADDRESS  
2AAA  
WRITE DATA 80  
TO ADDRESS  
5555  
WRITE DATA AA  
TO ADDRESS  
5555  
WRITE DATA 55  
TO ADDRESS  
2AAA  
WRITE DATA 20  
TO ADDRESS  
5555  
3855 FHD F19  
8
X28C256  
SYSTEM CONSIDERATIONS  
prime concern. Enabling CE will cause transient current  
spikes. The magnitude of these spikes is dependent on  
the output capacitive loading of the I/Os. Therefore, the  
larger the array sharing a common bus, the larger the  
transient spikes. The voltage peaks associated with the  
current transients can be suppressed by the proper  
selection and placement of decoupling capacitors. As a  
minimum, it is recommended that a 0.1µF high fre-  
BecausetheX28C256isfrequentlyusedinlargememory  
arrays it is provided with a two line control architecture  
for both read and write operations. Proper usage can  
provide the lowest possible power dissipation and elimi-  
nate the possibility of contention where multiple I/O pins  
share the same bus.  
quency ceramic capacitor be used between V  
and  
To gain the most benefit it is recommended that CE be  
decoded from the address bus and be used as the  
primary device selection input. Both OE and WE would  
then be common among all devices in the array. For a  
read operation this assures that all deselected devices  
are in their standby mode and that only the selected  
device(s) is outputting data on the bus.  
CC  
V
SS  
at each device. Depending on the size of the array,  
the value of the capacitor may have to be larger.  
In addition, it is recommended that a 4.7µF electrolytic  
bulk capacitor be placed between V and V for each  
CC  
SS  
eight devices employed in the array. This bulk capacitor  
is employed to overcome the voltage droop caused by  
the inductive effects of the PC board traces.  
Because the X28C256 has two power modes, standby  
and active, proper decoupling of the memory array is of  
Normalized Active Supply Current  
vs. Ambient Temperature  
Normalized Standby Supply Current  
vs. Ambient Temperature  
1.4  
1.4  
V
= 5V  
V
= 5V  
CC  
CC  
1.2  
1.0  
0.8  
0.6  
1.2  
1.0  
0.8  
0.6  
–55  
+25  
+125  
–55  
+25  
+125  
AMBIENT TEMPERATURE (°C)  
AMBIENT TEMPERATURE (°C)  
3855 FHD F20.1  
3855 FHD F21.1  
9
X28C256  
ABSOLUTE MAXIMUM RATINGS*  
*COMMENT  
Temperature under Bias  
Stresses above those listed under “Absolute Maximum  
Ratings” may cause permanent damage to the device.  
This is a stress rating only and the functional operation of  
the device at these or any other conditions above those  
indicatedintheoperationalsectionsofthisspecificationis  
not implied. Exposure to absolute maximum rating condi-  
tions for extended periods may affect device reliability.  
X28C256...................................... –10°C to +85°C  
X28C256I, X28C256M............... –65°C to +135°C  
Storage Temperature ....................... –65°C to +150°C  
Voltage on any Pin with  
Respect to V  
....................................... –1V to +7V  
SS  
D.C. Output Current ............................................. 5mA  
Lead Temperature  
(Soldering, 10 seconds).............................. 300°C  
