W39L040AQ90B [WINBOND]

512K 】 8 CMOS FLASH MEMORY; 512K 】 8 CMOS FLASH MEMORY
W39L040AQ90B
型号: W39L040AQ90B
厂家: WINBOND    WINBOND
描述:

512K 】 8 CMOS FLASH MEMORY
512K 】 8 CMOS FLASH MEMORY

闪存 存储 内存集成电路 光电二极管
文件: 总26页 (文件大小:299K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
W39L040A Data Sheet  
512K × 8 CMOS FLASH MEMORY  
Table of Contents-  
1.  
2.  
3.  
4.  
5.  
6.  
GENERAL DESCRIPTION ......................................................................................................... 3  
FEATURES................................................................................................................................. 3  
PIN CONFIGURATIONS ............................................................................................................ 4  
BLOCK DIAGRAM ...................................................................................................................... 4  
PIN DESCRIPTION..................................................................................................................... 4  
FUNCTIONAL DESCRIPTION ................................................................................................... 5  
6.1  
Device Bus Operation..................................................................................................... 5  
6.1.1 Read Mode.......................................................................................................................5  
6.1.2 Write Mode.......................................................................................................................5  
6.1.3 Standby Mode ..................................................................................................................5  
6.1.4 Output Disable Mode........................................................................................................5  
6.1.5 Auto-select Mode..............................................................................................................5  
6.2  
6.3  
Data Protection............................................................................................................... 6  
6.2.1 Low VDD Inhibit................................................................................................................6  
6.2.2 Write Pulse "Glitch" Protection .........................................................................................6  
6.2.3 Logical Inhibit ...................................................................................................................6  
6.2.4 Power-up Write and Read Inhibit......................................................................................6  
Command Definitions ..................................................................................................... 6  
6.3.1 Read Command ...............................................................................................................6  
6.3.2 Auto-select Command......................................................................................................7  
6.3.3 Byte Program Command..................................................................................................7  
6.3.4 Chip Erase Command ......................................................................................................7  
6.3.5 Sector Erase Command ...................................................................................................8  
6.4  
6.5  
Write Operation Status ................................................................................................... 8  
6.4.1 DQ7: #Data Polling...........................................................................................................8  
6.4.2 DQ6: Toggle Bit................................................................................................................9  
Table of Operating Modes .............................................................................................. 9  
6.5.1 Device Bus Operations.....................................................................................................9  
6.5.2 Auto-select Codes (High Voltage Method) .......................................................................9  
6.5.3 Sector Address Table.....................................................................................................10  
6.5.4 Command Definitions .....................................................................................................10  
6.6  
6.7  
Embedded Programming Algorithm ............................................................................. 11  
Embedded Erase Algorithm.......................................................................................... 12  
Publication Release Date:April 14, 2005  
- 1 -  
Revision A3  
W39L040A  
6.8  
6.9  
Embedded #Data Polling Algorithm.............................................................................. 13  
Embedded Toggle Bit Algorithm................................................................................... 13  
7.  
ELECTRICAL CHARACTERISTICS......................................................................................... 14  
7.1  
7.2  
7.3  
7.4  
Absolute Maximum Ratings.......................................................................................... 14  
DC Operating Characteristics....................................................................................... 14  
Pin Capacitance............................................................................................................ 14  
AC Characteristics........................................................................................................ 15  
7.4.1 AC Test Conditions.........................................................................................................15  
7.4.2 AC Test Load and Waveform .........................................................................................15  
7.4.3 Read Cycle Timing Parameters......................................................................................16  
7.4.4 Erase/Program Cycle Timing Parameters ......................................................................16  
7.4.5 Power-up Timing ............................................................................................................17  
7.4.6 #Data Polling and Toggle Bit Timing Parameters...........................................................17  
8.  
TIMING WAVEFORMS............................................................................................................. 18  
8.1  
8.2  
8.3  
8.4  
8.5  
8.6  
8.7  
Read Cycle Timing Diagram......................................................................................... 18  
#WE Controlled Command Write Cycle Timing Diagram............................................. 18  
#CE Controlled Command Write Cycle Timing Diagram.............................................. 19  
Chip Erase Timing Diagram ......................................................................................... 19  
Sector Erase Timing Diagram ...................................................................................... 20  
#Data Polling Timing Diagram...................................................................................... 20  
Toggle Bit Timing Diagram ........................................................................................... 21  
9.  
ORDERING INFORMATION .................................................................................................... 22  
HOW TO READ THE TOP MARKING...................................................................................... 23  
PACKAGE DIMENSIONS......................................................................................................... 24  
11.1 32L PLCC ..................................................................................................................... 24  
11.2 32L PDIP....................................................................................................................... 24  
11.3 32L TSOP (8 x 20 mm)................................................................................................. 25  
11.4 32L STSOP (8 x 14 mm) .............................................................................................. 25  
VERSION HISTORY................................................................................................................. 26  
10.  
11.  
12.  
- 2 -  
W39L040A  
1. GENERAL DESCRIPTION  
The W39L040A is a 4Mbit, 3V/3.3V CMOS flash memory organized as 512K × 8 bits. For flexible  
erase capability, the 4Mbits of data are divided into 8 uniform sectors of 64 Kbytes. The byte-wide (×  
8) data appears on DQ7 DQ0. The device can be programmed and erased in-system with a  
standard 3.3V power supply. A 12-volt VPP is not required. The unique cell architecture of the  
W39L040A results in fast program/erase operations with extremely low current consumption  
(compared to other comparable 3.3-volt flash memory products). The device can also be programmed  
and erased by using standard EPROM programmers.  
2. FEATURES  
3V/3.3-Volt Read/Erase/Program Operations  
3.0 ~ 3.6V for 70nS  
Typical program/erase cycles: 10K  
Twenty-year data retention  
Low power consumption  
2.7 ~ 3.6V for 90nS  
Active read current: 7 mA at 5MHz (typ.)  
Active program/erase current: 15 mA at  
5MHz (typ.)  
Fast Program operation:  
Byte-by-Byte programming: 9 μS (typ.)  
Fast Erase operation:  
Standby current: 0.2 μA (typ.)  
Chip Erase cycle time: 6 S (typ.)  
Sector Erase cycle time: 0.7 S (typ.)  
Read access time: 70/90 nS  
8 Even sectors with 64K bytes  
Any individual sector can be erased  
End of program detection  
Software method: Toggle bit/#Data polling  
JEDEC standard byte-wide pinouts  
Available packages: 32-pin PLCC Lead free,  
32-pin STSOP (8 x 14 mm) Lead free, 32-pin  
PDIP and 32-pin TSOP (8 x 20 mm)  
Publication Release Date: April 14, 2005  
Revision A3  
- 3 -  
 
W39L040A  
3. PIN CONFIGURATIONS  
4. BLOCK DIAGRAM  
A
1
2
A
1
6
V
D
D
#
W
E
A
1
7
A
1
5
A
1
8
V
DD  
4
3
2
1
32 31 30  
V
SS  
29  
28  
27  
26  
25  
24  
23  
22  
21  
A14  
5
6
A7  
A6  
A13  
A8  
#CE  
#OE  
DQ0  
7
.
A5  
OUTPUT  
.
8
A9  
CONTROL  
A4  
BUFFER  
32L PLCC  
9
A11  
#OE  
A10  
#CE  
A3  
DQ7  
#WE  
10  
11  
12  
13  
A2  
A1  
A0  
DQ7  
DQ0  
14 15 16 17 18 19 20  
D
Q
1
D
Q
2
V
S
S
D
Q
4
D
Q
5
D
Q
3
D
Q
6
A0  
CORE  
ARRAY  
.
.
#OE  
A10  
1
2
3
32  
A11  
A9  
A8  
A13  
A14  
A17  
DECODER  
31  
30  
29  
28  
27  
26  
25  
#CE  
DQ7  
DQ6  
DQ5  
DQ4  
DQ3  
4
5
A18  
6
7
#WE  
VDD  
A18  
8
32L STSOP and 32L TSOP  
V
SS  
9
24  
23  
22  
21  
20  
19  
18  
17  
10  
DQ2  
DQ1  
DQ0  
A0  
A16  
A15  
A12  
A7  
A6  
A5  
11  
12  
13  
14  
15  
16  
A1  
A2  
A3  
A4  
5. PIN DESCRIPTION  
32  
31  
30  
29  
28  
27  
A18  
1
2
VDD  
SYMBOL  
PIN NAME  
#WE  
A16  
A15  
A12  
A7  
3
A17  
A14  
Address Inputs  
Data Inputs/Outputs  
4
A0 A18  
DQ0 DQ7  
#CE  
5
A13  
6
A6  
A8  
7
26  
25  
24  
23  
22  
21  
20  
19  
A9  
A5  
32-pin  
DIP  
8
A11  
#OE  
A10  
A4  
Chip Enable  
Output Enable  
Write Enable  
Power Supply  
Ground  
9
A3  
10  
A2  
11  
12  
13  
#CE  
DQ7  
DQ6  
DQ5  
DQ4  
DQ3  
#OE  
A1  
A0  
DQ0  
#WE  
14  
15  
16  
DQ1  
DQ2  
Vss  
18  
17  
VDD  
VSS  
- 4 -  
 
W39L040A  
6. FUNCTIONAL DESCRIPTION  
6.1 Device Bus Operation  
6.1.1 Read Mode  
The read operation of the W39L040A is controlled by #CE and #OE, both of which have to be low for  
the host to obtain data from the outputs. #CE is used for device selection. When #CE is high, the chip  
is de-selected and only standby power will be consumed. #OE is the output control and is used to  
gate data from the output pins. The data bus is in high impedance state when either #CE or #OE is  
high. Refer to the timing waveforms for further details.  
6.1.2 Write Mode  
Device erasure and programming are accomplished via the command register. The contents of the  
register serve as inputs to the internal state machine. The state machine outputs dictate the function  
of the device.  
The command register itself does not occupy any addressable memory location. The register is a  
latch used to store the commands, along with the address and data information needed to execute the  
command. The command register is written by bringing #WE to logic low state; while #CE is at logic  
low state and #OE is at logic high state. Addresses are latched on the falling edge of #WE or #CE,  
whichever happens later; while data is latched on the rising edge of #WE or #CE, whichever happens  
first. Standard microprocessor write timings are used.  
Refer to AC Write Characteristics and the Erase/Program Waveforms for specific timing parameters.  
6.1.3 Standby Mode  
The Standby mode is achieved with the #CE input held at VDD ±0.3V and the current is typically reduced to  
less than 5μA (max).  
In the standby mode the outputs are in the high impedance state, independent of the #OE input.  
6.1.4 Output Disable Mode  
With the #OE input at a logic high level (VIH), output from the device is disabled. This will cause the  
output pins to be in a high impedance state.  
6.1.5 Auto-select Mode  
The auto-select mode allows the reading of a binary code from the device and will identify its  
manufacturer and type. This mode is intended for use by programming equipment for the purpose of  
automatically matching the device to be programmed with its corresponding programming algorithm.  
This mode is functional over the entire temperature range of the device.  
To activate this mode, the programming equipment must force VID (11.5V to 12.5V) on address pin  
A9. Two identifier bytes may then be sequenced from the device outputs by toggling address A0 from  
VIL to VIH. All addresses are dont cares except A0 and A1 (see "Auto-select Codes").  
The manufacturer and device codes may also be read via the command register, for instance, when  
the W39L040A is erased or programmed in a system without access to high voltage on the A9 pin.  
The command sequence is illustrated in "Auto-select Codes".  
Publication Release Date: April 14, 2005  
- 5 -  
Revision A3  
 