RECOMMENDED OPERATING CONDITIONS  
Supply Voltage  
Limits  
Temperature  
Min.  
Max.  
X28C256  
5V ±10%  
Commercial  
Industrial  
Military  
0°C  
+70°C  
+85°C  
3855 PGM T03.1  
–40°C  
–55°C  
+125°C  
3855 PGM T02.1  
D.C. OPERATING CHARACTERISTICS (over recommended operating conditions, unless otherwise specified)  
Limits  
(1)  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Units  
Test Conditions  
CE = OE = V , WE = V ,  
I
V
Current (Active)  
30  
60  
mA  
CC  
CC  
IL  
IH  
(TTL Inputs)  
All I/O’s = Open, Address  
Inputs = .4V/2.4V @ f = 5MHz  
I
I
V
Current (Standby)  
1
2
mA  
CE = V , OE = V  
IH IL  
All I/O’s = Open, Other Inputs = V  
SB1  
CC  
(TTL Inputs)  
IH  
(2)  
V
CC  
Current (Standby)  
200  
500  
µA  
CE = V – 0.3V, OE = V  
IL  
SB2  
CC  
(CMOS Inputs)  
All I/O’s = Open,  
Other Inputs = V – 0.3V  
CC  
I
I
Input Leakage Current  
Output Leakage Current  
Input LOW Voltage  
10  
10  
µA  
µA  
V
V
V
= V to V  
SS CC  
LI  
IN  
= V to V , CE = V  
IH  
LO  
OUT  
SS  
CC  
(3)  
V
V
V
V
–1  
2
0.8  
lL  
(3)  
Input HIGH Voltage  
Output LOW Voltage  
Output HIGH Voltage  
V
+ 1  
V
IH  
CC  
0.4  
V
I
I
= 2.1mA  
OL  
OL  
2.4  
V
= –400µA  
OH  
OH  
3855 PGM T04.2  
Notes: (1) Typical values are for T = 25°C and nominal supply voltage and are not tested  
A
(2) I  
max. of 200µA available from Xicor. Contact local sales office and reference X28C256 C7125.  
SB2  
(3) V min. and V max. are for reference only and are not tested.  
IL  
IH  
10  
X28C256  
ENDURANCE AND DATA RETENTION  
Parameter  
Min.  
Units  
Endurance  
100,000  
100  
Cycles  
Years  
Data Retention  
3855 PGM T05.3  
POWER-UP TIMING  
Symbol  
Parameter  
Power-up to Read Operation  
Power-up to Write Operation  
Max.  
Units  
(4)  
t
t
100  
5
µs  
PUR  
(4)  
ms  
PUW  
3855 PGM T06  
CAPACITANCE T = +25°C, f = 1MHz, V = 5V  
A
CC  
Symbol  
Parameter  
Max.  
Units  
Test Conditions  
(4)  
C
C
Input/Output Capacitance  
Input Capacitance  
10  
6
pF  
pF  
V
V
= 0V  
= 0V  
I/O  
I/O  
(4)  
IN  
IN  
3855 PGM T07.1  
A.C. CONDITIONS OF TEST  
MODE SELECTION  
Input Pulse Levels  
0V to 3V  
CE  
L
OE  
L
WE  
H
Mode  
Read  
Write  
I/O  
Power  
Active  
D
D
OUT  
IN  
Input Rise and  
Fall Times  
L
H
L
Active  
10ns  
1.5V  
H
X
X
Standby and  
Write Inhibit  
High Z  
Standby  
Input and Output  
Timing Levels  
3855 PGM T08.1  
X
X
L
X
H
Write Inhibit  
Write Inhibit  
X
3855 PGM T09  
Note: (4) This parameter is periodically sampled and not 100% tested.  
EQUIVALENT A.C. LOAD CIRCUIT  
SYMBOL TABLE  
5V  
WAVEFORM  
INPUTS  
OUTPUTS  
Must be  
steady  
Will be  
steady  
1.92K  
OUTPUT  
May change  
from LOW  
to HIGH  
Will change  
from LOW  
to HIGH  
1.37KΩ  
100pF  
May change  
from HIGH  
to LOW  
Will change  
from HIGH  
to LOW  
Don’t Care:  
Changes  
Allowed  
Changing:  
State Not  
Known  
3855 FHD F22.3  
N/A  
Center Line  
is High  
Impedance  
11  
X28C256  
A.C. CHARACTERISTICS (over recommended operating conditions, unless otherwise specified)  
Read Cycle Limits  
X28C256-20 X28C256-25  
X28C256  
Symbol  
Parameter  