W39L040A  
Byte 0 (A0 = VIL) represents the manufacturers code (Winbond = DAH) and byte 1 (A0 = VIH) the  
device identifier code (W39L040A = D6hex). All identifiers for manufacturer and device will exhibit odd  
parity with DQ7 defined as the parity bit. In order to read the proper device codes when executing the  
Auto-select, A1 must be low state.  
6.2 Data Protection  
The W39L040A is designed to offer protection against accidental erasure or programming caused by  
spurious system level signals that may exist during power transitions. During power up the device  
automatically resets the internal state machine in the Read mode. Also, with its control register  
architecture, alteration of the memory contents only occurs after successful completion of specific  
multi-bus cycle command sequences. The device also incorporates several features to prevent  
inadvertent write cycles resulting from VDD power-up and power-down transitions or system noise.  
6.2.1 Low VDD Inhibit  
To avoid initiation of a write cycle during VDD power-up and power-down, the W39L040A locks out  
when VDD < 2.0V (see DC Characteristics section for voltages). The write and read operations are  
inhibited when VDD is less than 2.0V typical. The W39L040A ignores all write and read operations until  
VDD > 2,0V. The user must ensure that the control pins are in the correct logic state when VDD > 2.0V  
to prevent unintentional writes.  
6.2.2 Write Pulse "Glitch" Protection  
Noise pulses of less than 10 nS (typical) on #OE, #CE, or #WE will not initiate a write cycle.  
6.2.3 Logical Inhibit  
Writing is inhibited by holding any one of #OE = VIL, #CE = VIH, or #WE = VIH. To initiate a write cycle  
#CE and #WE must be a logical zero while #OE is a logical one.  
6.2.4 Power-up Write and Read Inhibit  
Power-up of the device with #WE = #CE = VIL and #OE = VIH will not accept commands on the rising  
edge of #WE except 5mS delay (see the power up timing in AC Characteristics). The internal state  
machine is automatically reset to the read mode on power-up.  
6.3 Command Definitions  
Device operations are selected by writing specific address and data sequences into the command  
register. Writing incorrect address and data values or writing them in the improper sequence will reset  
the device to the read mode. "Command Definitions" defines the valid register command sequences.  
6.3.1 Read Command  
The device will automatically power-up in the read state. In this case, a command sequence is not  
required to read data. Standard microprocessor read cycles will retrieve array data. This default value  
ensures that no spurious alteration of the memory content occurs during the power transition.  
The device will automatically returns to read state after completing an Embedded Program or  
Embedded Erase algorithm.  
Refer to the AC Read Characteristics and Waveforms for the specific timing parameters.  
- 6 -  
 
W39L040A  
6.3.2 Auto-select Command  
Flash memories are intended for use in applications where the local CPU can alter memory contents.  
As such, manufacture and device codes must be accessible while the device resides in the target  
system. PROM programmers typically access the signature codes by raising A9 to a high voltage.  
However, multiplexing high voltage onto the address lines is not generally a desirable system design  
practice.  
The device contains an auto-select command operation to supplement traditional PROM programming  
methodology. The operation is initiated by writing the auto-select command sequence into the  
command register. Following the command write, a read cycle from address XX00H retrieves the  
manufacture code of DAH. A read cycle from address XX01H returns the device code (W39L040A =  
D6hex).  
To terminate the operation, it is necessary to write the auto-select exit command sequence into the  
register.  
6.3.3 Byte Program Command  
The device is programmed on a byte-by-byte basis. Programming is a four-bus-cycle operation. The  
program command sequence is initiated by writing two "unlock" write cycles, followed by the program  
set-up command. The program address and data are written next, which in turn initiate the Embedded  
program algorithm. Addresses are latched on the falling edge of #CE or #WE, whichever happens  
later and the data is latched on the rising edge of #CE or #WE, whichever happens first. The rising  
edge of #CE or #WE (whichever happens first) begins programming using the Embedded Program  
Algorithm. Upon executing the algorithm, the system is not required to provide further controls or  
timings. The device will automatically provide adequate internally generated program pulses and verify  
the programmed cell margin.  
The automatic programming operation is completed when the data on DQ7 (also used as #Data  
Polling) is equivalent to the data written to this bit at which time the device returns to the read mode  
and addresses are no longer latched (see "Hardware Sequence Flags"). Therefore, the device  
requires that a valid address to the device be supplied by the system at this particular instance of time  
for #Data Polling operations. #Data Polling must be performed at the memory location which is being  
programmed.  
Any commands written to the chip during the Embedded Program Algorithm will be ignored. If a  
hardware reset occurs during the programming operation, the data at that particular location will be  
corrupted.  
Programming is allowed in any sequence and across sector boundaries. Beware that a data "0"  
cannot be programmed back to a "1". Attempting to program 0 back to 1, the toggle bit will stop  
toggling. Only erase operations can convert "0"s to "1"s.  
Refer to the Programming Command Flow Chart using typical command strings and bus operations.  
6.3.4 Chip Erase Command  
Chip erase is a six-bus-cycle operation. There are two "unlock" write cycles, followed by writing the  
"set-up" command. Two more "unlock" write cycles are asserted, followed by the chip erase  
command.  
Chip erase does not require the user to program the device prior to erase. Upon executing the  
Embedded Erase Algorithm command sequence the device will automatically erase and verify the  
entire memory for an all one data pattern. The erase is performed sequentially on each sectors at the  
Publication Release Date: April 14, 2005  
- 7 -  
Revision A3  
 