Min. Max. Min. Max. Min. Max. Units  
t
t
t
t
t
t
t
t
t
Read Cycle Time  
200  
250  
300  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
RC  
CE  
AA  
OE  
Chip Enable Access Time  
Address Access Time  
200  
200  
80  
250  
250  
100  
300  
300  
100  
Output Enable Access Time  
CE LOW to Active Output  
OE LOW to Active Output  
CE HIGH to High Z Output  
OE HIGH to High Z Output  
(5)  
0
0
0
0
0
0
LZ  
(5)  
OLZ  
(5)  
50  
50  
50  
50  
50  
50  
HZ  
(5)  
OHZ  
OH  
Output Hold from  
Address Change  
0
0
0
3855 PGM T10.1  
Read Cycle  
t
RC  
ADDRESS  
CE  
t
CE  
t
OE  
OE  
V
IH  
WE  
t
t
OLZ  
OHZ  
t
t
t
LZ  
OH  
HZ  
HIGH Z  
DATA I/O  
DATA VALID  
DATA VALID  
t
AA  
3855 FHD F05  
Note: (5) t min., t , t  
min., and t  
are peridocally sampled and not 100% tested. t and t  
are measured, with C = 5pF, from  
OHZ L  
LZ  
HZ OLZ  
OHZ  
HZ  
the point when CE or OE return HIGH (whichever occurs first) to the time when the outputs are no longer driven.  
12  
X28C256  
WRITE CYCLE LIMITS  
(9)  
Min.  
(6)  
Typ.  
Symbol  
Parameter  
Max.  
Units  
(7)  
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
Write Cycle Time  
Address Setup Time  
Address Hold Time  
Write Setup Time  
Write Hold Time  
CE Pulse Width  
OE HIGH Setup Time  
OE HIGH Hold Time  
WE Pulse Width  
WE HIGH Recovery  
SDP WE Recovery  
Data Valid  
5
10  
ms  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
µs  
µs  
ns  
ns  
µs  
WC  
AS  
0
150  
0
AH  
CS  
0
CH  
100  
10  
10  
100  
50  
1
CW  
OES  
OEH  
WP  
WPH  
WPH2  
DV  
(8)  
1
Data Setup  
50  
10  
10  
1
DS  
Data Hold  
DH  
Delay to Next Write  
Byte Load Cycle  
DW  
(9)  
100  
µs  
BLC  
3855 PGM T11.1  
WE Controlled Write Cycle  
t
WC  
ADDRESS  
t
t
AS  
AH  
t
t
CS  
CH  
CE  
OE  
t
t
OES  
t
OEH  
t
WP  
WE  
DV  
DATA IN  
DATA OUT  
DATA VALID  
t
t
DS  
DH  
HIGH Z  
3855 FHD F06  
Notes: (6) Typical values are for T = 25°C and nominal supply voltage.  
A
(7) t  
is the minimum cycle time to be allowed from the system perspective unless polling techniques are used. It is the maximum  
WC  
time the device requires to automatically complete the internal write operation.  
(8) t is the normal page write operation WE recovery time. t is the WE recovery time needed only after the end of issuing  
WPH  
WPH2  
the three-byte SDP command sequence and before writing the first byte of data to the array. Refer to Figure 6 which illustrates  
the t requirement.  
WPH2  
(9) For faster t  
and t  
, refer to X28HC256 or X28VC256.  
BLC  
WC  
13  
X28C256  
CE Controlled Write Cycle  
t
WC  
ADDRESS  
t
t
AH  
AS  
t
CW  
CE  
t
OES  
OE  
t
OEH  
t
t
CH  
CS  
WE  
t
DV  
DATA IN  
DATA VALID  
t
t
DH  
DS  
HIGH Z  
DATA OUT  
3855 FHD F07  
Page Write Cycle  
OE(10)  
CE  
t
t
BLC  
WP  
WE  
t
WPH  
ADDRESS* (11)  
I/O  
LAST BYTE  
BYTE 0  
BYTE 1  
BYTE 2  
BYTE n  
BYTE n+1  
BYTE n+2  
t
WC  
*For each successive write within the page write operation, A –A should be the same or  
14  
6
writes to an unknown address could occur.  
3855 FHD F08  