W39L040A  
same time (see "Feature"). The system is not required to provide any controls or timings during these  
operations.  
The automatic erase begins on the rising edge of the last #WE pulse in the command sequence and  
terminates when the data on DQ7 is "1" at which time the device returns to read the mode.  
Refer to the Erase Command Flow Chart using typical command strings and bus operations.  
6.3.5 Sector Erase Command  
Sector erase is a six-bus-cycle operation. There are two "unlock" write cycles, followed by writing the  
"set-up" command. Two more "unlock" write cycles then follows by the sector erase command. The  
sector address (any address location within the desired sector) is latched on the falling edge of #WE,  
while the command (30H) is latched on the rising edge of #WE.  
Sector erase does not require the user to program the device prior to erase. When erasing a sector or  
sectors the remaining unselected sectors are not affected. The system is not required to provide any  
controls or timings during these operations.  
The automatic sector erase begins after the erase command is completed, right from the rising edge  
of the #WE pulse for the last sector erase command pulse and terminates when the data on DQ7,  
#Data Polling, is "1" at which time the device returns to the read mode. #Data Polling must be  
performed at an address within any of the sectors being erased.  
Refer to the Erase Command flow Chart using typical command strings and bus operations.  
6.4 Write Operation Status  
6.4.1 DQ7: #Data Polling  
The W39L040A device features #Data Polling as a method to indicate to the host that the embedded  
algorithms are in progress or completed.  
During the Embedded Program Algorithm, an attempt to read the device will produce the complement  
of the data last written to DQ7. Upon completion of the Embedded Program Algorithm, an attempt to  
read the device will produce the true data last written to DQ7.  
During the Embedded Erase Algorithm, an attempt to read the device will produce a "0" at the DQ7  
output. Upon completion of the Embedded Erase Algorithm, an attempt to read the device will produce  
a "1" at the DQ7 output.  
For chip erase, the #Data Polling is valid after the rising edge of the sixth pulse in the six #WE write  
pulse sequences. For sector erase, the #Data Polling is valid after the last rising edge of the sector  
erase #WE pulse. #Data Polling must be performed at sector addresses within any of the sectors  
being erased. Otherwise, the status may not be valid.  
Just prior to the completion of Embedded Algorithm operations DQ7 may change asynchronously  
while the output enable (#OE) is asserted low. This means that the device is driving status information  
on DQ7 at one instant of time and then that bytes valid data at the next instant of time. Depending on  
when the system samples the DQ7 output, it may read the status or valid data. Even if the device has  
completed the Embedded Algorithm operations and DQ7 has a valid data, the data outputs on DQ0 –  
DQ6 may be still invalid. The valid data on DQ0 DQ7 will be read on the successive read attempts.  
The #Data Polling feature is only active during the Embedded Programming Algorithm, Embedded  
Erase Algorithm, or sector erase time-out (see "Command Definitions").  
- 8 -  
 
W39L040A  
6.4.2 DQ6: Toggle Bit  
The W39L040A also features the "Toggle Bit" as a method to indicate to the host system that the  
embedded algorithms are in progress or completed.  
During an Embedded Program or Erase Algorithm cycle, successive attempts to read (#OE toggling)  
data from the device at any address will result in DQ6 toggling between one and zero. Once the  
Embedded Program or Erase Algorithm cycle is completed, DQ6 will stop toggling and valid data will  
be read on the next successive attempt. During programming, the Toggle Bit is valid after the rising  
edge of the fourth #WE pulse in the four write pulse sequence. For chip erase, the Toggle Bit is valid  
after the rising edge of the sixth #WE pulse in the six write pulse sequence. For sector erase, the  
Toggle Bit is valid after the last rising edge of the sector erase #WE pulse. The Toggle Bit is active  
during the sector erase time-out.  
Either #CE or #OE toggling will cause DQ6 to toggle.  
6.5 Table of Operating Modes  
6.5.1 Device Bus Operations  
(VID = 12 ±0.5V)  
PIN  
MODE  
#CE #OE #WE A0  
A1  
A1  
A1  
X
A9  
A9  
A9  
X
DQ0 DQ7  
Dout  
Read  
VIL  
VIL  
VIH  
X
VIL  
VIH  
X
VIH  
VIL  
X
A0  
A0  
X
Write  
Din  
Standby  
High Z  
X
VIL  
X
X
X
X
High Z/Dout  
High Z/Dout  
High Z  
Write Inhibit  
X
VIH  
VIH  
VIH  
VIH  
X
X
X
Output Disable  
VIL  
VIL  
VIL  
VIH  
VIL  
VIL  
X
X
X
Auto select Manufacturers ID  
Auto select Device ID  
VIL  
VIH  
VIL  
VIL  
VID  
VID  
Code  
Code  
6.5.2 Auto-select Codes (High Voltage Method)  
(VID = 12 ±0.5V)  
DESCRIPTION  
Manufacturer ID: Winbond  
Device ID: W39L040A  
#CE #OE #WE  
A9  
VID  
VID  
THE OTHER ADDRESS  
All Address = VIL  
DQ[7:0]  
DAhex  
D6hex  
VIL  
VIL  
VIL  
VIL  
VIH  
VIH  
A1 = VIH, All other = VIL  
Publication Release Date: April 14, 2005  
Revision A3  
- 9 -  
 