Notes: (10) Between successive byte writes within a page write operation, OE can be strobed LOW: e.g. this can be done with CE and WE  
HIGH to fetch data from another memory device within the system for the next write; or with WE HIGH and CE LOW effectively  
performing a polling operation.  
(11) The timings shown above are unique to page write operations. Individual byte load operations within the page write must  
conform to either the CE or WE controlled write cycle timing.  
14  
X28C256  
(12)  
DATA Polling Timing Diagram  
An  
An  
An  
ADDRESS  
CE  
WE  
t
t
OEH  
OES  
OE  
t
DW  
=X  
D
=X  
D
=X  
D
I/O  
7
IN  
OUT  
OUT  
t
WC  
3855 FHD F09  
(12)  
Toggle Bit Timing Diagram  
CE  
WE  
t
t
OES  
OEH  
OE  
t
DW  
HIGH Z  
I/O  
6
*
*
t
WC  
* Starting and ending state of I/O will vary, depending upon actual t  
.
6
WC  
3855 FHD F10  
Note: (12) Polling operations are by definition read cycles and are therefore subject to read cycle timings.  
15  
X28C256  
PACKAGING INFORMATION  
28-LEAD PLASTIC DUAL IN-LINE PACKAGE TYPE P  
1.470 (37.34)  
1.400 (35.56)  
0.557 (14.15)  
0.510 (12.95)  
PIN 1 INDEX  
PIN 1  
0.085 (2.16)  
0.040 (1.02)  
1.300 (33.02)  
REF.  
0.160 (4.06)  
0.125 (3.17)  
SEATING  
PLANE  
0.030 (0.76)  
0.015 (0.38)  
0.160 (4.06)  
0.120 (3.05)  
0.110 (2.79)  
0.090 (2.29)  
0.065 (1.65)  
0.040 (1.02)  
0.022 (0.56)  
0.014 (0.36)  
0.625 (15.88)  
0.590 (14.99)  
0°  
TYP. 0.010 (0.25)  
15°  
NOTE:  
1. ALL DIMENSIONS IN INCHES (IN PARENTHESES IN MILLIMETERS)  
2. PACKAGE DIMENSIONS EXCLUDE MOLDING FLASH  
3926 FHD F04  
16  
X28C256  
PACKAGING INFORMATION  
28-LEAD HERMETIC DUAL IN-LINE PACKAGE TYPE D  
1.490 (37.85) MAX.  
0.610 (15.49)  
0.500 (12.70)  
PIN 1  
0.005 (0.127) MIN.  
0.100 (2.54) MAX.  
SEATING  
PLANE  
0.232 (5.90) MAX.  
0.060 (1.52)  
0.015 (0.38)  
0.200 (5.08)  
0.125 (3.18)  
0.150 (3.81) MIN.  
0.110 (2.79)  
0.090 (2.29)  
0.065 (1.65)  
0.038 (0.97)  
0.023 (0.58)  
0.014 (0.36)  
TYP. 0.100 (2.54)  
TYP. 0.055 (1.40)  
TYP. 0.018 (0.46)  
0.620 (15.75)  
0.590 (14.99)  
TYP. 0.614 (15.60)  
0°  
0.015 (0.38)  
0.008 (0.20)  
15°  
NOTE: ALL DIMENSIONS IN INCHES (IN PARENTHESES IN MILLIMETERS)  
3926 FHD F08  
17  
X28C256  
PACKAGING INFORMATION  
32-LEAD PLASTIC LEADED CHIP CARRIER PACKAGE TYPE J  
0.030" TYPICAL  
32 PLACES  
0.050"  
0.420 (10.67)  
TYPICAL  
0.050"  
TYPICAL  
0.510"  
TYPICAL  
0.400"  
0.050 (1.27) TYP.  
0.300"  
REF  
0.410"  
FOOTPRINT  
0.021 (0.53)  
0.013 (0.33)  
TYP. 0.017 (0.43)  
SEATING PLANE  
±0.004 LEAD  
CO – PLANARITY  
0.045 (1.14) x 45°  
0.015 (0.38)  
0.095 (2.41)  
0.495 (12.57)  
0.485 (12.32)  
TYP. 0.490 (12.45)  
0.060 (1.52)  
0.140 (3.56)  
0.453 (11.51)  
0.100 (2.45)  
TYP. 0.136 (3.45)  
0.447 (11.35)  
TYP. 0.450 (11.43)  
0.048 (1.22)  
0.042 (1.07)  
0.300 (7.62)  
REF.  
PIN 1  
0.595 (15.11)  
0.585 (14.86)  
TYP. 0.590 (14.99)  
0.553 (14.05)  
0.547 (13.89)  
TYP. 0.550 (13.97)  
0.400  
REF.  
(10.16)  
3° TYP.  
NOTES:  
1. ALL DIMENSIONS IN INCHES (IN PARENTHESES IN MILLIMETERS)  
2. DIMENSIONS WITH NO TOLERANCE FOR REFERENCE ONLY  
3926 FHD F13  
18  
X28C256  
PACKAGING INFORMATION  