W39L040A  
6.5.3 Sector Address Table  
SECTOR  
SA0  
A18  
0
A17  
0
A16  
0
SECTOR SIZE (KBYTES)  
ADDRESS  
64  
64  
64  
64  
64  
64  
64  
64  
00000h 0FFFFh  
10000h 1FFFFh  
20000h 2FFFFh  
30000h 3FFFFh  
40000h 4FFFFh  
50000h 5FFFFh  
60000h 6FFFFh  
70000h 7FFFFh  
SA1  
0
0
1
SA2  
0
1
0
SA3  
0
1
1
SA4  
1
0
0
SA5  
1
0
1
SA6  
1
1
0
SA7  
1
1
1
Note: All sectors are 64K bytes in size.  
6.5.4 Command Definitions  
COMMAND  
DESCRIPTION  
Read  
NO. OF 1ST CYCLE 2ND CYCLE 3RD CYCLE 4TH CYCLE 5TH CYCLE 6TH CYCLE  
Addr. (1) Data Addr. Data Addr. Data Addr. Data Addr. Data Addr. Data  
Cycles  
AIN  
DOUT  
AA  
AA  
AA  
AA  
AA  
F0  
1
6
6
4
3
3
1
5555  
5555  
5555  
5555  
5555  
XXXX  
2AAA  
2AAA  
2AAA  
2AAA  
2AAA  
55  
55  
55  
55  
55  
5555  
5555  
5555  
5555  
5555  
80  
80  
A0  
90  
F0  
5555  
5555  
AIN  
AA  
AA  
DIN  
2AAA  
2AAA  
55  
55  
5555  
SA(3)  
10  
30  
Chip Erase  
Sector Erase  
Byte Program  
Product ID Entry  
Product ID Exit (2)  
Product ID Exit (2)  
Notes:  
1. Address Format: A14 A0 (Hex); Data Format: DQ7 DQ0 (Hex)  
2. Either one of the two Product ID Exit commands can be used.  
3. SA: Sector Address  
SA = 7XXXXh for Unique Sector7  
SA = 6XXXXh for Unique Sector6  
SA = 5XXXXh for Unique Sector5  
SA = 4XXXXh for Unique Sector4  
SA = 3XXXXh for Unique Sector3  
SA = 2XXXXh for Unique Sector2  
SA = 1XXXXh for Unique Sector1  
SA = 0XXXXh for Unique Sector0  
4. XX: Don't care  
- 10 -  
 
W39L040A  
6.6 Embedded Programming Algorithm  
Start  
Write Program Command Sequence  
(see below)  
#Data Polling/ Toggle bit  
Pause  
BP  
T
No  
Last Address  
?
Increment Address  
Yes  
Programming Completed  
Program Command Sequence (Address/Command):  
5555H/AAH  
2AAAH/55H  
5555H/A0H  
Program Address/Program Data  
Publication Release Date: April 14, 2005  
Revision A3  
- 11 -  
 
W39L040A  
6.7 Embedded Erase Algorithm  
Start  
Write Erase Command Sequence  
(see below)  
Bit  
#Data Polling or Toggle  
EC SEC PEC  
PauseT /T /T  
Successfully Completed  
Erasure Completed  
Chip Erase Command Sequence  
(Address/Command):  
Individual Sector Erase  
Command Sequence  
(Address/Command):  
5555H/AAH  
2AAAH/55H  
5555H/80H  
5555H/AAH  
2AAAH/55H  
5555H/80H  
5555H/AAH  
2AAAH/55H  
5555H/10H  
5555H/AAH  
2AAAH/55H  
Sector Address/30H  
- 12 -  
 
W39L040A  
6.8 Embedded #Data Polling Algorithm  
Start  
VA = Byte address for programming  
= Any of the sector addresses within  
the sector being erased during sector  
erase operation  
Read Byte  
(DQ0 - DQ7)  
Address = VA  
= Any of the device addresses being erased  
during chip erase operation  
No  
DQ7 = Data  
?
Yes  
Pass  
6.9 Embedded Toggle Bit Algorithm  
Start  
Read Byte  
(DQ0 - DQ7)  
Address = Don't Care  
Yes  
DQ6 = Toggle  
?
No  
Pass  
Publication Release Date: April 14, 2005  
Revision A3  
- 13 -  
 
W39L040A  
7. ELECTRICAL CHARACTERISTICS  
7.1 Absolute Maximum Ratings  
PARAMETER  
Operating Temperature  
RATING  
0 to +70  
UNIT  
°C  
°C  
V
Storage Temperature  
-65 to +150  
-0.5 to VDD+0.5  
-0.5 to +4.0  
-0.5 to +12.5  
Power Supply Voltage to VSS Potential  
Voltage on Any Pin to Ground Potential except A9  
Voltage on A9, #OE Pin to Ground Potential  
V
V
Note: Exposure to conditions beyond those listed under Absolute maximum Ratings may adversely affect the life and reliability  
of the device.  
7.2 DC Operating Characteristics  
(VDD = 3.0 ~ 3.6V for 70 nS or VDD = 2.7 ~ 3.6V for 90 nS, VSS = 0V, TA = 0 to 70° C)  
LIMITS  
PARAMETER  
SYM.  
TEST CONDITIONS  
UNIT  
MIN.  
TYP.  
MAX.  
mA  
Power Supply Read  
Current  
#CE = VIL, #OE = VIH, at f = 5  
MHz  
IDD1  
-
7
12  
Power Supply Write  
Current  
IDD2 #CE = VIL, #OE = VIH  
-
-
15  
30  
5
mA  
μA  
Standby VDD Current ISB  
0.2  
#CE = VDD ± 0.3V  
Input Leakage  
ILI  
VIN = VSS to VDD, VDD = VDD max.  
-
-
-
-
±1  
±1  
μA  
μA  
Current  
Output Leakage  
ILO  
VOUT = VSS to VDD, VDD = VDD  
max.  
Current  
Input Low Voltage  
Input High Voltage  
Output Low Voltage  
VIL  
VIH  
-
-
-0.5  
0.7 x VDD  
-
-
-
-
-
-
0.8  
V
V
V
V
V
VDD +0.3  
VOL IOL = 4.0 mA, VDD = VDD min.  
VOH1 IOH = -2.0 mA, VDD = VDD min.  
0.45  
0.85 VDD  
VDD -0.4  
-
-
Output High Voltage  
VOH2  
IOH = -100 μA, VDD = VDD min.  
7.3 Pin Capacitance  
(VDD = 3.3V for 70 nS, or VDD = 3.0V for 90 nS, TA = 25° C, f = 1 MHz)  
PARAMETER  
Input Capacitance  
Output Capacitance  
SYMBOL  
CIN  
CONDITIONS  
VIN = 0V  
TYP.  
6
MAX.  
UNIT  
7.5  
12  
pF  
pF  
COUT  
VOUT = 0V  
8.5  
- 14 -  
 