32-PAD CERAMIC LEADLESS CHIP CARRIER PACKAGE TYPE E  
0.300 (7.62)  
BSC  
0.150 (3.81) BSC  
0.020 (0.51) x 45° REF.  
0.015 (0.38)  
0.003 (0.08)  
0.095 (2.41)  
0.075 (1.91)  
PIN 1  
0.022 (0.56)  
DIA.  
0.006 (0.15)  
0.055 (1.39)  
0.200 (5.08)  
BSC  
0.045 (1.14)  
TYP. (4) PLCS.  
0.015 (0.38)  
MIN.  
0.028 (0.71)  
0.040 (1.02) x 45° REF.  
0.022 (0.56)  
(32) PLCS.  
TYP. (3) PLCS.  
0.050 (1.27) BSC  
0.458 (11.63)  
0.088 (2.24)  
0.050 (1.27)  
0.442 (11.22)  
0.120 (3.05)  
0.458 (11.63)  
––  
0.060 (1.52)  
0.558 (14.17)  
––  
0.560 (14.22)  
0.540 (13.71)  
0.400 (10.16)  
BSC  
PIN 1 INDEX CORNER  
NOTE:  
1. ALL DIMENSIONS IN INCHES (IN PARENTHESES IN MILLIMETERS)  
2. TOLERANCE: ±1% NLT ±0.005 (0.127)  
3926 FHD F14  
19  
X28C256  
PACKAGING INFORMATION  
28-LEAD CERAMIC FLAT PACK TYPE F  
0.019 (0.48)  
0.015 (0.38)  
PIN 1 INDEX  
1
28  
0.050 (1.27) BSC  
0.740 (18.80)  
MAX.  
0.045 (1.14) MAX.  
0.440 (11.18)  
MAX.  
0.130 (3.30)  
0.090 (2.29)  
0.006 (0.15)  
0.003 (0.08)  
0.370 (9.40)  
0.250 (6.35)  
0.045 (1.14)  
0.025 (0.66)  
TYP. 0.300 2 PLCS.  
0.180 (4.57)  
MIN.  
0.030 (0.76)  
MIN.  
NOTE: ALL DIMENSIONS IN INCHES (IN PARENTHESES IN MILLIMETERS)  
3926 FHD F16  
20  
X28C256  
PACKAGING INFORMATION  
28-LEAD CERAMIC PIN GRID ARRAY PACKAGE TYPE K  
12  
11  
9
13  
10  
8
15  
14  
17  
16  
20  
22  
24  
27  
18  
19  
21  
23  
25  
26  
A
A
0.008 (0.20)  
0.050 (1.27)  
7
6
5
2
28  
1
NOTE: LEADS 4,12,18 & 26  
4
3
0.080 (2.03)  
0.070 (1.78)  
TYP. 0.100 (2.54)  
ALL LEADS  
4 CORNERS  
0.080 (2.03)  
0.070 (1.78)  
0.110 (2.79)  
0.090 (2.29)  
0.072 (1.83)  
0.062 (1.57)  
PIN 1 INDEX  
0.020 (0.51)  
0.016 (0.41)  
0.660 (16.76)  
0.640 (16.26)  
A
A
0.185 (4.70)  
0.175 (4.44)  
0.561 (14.25)  
0.541 (13.75)  
NOTE: ALL DIMENSIONS IN INCHES (IN PARENTHESES IN MILLIMETERS)  
3926 FHD F15  
21  
X28C256  
PACKAGING INFORMATION  
28-LEAD PLASTIC SMALL OUTLINE GULL WING PACKAGE TYPE S  
0.299 (7.59)  
0.290 (7.37)  
0.419 (10.64)  
0.394 (10.01)  
0.020 (0.508)  
0.014 (0.356)  
0.713 (18.11)  
0.697 (17.70)  
0.105 (2.67)  
0.092 (2.34)  
BASE PLANE  
SEATING PLANE  
0.012 (0.30)  
0.003 (0.08)  
0.050 (1.270)  
BSC  
0.050" TYPICAL  
0.0200 (0.5080)  
X 45°  
0.0100 (0.2540)  
0.050"  
TYPICAL  
0.013 (0.32)  
0.008 (0.20)  
0° – 8°  
0.42" MAX  
0.0350 (0.8890)  
0.0160 (0.4064)  
0.030" TYPICAL  
28 PLACES  
FOOTPRINT  
NOTES:  
1. ALL DIMENSIONS IN INCHES (IN PARENTHESES IN MILLIMETERS)  
2. FORMED LEAD SHALL BE PLANAR WITH RESPECT TO ONE ANOTHER WITHIN 0.004 INCHES  
3926 FHD F17  
22  
X28C256  
PACKAGING INFORMATION  
32-LEAD THIN SMALL OUTLINE PACKAGE (TSOP) TYPE T  
SEE NOTE 2  
12.50 (0.492)  
12.30 (0.484)  
PIN #1 IDENT.  
O 0.76 (0.03)  
0.50 (0.0197) BSC  
SEE NOTE 2  
8.02 (0.315)  
7.98 (0.314)  
0.26 (0.010)  
0.14 (0.006)  
1.18 (0.046)  
1.02 (0.040)  
0.17 (0.007)  
0.03 (0.001)  
SEATING  
PLANE  
0.58 (0.023)  
0.42 (0.017)  
14.15 (0.557)  
13.83 (0.544)  
14.80 ± 0.05  
(0.583 ± 0.002)  
0.30 ± 0.05  
(0.012 ± 0.002)  
SOLDER PADS  
TYPICAL  
32 PLACES  
15 EQ. SPC. 0.50 ± 0.04  
0.0197 ± 0.016 = 7.50 ± 0.06  