W39L040A  
7.4 AC Characteristics  
7.4.1 AC Test Conditions  
PARAMETER  
Input Pulse Levels  
CONDITIONS  
0V to 3.0V  
<5 nS  
Input Rise/Fall Time  
Input/Output Timing Level  
1.5V/1.5V  
1 TTL Gate  
CL = 30pF for 70nS/ 100pF for 90nS  
Output Load  
7.4.2 AC Test Load and Waveform  
+3.3V  
1.2K  
Ω
DOUT  
30 pF for 70nS  
100 pF for 90nS  
(Including Jig and Scope)  
2.1K  
Ω
Input  
Output  
3V  
1.5V  
1.5V  
0V  
Test Point  
Test Point  
Publication Release Date: April 14, 2005  
Revision A3  
- 15 -  
 
W39L040A  
AC Characteristics, continued  
7.4.3 Read Cycle Timing Parameters  
(VDD = 3.0 ~ 3.6V for 70 nS or VDD = 2.7 ~ 3.6V for 90 nS, VSS = 0V, TA = 0 to 70° C)  
70 nS  
90 nS  
PARAMETER  
Read Cycle Time  
SYM.  
UNIT  
MIN.  
MAX.  
-
MIN.  
MAX.  
-
70  
-
90  
-
nS  
nS  
nS  
nS  
nS  
nS  
nS  
TRC  
TCE  
Chip Enable Access Time  
Address Access Time  
70  
70  
30  
16  
16  
-
90  
90  
35  
16  
16  
-
-
-
TAA  
Output Enable Access Time  
#CE High to High-Z Output  
#OE High to High-Z Output  
Output Hold from Address Change  
-
-
TOE  
TCHZ  
TOHZ  
TOH  
-
-
-
-
0
0
7.4.4 Erase/Program Cycle Timing Parameters  
70 nS  
90 nS  
PARAMETER  
SYM.  
UNIT  
MIN.  
70  
0
TYP.  
MAX.  
MIN.  
TYP.  
MAX.  
Write Cycle Time  
-
-
90  
0
-
-
nS  
nS  
nS  
nS  
nS  
nS  
nS  
nS  
nS  
nS  
μS  
S
TWC  
TAS  
Address Setup Time  
Address Hold Time  
#CE Setup Time  
-
-
-
-
45  
0
-
-
45  
0
-
-
TAH  
TCS  
TCH  
TOES  
TWP  
TWPH  
TDS  
TDH  
TBP  
-
-
-
-
-
-
#CE Hold Time  
0
-
0
-
#OE Setup Time  
0
-
-
0
-
-
#WE Pulse Width  
35  
30  
35  
0
-
-
-
35  
30  
45  
0
-
-
-
#WE High Width  
-
-
Data Setup Time  
-
-
-
-
Data Hold Time  
-
-
-
-
Byte Programming Time  
Chip Programming Time  
Chip Erase Cycle Time  
Sector Erase Cycle Time  
-
9
200  
13.5  
50  
6
-
9
200  
13.5  
50  
6
-
4.5  
6
-
4.5  
6
TCP  
TEC  
TEP  
-
-
S
-
0.7  
-
0.7  
S
Note: All AC timing signals observe the following guidelines for determining setup and hold times:  
(a) High level signal's reference level is VIH and (b) low level signal's reference level is VIL.  
- 16 -  
 
W39L040A  
AC Characteristics, continued  
7.4.5 Power-up Timing  
PARAMETER  
SYMBOL  
TPU. READ  
TPU. WRITE  
TYPICAL  
UNIT  
μS  
Power-up to Read Operation  
Power-up to Write Operation  
100  
5
mS  
7.4.6 #Data Polling and Toggle Bit Timing Parameters  
70 nS  
90 nS  
MIN.  
PARAMETER  
SYM.  
UNIT  
MIN.  
MAX.  
MAX.  
10  
-
-
10  
-
-
nS  
nS  
nS  
nS  
#OE to #Data Polling Output Delay  
#CE to #Data Polling Output Delay  
#OE to Toggle Bit Output Delay  
#CE to Toggle Bit Output Delay  
TOEP  
TCEP  
TOET  
TCET  
70  
-
90  
-
10  
-
10  
-
70  
90  
Publication Release Date: April 14, 2005  
Revision A3  
- 17 -  
 
W39L040A  
8. TIMING WAVEFORMS  
8.1 Read Cycle Timing Diagram  
T
RC  
Address A18-0  
#CE  
T
CE  
T
OE  
#OE  
T
OHZ  
TOLZ  
V
IH  
#WE  
T
CLZ  
T
OH  
T
CHZ  
High-Z  
High-Z  
DQ7-0  
Data Valid  
Data Valid  
AA  
T
8.2 #WE Controlled Command Write Cycle Timing Diagram  
T
AS  
T
AH  
Address A18-0  
T
CS  
T
CH  
#CE  
#OE  
T
OES  
T
OEH  
T
WP  
T
WPH  
#WE  
T
DS  
DQ7-0  
Data Valid  
T
DH  
- 18 -  
 
W39L040A  
Timing Waveforms, continued  
8.3 #CE Controlled Command Write Cycle Timing Diagram  
AS  
T
TAH  
Address A18-0  
T
CPH  
T
CP  
#CE  
#OE  
T
OES  
T
OEH  
#WE  
T
DS  
High Z  
DQ7-0  
Data Valid  
T
DH  
8.4 Chip Erase Timing Diagram  
Six-byte code for 3.3V-only software  
chip erase  
Address A18-0  
5555  
80  
5555  
2AAA  
55  
5555  
AA  
5555  
2AAA  
55  
DQ7-0  
#CE  
AA  
10  
#OE  
#WE  
TWP  
SB0  
TEC  
TWPH  
Internal Erase starts  
SB2  
SB3  
SB5  
SB4  
SB1  
Publication Release Date: April 14, 2005  
Revision A3  
- 19 -  
 