(0.295 ± 0.0024) OVERALL  
TOL. NON-CUMULATIVE  
0.17 (0.007)  
0.03 (0.001)  
0.50 ± 0.04  
(0.0197 ± 0.0016)  
1.30 ± 0.05  
(0.051 ± 0.002)  
FOOTPRINT  
NOTE:  
1. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS (INCHES IN PARENTHESES).  
3926 ILL F38.1  
23  
X28C256  
ORDERING INFORMATION  
X28C256  
X
X
-X  
Access Time  
–20 = 200ns  
–25 = 250ns  
Blank = 300ns  
–35 = 350ns  
Device  
Temperature Range  
Blank = Commercial = 0°C to +70°C  
I = Industrial = –40°C to +85°C  
M = Military = –55°C to +125°C  
MB = MIL-STD-883  
Package  
P = 28-Lead Plastic DIP  
D = 28-Lead Cerdip  
J = 32-Lead PLCC  
E = 32-Pad LCC  
F = 28-Lead Flat Pack  
K = 28-Lead Pin Grid Array  
S = 28-Lead Plastic SOIC  
T = 32-Lead TSOP  
LIMITED WARRANTY  
Devices sold by Xicor, Inc. are covered by the warranty and patent indemnification provisions appearing in its Terms of Sale only. Xicor, Inc. makes no warranty,  
express, statutory, implied, or by description regarding the information set forth herein or regarding the freedom of the described devices from patent infringement.  
Xicor, Inc. makes no warranty of merchantability or fitness for any purpose. Xicor, Inc. reserves the right to discontinue production and change specifications and  
prices at any time and without notice.  
Xicor, Inc. assumes no responsibility for the use of any circuitry other than circuitry embodied in a Xicor, Inc. product. No other circuits, patents, licenses are  
implied.  
U.S. PATENTS  
Xicor products are covered by one or more of the following U.S. Patents: 4,263,664; 4,274,012; 4,300,212; 4,314,265; 4,326,134; 4,393,481; 4,404,475;  
4,450,402; 4,486,769; 4,488,060; 4,520,461; 4,533,846; 4,599,706; 4,617,652; 4,668,932; 4,752,912; 4,829, 482; 4,874, 967; 4,883, 976. Foreign patents and  
additional patents pending.  
LIFE RELATED POLICY  
In situations where semiconductor component failure may endanger life, system designers using this product should design the system with appropriate error  
detection and correction, redundancy and back-up features to prevent such an occurence.  
Xicor's products are not authorized for use in critical components in life support devices or systems.  
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose  
failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant  
injury to the user.  
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life  
support device or system, or to affect its safety or effectiveness.  
24  

相关型号:

X28C256DM-35

5 Volt, Byte Alterable E2PROM
XICOR

X28C256DMB

5 Volt, Byte Alterable E2PROM
XICOR

X28C256DMB-20

5 Volt, Byte Alterable E2PROM
XICOR

X28C256DMB-25

5 Volt, Byte Alterable E2PROM
XICOR

X28C256DMB-35

5 Volt, Byte Alterable E2PROM
XICOR

X28C256E

5 Volt, Byte Alterable E2PROM
XICOR

X28C256E-20

5 Volt, Byte Alterable E2PROM
XICOR

X28C256E-20T1

EEPROM, 32KX8, 200ns, Parallel, CMOS, CQCC32, CERAMIC, LCC-32
XICOR

X28C256E-25

5 Volt, Byte Alterable E2PROM
XICOR

X28C256E-35

5 Volt, Byte Alterable E2PROM
XICOR

X28C256E-35T1

EEPROM, 32KX8, 350ns, Parallel, CMOS, CQCC32, CERAMIC, LCC-32
XICOR

X28C256EI

5 Volt, Byte Alterable E2PROM
XICOR