W39L040A  
Timing Waveforms, continued  
8.5 Sector Erase Timing Diagram  
Six-byte commands for 3.3V-only  
Sector Erase  
SA  
5555  
5555  
2AAA  
55  
5555  
2AAA  
55  
Address A18-0  
DQ7-0  
80  
AA  
AA  
30  
#CE  
#OE  
TWP  
SB0  
TEP  
TWPH  
#WE  
Internal Erase starts  
SB2  
SB3  
SB5  
SB4  
SB1  
SA = Sector Address  
8.6 #Data Polling Timing Diagram  
Address A18-0  
An  
An  
An  
An  
#WE  
#CE  
TCEP  
TOEH  
TOES  
#OE  
DQ7  
TOEP  
X
X
X
X
TBP or TEC  
- 20 -  
 
W39L040A  
Timing Waveforms, continued  
8.7 Toggle Bit Timing Diagram  
Address A18-0  
#WE  
#CE  
TOES  
TOEH  
#OE  
DQ6  
TBP orTEC  
Publication Release Date: April 14, 2005  
Revision A3  
- 21 -  
 
W39L040A  
9. ORDERING INFORMATION  
STANDBY  
VDD  
CURRENT  
MAX. (μA)  
POWER  
ACCESS  
OPERATIN  
G TEMP.  
SUPPLY  
TIME  
PART NO.  
PACKAGE  
CYCLE  
CURRENT  
MAX. (mA)  
(nS)  
(°C)  
W39L040AP70B  
W39L040AP90B  
W39L040AQ70B  
W39L040AQ90B  
W39L040AT70B  
W39L040AT90B  
W39L040A70B  
W39L040A90B  
70  
90  
70  
90  
70  
90  
70  
90  
12  
12  
12  
12  
12  
12  
12  
12  
5
5
5
5
5
5
5
5
32L PLCC  
10K  
10K  
10K  
10K  
10K  
10K  
10K  
10K  
0 70  
0 70  
0 70  
0 70  
0 70  
0 70  
0 70  
0 70  
32L PLCC  
32L STSOP (8x14 mm)  
32L STSOP (8x14 mm)  
32L TSOP (8 x 20 mm)  
32L TSOP (8 x 20 mm)  
32L PDIP  
32L PDIP  
32L TSOP (8 x 20 mm)  
Lead free  
W39L040AT70Z  
W39L040AT90Z  
70  
90  
12  
12  
5
5
10K  
10K  
0 70  
0 70  
32L TSOP (8 x 20 mm)  
Lead free  
W39L040AP70Z  
W39L040AP90Z  
70  
90  
12  
12  
5
5
32L PLCC Lead free  
10K  
10K  
0 70  
0 70  
32L PLCC Lead free  
Notes:  
1. Winbond reserves the right to make changes to its products without prior notice.  
2. Purchasers are responsible for performing appropriate quality assurance testing on products intended for use in  
applications where personal injury might occur as a consequence of product failure.  
- 22 -  
 
W39L040A  
10. HOW TO READ THE TOP MARKING  
Example: The top marking of 32-pin TSOP W39L040AT-70  
W39L040AT70B  
2138977A-A12  
325OBFA  
1st line: Winbond logo  
2nd line: the part number: W39L040AT70B  
3rd line: the lot number  
4th line: the tracking code: 325 O B SA  
325: Packages made in '03, week 25  
O: Assembly house ID: A means ASE, O means OSE, ...etc.  
B: IC revision; A means version A, B means version B, ...etc.  
FA: Process code  
Publication Release Date: April 14, 2005  
Revision A3  
- 23 -  
 
W39L040A  
11. PACKAGE DIMENSIONS  
11.1 32L PLCC  
HE  
E
4
1
32  
30  
Dimension in Inches  
Dimension in mm  
Symbol  
A
Min. Nom. Max.  
Min. Nom. Max.  
5
29  
0.140  
3.56  
0.020  
0.50  
1
A
0.105  
0.026  
0.016  
0.008  
0.110  
0.028  
0.018  
0.010  
0.550  
0.450  
0.050  
0.510  
0.410  
0.590  
0.490  
0.090  
0.115  
0.032  
0.022  
0.014  
2.67  
0.66  
0.41  
0.20  
2.80  
0.71  
2.93  
0.81  
0.56  
0.35  
A
b
b
c
D
E
e
2
1
0.46  
0.25  
G
D
D
HD  
0.547  
0.447  
0.044  
0.490  
0.390  
0.585  
0.485  
0.075  
0.553  
0.453  
0.056  
0.530  
0.430  
0.595  
0.495  
0.095  
0.004  
13.89  
11.35  
1.12  
14.05  
11.51  
1.42  
13.97  
11.43  
1.27  
12.45  
9.91  
12.95  
10.41  
14.99  
12.45  
2.29  
13.46  
10.92  
15.11  
12.57  
2.41  
D
E
D
E
G
G
H
H
L
y
21  
13  
14.86  
12.32  
1.91  
c
14  
20  
0.10  
0
10  
0
10  
θ
Notes:  
L
A
2
A
1. Dimensions D & E do not include interlead flash.  
2. Dimension b1 does not include dambar protrusion/intrusion.  
3. Controlling dimension: Inches.  
θ
e
b
A1  
4. General appearance spec. should be based on final  
visual inspection sepc.  
b 1  
Seating Plane  
y
GE  
11.2 32L PDIP  
Dimension in inches  
Dimension in mm  
Symbol  
A
Min. Nom. Max. Min. Nom. Max.  
5.33  
0.210  
0.010  
0.150 0.155 0.160 3.81  
0.25  
A
A
B
1
3.94  
0.46  
4.06  
0.56  
1.37  
0.36  
42.16  
15.49  
14.10  
2.79  
3.56  
15  
2
0.016 0.018  
0.41  
1.22  
0.022  
0.054  
0.050  
1.27  
0.048  
0.008  
1
B
c
0.010 0.014 0.20  
1.650 1.660  
0.25  
D
17  
32  
41.91  
15.24  
13.97  
2.54  
D
E
0.610  
0.555  
0.110  
0.590 0.600  
14.99  
13.84  
2.29  
0.545  
0.550  
E
1
0.090 0.100  
e1  
E1  
3.05  
3.30  
0.120 0.130 0.140  
15  
L
a
0
0
0.630 0.650 0.670 16.00 16.51 17.02  
0.085  
e
S
A
2.16  
16  
1
Notes:  
E
S
1.Dimensions D Max. & S include mold flash or  
tie bar burrs.  
c
2.Dimension E1 does not include interlead flash.  
A
2
A
L
A1  
Base Plane  
3.Dimensions D & E1 include mold mismatch and  
.
are determined at the mold parting line.  
4.Dimension B1 does not include dambar  
protrusion/intrusion.  
Seating Plane  
5.Controlling dimension: Inches  
6.General appearance spec. should be based on  
final visual inspection spec.  
B
B
1
e
eA  
a
1
- 24 -  
 
W39L040A  
11.3 32L TSOP (8 x 20 mm)  
H D  
D
Dimension in Inches  
Dimension in mm  
Min. Nom.  
Max.  
Symbol  
Min.  
__  
Nom. Max.  
__  
__  
__  
A
1.20  
0.15  
1.05  
0.23  
0.047  
c
__  
__  
0.002  
0.037  
0.006  
0.05  
0.95  
A 1  
0.041  
0.009  
1.00  
0.20  
0.15  
0.039  
A
b
2
M
e
0.007 0.008  
0.17  
0.12  
E
c
0.005 0.006  
0.720 0.724  
0.17  
0.007  
0.728  
0.10(0.004)  
18.30 18.40 18.50  
D
E
b
0.311 0.315  
0.780 0.787  
7.90  
8.00  
8.10  
0.319  
19.80  
__  
20.00 20.20  
0.795  
__  
HD  
e
__  
__  
0.020  
0.50  
0.016 0.020  
0.40  
__  
0.50  
0.60  
__  
L
0.024  
__  
__  
0.031  
0.80  
__  
L
1
A
__  
0.000  
0.004  
5
0.10  
5
0.00  
1
Y
A2  
A1  
1
3
3
θ
θ
L
Y
L1  
Note:  
Controlling dimension: Millimeters  
11.4 32L STSOP (8 x 14 mm)  
HD  
D
Dimension in Inches Dimension in mm  
Symbol  
Max.  
1.20  
Min. Nom. Max. Min. Nom.  
c
0.047  
A
0.002  
0.035  
0.006  
0.041  
0.05  
0.95  
0.17  
0.10  
0.15  
1
A
A
b
c
e
0.040  
1.00  
0.22  
-----  
2
1.05  
0.27  
0.007 0.009 0.010  
E
0.004  
0.008  
0.21  
-----  
0.488  
12.40  
8.00  
b
D
E
0.315  
0.551  
0.020  
14.00  
D
H
0.50  
0.60  
0.80  
e
L
L
0.50  
0.70  
0.020 0.024 0.028  
0.031  
1
0.000  
0
0.00  
0
0.10  
5
0.004  
5
Y
3
3
θ
θ
A
A
1 A  
2
L
Y
L
1
Publication Release Date: April 14, 2005  
Revision A3  
- 25 -  
 
W39L040A  
12. VERSION HISTORY  
VERSION  
DATE  
PAGE  
DESCRIPTION  
A1  
Sep. 24, 2004  
-
Initial Issued  
Added 32L PDIP and 32L TSOP package  
dimensions  
A2  
A3  
Nov. 25, 2004  
April 14,2005  
3, 24, 25  
26  
Add important notice  
Important Notice  
Winbond products are not designed, intended, authorized or warranted for use as components  
in systems or equipment intended for surgical implantation, atomic energy control  
instruments, airplane or spaceship instruments, transportation instruments, traffic signal  
instruments, combustion control instruments, or for other applications intended to support or  
sustain life. Further more, Winbond products are not intended for applications wherein failure  
of Winbond products could result or lead to a situation wherein personal injury, death or  
severe property or environmental damage could occur.  
Winbond customers using or selling these products for use in such applications do so at their  
own risk and agree to fully indemnify Winbond for any damages resulting from such improper  
use or sales.  
- 26 -  
 

相关型号:

W39L040AT70B

512K 】 8 CMOS FLASH MEMORY
WINBOND

W39L040AT70Z

512K 】 8 CMOS FLASH MEMORY
WINBOND

W39L040AT90B

512K 】 8 CMOS FLASH MEMORY
WINBOND

W39L040AT90Z

512K 】 8 CMOS FLASH MEMORY
WINBOND

W39L040P-70

512 K X 8 CMOS FLASH MEMORY
WINBOND

W39L040P-70B

512 K X 8 CMOS FLASH MEMORY
WINBOND

W39L040P-70J

512 K X 8 CMOS FLASH MEMORY
WINBOND

W39L040P-70K

512 K X 8 CMOS FLASH MEMORY
WINBOND

W39L040P-70Z

Flash, 512KX8, 70ns, PQCC32, LEAD FREE, PLASTIC, LCC-32
WINBOND

W39L040P-90

512 K X 8 CMOS FLASH MEMORY
WINBOND

W39L040P-90B

512 K X 8 CMOS FLASH MEMORY
WINBOND

W39L040P-90J

512 K X 8 CMOS FLASH MEMORY
WINBOND